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Abstract

Domain adaptation in imitation learning represents an essential step towards improving gen-
eralizability. However, even in the restricted setting of third-person imitation where transfer is
between isomorphic Markov Decision Processes, there are no strong guarantees on the perfor-
mance of transferred policies. We present problem-dependent, statistical learning guarantees for
third-person imitation from observation in an offline setting, and a lower bound on performance
in the online setting.

1 Introduction

Imitation learning typically performs training and testing in the same environment. This is by ne-
cessity as the Markov Decision Process (MDP) formalism defines a policy on a particular state space.
However, real world environments are rarely so cleanly defined and benign changes to the environ-
ment can induce a completely new state space. Although deep imitation learning (Ho and Ermon,
2016) still defines a policy on unseen states, it remains extremely difficult to effectively general-
ize (Duan et al., 2017).

Domain adaptation addresses how to generalize a policy defined in a source domain to perform
the same task in a target domain (Higgins et al., 2017). Unfortunately, this objective is inherently
ill-defined. One wouldn’t expect to successfully transfer from a 2D gridworld to a self-driving car,
but there is ambiguity in how to define a similarity measure on MDPs.

Third-person imitation (Stadie et al., 2017) resolves this ambiguity by considering transfer be-
tween isomorphic MDPs (formally defined in Section 2), where the objective is to observe a policy
in the source domain, and imitate that policy in the target domain. In contrast to domain adap-
tation between unaligned distributions, the dynamics structure constrains the space of possible
isomorphisms, and in some cases the source and target may be related by a unique isomorphism.

We consider an idealized setting for third-person imitation with complete information about
the source domain, where we perfectly understand the dynamics and the policy to be imitated.
This work offers a theoretical analysis, in particular demonstrating that restricting to isomorphic
MDPs with complete knowledge does not trivialize the problem. Specifically, regarding how the
agent may observe the target domain, we consider two regimes, summarized in Figure 1:

• In the offline regime (Section 4), an oracle perfectly transfers the source policy into the
target domain, and the agent observes trajectories from the oracle policy (without seeing the
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Figure 1: The observation regimes. In the offline setting (a), the agent observes trajectories τ
sampled from the policy φ that have been perfectly transferred into the isomorphic target domain.
In the online setting (b), the MDPs are still isomorphic but the agent only observes trajectories
after playing their own policy φ̂.

oracle’s actions). In this regime, we provide positive results establishing that with limited,
state-only observations in the target domain, we can still efficiently imitate a policy defined
in the source domain (Theorem 4.10).

• In the online regime (Section 5), the agent chooses policies in the target domain and draws
trajectories. Our negative results in this setting (Theorem 5.1) prove that with full interaction
in the target domain, imitation is extremely difficult in the presence of structural symmetry.

A Motivating Example: To clarify the setup and distinguish the two observation regimes, we
elaborate upon an example. Suppose our source domain is a video game, where the state space
corresponds to the monitor screen and the action space corresponds to key presses. And we wish
to imitate an expert player of the game. The target domain is the same game played on a new
monitor with higher screen brightness. Clearly the underlying game hasn’t changed, and there is
a natural bijection from screen states of the target monitor to those of the source monitor, namely
“dimming the screen”.

On the one hand, in the offline setting, we’re forbidden from playing on the new monitor
ourselves. Instead we observe recordings of the expert, played on the brighter monitor. Again, as
these are recordings, we see the states the expert visits but not their actions. On the other hand,
in the online setting, we simply run transitions on the brighter monitor. Note that if the screen
includes benign features which minimally impact the game (say the player’s chosen name appears
onscreen), it may be very difficult to learn the bijection between target and source monitor. Either
way, through observations we guess a new policy to played on the bright monitor, which hopefully
mimics the expert’s behavior.

Summary of Contributions: Our primary contribution in this work is a provably efficient algo-
rithm for offline third-person imitation, with an polynomial upper bound for the sample complexity
necessary to control the imitation loss. Our main technical novelty is a means of clipping the states
of a Markov chain according to their stationary distribution, while preserving properties of a bi-
jection between isomorphic chains. We also prove an algorithm-agnostic lower bound for online
third-person imitation, through reduction to bandit lower bounds.
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2 Setup

2.1 Preliminaries

We consider a source MDP without rewardM = {S,A, P, p0}, and target MDP M̂ = {Ŝ, A, P̂ , p̂0}.
To characterize an isomorphism betweenM and M̂, we assume the existence of a bijective mapping
π∗ : Ŝ → S, such that P̂ (s′|s, a) = P (π∗(s′)|π∗(s), a) and p̂0(s) = p0(π∗(s)). Note that in this
notation, π∗ is not a policy.

We also fix an ordering of the states Ŝ so that π∗ may be written in matrix form Π∗ as a
permutation matrix. In particular, we will overload notation to use π∗ as a permutation on [|S|],
such that π∗(i) = j denotes that π∗(ŝi) = sj. Let P denote the space of Ŝ → S permutation
matrices.

A policy φ maps states to distributions on actions, but for our purposes it will be convenient to
consider the policy as a matrix Φ : S → S ×A. To relate the two notions, Φ is a block of diagonal
matrices Φa : S → S for each action, where (Φa)ii = φ(a|si), and Φ = [Φa1 | . . . |Φa|A|

]T .
The dynamics matrix is denoted P : S × A → S. It can also be decomposed into blocks

Pa : S → S where (Pa)ij = p(sj|si, a), and P = [Pa1 | . . . |Pa|A|
].

