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ABSTRACT

Digitization, connected networks, embedded software, and
smart devices have resulted in a major paradigm shift in business
models. Transformative service-based business models are dom-
inating the market, where advancement in technology has paved
the way for offering not only a set of new services but also alter-
ing product functionalities and services over time. This paradigm
shift calls for new design approaches. Designers should be able
to design flexible products and services that can adapt to a wide
range of consumer needs over time. To address the need for de-
signing for flexibility, the objective of this study is to develop a
graph coloring technique that can model changes in the func-
tional requirements of a product and determine the minimum
number of physical parts needed to meet future functionalities.
This technique relies on vertex labeling by the designer and the
construction of a core graph combining key elements of all de-
sired iterations, which is then colored by label. One numerical
example and one real-world example are provided to show the
application of the proposed model.
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NOMENCLATURE

G A graph composed of a vertex set V(G) and an edge set E(G)

FR Functional Requirement

u,v,w,... A vertex of a graph G.

n; The number of vertices in a graph G;

m; The number of edges in a graph G;

uv  Anedge in a graph between nodes u and v

G —v The graph formed from G with node v and all of its inci-
dent edges removed

G —X The graph formed from G with nodes in some set X C
V(G) and all of their incident edges removed

G\ H The graph formed from G by removing a subgraph H

G+uv The graph formed from G by adding edge uv

¢ The number of colors used in a coloring of G

%(G) The chromatic number of G, i.e., the minimum possible
value of ¢

k A label used to group vertices

INTRODUCTION
The term “Tethered appliances” was first used in 2008 by
Zittrain [1], in his book about the future of the Internet, to refer to
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an emerging class of products defined by their ability to be mon-
itored and altered by their sellers or owners due to advancements
in wireless and GPS technology. “Internet of Things” devices,
smart appliances, embedded-sensor devices, and voice assistants
are examples of tethered products which require a consistent con-
nection between users and device makers. Hooftnagle et al. [2]
defined “tethered products” as devices whose functionalities and
future iterations rely on ongoing connections between user and
producer.

Corporations have come to the understanding that a prof-
itable approach for maintaining an ongoing connection with cus-
tomers is to focus on providing a continuous service, rather than
one-time purchased products. In this marketing model, manu-
facturers have better control over the life cycle of a product, and
in fact benefit from managing issues ranging from quality and
dependability of service, to end-of-use recovery, and ultimately
recycling of materials. In today’s IoT market, designers need
specific design tools and techniques that enable them to a) model
the dynamic nature of the various iterations of this new type of
product and b) bundle the concepts of product/service together to
create a successful commercial model that appeals to consumers.

Inspired by the discussion of Hooftnagle et al. around the
concept of the “Tethered Economy” [2], the objective of this
paper is to propose a graph unification and coloring technique
that considers successive product iterations and gives flexibility
to add or remove product functionalities over time. We include a
discussion of the advantages and disadvantages of tethered prod-
ucts as part of the background for this technique. While the intent
is not necessarily to promote the concept of tethered products, the
proposed model helps designers who are working on these types
of products to envision future iterations more accurately at the
early design stage.

Designers do not always have a complete picture of the fu-
ture iterations that will be needed during the entire life cycle of
a product, and yet modelling tools that allow them to plan for
many types of probable future iterations can improve the design
process for tethered products. Modeling tools that provide better
information about how to integrate the (sometimes competing)
needs of future iterations will enable designers to make informed
decisions when identifying the optimal number of parts for a
product. In this study, we demonstrate how graphs - composed of
vertices and edges - can be used to model the requirements of the
multiple stages that a product may go through during its entire
life cycle. We further develop a graph coloring and unification
process to model a consensus set of functional requirements, and
to help designers determine the minimal optimal number of parts
or modules for the product. This approach expands on previous
work done by some authors of this paper with Gopalakrishnan, et
al [3] in 2019, which also developed a graph coloring technique
for determining the minimum number of parts of a product. This
study extends the technique to modeling products with multiple
iterations, specifically in the case that functional requirements

change over time.

The next section provides a review of relevant research that
informs the work of this paper. Subsequent sections provide a
detailed methodology, as well as examples and a discussion of
possible applications.

