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Abstract

We revisit the construction of models of quantum gravity in d dimensional Minkowski
space in terms of random tensor models, and correct some mistakes in our previous treat-
ment of the subject. We find a large class of models in which the large impact parameter
scattering scales with energy and impact parameter like Newton’s law. The scattering
amplitudes in these models describe scattering of jets of particles, and also include ampli-
tudes for the production of highly meta-stable states with all the parametric properties
of black holes. These models have emergent energy, momentum and angular conservation
laws, despite being based on time dependent Hamiltonians. The scattering amplitudes in
which no intermediate black holes are produced have a time-ordered Feynman diagram
space-time structure: local interaction vertices connected by propagation of free particles
(really Sterman-Weinberg jets of particles). However, there are also amplitudes where jets
collide to form large meta-stable objects, with all the scaling properties of black holes:
energy, entropy and temperature, as well as the characteristic time scale for the decay of
perturbations. We generalize the conjecture of Sekino and Susskind, to claim that all of
these models are fast scramblers. The rationale for this claim is that the interactions are
invariant under fuzzy subgroups of the group of volume preserving diffeomorphisms, so
that they are highly non-local on the holographic screen. We review how this formalism
resolves the Firewall Paradox.
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1 Introduction

This paper is a replacement for hep-th:/1606.01267, which has been withdrawn. We will study
a class of discrete time dependent Hamiltonian systems, which couple together more degrees of
freedom as time goes on. That is, the Hamiltonian has the form

H(t) = H(—t) = Hy,(t) + Hou (1), (1)

where H;,(t) is a function of canonical fermion variables! labeled by an n-th rank anti-symmetric
tensor 1,1, 4n. The indices run from 1 to ¢, which labels the discrete time. H,,;(t) depends on
the components of a similar fermionic tensor, in which the indices run from 1 to 7', but some
of them have at least one component whose index is > t. The fermions in H;, anticommute
with those in H,,;. We will eventually be interested in the 7" goes to infinity limit. Note that
H,(t = £T') vanishes.

To construct a Hamiltonian, we introduce the matrix

M =yl (2)

where A runs over n — 1 of the anti-symmetric indices, and we have raised those indices for
notational simplicity. The Hamiltonian is of the form

Hi(t) = Py + %Tr P(M/t"1), (3)

where the coefficients of the polynomial P are ¢ independent in the large ¢ limit. Fy is com-
plicated because its form depends on the constrained subspaces of the Hilbert space, which we
are about to describe.

The amplitudes that we will estimate are defined by starting at —7" in a constrained subspace
of the Hilbert space defined by
wA(b)|Scatt> =0, (4)

)

where 1 < b < k and the multi indices A(b) are restricted to run over only n, values. i runs
from 1 to T'. For example, when k£ =1 and n = 3 we are constraining

Pt =~y (5)

with a, b running between 1 and n;. From the construction of the matrix M7, one can see that
this constraint makes it block diagonal

M= (A{)n MTO_m) (6)

Similarly, if the constraints involve b non-overlapping index ranges, of sizes n; ...n;, then the
matrix will have b+1 blocks, of sizes ny ...ny, T—> n;, when acting on the constrained subspace.
The single trace construction of the Hamiltonian implies that the fermions with all indices in
one of the (non-overlapping) ranges of n,, indices, become independent, non-interacting systems
at —T'. This is the reason that we have called these Scattering states. We will argue that

'Tt is probably easy to generalize our considerations to models in which the fermion carries an additional
label, and satisfies a more general super-algebra.



the final state at T satisfies a similar set of constraints. The objects of interest in this model
will be amplitudes to go from some past scattering state to some future scattering state. We
insist that the number of constraints be much smaller than the total number of fermions, so
Sy LT

We should note that a small number of the constraints play the role of severing the connec-
tion between the k independent systems, while of order ), nZ_IT constraints sever the small
blocks of the matrix from the large block of size T'— > n;,. We will abuse language and call
all the fermions making up one of the small blocks of the matrix, block variables, or simply
blocks. We would now like to argue that the final state is constrained, and that the number
of constraints scales at large T like Y, ny 'T. That is, in the limit T — oo, Y, ny~ ' is an
asymptotic conservation law. It commutes with the Scattering operator. The argument has
two parts.

