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Abstract. Though generative adversarial networks (GANs) are prominent models
to generate realistic and crisp images, they are unstable to train and suffer from
the mode collapse problem. The problems of GANs come from approximating
the intrinsic discontinuous distribution transform map with continuous DNNs.
The recently proposed AE-OT model addresses the discontinuity problem by
explicitly computing the discontinuous optimal transform map in the latent space
of the autoencoder. Though have no mode collapse, the generated images by
AE-OT are blurry. In this paper, we propose the AE-OT-GAN model to utilize
the advantages of the both models: generate high quality images and at the same
time overcome the mode collapse problems. Specifically, we firstly embed the
low dimensional image manifold into the latent space by autoencoder (AE). Then
the extended semi-discrete optimal transport (SDOT) map is used to generate
new latent codes. Finally, our GAN model is trained to generate high quality
images from the latent distribution induced by the extended SDOT map. The
distribution transform map from this dataset related latent distribution to the
data distribution will be continuous, and thus can be well approximated by the
continuous DNNs. Additionally, the paired data between the latent codes and
the real images gives us further restriction about the generator and stabilizes the
training process. Experiments on simple MNIST dataset and complex datasets like
CIFAR10 and CelebA show the advantages of the proposed method.
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1 Introduction

Image generation has been one of the core topics in the area of computer vision for a long
time. Thanks to the quick development of deep learning, numerous generative models
are proposed, including encoder-decoder based models [2,20,44], generative adversarial
networks (GANs) [3,6, 14,15,37,47], density estimator based models [8,9,21,35] and
energy based models [24,34,48,51]. The encoder-decoder based models and GANSs are
the most prominent ones due to their capability to generate high quality images.
Intrinsically, the generator in a generative model aims to learn the real data distribu-
tion supported on the data manifold [43]. Suppose the distribution of a specific class of
natural data v, is concentrated on a low dimensional manifold x embedded in the high
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dimensional data space. The encoder-decoder methods first attempt to embed the data
into the latent space (2 through the encoder fy, then samples from the latent distribution
are mapped back to the manifold to generate new data by decoder g.. While GANs,
which have no encoder, directly learn a map (generator) that transports a given prior low
dimensional distribution to ;.

Usually, GANs are unstable to train and suffer from mode collapse [13,30]. The dif-
ficulties come from the fact that the generator of a GAN model is trained to approximate
the discontinuous distribution transport map from the unimodal Gaussian distribution to
the real data distribution by the continuous neural networks [2, 19,47]. In fact, when
the supporting manifolds of the source and target distributions differ in topology or
convexity, the OT map between them will be discontinuous [45]. Distribution transport
maps can have complicated singularities, even when the ambient dimension is low [12].
This poses a great challenge for the generator training in standard GAN models.

To tackle the mode collapse problem caused by discontinuous transport maps, the
authors of [2] proposed the AE-OT model. In this model, an autoencoder is used to map
the image manifold x into the latent manifold (2. Then, the semi-discrete optimal trans-
port (SDOT) map 7 from the uniform distribution Uni([0, 1]¢) to the empirical latent
distribution is explicitly computed via convex optimization approach. Then a piece-wise
linear extension map of the SDOT, denoted by T, pushes forward the uniform distri-
bution to a continuous latent distribution y, which in turn gives a good approximation
of the latent distribution pg¢ = foxvg: (fox means the push forward map induced by
fs). Composing the continuous decoder g¢ and discontinuous T together, i.e. g¢ o T(w),
where w is sampled from uniform distribution, this model can generate new images.
Though have no mode collapse, the generated images look blurry.

In this work we propose the AE-OT-GAN framework to combine the advantages of
the both models and generate high quality images without mode collapse. Specifically,
after the training of the autoencoder and the computation of the extended SDOT map,
we can directly sample from the latent distribution p by applying T(w) on the uniform
distribution to train the GAN model. In contrast to the conventional GAN models, whose
generators are trained to transport the latent Gaussian distribution to the data manifold
distribution, our GAN model sample from the data inferred latent distribution u. The
distribution transport map from . to the data distribution vy, is continuous and thus
can be well approximated by the generator (parameterized by CNNs). Moreover, the
decoder of the pre-trained autoencoder gives a warm start of the generator, so that the
Kullback-Leibler divergence can be directly applied in the discriminator because the
real and fake batches of images have non-vanishing overlap in their supports during
the training phase. Furthermore, the content loss and feature loss between the paired
latent codes and real input images regularize the adversarial loss, stabilize the GAN
training and help get rid of mode collapse problem. Experiments have shown efficacy
and efficiency of our proposed model.