Using this notation, ΦTP T forms the Markov chain on S induced by following policy φ. Ex-
plicitly,

Pφ(s
′|s) =

∑

a

φ(a|s)P (s′|s, a) =
(

ΦTP T
)

s,s′
(1)

Note that under this notation, the dynamics and initial distribution in M̂ can be written as
P̂ = ΠT

∗ P (I ⊗ Π∗) and p̂0 = ΠT
∗ p0 respectively. The occupancy measure ρφ is defined with regard

to a policy, as well as the underlying dynamics and initial distribution. Specifically, ρφ(s, a) =
(1 − γ)Es0∼p0,τ∼Φ

[
∑∞

i=0 γ
iφ(a|s)P (si = s)

]

, where the dependence on the dynamics P is through
the sampling of a trajectory τ .

Similarly, we introduce the state-only occupancy measure µφ(s) :=
∑

a ρφ(s, a). We will make
use of the identity ρφ(s, a) = φ(a|s)µφ(s), as well as the fact that µφ is the stationary distribu-
tion of the Markov chain ΦT ((1 − γ)p01

T + γP )T , which both follow from the constraint-based
characterization of occupancy (Puterman, 1994).

The value function for a given policy φ and reward function R is defined as

Vφ,R(s) = Es0=s,τ∼Φ

[ ∞
∑

i=0

γiR(si, ai)

]

. (2)

We note the very useful identity (1− γ)Es0∼p0 [Vφ,R(s0)] = 〈ρφ, R〉.
Lastly, we use the notation σi(A) to denote the ith largest singular value of A.

2.2 Observation Settings

To begin, we’re given full knowledge of the source domain M, as well as Φ : S × A → S and
ρΦ ∈ R

S×A, the policy and corresponding occupancy measure we want to imitate. We consider two
settings through which we can interact with the target domain, in order to learn how to adapt Φ
into this new domain.

Offline: In the offline setting, we only observe the policy Φ∗ := (I ⊗ΠT
∗ )ΦΠ∗ being played in M̂.

We can consider Φ∗ as an oracle for third-person imitation, as this policy exactly maps from M̂ to
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M, calls Φ, and maps back. To guarantee the trajectories don’t get trapped in a terminal state,
we assume this agent has a 1− γ reset probability. Through these observations, we must output a
policy Φ̂ to be played in M̂. We provide upper bounds for this setting in Section 4.

Crucially, in this setting we assume access to the states but not actions from observed trajecto-
ries, in the imitation from observation setting (Sun et al., 2019). This assumption is well-motivated.
In practice, observed trajectories from an expert often come from video, where actions are difficult
to infer (Liu et al., 2018). Additionally, the problem becomes trivial with observed actions, as one
may mimic the oracle’s actions at each state in Ŝ without trying to understand Π∗ at all.

Online: In the online setting, we define our own policy Φ̂t to play in M̂ at each timestep t,
with full observation of the trajectories. After T total transitions we output our final policy Φ̂.
Intuitively, this setting allows for more varied observations in the target domain. But without an
expert oracle to demonstrate the correct state distribution, an agent in this setting may be deceived
by near-symmetry in the dynamics and predict the wrong alignment. We further highlight this
difficulty in Section 5.

2.3 Imitation Objective

In either setting, through observations from the target domain we output a policy Φ̂. The cor-

responding occupancy measure we denote as ρΦ̂,Π∗
∈ R

Ŝ×A, where the subscript Π∗ reflects the

dependence on the dynamics and initial distribution in M̂, namely ΠT
∗ P (I ⊗Π∗) and ΠT

∗ p0.
We measure imitation by comparing the correctly transferred policy Φ∗ against the guessed

policy Φ̂. Explicitly, our objective is

inf
Φ̂

g(Φ,Π∗, Φ̂) := inf
Φ̂

TV
(

(I ⊗ΠT
∗ )ρΦ, ρΦ̂,Π∗

)

(3)

As a sanity check, we confirm that if we play Φ̂ = Φ∗ = (I ⊗ ΠT
∗ )ΦΠ∗, then indeed ρ̂Φ̂,Π∗

=

(I ⊗ΠT
∗ )ρΦ and the occupancies are equal.

A form of this objective with a general IPM as the distributional distance was introduced
in (Ho and Ermon, 2016). To justify using this loss, note the objective can be equivalently written
sup‖c‖∞≤1 Es∼ΠT

∗ p0 [Vφ∗,c(s) − Vφ̂,c(s)]. In other words, minimizing imitation objective guarantees

Φ∗ and Φ̂ perform nearly as well for any reward function with a bound on maximum magnitude.

3 Related Work

The theory of imitation learning depends crucially on what interaction is available to the agent.
Behavior cloning (Bain, 1995) learns a policy offline from supervised expert data. With on-
line data, imitation learning can be cast as a measure matching problem on occupancy mea-
sures (Ho and Ermon, 2016). With an expert oracle, imitation learning has no-regret guaran-
tees (Ross et al., 2011). Numerous of these algorithms for imitation learning can be adapted to the
observation setting (Torabi et al., 2018a,b; Yang et al., 2019).

General domain adaptation for imitation learning has a rich applied literature (Ammar et al.,
2015; Pastor et al., 2009; Tobin et al., 2017). Third-person imitation specifically was formalized
in Stadie et al. (2017), extending the method of Ho and Ermon (2016) by learning domain-agnostic
features. Other deep algorithms explicitly learn an alignment between the state spaces, based
on multiple tasks in the same environments (Kim et al., 2019) or unsupervised image align-
ment (Gamrian and Goldberg, 2019).
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The closest work to ours is Sun et al. (2019), which shares the focus on imitation learning
without access to actions, but differs in studying the first-person setting primarily with online
feedback. This work also takes inspiration from literature on friendly graphs (Aflalo et al., 2015),
which characterize robustly asymmetric structure.

4 Offline Imitation

4.1 Markov Chain Alignment

Because the offline setting only runs policy Φ∗, and reveals no actions, it is equivalent to observing
a trajectory of the state-only Markov chain induced by Φ∗ in M̂. Let us elaborate on this fact.