First of all, we claim that the Hamiltonian Tr P(M/N""1) has a non-trivial large N limit
with energies that are of order N™ and energy differences of order 1. To see this, note that the
leading order diagram (Fig. 1)

Figure 1: Leading order diagram.

for the free energy of this Hamiltonian scales like KN where K ~ N"~!. For large N we can
ignore the anti-symmetry requirement to leading order. Higher order planar terms for n = 2
will all scale the same because this is just the 't Hooft limit of a matrix model. For n > 2
the model is simpler. Draw the fermion propagator as a double line with two colors (Fig. 2),
the red line carrying n — 1 indices. Then it is clear that the dominant scaling for n > 2 is
like that of a vector model, namely amplitudes are dominated by cactus diagrams. However,
in double colored line notation it is more convenient to draw the graphs as a single blue line
surrounding a collection of red loops. These can be deformed into combinations of vertices
with different numbers of fermions in a variety of ways. If we write an interaction that is a
function of the fermion bilinear divided by K then all leading terms scale in the same way. We
will not study higher orders, which are complicated by the antisymmetry requirement. Note
however that the organization of this perturbation theory will differ from that of vector models.



Figure 2: Higher order diagrams.

Rather, they resemble rectangular matrix models with the small side scaling as a fractional
power of the large side. For n = 2 of course, the leading behavior is given by summing all
planar diagrams,equivalently diagrams with any number of red and blue loops, pinched in all
possible ways consistent with the interactions in the polynomial P. Note that this counting is
valid for the free energy at any temperature, which will be, in leading order, proportional to a
fixed function of the temperature. Thus the model contains many states with order 1 energy
differences in the large N limit.

There is a useful geometric interpretation of the rules of this class of large /N tensor models.
Think of each variable 1 as a open subset of an n - cube or sphere. The matrices M glue two
such hypercubes together along a common boundary, as in Figures 3 and 4 .

We can think of a typical interaction in the Hamiltonian by opening up the trace, and
thinking of this as picking a north and south pole on the n sphere. The first ¢ on the left
is a patch near the north pole. Think of this patch as a fibration of S"~! over an interval
in polar angle. This is glued to another ribbon of S" !s and another, for the length of the
polynomial. The trace then eliminates the special choice of polar axis and the interaction is in
fact invariant under the fuzzy version of the group of "area” (we use area as a shorthand for
n-volume) preserving diffeomorphisms? on S™. A geometric picture of a monomial interaction
is shown in Figure 5. In particular, if we break the indices up into a group (i)whose number
is < N, and the rest A, whose number is o(/N) then the variables ¥, ; _, 4 represent the glue
that connects a small n cube to the rest of the volume.

The reason that this picture is useful is that it illustrates the fact that our interaction
is invariant under a fuzzy approximation to the group of area preserving mappings on the
sphere[2]. The 1 variables are equal in number to the space of spinor sections on the sphere
with a cutoff on angular momentum, which is equivalent to a cutoff of the Dirac operator.

20f course the word diffeomorphism is misleading. Continuity and smoothness of functions have to do with
the behavior of the large angular momentum Fourier coefficients and cannot be assessed in finite dimensional
approximations.



Figure 3: The matrix M obtained by gluing hypercubes together along a common boundary for
n=2.

Figure 4: The matrix M obtained by gluing hypercubes together along a common boundary for
n = 2, the front face has been made transparent to exhibit the gluing procedure.

Their commutation relations are invariant under SO(n + 1), but also under a much larger
group of unitary transformations on the indices. Their bilinears can thus be thought of as fuzzy
differential forms on the sphere, and the trace of products of bilinears is the integral of products
of forms whose degree adds up to n. This invariance property is the intuitive reason that all
of these models are ”fast scramblers” [3], since their interactions do not respect any notion of
distance on the sphere. More simply, one can see that every fermion is coupled to every other



Figure 5: A monomial interaction. To simplify the picture, we did not attempt to illustrate the
invariance under area preserving mappings, which could turn these regular slices into amoeba.

one by any trace interaction with four or more fermions.

The conservation of what we will call Energy is a consequence of two aspects of our model.
First there is the fact that the interactions that remove or add constraints to the initial subspace
all go to zero with time like 1/¢. The polynomials have a fixed finite order, so our interactions
are 2k—local in the language of quantum information, with & the highest power of M; that
appears in P. Thus it takes a time of order at least ¢ In ¢ to remove ¢ constraints. Moreover,
during much of the interval [—t, ] H;, acts only on small subsets of the fermions. We have not
yet specified H,,; but we can insist that it act in a similar manner. In the next section, we will
argue that this follows from a natural consistency condition in the space-time interpretation of
this quantum system.