The contributions of the current work can be summarized as follows: (1) This paper
proposes a novel AE-OT-GAN model that combines the strengths of AE-OT model and
GAN model. The proposed model removes the blurriness of the images generated by AE-
OT, and at the same time keep the good properties of the latter in eliminating the mode
collapse problems. (2) The decoder of the autoencoder provides a good initialization of
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the generator of GAN, which makes the supports of the real and fake image distributions
overlap and thus the KL divergence can be used in the discriminator. (3) In addition to
the adversarial loss, the explicit correspondence between the latent codes and the real
images provide auxiliary constraints, namely the content loss and feature loss, to the
generator. The both losses make sure that there is no mode collapse in our model. (4)
The experiments demonstrate that our model can generate images consistently better
than the results of state-of-the-art methods.

2 Related Work

The proposed method in this paper is highly related to encoder-decoder based generation
models, the generative adversarial networks (GANSs), conditional GANs and the hybrid
models that take the advantages of above.

Encoder-decoder architecture A breakthrough for image generating comes from
the scheme of Variational Autoencoders (VAEs) (e.g. [20]), where the decoders ap-
proximate real data distributions from a Gaussian distribution in a variational approach
(e.g [20] and [39]). Latter Yuri Burda et al. [5] lower the requirement of latent distribution
and propose the importance weighted autoencoder (IWAE) model through a different
lower bound. Bin and David [7] propose that the latent distribution of VAE may not
be Gaussian and improve it by firstly training the original model and then generating
new latent code through the extended ancestral process. Another improvement of the
VAE is the VQ-VAE model [36], which requires the encoder to output discrete latent
codes by vector quantisation, then the posterior collapse of VAEs can be overcome. By
multi-scale hierarchical organization, this idea is further used to generate high quality
images in VQ-VAE-2 [38]. In [44], the authors adopt the Wasserstein distance in the
latent space to measure the distance between the distribution of the latent code and the
given one and generate images with better quality. Different from the the VAEs, the
AE-OT model [2] firstly embed the images into the latent space by autoencoder, then
an extended semi-discrete OT map is computed to generate new latent code based on
the fixed ones. Decoded by the decoder, new images can be generated. Although the
encoder-decoder based methods are relatively simple to train, the generated images tend
to be blurry.

Generative adversarial networks The GAN model [14] tries to alternatively update
the generator, which maps the noise sampled from a given distribution to real images,
and the discriminator differentiates between the generated images and the real ones.
If the generated images successfully fool the discriminator, the model is well trained.
Later, [37] proposes a deep convolutions neural network (DCGAN) to generate images
with better quality. While being a powerful tool in generating realistic samples, GANs can
be hard to train and suffer from mode collapse problem [13]. After delicate analysis, [3]
points out that it is the KL divergence the original GAN used causes these problems. Then
the authors introduced the celebrated WGAN, which makes the whole framework easy
to converge. To satisfy the Lipschitz continuity required by WGAN, a lot of methods are
proposed, including clipping [3], gradient penalty [15], spectral normalization [33] and
so on. Later, Wu et al. [46] use the Wasserstein divergence objective, which get rid of the
Lipschitz approximation problem and get a better result. Differently, the OT-GAN [41]
uses the Sinkhorn algorithm to approximate the Wasserstein distance in the image space.
Instead of Lq cost adopted by WGAN, Liu et.al [29] propose the WGAN-QC by taking
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the Ly cost into consideration. Though various GANs can generate sharp images, they
will theoretically encounter the mode collapse problem [2, 13].

Hybrid models To solve the blurry image problem of encoder-decoder architecture
and the mode collapse problems of GANS, a natural idea is to compose them together.
Larsen et al. [23] propose to combine the variational autoencoder with a generative
adversarial network, and thus generate images better than VAEs. [32] matches the
aggregated posterior of the hidden code vector of the autoencoder with an arbitrary prior
distribution by a discriminator and then applies the model into tasks like semi-supervised
classification and dimensionality reduction. BIGAN [10], with the same architecture with
ours, uses the discriminator to differentiate both the generated images and the generated
latent code. Further, utilizing the BigGAN generator [4], the BigBiGAN [11] extends this
method to generate much better results. Here we also treat the BourGAN [47] as a hybrid
model, because it firstly embeds the images into latent space by Bourgain theorem, then
trains the GAN model by sampling from the latent space using the GMM model.