Define the Markov chain M := ΦT ((1 − γ)p01
T + γP )T , which is ergodic when restricted to

the strongly connected components that intersect the initial distribution. In M̂, the dynamics are
ΠT

∗ P (I ⊗ Π∗), the oracle policy is (I ⊗ Π∗)TΦΠ∗, and the initial distribution is ΠT
∗ p0. We also

assume the oracle agent following Φ∗ has a 1− γ reset probability.
All together, this implies our observations in the offline setting are drawn from a trajectory

of ΠT
∗ MΠ∗. In summary, given full knowledge of M and a trajectory sampled from ΠT

∗ MΠ∗, our
algorithm will seek to learn the alignment Π∗ in order to approximate Φ∗, hopefully leading to low
imitation loss.

4.2 Symmetry without approximation

As a warmup, we consider the setting with no approximation where we observe ΠT
∗ MΠ∗ exactly.

To relate this chain to M , we can try to find symmetries, i.e. the minimizers of

argmin
Π∈P

‖ΠTMΠ−ΠT
∗ MΠ∗‖F . (4)

We can equivalently consider finding automorphisms of M , which may be posed as a minimiza-
tion over permutation matrices Π : S → S:

argmin
Π

‖ΠTMΠ−M‖F . (5)

Clearly both these objectives are minimized at 0. Intuitively, to recover Π∗ we’d like Π∗ to be
the unique minimizer of (4), or equivalently I to be the unique minimizer of (5). Hence, in order
to make third-person imitation tractable, we will seek to bound (5) away from 0 when Π 6= I, or
in other words focus on Markov chains which are robustly asymmetric.

We introduce notation:

Definition 4.1 (Rescaled transition matrix). For an ergodic Markov chain M with stationary
distribution µ, let D = diag(µ) and define L = D1/2MD−1/2 as the rescaled transition matrix of
M .

Definition 4.2 (Friendly matrix). A matrix A is friendly if, given the singular value decomposition
A = UΣV T , Σ has distinct diagonal elements and V T1 has all non-zero elements. Similarly, a
matrix A is (α, β)-friendly if σ⋆ := mini σi(A) − σi+1(A) > α and V T1 > β1 elementwise. An
ergodic Markov chain M is friendly if its rescaled transition matrix L is friendly.

The significance of friendliness in graphs was studied in Aflalo et al. (2015), to characterize
relaxations of the graph isomorphism problem. We first confirm several friendliness properties for
Markov chains still hold.
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Proposition 4.3. For a permutation matrix Π, M = ΠTMΠ if and only if D = ΠTDΠ and
L = ΠTLΠ.

Proof. Suppose M = ΠTMΠ. If µ is the stationary distribution of M , then (µTΠ)(ΠTMΠ) =
µTΠ. So by uniqueness of the stationary distribution in an ergodic chain, µ = ΠTµ and therefore
D = ΠTDΠ. Then clearly D1/2 = ΠTD1/2Π and therefore L = ΠTLΠ.

For the reverse implication, ΠTMΠ = ΠTD−1/2LD1/2Π = D−1/2LD1/2 = M .

Proposition 4.4. If M is friendly, then it has a trivial automorphism group.

Proof. SupposeM = ΠTMΠ. Then by Proposition 4.3, ΠTLTLΠ = LTL = V Σ2V T . In particular,
choosing v as a column of V , LTLv = σ2v implies LTLΠv = σ2Πv. By friendliness, every eigenspace
of LTL is one-dimensional, so Πv = ±v. And 1TΠv = 1T v > 0, so Πv = v and therefore Π = I.

In what follows, for any SVD, we will always choose to orient V such that V T1 ≥ 0 elementwise.

4.3 Exact Symmetry Algorithm

By Proposition 4.3, the automorphism group of M is contained in the automorphism group of the
rescaled transition matrix L. Interpreting L as a weighted graph, determining its automorphisms
is at least as computationally hard as the graph isomorphism problem (Aflalo et al., 2015).

In general, algorithms for graph isomorphisms optimize time complexity, whereas we are more
interested in controlling sample complexity. Nevertheless, we have the following result:

Theorem 4.5. Given M and ΠT
∗ MΠ∗, if M is a friendly Markov chain, there is an algorithm to

exactly recover Π∗ in O(|S|3) time.

This result is a simple extension of the main result in Umeyama (1988), applying the friendliness
property to Markov chains rather than adjacency matrices. But the characterization of automor-
phisms will be used again later to control sample complexity, when we only observe ΠT

∗ MΠ∗ through
sampled trajectories.

We begin with the following:

Proposition 4.6. Given two friendly matrices decomposed as L1 = U1ΣV
T
1 and L2 = U2ΣV

T
2 ,

suppose L2 = ΠT
∗ L1Π∗. Then Π∗ is the unique permutation which satisfies V2 = ΠTV1.

Proof. Clearly LT
2 L2 = ΠT

∗ L
T
1 L1Π∗. Rewriting with the SVD gives V2Σ

2V T
2 = ΠT

∗ V1Σ
2V T

1 Π∗.
Rearranging, this implies V T

2 ΠT
∗ V1 commutes with Σ2. Commuting with a diagonal matrix with

distinct elements implies V T
2 ΠT

∗ V1 is diagonal. As this product is also unitary and real, it must be
that V T

2 ΠT
∗ V1 = S where S is diagonal and S2 = I.

Again rearranging, this implies 1TV1 = 1TΠT
∗ V1 = 1TV2S. By the assumption on the SVD

orientation, S must preserve signs, therefore S = I, and V2 = ΠT
∗ V1.

Now, suppose V2 = ΠTV1. Then LT
2 L2 = ΠTLT

1 L1Π, so ΠT
∗ Π is an automorphism of LT

2 L2 and
therefore Π = Π∗.

Proof of Theorem 4.5. Let L1 and L2 be the rescaled transition matrices of M and ΠT
∗ MΠ∗ re-

spectively. Reusing the same SVD notation, by Proposition 4.3 and 4.6, V2 = ΠT
∗ V1. Consider the

linear assignment problem minΠ∈P ‖V2 − ΠTV1‖F , which may be solved in O(|S|3) time using the
Hungarian algorithm (Kuhn, 1955). Again by Proposition 4.6, this linear program is minimized at
0 and recovers Π∗ as the unique minimizer.

