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ABSTRACT

For image semantic segmentation, a fully convolutional net-
work is usually employed as the encoder to abstract visual
features of the input image. A meticulously designed decoder
is used to decoding the final feature map of the backbone. The
output resolution of backbones which are designed for im-
age classification task is too low to match segmentation task.
Most existing methods for obtaining the final high-resolution
feature map can not fully utilize the information of differ-
ent layers of the backbone. To adequately extract the infor-
mation of a single layer, the multi-scale context information
of different layers, and the global information of backbone,
we present a new attention-augmented module named Dense-
attention Context Module (DCM), which is used to connect
the common backbones and the other decoding heads. The
experiments show the promising results of our method on
Cityscapes dataset.

Index Terms— Semantic segmentation, Fully convolu-
tional networks, Multi-scale context, Attention

1. INTRODUCTION

Image semantic segmentation is an important task of com-
puter vision which needs to assign a category label for each
image pixel. An image semantic segmentation task can be di-
vided into two sub tasks: location and classification that the
semantic information and the location information of pixels
are both important. Fully Convolution Network (FCN) [1] is
used to deal with this task, which has achieved great success
in many benchmarks. The original FCN is proposed by long
et al. It is transformed from a Convolutional Neural Network
(CNN) [2] designed for image classification which employs
stride convolution and/or spatial pooling layers. For example,
the resolution of the final feature map of ResNets [3] is 32
times smaller than that of the input image. Experiments show
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that when upsampling with large factor, the edge information
of the feature map may be lost seriously [5].

Encoder-decoder network is widely used in image seman-
tic segmentation, such as DeepLab Series [4], [5], [6] , PSP-
Net [7], DAN [8], etc. These networks all use ResNets as
backbones, and replace the ordinary convolutions of the last
two stages with dilated convolutions. Compared to the orig-
inal ResNets, the final feature maps of dilated ResNets have
the higher resolution. Thus, only a small number of upsam-
pling operation is needed to recover the features to the input
image size. To avoid using dilated convolutions in the back-
bone, FastFCN [9] proposes a novel joint upsampling module
named Joint Pyramid Upsampling (JPU). In essence, JPU is a
multi-layer information aggregation module, which fuses the
information of the last three layers of the backbone and output
a high-resolution feature map.

There is no doubt that JPU is a new way to fuse the infor-
mation of the backbones. However, JPU does not make full
use of the multi-scale information. JPU only uses 3 × 3 con-
volutions to extract the information of a single layer, which
ignores the multi-scale information of objects with different
sizes. It is known that the feature map in high-level layers has
more channels and richer semantic information. JPU reduces
feature dimension before the upsampling operations are per-
formed, resulting in the facts that the semantic information in
the higher-level backbone network has been lost. In addition,
JPU uses a spatial pyramid module, which employs the depth
separable dilated convolutions with different dilated rates to
extract multi-scale features. However, in this module, atten-
tion [10] modules are not used which are helpful to capture
global information.

In this paper, we aim to design a context module, which
can be used to fully extract the backbone information by em-
ploying attention module, and get a final high-resolution fea-
ture map for subsequent decoder for the image semantic seg-
mentation task. To deal with three problems in JPU men-
tioned above, we designed a Dense-attention Context Module
(DCM), composed of three sub modules: Hierarchical Refine-
ment Residual Block (HRRB), Joint Channel Attention Mod-
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Fig. 1. Overall architecture of the proposed DCM, marked
with green. An original ResNet50 is employed as the back-
bone, which can be replaced with other FCNs.

ule (JCA) and Attention-augmented Pyramid Spatial Module
(APSM). Convolution kernels with different sizes, which are
helpful to extract the information of objects with different
scales in a single layer of the backbone, are used in HRRB.
Using JCA module, we can extract the context information
from different convolution layers. In APSM, channel atten-
tion and spatial attention are both employed to extract the
global information. Using DCM can make full use of infor-
mation from different layers of backbone, and obtain a high-
resolution feature map, which is useful to the subsequent de-
coding head. Extensive experiments have been performed to
demonstrate the effectiveness of DCM.

2. OUR APPROACH

2.1. Overall Network Architecture

The overall Network Architecture is shown in Figure 1. We
employ ResNet50 [3] as the backbone, marked with light yel-
low. According to different resolution of the feature maps, the
backbone is marked as stem layer and convolution layer from
1 to 4. DCM, marked with light green, is used to connect
the backbone and other decoding heads, marked with light
blue, like Atrous Spatial Pyramid Pooling (ASPP) [5], Pyra-
mid Pooling module [7], etc. Using DCM connected to the
backbone, information of the backbone can be extracted well
and a high-resolution final feature is obtained.