The fact that £ =), ny ! is conserved says that at any time, the system has of order ET
constraints on the states in its Hilbert space. Not all of these constraints will refer to variables
acted on by H;,(t) when t is small. This tells us that there must be constraints on the H,,;(t)
Hilbert space. We can now write the operator F,. Let 1 — II be the projection on a particular
constrained subspace of the Hilbert space, a particular subspace of scattering states with the
same set of initial constraints. Then, in that subspace,

Po<t>:<1—n>[2<n’;-:1+ L Te P(t, Myon))

1
+ Z Nt + ——Tr P(t, Myoutxpout)) + zTr P(t, Myy)] (1 —1I)

Our remarks about energy conservation imply that if not all of the energy comes from blocks
in H;,(t) then H,,(t) has to contain terms of the form



1 1
0Hou(t) = (1 =)D (nhul + ﬁTr P(t, Myout syout ) + T P(T, Mpyr)](1 =1I).  (7)
bout

The phrase has to in the previous sentence is a bit of an exaggeration at this point, and will follow
from our space-time consistency condition. However, even from an abstract quantum mechanics
point of view it is natural because when ¢ gets larger the °“* blocks will be incorporated into
H;,.

1.1 The leading large t interaction between small blocks

Now recall that the Hamiltonian of our model is the ”’t Hooft” Hamiltonian multiplied by 1/¢.
This means that all of the 't Hooft couplings in the model are small for large t, so the model
becomes weakly coupled. Our goal is to write down the leading interaction between a pair of
blocks of sizes ny o coming from the Hamiltonian H;,(¢.) when 1 < ¢, < T'. We will assume
that for s < t, the constraints defining the blocks, and the block variables themselves, are not
included in the Hamiltonian H;,(s). We'll also ignore the possiblity that there are other blocks
in the system. Thus, the interactions between these two blocks can be computed by a sequence
of computations of the type we do here, for s > ¢,. In the spacetime interpretation of the
model, £, will be the impact parameter in the scattering amplitude.

To begin the computation we write the time evolution operator for a single discrete time

step as
. , dz
—iH () _ —iz 8
‘ %e omi(z — H(t))’ (8)

where the contour encircles the spectrum of H(t,) . Define Hy = (1—1I1)H (¢, )(1 —II)+I1H (¢)II
and H(t.) = Ho+ V. Il is the projector on the orthogonal complement of the particular
constrained subspace in which exactly these two blocks begin at time —t, with no interaction.
Every term in V' is of order 1/t, or smaller and V' = 0 in the constrained subspace, as well as
its orthogonal complement. Using the two by two block form of the operators, we can write
the exact equation

(1-I0)(z— HE) 1 ~10) = [1 — (2 — Hy)"'VII(z — Hy)"'IV]" (2 — Hy)™".  (9)

The operator VII(z — Hy) 'V acts only in the constrained subspace. By construction, II(z —
Hy) I contains no interaction between the two blocks under study.

The interaction between the blocks is mediated by perturbations that lift and restore the
constraints. Since the time interval is small in each computation in the above sequence, and the
interaction is small, we can compute the amplitude by simply computing the effective Hamilto-
nian in the constrained subspace, due to the fact that part of the Hamiltonian, V', proportional
to 1/t, does not commute with the constraints. The above computation of the matrix elements
of the resolvent shows that the effective Hamiltonian in the constrained subspace is

H.pp = (1 —1)[Hoy + VII(z — Hp)'IV](1 — II). (10)
The effective Hamiltonian is defined by

(1—=1)(z = H)"'(1 = 1) = (1 = ) (2 — Heyy) ™ (1 - TI), (11)

7



where H. s acts only in the constrained subspace. H.ss is z dependent, reflecting the fact that
the full Hamiltonian is not block diagonal.

Hyj has terms of order 1 and terms of order 1/¢,, while the second term in H, sy is nominally
of order ;2. However, this ignores small energy denominators, of order 1/t,. There are indeed
such energy denominators since we can obtain a state in the orthogonal complement of the
constrained subspace, by exciting one constrained variable of the form ¥ with A being in one
of the ranges corresponding to the small block variables and ¢ belonging to the large block.