BACKGROUND

There are several powerful disruptive trends in industry that
facilitate the broad adoption of “Tethered Economy” products.
First, extensive progress in the field of information technology
helps corporations to trace materials anywhere in their supply
chain and monitor the status of products during usage as well as
the end-of-use phase [4]. Advancements in data collection and
sensor-based technologies, big data analytics, distributed ledger
technologies, and autonomous systems are just a few examples
of novel technologies that revolutionize the way that corpora-
tions design and sell their products. Second, there is a perva-
sive shift in consumer behavior as younger generations of users
have shown that they prefer access over ownership [5]. Third,
the emergence of new business models paves the way for shift-
ing toward service-based strategies [6], where businesses switch
to subscription and membership models as opposed to selling the
ownership of their physical products to consumers.

The above-mentioned trends work together to move the mar-
ket towards the tethered economy. This complicates purchase de-
cisions for users, as they need to think about the future service
costs of a product, its compatibility with other devices, data se-
curity, and privacy concerns. Similarly, new complications arise
in the design process, as manufacturers now need to consider fu-
ture iterations of products, the merging of services, and blending
hardware and software features together.

According to Hooftnagle et al [2], corporations rely on two
primary mechanisms to tether a product: tethering through de-
sign and tethering through law. Tethered products often have
three distinctive features: (1) they depend on software codes for
their operations, (2) they are equipped with data collection tech-
nologies such as sensors to facilitate communication of product
life cycle data as well as consumer behavior, and (3) they require
persistent network connections to enable long distance usage and
control of the device [2].

While design is the main mechanism by which tethering is
implemented, force of law is another strategy used for tether-
ing. Device makers employ carefully drafted service contracts
and mechanisms like copyright and patent law to influence the
market. For example, companies could regulate the repair rights
of consumers with the help of current data privacy laws, restrict
the unlocking of smart devices for reuse and recycling, or debar
consumers from using third-party repair services by adding le-
gal terms into their warranty contracts [7]. Currently the law is
limited in its power to regulate manufacturers’ tethering of prod-
ucts. However, as legislatures and government agencies fight to
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protect consumers from the potential harm of such efforts (e.g.
implanted medical devices responding to remote control, auto-
matic alteration or deactivation of appliances), it is expected that
new laws and regulations will be enacted that will require manu-
facturers to pay special attention to the way that they design and
manipulate products with multiple iterations [8].

New challenges in design arise from this paradigm shift to-
ward ever-connected products. The ranking of functional re-
quirements can change based on which iteration of a given prod-
uct is under consideration, and additional consideration must be
given to evolving customer needs over time. Bearing this in
mind, the number of physical parts that are included in the prod-
uct usually remains fixed over the physical life cycle of a device,
while the device maker retains the ability to alter product features
and functionalities through software codes. Therefore, number
of physical parts is often a decision made at the early stage of the
design process, despite uncertainties regarding future iterations
of a product.

Zhang et al. [9] have highlighted the need for appropriate
mathematical models that simulate the entire ecosystem of a
product. Such models should consider product iterations over
time, as well as the evolution of its components, and even the
interaction of various performance attributes of a component
throughout the product’s life cycle. Mathematical exploration of
product life cycle decisions can be conducted with the use of nor-
mative methods such as Monte Carlo simulation [10], statistical
analysis, Bayesian approach [11], and probability theories [12],
to name a few. In this study, we will discuss the use of graph
theory and network modeling techniques for considering product
requirements over time. The idea behind this paper is to consider
N graphs, each representing the requirements of a specific itera-
tion of a product. The proposed modeling approach has unique
applications in different settings, including but not limited to the
following scenarios:

1. Technology Shifts: technological evolution of a product in-
cluding both functional and technological changes where
new features and functionalities will be added or removed
from the product over time.

2. Product Generations: design for a product family where
platform-based product development is considered.

3. New Users: design for multiple iterations where needs of
several users should be satisfied

4. Updated Software: design in the tethered economy world
where the access of the original user is controlled by new
upcoming business models

5. Product Iterations: design that covers the needs of several
phases within the product life cycle, including manufactur-
ing, initial and subsequent users, and end-of-life product re-
covery, such as recycling.

There are several ongoing efforts to develop techniques that
can categorize and model different product requirements. Behera

et al. [13] discuss the use of lattice theory for sharing design defi-
nitions across different product life cycles. According to their ar-
gument, it is feasible to visualize the bill of materials of a product
as a lattice and then insert a given lattice into a complete lattice
generated from the same product. They showed that by utilizing
lattices, multiple Bills of Material (BoMs) can be embedded into
one complete lattice which contains every possible combination
of individual parts. They acknowledged that while lattice struc-
tures are helpful in providing a single visual representation of all
possible product structures, they are not efficient in integrating
functional requirements of products [13].