6



4.4 Symmetry with approximation

With finite sample complexity, we still know the base chain M exactly, but we get empirical esti-
mates of the permuted chain ΠT

∗ MΠ∗ by running trajectories. Specifically, m samples (X1, . . . ,Xm)
are drawn from ΠT

∗ MΠ∗, with X1 ∼ ΠT
∗ p0.

Call the empirical estimate M̂ , i.e. M̂ij =
Nij

Ni
where Nij counts the number of observed i→ j

transitions and Ni =
∑

j Nij. And the empirical stationary distribution is µ̂ where µ̂i =
Ni∑
j Nj

and

D̂ = diag(µ̂). We can characterize the approximation error of the chain and stationary distribution
as E := Π∗M̂ΠT

∗ −M and ∆ = Π∗D̂ΠT
∗ −D respectively. Note these error terms are defined in the

original state space S.
Our goal is to use M̂ to produce a good policy in the target space. Say we predict the bijection

is Π, and play the policy Φ̂ = (I ⊗ ΠT )ΦΠ, whereas the correct policy in the target space is
Φ∗ = (I ⊗ ΠT

∗ )ΦΠ∗. We’d like to be able to control the imitation distance between these two
policies when Π ≈ Π∗.

For that purpose, define It(M) = {i ∈ S : µi ≥ t, µT = µTM}, where µ is the stationary
distribution of M , so these states will be visited “sufficiently” often. We first show correctness of
the bijection on these states suffices for good imitation.

Lemma 4.7 (Policy Difference Lemma (Kakade and Langford, 2002)). For two policies φ1, φ2 in
the MDP defined by {S,A, P,R, p0},

Es∼p0 [Vφ1,R(s)− Vφ2,R(s)]. = Eτ∼φ1,p0

[

∑

t=0

γtAR
φ1,φ2

(st)

]

=
1

1− γ
〈µφ1

, AR
φ1,φ2
〉 ,

where AR
φ1,φ2

(s) = Ea∼φ1(·|s)[Es′∼P [R(s, a)+γVφ2,R(s
′)−Vφ2,R(s)]] is the average advantage function.

Theorem 4.8. Suppose π−1(si) = π−1
∗ (si) for i ∈ It(M). Then g(Φ,Π∗, Φ̂) ≤ 2t|S|

(1−γ)2 .

Proof. First we decompose the objective

g(Φ,Π∗, Φ̂) = TV ((I ⊗ΠT
∗ )ρΦ, ρΦ̂,Π∗

)

= sup
‖c‖∞≤1

〈ρΦ∗,Π∗ − ρΦ̂,Π∗
, c〉

= sup
‖c‖∞≤1

Eŝ∼ΠT
∗ p0 [Vφ∗,c(ŝ)− Vφ̂,c(ŝ)] .

From the assumption and the definition of Φ∗ and Φ̂, we have φ∗(·|ŝi) = φ̂(·|ŝi) whenever
i ∈ π−1

∗ (It(M)). Equivalently, since µφ is the stationary distribution of M in the original space,

and µφ∗ = ΠT
∗ µφ, we have φ∗(·|ŝ) = φ̂(·|ŝ) whenever µφ∗(ŝ) ≥ t.

Note that φ∗(·|ŝ) = φ̂(·|ŝ) implies AR
φ∗,φ̂

(ŝ) = 0 for any R. Hence,

(1− γ)Eŝ∼ΠT
∗ p0 [Vφ∗,c(ŝ)− Vφ̂,c(ŝ)] =

∑

i∈π−1
∗ (It(M))

µφ∗(ŝi)A
c
φ∗,φ̂

(ŝi) +
∑

i/∈π−1
∗ (It(M))

µφ∗(ŝi)A
c
φ∗,φ̂

(ŝi)

≤
∑

i/∈π−1
∗ (It(M))

t|Ac
φ∗,φ̂

(ŝi)|

≤ 2t|S|
1− γ

,
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following from the simple bound maxs |Ac
φ1,φ2

(s)| ≤ 2
1−γ .

The bound in Theorem 4.8 depends on Π in a very discrete sense, controlled by the states
where Π and Π∗ agree. Say Π contains a single error, ŝ = π−1(s) = π−1

∗ (s′) for s 6= s′. Then at
ŝ we mistakenly play the action distribution φ̂(·|ŝ) = φ(·|s), rather than the correct distribution
φ∗(·|ŝ) = φ(·|s′). Because we never observe actions from the oracle, φ could be arbitrarily different
at s and s′, yielding a very suboptimal occupancy measure.

4.5 Approximate Symmetry Algorithm

Algorithm 1: Permuted Policy Learning

Input: P , Φ, γ, p0, t, (X1, . . . ,Xm)
Output: A policy Φ̂ : Ŝ → Ŝ ×A
M ← ΦT ((1 − γ)p01

T + γP )T

µ← Stationary(M)
for (i, j) ∈ [|S|]× [|S|] do

Nij ← 0
end

for t ∈ [m− 1] do
NXt,Xt+1

← NXt,Xt+1
+ 1

end

µ̂← 0

M̂ ← 0
for i ∈ [|S|] do

µ̂i ←
∑

j Nij/(m− 1)

for j ∈ [|S|] do
M̂ij ← Nij/

∑

k Nik

end

end

D ← Diag(µ)

D̂ ← Diag(µ̂)
It ← {i ∈ [|S|] : µi ≥ t}
Ît ← {i ∈ [|S|] : µ̂i ≥ t}
M ← Submatrix(M, It, It)

M̂ ← Submatrix(M, Ît, Ît)
D ← Submatrix(D, It, It)

D̂ ← Submatrix(D̂, Ît, Ît)

U,Σ, V ← SVD(D1/2MD−1/2)

Û , Σ̂, V̂ ← SVD(D̂1/2M̂D̂−1/2)

Π′ ← Hungarian(V, V̂ )

Choose any Π ∈ P such that ∀i ∈ Ît, π(i) = π′(i)
return (I ⊗Π)TΦΠ

In light of Theorem 4.8, an algorithm could either seek to recover Π∗ exactly, or find a Π which
agrees with Π∗ on high occupancy states. We consider a learning algorithm for both objectives,
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and bound its sample complexity. The trick will be carefully setting the threshold t that defines
what constitutes high occupancy.