2.2. Hierarchical Refinement Residual Block (HRRB)

There are objects of different sizes in the input image. In
GCN [11], and Inception [12], the authors propose that using
convolution kernels with different scales is helpful to extract
the features of objects with different sizes. Serval different
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Fig. 2. Comparison of different convolution blocks. From
left to right are (a) bottleneck [3], (b) Global Convolutional
Network (GCN) [11], (c) Inception [12], and (d) our HRRB.

convolution blocks are shown in Figure 2. Traditional bot-
tleneck (Figure 2 a) only uses 3 × 3 kernels which is hard
to cover the feature of large objects. On the contrary, GCN
(Figure 2 b) has two branches, where each branch uses 7× 1
and 1× 7 kernels respectively, leading to slight improvement
of segmentation performance with respect to only one branch
using factorized convolution [11]. Inception (Figure 2 c) uses
multiple 3 × 3 kernels combinations to expand the receptive
field. However, several small convolution kernels are not bet-
ter than using a large convolution kernel directly.

There are some deficiencies in the above modules. To
solve these problems, the proposed HRRB, which is also a
multi-branch structure, employs the basic 3 × 3 convolution
and two factorized convolutions, which equal to 5 × 5 and
7× 7 receptive field, in parallel. In addition, a global average
pooling layer is used to get global information. In summary,
the proposed HRRB is used to extract the information of ob-
jects with different scales via multi-branch convolutions in a
single layer of the backbone.

2.3. Joint Channel Attention (JCA)

Figure 3 (a) shows the most common channel attention mod-
ule proposed by SENet [13]. In SENet, the weighted vector
of channel attention module is only generated by the feature
map of current layer. We assume that the input size of feature
map is C×H×W . Global average pooling operation is used
to transform the input to C × 1× 1. Two 1× 1 convolutions
are used to map the channels, in which, the first convolution
layer reduces the dimension of the input feature by r times,
and the second convolution layer restores the dimension to C.
The C × 1 × 1 channel attention vector is obtained by acti-
vation of a Sigmoid function and multiply it with the original
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Fig. 3. Comparison of different channel attention modules in
different networks. From left to right are (a) SENet [13], (b)
DFN [14], (c) our JCA.

feature map. Another channel attention module is shown in
Figure 3 (b), which is used in DFN [14]. The feature map
of the high-level layer is concatenated with that of the low-
level layer. The generated channel attention weighted vector
contains the rich semantic information of the high-level layer.

The traditional channel attention module only uses the se-
mantic information of the current layer and its neighborhood
high-level layer, which ignores feature maps from all higher-
level layers. In this paper, we design a JCA module to extract
semantic information from all layers, as is shown in Figure 3
(c). For example, as the backbone shown in Figure 1, layer
3 and 4 provide more semantic information with respect to
layer 2, thus it is better to combine all high-level feature maps
to produce channel attention for layer 2. On the contrary, as
layer 4 is the highest-level feature, it is enough to generate
channel attention from itself. In Figure 3 (c), we assume that
there are n layers with different levels. The feature map size
of each layer is C×H×W , and size of the concatenated fea-
ture map is nC ×H ×W . Using the method similar to [15],
the concatenated feature map generates two different vectors,
with the size of nC × 1 × 1, through global average pool-
ing operation and global max pooling operation on resolution.
Then, using two convolution layers shared with parameters,
two vectors with the size of C × 1 × 1 are generated. We
add them and feed the added vector into a Sigmoid function
to get the final weighted vector, which is multiplied with the
low-level feature map. Specifically, as shown in Figure 1, we
assume that the channel number of feature map in layer 2 is
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Fig. 4. Our APSM. From left to right are (a) overview struc-
ture, (b) spatial attention, (c) channel attention.

C. To produce channel attention for layer 2, we respectively
use global average pooling operation and max pooling opera-
tion on resolution to convert the sizes of feature maps in layer
2, 3 and 4 to C×1×1, 2C×1×1 and 4C×1×1. Combining
the maps generated by the same operation, two sets of maps
with size of 7C × 1× 1 are obtained. Then, using two convo-
lution layers shared with parameters to generate two vectors
with the size of C×1×1. We add them and activate the added
vector with a Sigmoid function to get the final attention map
with the size of C × 1× 1.

2.4. Attention-augmented Pyramid Spatial Module (APSM)

A set of attention modules is used to extract global informa-
tion. In Figure 4 (a), we assume that the size of the input
feature map is C ×H ×W . 1× 1 convolution is first used to
adjust number of the channels. Next, the input feature map is
first fed into four Separable Dilated Convolutions (S-DCONs)
[16], with different dilated rates. After stacking the outputs
from four S-DCONs, two attention branches, which compute
C× 1× 1 channel attention and 1×H ×W spatial attention,
are produced, respectively. Two kinds of attention maps are
multiplied with the concatenated features, and two branches
are added together to generate final features.