A Design Structure Matrix (DSM) is another common tech-
nique in the design literature which is used to enhance a de-
signer’s understanding of the architecture of the system and sup-
port decision making in redesigning the product. DSM has been
used for modeling product decomposition, structure analysis, and
identification of the interfaces among parts in a product [14—16].

In this paper, we will use coloring and unification of graphs
to represent changing requirements during different iterations of
the product. The final coloring of the unified graph can help
designers implement and manage design changes with greater
accuracy, and furthermore, can help define the proper number of
physical parts that to cover functional requirements over several
product iterations.

PROPOSED GRAPH COLORING METHOD

The proposed method addresses three needs of the design-
ers: (1) designers understand the effects of adding or removing
functional requirements during subsequent iterations, (2) they
can define which functional requirements remain fixed during the
product’s lifespan based on the service agreements, and (3) they
can define which functional requirements have the most potential
for ongoing alteration.

To model these relations we can use graphs. A
graph G is composed of a set of nodes called the
vertex set V(G) and an edge set defined as E(G) =
{vw | vw is anedge connecting nodes v and w}. A sub-
graph S C G is defined as any subset of vertices of G
with edges between them in E(G). Independent sets within
G are defined as a set of vertices / C G such that [ =
{vi | vivj isnot an edge in E(G) V i,j}. An independent set /
is maximal if it cannot be extended by the inclusion of any vertex
v € G\ I. Our preferred coloring algorithm takes advantage of
maximal independent sets within G to shorten the coloring pro-
cess.

Step 1: Construct Input Graphs

The method begins with N graphs {G|,G>,G3,...,Gy} cre-
ated by the designer to represent N iterations of a product. Each
graph G; is made up of:
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V(G;): a set of vertices, where each vertex represents a
Functional Requirement (FR) of the product during the ith
iteration.

E(G;): a set of edges where each edge represents a funda-
mental conflict between FRs during the ith iteration.

All vertices and edges are set by the designer. Note that the
designer may choose to add Functional Requirements (as ver-
tices) to successive G;’s, and/or new edges representing conflicts.
For example, in order for a product to be easily repaired, it may
need an additional feature that conflicts with one of the func-
tional requirements of the original design. Alternatively, the de-
signer may choose to remove Functional Requirements and/or
edges in subsequent iterations of a product - i.e., certain features
and requirements of the design may become obsolete in future
iterations. See Example 2, below, for a demonstration of how
Functional Requirements may shift between iterations.

The designer places edges between vertices (FRs) that
should not be combined into a single part of the finished prod-
uct. For example, in the design of a mechanical pencil, the FR of
’marking’ and the FR of ’erasing’ have the fundamental conflict
that they cannot be the same material. A designer would place
an edge between the vertices representing these FRs in the graph
representing the pencil.

Furthermore, the designer defines a set of labels k €
{1,2,3,...}, where each label k corresponds to a subset of ver-
tices in G;. These labels are used to group vertices according to
any design specification of interest. Examples of possible uses
include grouping FRs with similar expiry dates, or those with
equivalent costs to replace. These subsets of vertices grouped by
label partition V(G;), so that each vertex has one and only one
label. The information in these labels will allow us to increase
the efficiency of our coloring algorithm, in a method inspired by
the work of Eppstein [17] and Byskov [18] which improved col-
oring algorithms by looking at maximal independent subsets of
graphs.

The completed iteration graphs G; are the inputs to Algo-
rithm 1.

Step 2: Define Core Graph

The next task is to identify the core graph, G¢ which will
include those Functional Requirements common to all N graphs.
We build the vertex set of G¢ by taking the intersection of all
v(G;j) for each G; € {G1,Ga,...,Gy}, as in Eqn. 1:

(\V(Gi) =V (Gc) (D

i<n

We build the edge set of G¢ by first finding a subgraph Hic € G;
for each i such that Hjc includes all edges induced by V(Gc).
We then take the union of edges E(Hc) in those subgraphs as in

Input: A set of graphs G1, Gy, ...,Gy
Output: Void
Result: A set of N properly-colored graphs

1 Let G¢ be an empty graph;

2 for each vertexu € V(GiNG2N...NGy) do
3 ‘ Gc =Ge+u;