To state the theorem, we introduce the subscript t notation to denote the principle submatrix
defined by the indices of It, and g := mini |µi − t| is the gap between the threshold and stationary
values. Lastly, we define:

Definition 4.9 (Pseudospectral gap). The pseudospectral gap of an ergodic Markov chain M is

γps(M) = maxk≥1
1−λ2((D−1MTD)kMk)

k , where λ2 denotes the second largest eigenvalue.

If M is not ergodic, we will take γps(M) to mean the pseudospectral gap of M restricted to the
strongly connected components that intersect p0.

Theorem 4.10. The policy learning algorithm in Algorithm 1 satisfies the following: for 1 ≥ δ ≥ 0,

t > 0, if D
1/2
t MtD

−1/2
t is (α, β)-friendly and m = poly

(

1
α ,

1
β ,

1
t , |It|, 1g , 1

γps(M) , log
1

1−γ , log |S|, log 1
δ

)

then with probability at least 1− δ, the output policy Φ̂ satisfies g(Φ,Π∗, Φ̂) ≤ 2t|S|
(1−γ)2

. In particular,

if mini µi > t, Φ̂ = Φ∗.

The most important feature of this bound is the dependence on |S|. In the sample complexity
it only appears through a log term, and all other terms can be independent of |S| depending on
the choice of t and the structural properties of M . The error is still linear in |S|, but this term
appears necessary. If some occupancy mass leaves the well-supported states π−1

∗ (It), it could cover
all the negligible states, and either incur error linear in |S|, or require exploration of every state
and therefore sample complexity linear in |S|.

Proof sketch. Here we give the main ideas of the proof, full details are provided in the Appendix.
Remind that M̂ = ΠT

∗ (M + E)Π∗ and D̂ = ΠT
∗ (D +∆)Π∗. We also define M̃ = M + E as the

empirical chain permuted back into the original MDP. Likewise define D̃ = D+∆, and µ̃ to be the
diagonal of D̃.

Given M̂ and D̂, the immediate choice for an estimator of the rescaled transition matrix would
be D̂1/2M̂D̂−1/2. However, this will not be well-defined if our samples don’t visit every state of
Ŝ. Furthermore, if M is only ergodic when restricted to a subset of S, then D̂−1 won’t be defined
even with infinite sample complexity. Similarly, if µ∗ := mini µi is vanishingly small, m will become
prohibitively large in order to guarantee that D̂−1 is well-defined.

Our primary technical novelty addresses both these issues by setting a threshold t on stationary
mass, and discarding states below the threshold. Define It = {i ∈ [|S|] : µi ≥ t} and Ît = {i ∈
[|S|] : µ̂i ≥ t}. We restate the notation that a subscript t denotes taking the principle submatrix
corresponding to It or Ît depending on the matrix’s domain. So for example, Mt is M restricted
to rows and columns given by It, and likewise M̂t is M̂ restricted to Ît.

Several concentration results for empirical Markov chain transitions and stationary distributions
control the convergence of our estimators (Wolfer and Kontorovich, 2019a,b). Our main assumption
is that the gap g = mini |µi−t| is non-negligible. Then with high probability and sample complexity
depending on g but not mini µi, µi ≥ t iff µ̃i ≥ t. In other words, no empirical stationary estimates
will ”cross” the threshold, or put another way π−1

∗ (It) = Ît. We can then restrict our attention
to the states above the threshold, such that the sample complexity necessary for concentration
M̃ ≈M depends on t but not mini µi (and only logarithmically on |S|).

For t > 0, the restricted rescaled transition matrix Lt = D
1/2
t MtD

−1/2
t is well-defined. And with

high probability we can define our estimator L̂t = D̂
1/2
t M̂tD̂

−1/2
t . Appealing to a strong friendliness

assumption on Lt, singular value perturbation inequalities imply that L̂t is also friendly.
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x0 y0

x1 y1

x2x3 y2 y3

1

1 1

1

α β1− α 1− β

11 1 1

(a)

x̂0 ŷ0

x̂1 ŷ1

x̂2x̂3 ŷ2 ŷ3

1

1 1

1

α β1− α 1− β

11 1 1

(b)

x̂0 ŷ0

x̂1 ŷ1

x̂2x̂3 ŷ2 ŷ3

1

1 1

1

β α1− β 1− α

11 1 1

(c)

Figure 2: The bandit-like MDP, where (a) is the source domain, (b) is the target domain given Π1

and (c) is the target domain given Π2.

Finally, the asymmetric properties of friendly matrices given in Proposition 4.6 enable exact
recovery of the submatrix of Π∗ restricted to the indices It and Ît. And by Theorem 4.8, determining
the alignment on all high-occupancy states still yields a bound on the imitation loss.

5 Online Imitation

5.1 MDP Alignment

In the online setting, we’re still seeking to imitate Φ, or equivalently ρΦ. However, we no longer
observe trajectories of the correct policy (I ⊗Π∗)TΦΠ∗ played in M̂.

Instead, we are in a setting similar to a bandit, but without reward. At time t, we play a policy
Φ̂t defined on M̂ and observe a transition. We allow resets to the initial distribution. After T
plays, where T may be a random variable, we choose a final policy Φ̂ and receive instantaneous
regret given by g(Φ,Π∗, Φ̂).