Conditional GANs are another kind of hybrid models that can also be treated as
image-to-image transformation. For example, using an encoder-decoder architecture
to build the connection between paired images and then differentiating the decoded
images with the real ones by a discriminator, [17] is able to transform images of different
styles. Further, SRGAN [26] uses similar architecture to get super resolution images
from their low resolution versions. The SRGAN model is the most similar work to ours,
as it also utilizes the content loss and adversarial loss. The main differences between
this model and ours including: (i) SRGAN just uses the paired data, while the proposed
method use both the paired data and generated new latent code to train the model; (ii) the
visually meaningful features used by SRGAN are extracted from the pre-trained VGG19
network [42], while in our model, they come from the encoder itself. This makes them
more reasonable especially under the scenes where the datasets are not included in those
used to train the VGG.

Note that no mode collapse in the AE-OT model cannot directly guarantee that there
is no mode collapse of the AE-OT-GAN model. For the AE-OT model, the pre-trained
decoder of the AE is used as generator, thus if there is no mode collapse in the latent
space, there will be no mode collapse in the image space. For the AE-OT-GAN model,
the decoder is changed. The elimination of the mode collapse is thus guaranteed by the
paired content loss between the latent codes and the real images.

3 The Proposed Method

In this section, we explain our proposed AE-OT-GAN model in detail. There are mainly
three modules, an autoencoder (AE), an optimal transport mapper (OT) and a GAN
model. Firstly, an AE model is trained to embed the data manifold x into the latent space.
At the same time, the encoder fq pushes forward the ground-truth data distribution v/
supported on x to the ground-truth latent distribution f4¢ supported on {2 in the latent
space. Secondly, we compute the semi-discrete OT map from the uniform distribution
to the discrete empirical latent distribution fi4:. By the extended SDOT map T, we
can construct the continuous distribution g that approximates the ground-truth latent
distribution yi4; well. Finally, starting from p as the latent distribution, our GAN model
is trained to generate both realistic and crisp images. The pipeline of our proposed model
is illustrated in Fig. 1. In the following, we will explain the three modules one by one.
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Fig. 1. The framework of the proposed method. Firstly, the autoencoder is trained to embed the
images into the latent space, the real latent codes are shown as the orange circles. Then we compute
the extended semi-discrete OT map T to generate new latent codes in the latent space (the purple
crosses). Finally, our GAN model is trained from the latent distribution y = Ty Uni([0, 1]%) to
the image distribution. Here the generator is just the decoder of the autoencoder. The fake batch
(the bar with orange and purple colors) to train the discriminator is composed of two parts: the
reconstructed images ge (z;) of the real latent codes and the generated images g¢ (7'(w)) from the
randomly generated latent codes with w sampled from uniform distribution. The real batch (the
bar with only orange color) is also composed of two parts: the real images x; corresponding to z;,
and the randomly selected images ;.

3.1 Data Embedding with Autoencoder

We model the real data distribution as a probability measure v, supported on an r
dimensional manifold y embedded in the D dimensional Euclidean space R” (ambient
space) with < D. In the first step of our AE-OT-GAN model, we train an autoencoder
(AE) to embed the real data manifold  to be the latent manifold 2. In particular, training
the AE model is equivalent to compute the encoding map fg and decoding map g

fi
(Vges X) —2— (e, 2) —=— (vge,X)

by minimizing the loss function:

L£0,6) = lli — g¢ o folai)]*,
i=1
with fp and g¢ parameterized by standard CNNs (¢ and £ are the parameters of the
networks, respectively). Given a dense sampling from the image manifold (detailed
explanation is included in the supplementary) and ideal optimization (namely the loss
function goes to 0), fg o g¢ coincides with the identity map. After training, fy is a contin-
uous, convertible map, namely a homeomorphism, and g is the inverse homeomorphism.
This means fo : x — {2 is an embedding, and pushes forward vy to the latent data
distribution pg¢ := fonvy:. In practice, we only have the empirical data distribution
given by 0gy = L 3" | §(z — w;), which is pushed forward to be the empirical latent

distribution figy = = > | (2 — 2;), where n is the number of samples.