4 end

5 for each edge uv in G¢ do

6 ifeEE(G1UG2U...UGN) then

7 | Gc=Ge+uv;

8 end

9 end

10 Letc=1;

11 ¢ = colorByLabel(c, G.);
12 for each G; of G1,Ga,...,Gy do
13 G,'=G,' — Gc;
14 colorByLabel(c, G;);
15 G;=G;UGg;
16 end
Algorithm 1: main

Input: A graph H, each vertex having a numeric label
A number c, the next available color
Output: A number c representing the last used color
Result: H is now properly colored
for each label L in H do

Let H;, be the subgraph of vertices of H having

label L;
¢ = color(Hp);

S

w

4 end
5 return c;
Algorithm 2: colorByLabel

Eqn. 2:

\JE(Hic) = E(Ge) )

i<n
This process occurs during lines 1-9 of Algorithm 1.

Step 3: Color Core Graph
Now that G¢ has been identified, it can be colored.

(3)(a) Beginning with color ¢ = 1 and the smallest natural
number label k present in G¢, we properly color all those vertices
with label k using any convenient coloring algorithm. We prefer
the method enumerated in [18]. This coloring algorithm finds
the chromatic number of G by populating an array X of length 2"
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with the chromatic numbers of all the subgraphs in the power set
of G, including G itself. It then colors G by finding a subgraph
S C G such that X[S] = X[G] — 1, and then assigns the first color
to the vertices of G — S. It then finds a subgraph 7" C S such that
X[T] =X|S] — 1 and assigns color 2 to the vertices of S — T and
so on until all the vertices of G are colored. Note that after we
have applied the coloring algorithm that the last color used in this
process is currently stored in the variable c.

(3)(b) Once all vertices with label k are colored, we move
to label K+ 1, and increment to the next color, c = ¢+ 1. This
ensures that parts with different labels are guaranteed to have dif-
ferent colors in the final graph. Once we have made it through
every label, the core graph G¢ is properly colored, and the num-
ber ¢ + 1 contains the next available color. This occurs during
lines 10-11 of Algorithm 1, which invokes Algorithm 2.

Step 4: Color Remaining Vertices

The next step is to color those vertices of each G; in
{G1,G,,...,Gy} that are outside of G¢. Note that we’ll be start-
ing with next available color after those in G¢. We find G; \ G,
which is all vertices and edges in G; that do not appear in G¢.
Then as before, we color G; \ G¢ by label as in Algorithm 2. We
then build the unified graph (G; \ G¢) U Ge, which is a properly
colored copy of G;. This occurs over lines 12-16 of Algorithm
1. Note that we begin the complete coloring of subsequent iter-
ations G; \ G¢ where j > i with the same initial color, the next
available color after coloring the Core Graph.

ALGORITHM ANALYSIS

Per Byskov’s improvement of Epstein’s coloring algorithm,
it takes O(2.0423" +2") time to properly color a general graph of
n nodes [18] [17]. In our algorithm, we have N graphs to color,
raising the time to O(N(2.0423" +2")). The fact that we are
coloring by label, however, reduces this complexity somewhat.
Supposing that each graph has k labels and that the number of
vertices under each label is about n/k, then for each graph G; we
are coloring k subgraphs of G; with n/k nodes in the subgraph.
Our overall runtime is then O(Nk(2.0423"/k 2/k)_ This com-
pares favorably with minimum coloring runtimes established by
Beigel and Lawler [19,20].

EXAMPLES

We here include two examples of the coloring and unifica-
tion process. The first example represents an abstract product
with two input graphs. The second example is a real-world ex-
ample showing three iterations of a tethered Wi-Fi and Bluetooth
enabled speaker, which has three input graphs. Each input graph
represents some iteration of the product. In each example, labels

(a) Ex. 1 G
1 ()

3(v) (")1

3 (%) (»)2
2(5)() 3

OO, OF
3
(b) Ex. 1 G,

FIGURE 1: EXAMPLE 1 INPUT GRAPHS WITH LABELS

are shown as boldface numbers beside each node. Each node rep-
resents a specific FR, and the labels represent some shared qual-
ity such that we would like to unite those FRs into a single part
if possible. This desire is reflected in the algorithm itself, which
breaks the input graphs down label-wise, and tries to color nodes
of the same label with the same color, only failing to do so if the
presence of an edge forbids it.