One simple algorithm might treat each possible bijection as an arm, where pulling Π is akin
to running a trajectory using the policy ΠTΦΠ, and then infer which alignment best matches the
behavior policy. Or one could consider algorithms which don’t play policies of the form ΠTΦΠ but
simply explore the target space in a principled way.

Nevertheless, we derive a lower bound on the imitation loss of any algorithm in the online
setting, demonstrating even complete knowledge of the source domain doesn’t trivialize third-
person imitation.

5.2 Lower Bound Counterexample

Consider a small bandit-like MDP (Figure 2a). Red corresponds to action r, blue corresponds to
action b, and purple corresponds to both. The numbers on the edges give transition probabilities
when taking the associated action. Let the initial distribution be p0(x0) = p0(y0) = 1/2. In other
words, the initial state is either x0 or y0. Starting at x0, the initial action is deterministic: playing
r leads to x1, playing b leads to y1. Starting at y the actions lead to the opposite states. Then the
choice of action is irrelevant, and the transition to a terminal state is determined by α at x1 and β
at y1.

This characterizesM. To introduce M̂, let’s consider two possible bijections Π1 and Π2, which
correspond to the possible target MDPs in Figure 2b and Figure 2c (note the values of α and β
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are swapped given Π2). These correspond to two possible dynamics on our target space. Π1 is
essentially the identity map, preserving states up to hats. Whereas Π2(x̂i) = yi and Π2(ŷi) = xi.

Finally, suppose the behavior policy we want to imitate in M is defined by φ(r|x0) = 1 and
φ(b|y0) = 1. In other words, the agent always travels in the first step to x1. That means, under
Π1 we want to travel to x̂1, and under Π2 we want to travel to ŷ1. Intuitively, because ρΦ is highly
asymmetric, but the MDP is nearly symmetric, one cannot choose a policy that performs well in
multiple permutations of the MDP. We formalize this intuition below.

Theorem 5.1. Choose any positive values ǫ < ǫ0 and δ < δ0, where ǫ0 and δ0 are universal
constants, and let α = 1/2+ǫ and β = 1/2−ǫ. Consider any algorithm A that achieves γ/4-optimal
imitation loss on the above MDP with probability at least 1− δ. Then E[T |Π∗ = Πi] = Ω

(

1
ǫ2
log 1

δ

)

for some i ∈ {1, 2}.
Proof. Fix a policy φ̂, and we will write ρφ̂,Π as simply ρΠ.

Again use the variational form of total variation to say TV (ρ1, ρ2) = sup‖c‖∞≤1〈ρ1 − ρ2, c〉.
Choose c so that c(x̂i, a) = 1 for i ∈ {1, 2, 3} and a ∈ A, and 0 elsewhere. Then a direct calculation
gives g(Φ,Π1, Φ̂) = TV ((I ⊗ΠT

1 )ρΦ, ρΠ1
) ≥ γ − γ(φ̂(r|x̂0) + φ̂(b|ŷ0))/2.

Now we proceed by a reduction to multi-armed bandits with known biases. Consider a two-
armed bandit with Bernoulli rewards, where the hypotheses for arm biases are H1 = {α, β} and
H2 = {β, α}. We define the following algorithm B for the two-armed bandit. First run algorithm
A on our MDP, where we couple pulls from arm 1 with transitions from x̂1 and pulls from arm
2 with transitions from ŷ1. Call φ̂ the policy output by A. Then output arm 1 if φ̂(r|x̂0) > 1/2,
otherwise arm 2.

Under hypothesis H1, Π∗ = Π1, so by our assumptions on A, with probability at least 1 − δ
we have γ/4 > γ − γ(φ̂(r|x̂0) + φ̂(b|ŷ0))/2, which implies φ̂(r|x̂0) > 1/2. Similar reasoning implies
φ̂(r|x̂0) ≤ 1/2 under H2, hence B outputs the optimal arm with probability at least 1− δ. Because
(α, β) = (1/2 + ǫ, 1/2 − ǫ), and the sample complexity of A is lower bounded by that of B, the
result then follows from Theorem 13 in Mannor and Tsitsiklis (2004).

This bound illustrates why imitation is substantially more challenging than seeking high reward.
In a regular RL problem with reward at the terminal states, if α ≈ β then the expected reward
changes very slightly depending on the policy. But in the imitation setting, the value of α and β
are essentially features of the states, which the agent must (very inefficiently) distinguish in order
to achieve error lower than γ/4. Likewise, this counterexample captures why the online setting is
the more challenging one studied in this work. In the offline regime, an oracle would only visit
states on one half of the MDP and easily break the symmetry.

One may attribute this pessimistic bound to the choice of total variation distance. Indeed,
among IPMs, total variation has very poor generalization properties (Sun et al., 2019). However,
an alternative choice of IPM corresponds to a non-uniform prior over reward functions that the
behavior policy is truly optimizing. If the prior strongly favored reward functions that smoothly
depend on the local dynamics, then c(x̂i, a) ≈ c(ŷi, a) and this counterexample would no longer
hold. But this is a somewhat unnatural assumption, precluding for example a 2D gridworld with
positive reward only at one state (since the gridworld would have many symmetries).

6 Conclusion and Future Work

In this paper, we introduced a theoretical analysis of third-person imitation, as an initial step
in more fully understanding generalization in RL. We demonstrated upper bounds for imitation
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learning across isomorphic domains under offline and state-only assumptions, and a lower bound
for the online setting. These bounds depend heavily on the structural properties of the dynamics
and behavior policy, as well as the setting of third-person imitation where the domain adaptation
is across isomorphic environments.