To leading order the integral over the resolvent that gives the time evolution operator in the
constrained subspace is a sum over the poles at the eigenvalues of (1 —IT) Hy(1 —1II). Near these
poles, the second order effective Hamiltonian contains a factor t, from eigenvalues of ITHII
that are near those of (1 — IT)Hy(1 — II). This factor cancels one of the factors of 1/t, in V.

Now let’s examine the dependence of the effective Hamiltonian on the variables in the small
blocks. V itself is a sum of terms depending only separately on each of the blocks® in the
matrix. This is simply a property of traces of powers of a matrix written in block form. Thus
in the second order effective Hamiltonian the terms coupling the two blocks come from terms
in each V' that depend on different blocks. At higher orders we can get more complicated
combinations, but as we’ll see, multibody interactions between blocks are suppressed by higher
powers of ¢, =1 than the leading two body term.

From the equation for H.f; we can make a remark about the sign of the operator. If the
eigenvalues of Hy in the orthocomplement of the constrained subspace are larger than those in
the subspace itself (really one needs only weighted sums of eigenvalues to satisfy this inequality),
then the interaction operator is negative definite. We do not know at the present time whether
this follows for a general Hamiltonian in our class, or represents a complicated inequality on
the couplings.

We will need one more result to understand the scaling of the interaction with the block
sizes and t,. This is simply the large ¢ scaling of the projection operator (1 — P). In path
integral formalism, we can think of this as setting boundary conditions on the Grassman inte-
gration variables at the two ends of a time interval. The states are functions on the fixed time
Grassmann algebra and the constraint is

[T o (m)s@i 0 (7))s (Wi (7). (12)

We can implement the delta functions by integrating over auxiliary Grassmann variables n? (7, 0)
and 7/(7,0) and do the Gaussian integral with any quadratic term that couples only fermions
with the same indices. The result is given by a Feynman diagram like that of Fig. 6 The dotted
red line counts the number of A indices, while the solid blue line counts the number of 7 indices.
In our problem, the A indices are anti-symmetric tensors with indices that run from 1 to n,
and 1 to ng, while the ¢ index runs from 1 to something of order ¢. Thus the leading large n;
and large t, scaling of the projectors on the constrained subspace with two blocks obeying the
bound n} ! +njt < "L is

A T e (13)

Thus, when comparing an amplitude with these two projection operators to a completely un-

3We ask readers to beware of confusing blocks of the matrix, from the block diagonal form of operators in
Hilbert space.



Figure 6: Implementing constraints.

constrained calculation, we get a relative factor of
n?‘lng_lt;%"—l) (14)
The interaction now scales like
A N AV e e RV e A (15)

The last factor is the general large t, scaling of a free energy (a typical energy) in our large ¢,
tensor models with 't Hooft couplings of order 1. The penultimate factor reflects the fact that
we have scaled the interaction by a factor of 1/t, relative to that large ¢, tensor model. The
next factor t, is the inverse of the small energy denominator, and finally we have suppression
relative to a typical large t, diagram coming from the two projection operators. The result is

ninn =t x (D), (16)
The scaling of a general diagram contributing to the interaction energy can be read off a
simplified Feynman diagram like that of Fig. 7 In this diagram we do not show the explicit
vertices, but simply the pattern of index loops. Each of these diagrams can correspond to many
different Feynman diagrams, depending on how we indent the blue line to form vertices. The
first diagram can only produce cacti, while if we allow any number of interior blue circles we
can get arbitrary planar diagrams. The dotted red circles each represent a small block and give
a suppression factor (?—f)"*l. We see that at large ¢, multiblock interactions are suppressed.
They would correspond to replacing more solid red circles by dotted ones.

To summarize, we've introduced a large number of tensor models which have a naturally
defined scattering theory, because they have constrained states that decouple small subsets
of degrees of freedom in the limit ¢ — 4oo. This is a consequence of a time dependent
Hamiltonian, which couples together more degrees of freedom, organized as rank n tensors with
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Figure 7: A prototype cactus diagram.

indices that run from 1 to ¢, as the interval [—t,t] gets larger. Energy differences in the fixed
time Hamiltonian scale like 1/t, apart from the term Fp, which is a sum over the small blocks.
The Hamiltonian itself is obviously not conserved, but we showed that there is an asymptotic
conservation law: if C' is the number of constrained g-bits, the limits 7" — oo of C/|T| are
equal to each other.