Example 1
Step 1 Consider the example input graphs in Fig. 1.

Step 2 From these input graphs G; and G,, we take the
intersection of vertices appearing in both graphs to find the core
graph Gc.

Step 3a Once G is found, we begin to color the graph
by first examining and coloring the vertices labelled 1. Thus,
any vertex labelled 1 will receive the same color, unless an edge
between vertices (representing a conflict between functional re-
quirements) forbids this. In this case, since the two vertices la-
belled 1 are adjacent to one another, we color the first, vy, red,
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(a) Ex. 1 G¢

FIGURE 2: EXAMPLE 1 CORE GRAPH WITH COLORING

(a) Ex. 1 Result G
1
3 @ 2

2

3
3
(b) Ex. 1 Result G,

FIGURE 3: EXAMPLE 1 COLORING RESULT

and the second, v,, green.

Step 3b  Once all vertices labelled 1 are colored, we pro-
ceed to vertices labelled 2. At this stage, we choose the next
available color not used on vertices of label 1, thus guaranteeing
that vertices of different labels will have different colors. In this
case, the two vertices labelled 2 are not adjacent, so they are both
colored blue. This process continues through all the labels until
Gc is properly colored (see Fig. 2).

Step 4 Once the core graph is colored, we return to each
of the input graphs G| and G, and color remaining vertices, again
proceeding by label, and beginning each G; with the next avail-
able color after coloring the Core Graph. A final coloring of the
input graphs is shown in Fig. 3. The graph G; has been colored
with 7 colors and the graph G, with 8 colors. Thus the item rep-
resented by these graphs can be manufactured with 7 or 8 colors
depending on which input graph is of more importance to the de-
signer. If the designer chooses to retain the complete functional
requirements of both iterations, they will need 10 distinct parts
because 10 colors are used to color both of the two input graphs
completely.

Example 2

The second example is a real-world product: an internet-
enabled speaker. In our hypothetical scenario, the designer is
considering three iterations of the product:

1. Basic Model: The product has modest performance specifi-
cations and is controlled via Bluetooth only.

2. Voice Assistant Model: The product has modest perfor-
mance specifications and is Bluetooth and Wi-Fi enabled,
and has a microphone for voice control.

3. Hi-Fi Model: The product is Bluetooth and Wi-Fi enabled,
has a microphone for voice control, uses a high performance
speaker and amplifier, and has manual volume control.

The designer will apply our coloring algorithm to fix which func-
tional requirements will appear in each iteration, and to deter-
mine the effects of these differences on the number of parts re-
quired. Additionally, application of the algorithm will give the
designer an idea of which functional requirements have the ca-
pacity for ongoing development throughout the product’s life cy-
cle.

Step 1 Consider the example input graphs in Fig. 4. Each
vertex, in addition to its index, is assigned a label (appearing here
as a bold numeral next to the vertex). Any number of labels can
be used, and these labels could represent any classifications the
designer wishes to apply to the various functional requirements.
Possible uses for the labels include distinguishing between FRs
with different development or upgrade cycles; FRs designed by
different departments in a large corporation; or FRs with differ-
ent software requirements. In this case, let there be three labels
representing supply chain sources for each type of part, roughly
classified as 1: electronic, 2: physical, and 3: acoustic. Table 1
specifies the assignment of functional requirements to labels and
vertices, and indicates which FRs are included in each iteration.
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TABLE 1: EXAMPLE 2: TETHERED SPEAKER FUNC-

TIONAL REQUIREMENT VERTEX ASSIGNMENT

Iterations

_ 155

218 |5
Functional Requirement | Vertex | Label r:g S| B
Sound Output Vi 3 v IV
Improved Sound Output vi2 3
Sound Input V1o 3 VIV
Power Input 123 1 ViV Y
Amplification V3 1 v IV
Improved Amplification V13 1 v
Computation V4 1 VvV
Bluetooth Vs 1 v
Bluetooth & Wi-Fi Vi1 1 vV |V
Enclosure Ve 2 vV IV Vv
Manual Level Control Vi4 2 v
Activation V7 2 VIV VY
Portability Vg 2 vV IV
Power Storage Vo 1 VI vV

(c) Ex. 2 G3 Hi-Fi Model

FIGURE 4: EXAMPLE 2 INPUT GRAPHS WITH LABELS
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Step 2 Following the unification process carried out by
Algorithm 1, the Core Graph for these inputs is shown in Fig. 5.
Note that the Core Graph contains only the following Functional
Requirements: v, Power Input, v4 Computation, vg Power Stor-
age, vg Enclosure, and v; Activation. These are the functional
requirements which are common to each iteration of the speaker.