The upper bound dependence on structural and spectral properties is likely not optimal, al-
though the dependence on |S| in the error likely cannot be improved. The lower bound is somewhat
more robust, and any MDP with symmetry such that this bandit-like MDP can be embedded will
suffer a similar lower bound on sample complexity.

The isomorphism assumption is certainly too strict in general. However, weakening the assump-
tion requires a characterization of MDP similarity, in order to decide when one should expect policy
transfer through imitation to be feasible. MDPs with features (Krishnamurthy et al., 2016) could
better characterize similarity, where the spectral features studied in this work could be combined
with observed state features for more effective alignment through linear assignment. Future work
may include studying third-person imitation in the online setting for upper bounds, or exploiting
MDP asymmetry in deep imitation.
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A Proof of Theorem 4.10

We define Dp0 =
∑

i(p0)
2
i /µi, where we interpret 0/0 = 0. Note that p0 is absolutely continuous

with respect to µ, so this term is well-defined.
We now state the necessary concentration results. Note the theorems are slightly altered from

their statements in the literature, but follow immediately from their original proofs. The first has
a better dependence on |S| by considering L2 norm rather than L1, and with slightly loose sample
complexity. The second is exactly an intermediate statement made in the theorem’s original proof.

Theorem A.1 (Theorem 1 in Wolfer and Kontorovich (2019b)). If m = O

(

1
γpsǫ2µi

log

(

|S|
√

Dp0

δ

))

then with probability at least 1− δ/2, ‖M(i, ·) − M̃(i, ·)‖2 ≤ ǫ.

Theorem A.2 (Theorem 5.1 in Wolfer and Kontorovich (2019a)). If m = O

(

1
γpsǫ2µi

log

(

|S|
√

Dp0

δ

))

then with probability at least 1− δ/2, |µi − µ̃i| ≤ ǫµi.

We observe a simple consequence of the definition of the rescaled transition matrix:

Proposition A.3. For an ergodic Markov chain M with rescaled transition matrix L, σ1(L) = 1
and γps(M) ≥ 1− σ2(L)

2.

Proof. Choosing k = 1 in the definition of γps gives the product D−1MTDM = D−1/2LTLD1/2.
The first term itself is a Markov chain called the multiplicative reversiblization (Paulin et al., 2015).
Because the chain has maximum eigenvalue 1 and the eigenvalues of LTL are the squares of the
singular values, it follows σ1(L) = 1 and γps ≥ 1− σ2(L)

2.

We set the occupancy threshold via t, and consider properties of the empirical estimators:

Lemma A.4. Let g := mini |µi − t|. Assume g > 0, t > 0, and 1/4 > ǫ > 0. If m =

O

(

max
(

1
ǫ2t ,

1
g2

)

1
γps

log

(

|S|
√

Dp0

δ

))

, then with probability at least 1− δ, we have the following:

(a) π−1
∗ (It) = Ît

(b) D̂−1
t is well-defined

(c) ‖Et‖F ≤ ǫ
√

|It|

(d) ‖f+(∆t)
1/2‖F ≤

√
ǫ where f+(·) is the elementwise absolute value.

(e) ‖(Dt +∆t)
−1/2 −D

−1/2
t ‖F ≤ 2

√

ǫ|It|
t

Proof. Note that for all i ∈ It, µi ≥ t. So choosing precision ǫ and confidence δ
2|It| in Theorem

A.1 and Theorem A.2, taking a union bound over all i ∈ It, and noting |It| ≤ |S|, we have that

when m = O

(

1
γpsǫ2t

log

(

|S|
√

Dp0

δ

))

, with probability at least 1− δ/2, ‖M(i, ·)−M̃ (i, ·)‖2 ≤ ǫ and

|µi − µ̃i| ≤ ǫµi.
Additionally, choosing precision g

2µi
and confidence δ

2|S| in Theorem A.2, and taking a union

bound over all i ∈ [|S|], when m = O

(

1
γpsg2

log

(

|S|
√

Dp0

δ

))

, with probability at least 1− δ/2 we

have |µi − µ̃i| ≤ g/2.
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By the second application of the concentration results, for all i ∈ [|S|], |µi−µ̂π−1
∗ (i)| = |µi−µ̃i| ≤

g/2 < g. So from the definition of g it’s clear that µi ≥ t iff µ̂π−1
∗
(i) ≥ t. Hence, i ∈ It iff π−1

∗ (i) ∈ Ît.
If i ∈ It, µi ≥ t. Hence µ̂π−1

∗ (i) ≥ µi − g/2 > µi − g ≥ t > 0. This means each diagonal element

of D̂t is positive, hence it’s invertible.
By part (a), if we define Πt∗ to be the restriction of Π∗ to the indices It and Ît, then Πt∗ is still

a permutation matrix. Furthermore, Et = (Π∗M̂ΠT
∗ −M)t = Πt∗M̂tΠ

T
t∗ −Mt = M̃t −Mt.

Then ‖Et‖2F =
∑

i∈It ‖M̃t(i, ·) −Mt(i, ·)‖22 ≤
∑

i∈It ‖M̃ (i, ·) −M(i, ·)‖22 ≤ ǫ2|It|.
Similarly, ‖f+(∆t)

1/2‖2F =
∑

i∈It |µi − µ̃i| ≤
∑

i∈It ǫµi ≤ ǫ.
To derive the last inequality, note that |µi − µ̃i| ≤ ǫµi implies (1 − ǫ)µi ≤ µ̃i ≤ (1 + ǫ)µi.

Therefore

‖(Dt +∆t)
−1/2 −D

−1/2
t ‖2F =

∑

i∈It

(

1√
µ̃i
− 1√

µi

)2

=
∑

i∈It

µ̃i + µi − 2
√
µ̃iµi

µ̃iµi

≤
∑

i∈It

(1 + ǫ)µi + µi − 2
√

(1− ǫ)µiµi

(1− ǫ)µiµi

≤ |It|
t
∗ 2 + ǫ− 2

√
1− ǫ

1− ǫ

≤ |It|
t
∗ 3ǫ

1− ǫ

≤ 4ǫ|It|
t

where the second last inequality uses
√
1− ǫ ≥ 1− ǫ for 1 > ǫ > 0.