3.2 Constructing p with Semi-Discrete OT Map

In this section, from the empirical latent distribution /i, we construct a continuous
latent distribution 1 following [2] such that (i) it generalizes fig; well, so that all of the
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modes in the latent space are covered by the support of 4 (ii) the support of i has similar
topology to that of ji4;, which ensures that the transport map from p to vy has less
discontinuities and (iii) it is efficient to sample from .

To obtain i, the semi-discrete OT map 7 from the uniform distribution Uni ([0, 1]%)
to the empirical latent distribution fi4, is firstly computed. Here d is the dimension of
the latent space. By extending 7" to be a piece-wise linear map T, we can construct [t as
the push forward distribution of Uni([0, 1]%) under T

(Uni([0,1)%),[0,1]%) —T— (1, 2)

Theorem 1. The 2-Wasserstein distance between (i and [iq; satisfies Wa(p, fige) < €,
where € is a given constant to build u. Moreover, if the latent codes are densely sampled
from the latent manifold (2, we have Wa(u, jg:) < 2¢, p-almost surely.

The construction details of 1 can be found in [2] and the supplementary, and we also
give the proof of the above theorem in the supplementary. This theorem tells us that as a
continuous generalization of fi., 11 is a good approximation of f4¢. Also, we want to
mention that T is a piece-wise linear map that pushes forward Uni([0, 1]%) to u, which
makes the sampling from p efficient and accurate. Based on the construction of T, the
sampling from p is equivalent to the locally piece-wise linear interpolation of z;s in the
latent space, which guarantees that there is no mode collapse in .

3.3 GAN Training from p

The GAN model computes the transport map from the continuous latent distribution
to the data distribution on the manifold.

(1 2) === (Ve X).

Our GAN model is based on the vanilla GAN model proposed by Ian Goodfellow
et.al [14]. The generator g is used to generate new images by sampling from the latent
distributin p, while the discriminator d,, is used to discriminate if the distribution of
the generated images are the same with that of the real images. The training process is
formalized to be a min-max optimization problem:

min max £(&, ),
& m

where the loss function is given by

5(5777) = £adv + ‘Cfeat + ﬁﬁimg (1)

In our model, the loss function consists of three terms, the adversarial loss £,4,, the
image content loss L;,,4 and the feature loss Lf.q:. Here 5§ > 0 is the weight of the
content loss.

Adversarial Loss We adopt the vanilla GAN model [14] based on the Kullback—Leibler
(KL) divergence. The key difference between our model and the original GAN is that
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our latent samples are drawn from the data related latent distribution p, instead of the
Gaussian distribution. The adversarial loss is given by:

Loy = minmax B, log de(@)] + Burullog(1 = de(ge ()]

According to [3], vanilla GAN is hard to converge because the supports of the distribu-
tions of the real images and fake images may not intersect each other, which makes the
KL divergence between them infinity. This issue is solved in our case, because (1) the
training of AE gives a warm start to the generator, so at the beginning of the training, the
support of the generated distribution g pt is close to that of the real data distribution
Vgt; (2) by delicate settings of the fake and real batches used to train the discriminator,
we can keep the KL divergence between them converge well. In detail, as shown in Fig.
1, the fake batch is composed of both the reconstructed images from the real latent codes
(the orange circles) and the generated images from the generated latent codes (the purple
crosses), and the real batch includes both the real images corresponding to the real latent
codes and some randomly selected real images.

Content Loss Recall that the generator can produce two types of images: images
reconstructed by real latent codes and images from generated latent codes. Given a
real sample z;, its latent code is z; = fp(z;), the reconstructed image is g¢(z;). Each
reconstructed image is represented as a triple (x;, 2;, ge(2;)). Suppose there are n recon-
structed images in total, the content loss is given by

1 n
Limg = D llge(zi) — @ill3 @
=1

Where g is the generator parameterized by &.

Feature Loss We adopt the feature loss similar to that in [26]. Given a reconstructed
image triple (z;, 2;, g¢(2;)), we encode ge¢(2;) by the encoder of AE. Ideally, the real
image x; and the generated image g¢(z;) should be the same, therefore their latent codes
should be similar. We measure the difference between their latent codes by the feature
loss. Furthermore, we can measure the difference between their intermediate features
from different layers of the encoder.

Suppose the encoder is a network with L layers, the output of the [th layer is denoted

as fél). The feature loss is given by

n L
1
Lrear = >3 a1 @) = 137 0 gez):

i=1 [=1

Where a() is the weight of the feature loss of the I-th layer.