Step 3(a,b) We color G¢ by label with a proper coloring
according to Algorithm 2. We first color all vertices labelled 1.
In this case, there is no conflict between v, (Power Input) and v4
(Computation), so these two vertices can both receive the color
red. Since the remaining vertex of label 1, vg (Power Storage),
has a conflict with the other two vertices labelled 1, it gets the
next available color, green. Note: this conflict stems from the
impracticability of affixing a large, removable battery to the same
circuit board as the parts associated with the other Functional
Requirements labelled 1. Next, we move on to label 2, and since
there is no conflict between vg (Enclosure) and v; (Activation),
we assign the next available color, blue, to both vertices labelled
2. Thus we see that three colors are sufficient to achieve a proper
coloring of the core graph G¢. This indicates that three basic
components, corresponding to the three colors, can be built and
used in the assembly of all three iterations:

G¢ Core Graph Coloring Interpreted as Parts

Red Single circuit board with power supply (Power Input) and
system on a chip (Computation)

Blue Case (Enclosure) with built-in on/off button (Activation)

Green Replaceable battery (Power Storage)

Step 4 Once the Core Graph is colored, we return to the
remaining uncolored vertices in each iteration. We begin color-
ing G1 \ G¢ with the next available color after core coloring is
complete: ¢+ 1 (in this case, orange) in reference to the out-
put ¢ of Algorithm 1. We then proceed to color by label as in
Algorithm 2, beginning with vertices labelled 1. Since vz (Ba-
sic Amplification) and vs (Bluetooth) have no conflict, they can
both be colored orange. We proceed to vg (Portability), the only
uncolored vertex labelled 2 in this iteration, which receives the
next available color: purple. Finally, we color the lone vertex
labelled 3, v; (Basic Sound Output) yellow. Six colors suffice
to completely color Gy, indicating that the Functional Require-
ments could be combined into six independent parts when the
Basic Model of the speaker is built (see Figure 7a for a render-

ing):

G| Basic Model Coloring Interpreted as Parts

Red Single circuit board with power supply (Power Input)
and system on a chip (Computation)

Blue Case (Enclosure) with built-in on/off button (Activa-
tion)

Green Replaceable battery (Power Storage)

(a) Ex. 2 G¢ Core Graph

FIGURE 5: EXAMPLE 2 CORE GRAPH WITH COLORING

Orange Circuit board with a 10 Watt 10db S/N Amplifier (Ba-
sic Amplification) and a bluetooth antennae (Bluetooth
Connectivity)

Purple Handle (Portability)

Yellow 5 Watt Speaker (Basic Sound Output)

We proceed next to G \ G¢, which we will color by label as
in Algorithm 2. Note that we will begin coloring G, \ G¢ with
the same initial color that we used to begin coloring G; \ G¢:
orange. Since the two vertices labelled 1, v3 (Basic Amplifica-
tion) and vi; (Bluetooth and Wi-Fi), have no conflict, they are
both labelled orange. The lone uncolored vertex labelled 2, vg
(Portability), is colored purple. Finally, the two vertices labelled
3 have a conflict in the form of a shared edge, so they are col-
ored yellow for v; (Basic Sound Output) and light blue for vig
(Sound Input). Thus seven colors complete the coloring of G»,
indicating that the Functional Requirements could be combined
into seven independent parts when the Voice Assistant Model of
the speaker is built (see Figure 7c for a rendering):

G, Voice Assistant Model Coloring Interpreted as Parts

Red Single circuit board with power supply (Power In-
put) and system on a chip (Computation)

Blue Case (Enclosure) with built-in on/off button (Acti-
vation)

Green Replaceable battery (Power Storage)

Orange Circuit board with a 10 Watt 10db S/N Amplifier

(Basic Amplification) and a combined Bluetooth
and Wi-Fi antennae (Bluetooth and Wi-Fi)

Purple Handle (Portability)

Yellow 5 Watt Speaker (Basic Sound Output)

Light Blue Microphone (Sound Input)