The variables we use have a natural interpretation as an angular momentum®* cutoff of
the spinor bundle on the n sphere[2] . Using this language we can see that the fixed time
Hamiltonians are invariant under the fuzzification of the group of volume preserving maps on
the sphere, and are fast scramblers.

2 Space-time interpretation of the models

In the previous section we studied, using purely quantum mechanical language, a class of finite
quantum models, which have a scattering theory despite having no manifest spatial dimensions.
At T > > E; — +oo, we exhibited a breakup of the Hilbert space into constrained subspaces,
in each of which the asymptotic dynamics consists of a collection of non-interacting subsystems.
The largest of these, the horizon subsystem, becomes topological in the limit. All eigenvalues
of this subsystem go to zero. The system has an asymptotically conserved quantum number,
> E;, which we called energy, and the horizon carries zero energy. More importantly, in the
asymptotic limit, the time dependent Hamiltonian of the decoupled horizon variables goes to
Zero.

In the limit, the variables of the theory approach generalized sections of the spinor bundle on
the n - sphere. They are also functions of the discrete positive variables F;. If we take the limit
with fixed ratios of the E; then it is plausible that by tuning parameters in the Hamiltonian, the
amplitudes become functions only of ratios of the E; and have finite limits. It is plausible that

4Equivalently a Dirac eigenvalue cutoff.
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one can tune the amplitudes to be conformally invariant on the sphere, or equivalently, Lorentz
invariant on the light cone. The variables are not however quantum fields on the light cone in
the Wightman sense. They are not differentiable, since the zero momentum part had dynamics
that was invariant under fuzzy volume preserving transformations on the sphere, before taking
the limit. We have speculated that they become Lorentz spinor operator half-measures on the
sphere. Bilinears in the spinors become measures, which transform as differential forms on the
sphere.

Thus, despite the absence of space-time coordinates in the formulation of the theory, there
is a natural interpretation of these models as a theory in space-time. The nested tensor factors
depending on time intervals in the quantum theory are identified with the Hilbert spaces of
causal diamonds along a particular timelike geodesic in Minkowski spacetime. The growing n
spheres in the quantum model are identified with the n = d — 2 dimensional holographic screens
of causal diamonds along timelike geodesics in Minkowski space®

Here is a list of the properties of generic models from section 1, and their space time
interpretation.

e The models have a built in notion of causality. Variables associated with a d — 2 sphere
are isolated from the rest and have a number that grows like t9=2. Invoking the Covariant
Entropy Principle[1] we identify the spatial radius of that sphere as proportional to ¢ in
Planck units. The fixed ¢ Hilbert space is identified with that of a causal diamond of a
proper time interval [—t,t] along a geodesic in Minkowski space.

e The model has an asymptotic Rx.SO(d—1) symmetry, with the SO(d—1) being picked out
of the fuzzy group of volume preserving maps by a combination of the nesting of spheres
and the constraints of the model. In the limit 7" — oo there is a scattering operator and
we have argued that it is plausible that this operator acts only on the variables that make
up the small blocks "liberated” from the majority of DOF by the asymptotic constraints.
In the limit 7' > ) E; — oo with fixed ratios E;/FE};, the variables converge to operator
valued half measures on the momentum null cone, which transform as a collection of spinor
fields under Lorentz transformations. The scattering operator conserves the SO(d — 1)
subgroup of SO(1,d — 1) but conservation of the rest of the group requires fine tuning of
parameters in the Hamiltonian. The rotation invariant asymptotic quantum number is
interpreted as the energy. It is proportional to the limit of N¢ /T where N¢ is the number
of constrained g-bits.

5Tt is clear from this sentence that space-time geometry is not a fluctuating quantum variable in this inter-
pretation. Many people have asked us about the fact that the geometry we assume does not seem to respond
to the matter that is in it. The answer to this question lies in Jacobson’s hydrodynamic view of the origin of
FEinstein’s equations and the space-time metric. In a complex system, some parts of any particular process can
be treated hydrodynamically, while we may need a more detailed description of more microscopic parts of the
system. In the example of black hole production, followed by Hawking radiation or the fall of a small system
of "elementary particles” onto the black hole, we treat the whole system microscopically, as a scattering event
in Minkowski space, up to the advent of black hole formation. We then switch to a hydrodynamic description
of the complex dynamics of the black hole while retaining the microscopic description of ”particles” emitted
from or absorbed by it. In this paper, where we are not doing detailed calculations, we retain the microscopic
description of the whole system, and treat the events as occurring in Minkowski space. The physics is the same:
the collision of ”particles” to form a high entropy meta-stable state with which other particles can interact and
from which they can be emitted/absorbed.