For reconstructed images (x;, z;, g¢(2;)), the content loss and the feature loss force
the generated image g¢(z;) to be the same with the real image ;. Therefore the elimi-
nating of mode collapse in the latent space means that there is no mode collapse in the
image space.

3.4 Geometric perspective of AE-OT-GAN

Another perspective of the proposed model is that it can be treated as a manifold fitting
framework. Ideally, if given an embedding map f : x — (2 and a dense dataset X
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Fig. 2. Manifold fitting result of the decoder/GAN. The blue curve is the original manifold. The
green one shows the fitting result of the AE-OT model. By the AE-OT-GAN framework, we can
not only draw ge¢(z;) much closer to x;, the whole manifold (the red curve) also fit the original
one (blue curve) better. The orange circles on (2 represent the real latent codes, and the purple one
represents the generated latent code. The orange disks on the manifold represent real data.

sampled from a distribution v4; supported on , the purpose of the generation model is
to generate new samples following the distribution of v and locating on the manifold
x. For the AE-OT model [2], it only requires that the reconstructed images should be
similar to the real ones under L distance. As a result, the support of the generated image
distribution may only fit the real manifold x well near the given samples. As shown in
Fig. 2, the orange circles represent the latent codes, and the green curve represents the
support of the generated distribution of AE-OT model, which only fits the real manifold
x well nearby the given samples. For the AE-OT-GAN model, on one hand, the feature
loss and content loss require that the reconstructed manifold (the red curve of Fig. 2)
should approach to the real manifold x on the given samples; on the other hand, the
discriminator is used to regularize the fitting performance of the generated manifold
on both the given samples and new generated samples, namely both the reconstructed
images g¢(#;) and the generated images g¢(Z;) should fit the real manifold well. Here
z; and Z; represent the real latent codes and the generated latent codes. Therefore, the
generated manifold by the AE-OT-GAN model fits the real manifold x far more better
than the AE-OT model. Moreover, according to Sec. 3.2, generating a new latent code
from p is essentially equivalent to locally linear interpolation by the real latent codes.
As aresult, the generated images can actually be treated as the non-linear interpolation
by the nearby real images. For example, Z; is generated by linear interpolation between
z; and 2y, then the location of ge¢(2;) should be between x; and .

4 Experiments

To evaluate the proposed method, experiments are conducted on various datasets includ-
ing MNIST [25], stack MNIST [28], Cifar10 [22], CelebA [50] and CelebA-HQ [27].
Evaluation metrics To illustrate the performance of the proposed method, we adopt
the commonly used Frechet Inception distance (FID) [16] as our main evaluation metrics.
When the images are embedded into the feature space by inception network, two high
dimensional Gaussian distributions are used to approximate the empirical distributions of
the generated and real features, respectively. The FID is given by the difference between
the two Gaussian distributions. Lower FID means better quality of the generated dataset.
For the Cifar10 dataset, another popular metric is the Inception Score (IS) [40], which
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can be used to measure the quality of each single image. Higher IS means better quality
of the generated image.

Training details To get rid of the vanishing gradient problem and make the model
converge better, we use the following three strategies:

(i) Train the discriminator using Batch Composition There are two types of latent
codes in our method: the real latent codes coming from encoding the real images by
the encoder, and the generated latent codes coming from the extended SDOT map.
Correspondingly, there are two types of generated images, the reconstructed images
from the real latent codes and the generated images from the generated latent codes.

To train the discriminator, both the fake batch and real batch are used. The fake
batch consists of both randomly selected reconstructed images and generated images,
and the real batch only includes real images, in which the first part has a one-to-one
correspondence with the reconstructed images in the fake batch, as shown in Fig. 1. In
all the experiments, the ratio between the number of generated images and reconstructed
images in the fake batch is 3. This strategy ensures that there is an overlap between the
supports of the fake and real batches, so that the KL divergence is not infinity.

(ii) Different learning rate For better training, we use different learning rates for the
generator and the discriminator as suggested by Heusel et al. in [16]. Specifically, we set
the learning rate of the generator to be I7¢ = 2e — 5 and that of the discriminator to be
lrp = lrg/R, where R > 1. This improves the stability of the training process.