The structure of spatial attention module is shown in Fig-
ure 4 (b). Global average pooling operation and max pooling
operation on channels are both used, to separately transform
the input size to 1×H×W . On the concatenated feature, we
apply a 7× 7 convolution to obtain the weighted 1×H ×W
spatial attention map activated by a Sigmoid function. Chan-
nel attention module, in Figure 4 (c), separately uses global
average and max pooling operation on resolution, to trans-
form the input size to C × 1 × 1. Then they are added, and
activated by a Sigmoid function. Experiments show that the
addition of attention module is useful, compared to the mod-
ule without attention.



Table 1. Comparison results of the proposed modules on Cityscapes validation set. We use ResNet50 as the backbone and a
FCN decoder. As is shown in the table, our methods always have the better performance.

Method Residual Block Channel Attention APSM mIoU(%)Bottleneck HRRB None SE Module JCA w/o attention w/ attention
ResNet50+FCN X X X 77.04
ResNet50+FCN X X X 76.16
ResNet50+FCN X X X 76.68
ResNet50+FCN X X X 75.96
ResNet50+FCN X X X 74.31

Table 2. Evaluation results of our DCM and other methods on
Cityscapes [17] testing sets, without using augmented dataset.

Method Backbone mIoU(%)
RefineNet [18] ResNet101 73.6
PEARL [19] Dilated-ResNet101 75.4
DSSPN [20] Dilated-ResNet101 76.6

GCN [11] ResNet152 76.9
SAC [21] Dilated-ResNet101 78.1

PSPNet [7] Dilated-ResNet101 78.4
BiSeNet [22] ResNet101 78.9

DFN [14] ResNet101 79.3
JPU+ASPP [9] ResNet50 77.2
DCM+ASPP ResNet50 78.2
DCM+ASPP ResNet101 79.4

3. EXPERIMENTS

In this paper, we choose widely-used Cityscapes [17] dataset
to evaluate our DCM. Cityscapes dataset contains 2,975 train-
ing, 500 validation and 1,525 testing images, including 19 dif-
ferent classes about streetscape. We adopt mean intersection-
over-union (mIoU) averaged across all categories to evalu-
ate segmentation accuracy. We select JPU, used in FastFCN
[9], and other high-performance neural networks for seman-
tic segmentation, as baselines. For comparing fairly, all the
experiments are implemented on the same platform, includ-
ing a single RTX 2080Ti GPU and the PyTorch framework.
For Cityscapes, due to the limitation of the memory size of
a single GPU, we random crop the input size to 768 × 768
with mini-batch size equals to 2. The initial learning rate is
2 × 10−3 and the ‘poly’ learning rate policy is adopted with
power 0.9. We train on the Cityscapes with 300 epochs.

Table 1 shows the comparison results on Cityscapes vali-
dation dataset of each module. The architecture of backbone
and decoding head are fixed. A series of experiments have
been conducted by controlling other conditions. We compare
the proposed HRRB with the common Bottleneck [3]. Using
HRRB brings a 2.73% performance improvement. The pro-
posed JCA module brings 1.08% performance improvement.

(a) (b) (c) (d) (e)

Fig. 5. Partial visual comparison on Cityscapes valida-
tion dataset. From left to right are (a) input images, (b)
ground truth, (c) our DCM+ASPP, (d) dilated+ASPP and (e)
JPU+ASPP. ResNet50 is used as the backbone.

In APSM, the additional channel attention module and spatial
attention module bring a 0.88% performance improvement.
Table 2 shows the results of our method compared with JPU
and other state-of-the-art methods. Employing ResNet50 as
backbone and ASPP as decoder head, our method achieves
78.2% mIoU on Cityscapes testing dataset. When ResNet
101 is used in our framework, we obtain 79.4% mIoU, with-
out training on the coarse images sets. Figure 5 shows partial
visual comparison on Cityscapes validation dataset, and our
DCM contains more details.

4. CONCLUSIONS

This paper has described a Dense-attention Context Module
(DCM), which is designed to connect the decoding heads and
the backbones. There is no need to employ dilated convo-
lutions in the backbone, using DCM. A lot of comparative
experiments have been performed to prove the effectiveness
of the proposed module in this paper, compared with other
modules. The entire network is trained end-to-end and our
DCM has the better performance under the same conditions
on Cityscapes dataset. The future works include experiments
on other backbones and decoders, and adjust details of the
proposed modules to get fast speed.
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