Lemma A.5. If Lt is (α, β)-friendly for sufficiently large α and β, the matrix L̂t is friendly if it
is well-defined.

Proof. Observe that L̃t := Πt∗L̂tΠ
T
t∗ = (Dt +∆t)

1/2(Mt + Et)(Dt +∆t)
−1/2, so it suffices to show

this matrix is friendly.
We need the following bounds, utilizing the inequality

√
a+ b−√a ≤

√

|b|:

‖(Dt +∆t)
1/2 −D

1/2
t ‖F ≤ ‖f+(∆t)

1/2‖F ≤
√
ǫ

‖D−1/2
t ‖F ≤

√

|It|
t

‖(Dt +∆t)
1/2‖F ≤ ‖D1/2

t ‖F + ‖f+(∆t)
1/2‖F ≤ 1 +

√
ǫ

‖Mt‖F ≤
√

|It|
‖Mt + Et‖F ≤ (1 + ǫ)

√

|It|

Decompose the perturbation of Lt as
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L̃t − Lt = (Dt +∆t)
1/2(Mt + ET )((Dt +∆t)

−1/2 −D
−1/2
t )

+ (Dt +∆t)
1/2(Mt + Et −Mt)D

−1/2
t

+ ((Dt +∆t)
1/2 −D

1/2
t )MtD

−1/2
t

Then we apply the inequalities above, using the triangle inequality and submultiplicativity to
obtain

‖L̃t − Lt‖F ≤
16
√
ǫ|It|√
t

+
2ǫ|It|√

t
+

√
ǫ|It|√
t

≤ 19
√
ǫ|It|√
t

Now decompose Lt = UΣV T and L̃t = Ũ Σ̃Ṽ T .
By the Wielandt-Hoffman inequality (Hoffman and Wielandt, 2003),

∑

i(σi(L̃t) − σi(Lt))
2 ≤

‖L̃t − Lt‖2F . Therefore, if α = mini σi(Lt)− σi+1(Lt) > 2‖L̃t − Lt‖F , then σi(L̃t)− σi+1(L̃t) > 0.
By the Cauchy interlacing theorem and Propostion A.3, σ1(Lt) ≤ σ1(L) = 1. And mini σi(Lt)

2−
σi+1(Lt)

2 ≥ α2.
Therefore, we can apply the Davis-Kahn theorem (Yu et al., 2015) to conclude 1 − |ṽTi vi| ≤ ζ

where

ζ :=





2
(

2 + 19
√
ǫ|It|√
t

)

19
√
ǫ|It|√
t

α2





Orienting Ṽ so that Ṽ T1 ≥ 0, it follows |ṽTi vi| = ṽTi vi.
If β >

√

2|It|ζ, then the friendliness assumption implies vTi 1 >
√

2|It|ζ and therefore

ṽTi 1 ≥ vTi 1− |vTi 1− ṽTi 1|
>

√

2|It|ζ − ‖1‖2‖vi − ṽi‖2

=
√

2|It|ζ −
√

|It|
√

1 + 1− 2ṽTi v

>
√

2|It|ζ −
√

2|It|ζ
> 0

Now we can recover Πt∗ , using the decomposition L̂t = Û Σ̃V̂ T .

Lemma A.6. Under the same assumptions as Lemma A.5, if |It|ζ < 1
2 , the unique permutation

matrix Π such that ‖ΠTV − V̂ ‖F ≤
√

2|It|ζ is Πt∗ .

Proof. By Proposition 4.6, and the friendliness of L̂t and L̃t, we have that ΠT
t∗ Ṽ = V̂ . It follows

that

‖ΠT
t∗V − V̂ ‖F ≤ ‖ΠT

t∗V −ΠT
t∗ Ṽ ‖F + ‖ΠT

t∗ Ṽ − V̂ ‖F
= ‖V − Ṽ ‖F
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And note that ‖V − Ṽ ‖2F =
∑

i ‖vi − ṽi‖22 =
∑

i 2− 2vTi ṽi ≤ 2|It|ζ.
Conversely,

‖Π−Πt∗‖F = ‖ΠT Ṽ −ΠT
t∗ Ṽ ‖F

≤ ‖ΠT Ṽ −ΠTV ‖F + ‖ΠTV − V̂ ‖F + ‖V̂ −ΠT
t∗ Ṽ ‖F

≤
√

2|It|ζ +
√

2|It|ζ
<
√
2

Because distinct permutation matrices differ in Frobenius norm by at least
√
2, this guarantees

Π = Πt∗ .

Proof of Theorem 4.10. For a given t, suppose D
1/2
t MtD

−1/2
t is (α, β)-friendly. Then we choose ǫ

to satisfy the following:

1. α > 2‖L̃t − Lt‖F

2. β >
√

2|It|ζ

3. |It|ζ < 1/2

We observe these are all satisfied at
√
ǫ = O

(

α2β2
√
t

|It|2
)

If m = poly
(

1
α ,

1
β ,

1
t , |It|, 1g , 1

γps(M) , logDp0 , log |S|, log 1
δ

)

, then Lemma A.4 and A.5 imply the

estimator L̂t is friendly with probability at least 1 − δ. So by Lemma A.6, we conclude the
permutation Π′ recovered from the Hungarian algorithm in Algorithm 1 agrees with Π∗ on It and
Ît. Finally, Theorem 4.8 bounds the imitation objective.

Lastly, we rewrite the sample complexity, using the fact that Dp0 ≤ 1
1−γ from the definition

of µ. We also note that from Proposition A.3, in the exact recovery setting mini µi > t, we may
replace γps in the sample complexity with 1− σ2(Lt)

2.
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