(iii) Different inner steps Another way to improve the training consistency of the
whole framework is to set different update steps for the generator and discriminator.
Namely, when the discriminator updates once, the generator updates .S times correspond-
ingly. This strategy is opposite to the training of vanilla GANs, which typically require
multiple discriminator update steps per generator update step.

By setting R and S, we can keep the discriminator output of the real images slightly
large than that of the generated ones, which can better guide the training of the generator.
For the MNIST and stack MNIST datasets, R = 15 and S = 3; for the Cifar10 dataset,
R = 25 and S = 10; and for the CelebA and CelebA-HQ datasets, R = 15 and S = 5.
In Eq. 1, 8 = 2000 and a® = 0.06 with [ < L, where L denotes the last layer of the
encoder. a¥ = 2.0/|| Z||2 is used to regularize the loss of the latent codes.

With the above settings and the warm initialization of the generator from the pre-
trained decoder, for each dataset, the total epochs will be less than 1000.

4.1 Convergence Analysis on MNIST

In this experiment, we evaluate the performance of our proposed model on MNIST
dataset [25], which can be well embedded into the 64 dimensional latent space with
the architecture of InfoGAN [6]. In Fig. 3(a), we visualize the real latent codes (orange
circles) and the generated latent codes (purple crosses) by t-SNE [31]. It is obvious that
the support of the real latent distribution and that of the generated latent distribution
align well. Frame (b) of Fig. 3 shows the comparison between the generated handwritten
digits (left) and the real digits (right), which is very difficult for humans to distinguish.

To show the convergent property of the proposed method, we plot the related curves
in Fig. 4. The frame (a) and (b) show the changes of the content loss and the feature loss,
and both of them decrease monotonously. The frame (c) shows that the output of the
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Fig. 3. (a) Latent code distribution. The orange circles represent the fixed latent code and the
purple crosses are the generated ones. (b) Comparison between the generated digits (left) and the
real digits (right).
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Fig.4. The curves for training on MNIST dataset [25] of each epoch, including the results of
content loss (a) and self-perceptual loss (b), the discriminator output (c) and FIDs (d).

discriminator for real images is only slightly larger than that for the fake images during
the training process, which can help the generator generate more realistic digits. The
frame (d) gives the evolution of FID and the final value is 3.2. For MNIST dataset, the
best known FIDs with the same InfoGAN architecture are 6.7 and 6.4, reported in [30]
and [2] respectively. This shows our model outperforms the state-of-the-art.

4.2 Mode Collapse Analysis on Stack MNIST

In this section, we test the diversity of the generated samples for the proposed AE-
OT-GAN model on stack MNIST dataset [28], which includes 1,000 modes in total.
The AE module of the AE-OT-GAN is consistent with [2] and the architecture of the
discriminator is set to be the same as the encoder with the final output to be a scalar.
The number of modes and the reverse KL divergence are used as the metrics to test
the mode collapse performance. In Tab. 1, we show the results of the proposed method
and the comparisons including DCGAN [37], VEEGAN [1], PacGAN [28], WGAN [3]
and AE-OT [2]. It is obvious that the AE-OT-GAN model keeps the *no-mode-collapse’
property of the AE-OT model and has no mode miss in the generated images.

4.3 Quality Evaluation on Complex Dataset

In this section, we compare with the SOTA methods both quantitatively and qualitatively.
The standard and ResNet models used to train the Cifar10 dataset are the same with
those used by SNGAN [33], and the architectures of WGAN-div [46] are used to train
the CelebA dataset. The architecture used to train the CelebA-HQ dataset is illustrated
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Table 1. Experiments on stacked MNIST.

Stacked MNIST

Modes KL
DCGAN 99.0 3.40
VEEGAN 150.0 2.95
PacDCGAN4 1000.0 £ 0.00 0.07 & 0.005
WGAN(*) 314.3 +38.54 2.4440.170
AE-OT(*) 1000.0 £ 0.00 0.03 £ 0.0008
AE-OT-GAN(*) 1000.0 £ 0.0 0.05 £ 0.006

R %)
p\"

(a) Epoch 0 (b) Epoch 80 (c) Epoch 160 (d) Epoch 240  (e) Ground-truth

Fig. 5. Evolution of the generator during training on the CelebA dataset [50].

in the supplementary. The frameworks of the encoders are just set to be the mirror of
the corresponding generators/decoders. Progressive Quality Improvement Firstly, we