11



e Meta-stable bound states are formed when the inequality > F; < t?72 is saturated in a
causal diamond of proper time interval [—t, t]. Here > E; is the amount of asymptotically
conserved energy that enters the diamond. The time of formation of the bound states is of
order 2tIn ¢ . The definition of energy in terms of constraints implies that the probability
of finding this high entropy meta-stable state to have of order Et constraints after it
has come into equilibrium is e #*, which is thermal with temperature oc t~!. This is
interpreted as emission of "Hawking radiation” from the meta-stable equilibrium state.
Conversely, suppose we have, in the past half of a causal diamond of proper time interval
[—(t + At), (t + At)], a state of the larger diamond that is a approximately a tensor
product® of the Hilbert spaces of degrees of freedom in two blocks of the matrix, of size
M ~t and m < t, with constraints liberating these blocks from each other and from the
~ (t+8t)? — M(t + 6t)t degrees of freedom left in that diamond. This state will evolve in
a time of order tInt to one in which the degrees of freedom linking the M and m blocks
are excited and the full state is in equilibrium with entropy (M + m)% This explains
both the unexpected (from a quantum field theory point of view) increase in entropy in
the process and the fact that the small system remains relatively unaware of the larger
one for times of order t. This argument, which uses only the fast scrambling nature of the
interaction and the factor of 1/t in the Hamiltonian that equilibrates the system, resolves
the firewall paradox[4] of the quantum field theory approach to black hole physics. It is
equally applicable to newly formed and old black holes. The black hole interior, in this
account, is erased in a time of order tln ¢ but recreated anew each time a small system
falls on the black hole. Another feature of black hole geometry that is reproduced by this
model is the shrinking of the holoscreen volume of causal diamonds inside the horizon.
That is, the holoscreen volume of a diamond that starts at time 7 after horizon crossing,
is a monotonically decreasing function of 7. In our models this is reproduced by the fact
that the dynamics of in-falling matter is the dynamics within a small block. Once the
small and large blocks begin to come into equilibrium, via the excitation of off diagonal
degrees of freedom, the size of the Hilbert space available to describe the interaction of
small localized excitations decreases.

e The nesting of causal diamonds, which is incorporated via the time dependence of the HST
Hamiltonian, combines with the definition of jet states in terms of asymptotic constraints,
to give an understanding of why jets of particles are bulk localized objects. We can follow
the constraints from the largest causal diamonds to smaller ones and then back out to
T — o0, and this defines the trajectories of incoming and outgoing particles in an emergent
bulk space-time. The mathematical definitions are all done in the quantum model. A
certain asymptotically non-interacting block of energy F; is defined by a constraint on
variables in the system at —T. Using the freedom of the volume preserving group we
can define the degrees of freedom inside the small block to be localized in a spherical
cap surrounding some particular point on the sphere, and the constrained variables to be
those in an annulus surrounding it. The area of that annulus is 7. We can do the same
for all the other small, asymptotically non-interacting, blocks, localizing them at different
points. The constraint > E; < T93 guarantees that the area between these spherical
caps is much larger than that in the caps themselves. In going to smaller diamonds, there

6The tensor product prescription is just approximate because the two subsystems have interacted in diamonds
prior to —t — At.

12



will be amplitudes where >_' E; remains much smaller than ¢4=3, where the primed sum
might run only over some of the initial blocks. We say that the blocks in the primed sum
"enter into the past boundary of the small causal diamond” and we line up their angular
positions with the ones defined on the largest diamond. Invariance under the special
rotation group picked out by this nesting follows from the volume preserving invariance
of all Hamiltonians. Thus, the models themselves define a notion of trajectories of weakly
interacting objects, localized in angle, through the bulk of space-time, even though there
is no "bulk” in the definition of the theory.