Finally, we begin to color G3 \ G¢, again starting with orange
as the first available color after core coloring is complete. This
iteration of the product includes the FRs of Improved Sound Out-
put and Improved Amplification, so will include new vertices.
Since the two vertices labelled 1, vi3 (Improved Amplification)
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and v; (Bluetooth and Wi-Fi), have no conflict, they are both
labelled orange. The lone uncolored vertex labelled 2, vi4 (Man-
ual Level Control), is colored purple. Finally, the two vertices
labelled 3 have a conflict in the form of a shared edge, so they
are colored yellow for vjo (Sound Input) and light blue for vi,
(Improved Sound Output). Thus seven colors complete the col-
oring of G, indicating that the Functional Requirements could
be combined into seven independent parts when the Hi-Fi Model
of the speaker is built (see Figure ?? for a rendering):

G3 Hi-Fi Model Coloring Interpreted as Parts

Red Single circuit board with power supply (Power In-
put) and system on a chip (Computation)

Blue Case (Enclosure) with built-in on/off button (Acti-
vation)

Green Replaceable battery (Power Storage)

Orange Circuit board with a 100 Watt 50 db S/N Ampli-
fier (Improved Amplification) and a combined Blue-
tooth and Wi-Fi antennae (Bluetooth and Wi-Fi)

Purple Volume Buttons (Manual Level Control)

Yellow Microphone (Sound Input)

Light Blue 50 Watt Speaker (Improved Sound Output)

A final coloring of the input graphs is shown in Figure 6.
A rendering of possible build structures for the three iterations
is shown in Figure 7. For each iteration, every color in the final
coloring has been interpreted as a part with one or more com-
ponents. These parts are outlined in the color used in the corre-
sponding graph for each iteration. Note that this technique allows
the designer to clearly see which functional requirements remain
fixed over time, and which can be modified over time. Addition-
ally, the changes to the product over time, as FR’s are added and
removed, is clearly rendered in both the coloring graphs and the
final renderings.

This is a small-scale example of how our proposed coloring
method can be used to design for multiple product iterations, and
as such is quite simple. We include this example to show how
the method works, and to indicate the utility of our proposed
algorithm in cases with many more iterations and Functional Re-
quirements.

2 2 2

(c) Ex. 2 G3 Hi-Fi Model Final Coloring

FIGURE 6: EXAMPLE 2 COLORING RESULT
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CONCLUSION

The combination of embedded software and smart devices
has fundamentally changed the way products and services are
offered to customers. New business models are emerging that
blur the edge between service and product, alter product owner-
ship among different stakeholders, and change system function-
alities over time. These changes in the market resulting from
consumer behavior, technology advancement as well as market-
ing strategies adopted by businesses require a new set of design
methods that increase product lifetime value. Considering the
dynamic nature of the market, designers should be enabled to
see the impacts of adding or revising product functional require-
ments which can improve their design decisions .

In this study, a graph unification method is suggested to
combine different product iterations together under one core
graph and further, a graph coloring algorithm is developed to de-
termine the minimum number of parts needed to accommodate
dynamic changes in product functionalities. The study opens the
door for more research in the field of design for flexibility.

This flexibility is most clearly demonstrated in our second
example of a [oT speaker with several design iterations. Our al-
gorithm, when applied to the graph representations of the prod-
uct, quickly identifies those FRs that are common and have con-
sistent mathematical structure between iterations in the form of
the Core Graph, and breaks those FRs into a minimal number of
parts. This part set is common to each iteration, and any differ-
entiation among iterations must build up from this core.

Once the core of the product is fixed, the characteristics of
the different iterations give rise to sets of parts particular to those
iterations. This demonstrates the flexibility of this approach, as
new versions of the product can be easily designed by adding
parts to the core in different ways. Future iterations beyond those
used to compile the core graph may nonetheless use it as a start-
ing point.

This study can be extended in several ways. First, the model
can be applied to a real case of a smart device and its corre-
sponding service contract. Second, graph coloring techniques
can be augmented with uncertainty quantification models to fur-
ther study the effects of uncertain consumer behavior, market
changes, and technological advancement. Third, graph coloring
algorithms can be integrated with economic models to quantify
the business case of design decisions. Finally, the concept of de-
sign for flexibility can be integrated with the circular economy
concept to study the sustainability impacts of flexible design.
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(c) G3: Hi-Fi Model Rendering

FIGURE 7: FINISHED PRODUCT RENDERINGS WITH
COLORS INTERPRETED AS PARTS
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