CIFAR10 CelebA
Standard Resnet Standard Resnet
FID IS FID IS FID FID
WGAN-GP [15] 40.2 6.68 19.6 7.86  21.2 18.4

PGGAN [18] - - 18.88.80 - 16.3
SNGAN [33] 25.57.58 21.78.22 - -

WGAN-div [46] - - 18.1 - 17.5 15.2
WGAN-QC [29] - - - - - 12.9
AE-OT [2] 342 6.62 28.57.67 243  28.6

AE-OT-GAN  2527.62 17.1 824 112 7.6
Table 2. The FID and IS between the AE-OT-GAN and the state of the arts on Cifar10 and CelebA.

show the evolution results of the proposed method in Fig. 5 during the GAN’s training
process. Quality of the generated images increases monotonously during the process.
Images in the first four frames of the first row illustrates the results reconstructed from
the real latent codes by the generator, with the last frame showing the corresponding
ground-truth input images. By examining the frames carefully, it is obvious that as
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Fig. 6. The visual comparison between the proposed method and the state-of-the-arts on CelebA
dataset [50] with ResNet architecture.

WGAN GP [15] SNGAN ([33] WGAN div [46] AE-OT [2] Proposed method
Fig. 7. The visual comparison between the proposed method and the state-of-the-arts on Cifar10
dataset [22] with ResNet architecture.

the increase of the epochs, the reconstructed images become sharper and sharper, and
eventually they are very close to the ground truth. The second row shows the generated
images from some generated latent codes (therefore, no corresponding real images).
Similarly. the images become sharper as the increase of epochs. Here we need to state
that the 0 epoch stage means the images are generated by the original decoder, which
are equivalent to the outputs of an AE-OT model [2]. Thus we can conclude that the
proposed AE-OT-GAN does improve the performance of AE-OT prominently.

Comparison on CelebA and CIFAR 10 Secondly, we compare with the state-
of-the-arts including WGAN-GP [15], PGGAN [18], SNGAN [33], CTGAN [49],
WGAN-div [46], WGAN-QC [29] and the recently proposed AE-OT model [2] on
Cifar10 [22] and CelebA [50]. Tab. 2 shows the FIDs (lower is better) of our method and
the comparisons trained under both the standard and ResNet architectures. The FIDs of
other methods come from the listed papers except those of the AE-OT, which are directly
computed by our model (the results of epoch 0). From the table we can see that our
method gets much better results than others on both the Cifar10 and the CelebA datasets,
under both the standard and the ResNet architectures. Also, the generated images of the
proposed methods have less flaws compared to other GANs, as shown on Fig. 6 and Fig.
7. The convergence curves of the FIDs for the both datasets can be found in Fig. 8. For
the Cifar10 dataset, another popular metric is the Inception score (IS, higher is better),
which is also reported on Tab. 2.

Experiment on CelebA-HQ Furthermore, we also test the proposed method on
images with high resolution, namely the CelebA-HQ dataset with image size to be
256x256. In our method, the generated images can be treated as locally interpolation
among the nearby given real images. In Fig. 9, the left column shows the generated
images and the right 5 columns show the top-5 images used to generate them. From
Tab. 3, we can see that the performance of the AE-OT-GAN model is better than the
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Fig. 8. The FID curves for Cifar10 and CelebA.

comparisons. We also display several generated images in Fig. 10, which are crisp and
visually realistic.

PGGAN WGAN-div WGAN-QC AE-OT-GAN
14.7 13.5 7.7 7.4
Table 3. The FIDs of the proposed method and the state-of-the-arts on CelebA-HQ.

L

Fig. 9. The interpolation of the AE-OT-GAN model. The left column shows the generated images,
and the right 5 images are the ones used to generate the left images in the latent space.

5 Conclusion and Future Work

In this paper, we propose the AE-OT-GAN model which composes the AE-OT model and
vanilla GAN together. By utilizing the merits of the both models, our method can generate
high quality images without mode collapse. Firstly, the images are embedded into the
latent space by the autoencoder, then the SDOT map from the uniform distribution to the
empirical latent distribution is computed. Sampling from the generated latent distribution
by applying the extended SDOT map, we can train our GAN model steady and efficiently.
Moreover, the paired latent codes and images give us additional constraints about the
generator and help get rid of the mode collapse problem. Using the FID as the metric,
we show that the proposed model is able to generate images comparable or better than
the state of the arts.
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Fig. 10. The generation results of CelebA-HQ by the proposed method.
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