As noted in the previous section, when the primed sum above is not equal to the original
sum, we conclude from the asymptotic conservation of > F;, that the rest of the energy
appears at time t as a set of non-interacting subsystems of the ”out” Hilbert space. The
space-time interpretation of the models now has an important role to play in determining
the structure of H,,;. The space-time interpretation of the model of the previous section
is that it is the proper time dynamics along a particular time-like geodesic in Minkowski
space. The spacetime interpretation implies that there should be an identical Hamiltonian
for every time-like geodesic. Each of these is an independent quantum system. The
different initial conditions are constrained by an infinite set of constraints on mutual
quantum information. If we choose two intervals [—tq,¢;], [—t2,t2] along two different
trajectories, the space-time picture implies that the causal diamonds of these intervals
have some overlap. There is a causal diamond with maximal volume holographic screen,
usually unique, in the overlap region. Quantum mechanically this corresponds to tensor
factors of equal dimension in the Hilbert spaces of the two systems. Each system will
prescribe a density matrix for that overlap, and the entanglement spectra of those density
matrices should be equal. This can be generalized to any set of geodesics.

This infinite set of pairwise constraints can be used in three different ways. First of
all, when all t; are equal and the energy in the causal diamond is less than the total
incoming energy, the remainder should be found in some collection of causal diamonds,
possibly overlapping. Second, if some process occurs in causal diamond 1 and diamond
2 has no overlap with 1, then the H,,; of diamond 2 must describe the identical process.
Finally, we can generalize the constraints to intervals that are centered around different
space-like hyperplanes in Minkowski space, which can give rise to amplitudes like that
shown in Fig.8 A jet emitted from some past causal diamond can propagate to be part
of the initial constraints on a different causal diamond in the future. Thus, the model
has amplitudes satisfying the clustering properties we usually derive from (time ordered)
Feynman diagrams in quantum field theory. We begin to see how field theory emerges as
an approximate description of those amplitudes which do not lead to black hole produc-
tion.

The introduction of multiple versions of the dynamics corresponding to different time-like
geodesics also leads to a derivation of space- translation and Lorentz boosts as asymptotic
symmetries of the dynamics. Unfortunately, while we can argue that space translation
invariance will be satisfied for the large class of models defined in the previous section, the
imposition of boost invariance imposes constraints that we have not been able to solve.
We also have evidence that boost invariance will not be satisfied for a generic choice of
the polynomials in the previous section.

13



Consider the causal diamonds of proper time ¢ along two geodesics related by a Poincare
transformation. Let’s choose the origin of proper time along the interval [—t,¢] to be
the same. As t — oo the overlap between the two causal diamonds is parametrically
smaller than the areas of the individual diamonds. For a generic state, Page’s theorem|5]
then tells us that the state on the overlap is maximally uncertain. However, we are not
dealing with generic states. Asymptotic energy conservation tells us that the asymptotic
numbers of constraints are the same and that the number of constraints is much smaller
than the total number of fermions. We are then free to define the asymptotically non-
interacting degrees of freedom in one system to be sitting at the Poincare transformed
points on the sphere at infinity. In order to do this and get a invariant result, we must
of course take the E; to infinity at fixed ratio, with 793 > Y~ E;. The definition of
the Poincare transform of E; assumes that the jets are all massless. The treatment of
massive particles will be more complicated” . Thus, the quantum information in the
constrained subspaces, apart from information about the asymptotically decoupled and
topological zero momentum modes is in subspaces of the same dimension and is totally
contained in the overlap diamond, because the action of both Hamiltonians on states of
non-zero energy is, in the limit indicated above, the same up to a Lorentz boost of the
energy. Thus, asymptotically, there should be a unitary transformation relating the two
scattering operators, for every Poincare transformation.

The phrase should be is not the same as the word is. For time translations, rotations
and space translations, there is such an asymptotic unitary in all of the models we have
defined. This is much less clear for Lorentz boosts, and we will present evidence below
that it is not true for the generic Hamiltonian.

When translated into space-time language, the calculation of the large time scattering of
two jets that we did in the previous section, shows that there is a Newtonian interaction
between two jets, starting from the impact parameter of their trajectories, assuming they
are straight lines determined by the asymptotic initial conditions, and following them out
to infinity in both time directions. It is clear from the space-time point of view that this
calculation is valid only in the eikonal approximation, but this is expected because it was
motivated by the large time limit, when the trajectories are far from each other.

There is another interaction between the two jets, coming from the ”exchange diagrams” of
Fig. 8 For massless gravitons with parallel momenta, the eikonal phases of this diagram
and the Newton interaction are supposed to sum up to give a vanishing phase in the
S matrix. It is clear that for generic choice of the Hamiltonian H(t), they will not.
Boost invariance is thus a constraint on the choice of the polynomial in the Hamiltonians
of section 1. It is far from clear to us how strong a constraint it is. For the case of
asymptotically Anti-de Sitter spaces, we know that it is sufficient to tune a few parameters
in order to restore the conformal group in the asymptotic limit®. It is unlikely that the

“From the evidence provided by string theory, we expect that all stable massive particles will either be BPS,
or created in the collision of massive BPS particles and anti-particles, and have quantum numbers determined
by a finite K-theory group. The masses of the BPS particles are usually determined from the anti-commutators
of the left and right supercharges. We conjecture that the proper way to find the "K-theory” states is simply
to explore the BPS particle anti-particle scattering matrix. That is, we would find a violation of unitarity if we
assumed there were no such states, and their masses will be determined by imposing unitarity.

8We are implicitly assuming a tensor network regularization of the boundary CFT.
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Figure 8: Exchange diagram involving two jets.

same will be true here. Indeed, those cases where we can plausibly recover a quantum
gravity scattering operator by taking a limit of a family of conformal field theories, are
very rare in the space of all CF'Ts. We therefore expect that the constraints of Lorentz
invariance are very strong, much stronger than the requirement that a finite system have
a limit described by conformal field theory. Yet another indication of this comes from
perturbative string theory, where the naive setup of the perturbation expansion seems to
indicate that there are many more string models of quantum gravity than actually exist.
It’s only because these models are perturbations of exactly soluble models that we can
sort out which models really make sense. Indeed it’s obvious, though perhaps not widely
appreciated, that most perturbative string models that have unitary, Lorentz invariant,
analytic S matrices to all orders in perturbation theory, but only minimal four dimension
SUSY, do not define true models of quantum gravity.

One disappointing feature of our calculation of the Newton interaction is that it does not
seem to come out attractive for arbitrary Hamiltonian in the class we have studied. We've
shown that it comes from the effective Hamiltonian

H.pr(z) = (1 — O)[Hp + VII(z — Ho) 'TIV](1 — 1I). (17)

The interaction comes only from the second term and can be written
> (A -mVI]i)(z — E)~ GV (1L -T0). (18)

The sum is over states in the ortho-complement of the constrained subspace. The large ¢
limit is dominated by z values that are within 1/t of the eigenvalues of Hy in the ortho-
complement. In principle, the values of z are determined by finding the the eigenvalues of
the z dependent Hamiltonian H.ss(z) and then solving the equations, z; = E;(z;) . These
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values will give poles of matrix elements of the exact resolvent between states in the
constrained subspace. Since the entire system is finite dimensional, the F;(z) are values
of a multi-sheeted analytic function of z at copies of the real axis on different sheets.
That function also has isolated poles at eigenvalues of Hy on the ortho-complement of the
constrained subspace.

The condition that the expectation value of the interaction term in H.; is negative in
typical states in the constrained subspace, seems like a complicated constraint on the
parameters in our underlying Hamiltonian. We had hoped that it would follow from quite
general principles, but we do not see our way to such a claim at the moment.

e A quite satisfactory result of the calculation of Newton’s interaction that we have pre-
sented is the way in which the notion of energy as a count of the number of constraints
appears. We originally motivated this by referencing black hole entropy formulae, and
derived the limiting number of constraints N¢ /T as an asymptotic conservation law in
all of the models of Section 1. Here we see the projection on the constrained subspace
supplying the factors of energy in Newton’s law.

To summarize, we've presented a class of explicit, finite quantum mechanical models, all of
which have an emergent ”space-time interpretation” that manifestly satisfies unitarity, causal-
ity, and invariance of the scattering matrix under the subgroup of the Poincare group that
preserves a family of time-like trajectories at relative rest. All of these models exhibit a large
distance Newtonian contribution to the scattering matrix of two ”localized objects”, where the
term in quotes is defined in terms of constrained subspaces of the Hilbert space. The scattering
matrix defined by these models has resonances corresponding to long lived metastable states,
characterized by an energy, entropy and spatial size that satisfy the parametric relations ex-
pected for black holes. The models are also fast scramblers, in agreement with the properties
of black hole quasi-normal modes and have a natural time scale for equilibration that is the
Schwarzschild radius. That same time scale is crucial to the correct scaling of Newton’s Law,
which can be viewed as arising from excitation of virtual degrees of freedom on the boundary
of a causal diamond exactly containing two localized excitations.
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