
Identifying and (Automatically) Remedying Performance
Problems in CPU/GPU Applications

Benjamin Welton and Barton P. Miller
Computer Sciences Department

University of Wisconsin - Madison
Madison, Wisconsin

(welton,bart)@cs.wisc.edu

ABSTRACT
GPU accelerators have become common on today’s leadership-
class computing platforms. Effective exploitation of the additional
parallelism offered by GPUs is fraught with challenges. A key per-
formance challenge faced by developers is how to limit the time
consumed by synchronizations between the CPU and GPU. We
introduce the extended feed-forward measurement (FFM) perfor-
mance tool that provides an automated detection of synchronization
problems, identifies if the synchronization problem is a component
of a larger construct that exhibits a problem beyond an individual
synchronization operation, identifies remedies that can correct the
issue, and in some cases automatically applies remedies to problems
exhibited by larger constructs. The extended FFM performance tool
identifies three causes of unnecessary synchronizations: a problem
caused by a single operation, a problem caused by memory man-
agement issues, and a problem caused by a memory transfer. The
extended FFM model prescribes remedies for each construct and
can automatically apply remedies for memory management and
memory transfer cause problems. We created an implementation
of the extended FFM performance tool and employed it to identify
and automatically correct problems in three real-world scientific
applications, resulting in an automatically obtained reduction in
execution time between 9% and 43%.

CCS CONCEPTS
• Software and its engineering → Software performance;

KEYWORDS
GPUs, Performance Tools, Performance Analysis, Feed-Forward
Measurement, Autocorrection
ACM Reference Format:
Benjamin Welton and Barton P. Miller. 2020. Identifying and (Automati-
cally) Remedying Performance Problems in CPU/GPU Applications. In 2020
International Conference on Supercomputing (ICS ’20), June 29-July 2, 2020,
Barcelona, Spain. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3392717.3392759

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’20, June 29-July 2, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-7983-0/20/06. . . $15.00
https://doi.org/10.1145/3392717.3392759

1 INTRODUCTION
The inclusion of GPUs on today’s leadership-class computing plat-
forms has increased the types of performance problems that can
effect an application. One challenge is handling synchronization be-
tween the CPU/GPU. Synchronization operations reduce CPU/GPU
overlap and can have a large impact on application performance.
Knowing the high cost of synchronization operations, developers
try to ensure that synchronization is performed only when neces-
sary. Despite these efforts, problematic synchronization can con-
sume up to 50% of execution time in real world applications [36, 37].
Developers need support to both identify the places in their code
responsible for unnecessary synchronization delays and to develop
fixes to remediate these delays.

Previous research on performance tools developed a technique
called Feed Forward Measurement [37] (FFM), showing how to iden-
tify these places in code and provided reliable estimates of the
benefit that could be obtained if they were remedied. While FFM
was able to identify problems missed by other approaches, there
were still gaps in its analysis that resulted in performance opportu-
nities being left unexposed.

While FFM could say that a synchronization was problematic, it
could not identify if the synchronization is a component of a larger
construct that exhibit a problem that can span overmany operations.
For example, a frequently occurring unnecessary synchronization
caused by a memory free operation (such as cudaFree) could indi-
cate that a larger memory management problem is present. If larger
constructs exhibiting this problem could be identified, it would
result in the elimination of memory allocation and free operations,
significantly increasing the potential performance benefit.

Once a problem is identified by FFM, it was left to the developer
to determine what remedy to employ to fix the problem. Poten-
tial remedies include removing the synchronization, moving the
synchronization to a more advantageous location, or leaving the
synchronization in place if the benefit of changing the behavior
is too low to be worth the effort. If a larger problem is present, a
single remedy might exist that could fix the larger problem. The
lack of guidance on what remedy to select can result in the devel-
oper selecting the wrong remedy, lowering performance benefit or
impacting program correctness.

When a developer identified the correct remedy for a problematic
operation, the developer is still responsible for applying the remedy
to the program. Applying the remedy manually to the source code
of an application can require significant effort from a developer.
In some cases, the problem may be in a closed source application
where the developer does not have access to the source code to fix
the problem. In practice, a developer tends to fix only the easiest of

https://doi.org/10.1145/3392717.3392759
https://doi.org/10.1145/3392717.3392759
https://doi.org/10.1145/3392717.3392759

ICS ’20, June 29-July 2, 2020, Barcelona, Spain B. Welton. et al.

the most problematic operations discovered, leaving harder to fix
problems with significant performance benefit untouched.

To address these problems we have developed the extended FFM
model capable of identifying larger constructs within an applica-
tion that exhibit a problem, identifying the remedy that should be
employed to fix the problem, and automatically applying the rem-
edy to problems exhibited by the larger constructs. We focused our
efforts on giving FFM the capability to detect two larger problems
that are common in applications today: unnecessary synchroniza-
tions caused by memory management issues spanning multiple
operations and by memory transfers. These problems are by far the
most common and costly larger constructs exhibiting a synchro-
nization problem present in the real world applications we have
encountered.

We identify the presence of these larger constructs by creating a
graph tracking allocation/free operations along with their usage
in various GPU operations. The graph is annotated using memory
tracing data collected by an extended version of FFM to identify
the memory operations that are associated with an unnecessary
synchronization. The annotated graph is used to determine which
operations are responsible for the synchronization, allowing us to
determine if it is component of a larger problem.

For a synchronization problem that FFM identifies, whether it
is a part of a larger construct or not, we automatically identify the
remedy that should be employed to fix the problem. There are four
corrective actions that can be prescribed to remedy a problem: 1)
remove the operation performing the synchronization, 2) move
the operation performing the synchronization, 3) fix a memory
management problem, and 4) fix a synchronous memory transfer.
We automatically apply remedies for larger problems on the binary
level. We focus our automatic application efforts on larger problems
due to their increased difficulty in correcting manually. Fixing the
issue on the binary level allows for problematic operations to be
corrected even if they take place in a closed source component.
In real world applications, we have found that autocorrection can
reduce application execution time by up to 43%.

In Section 2, we describe the techniques used by existing tools
and how they are insufficent to identify larger problems. We intro-
duce the overall structure of FFM and its existing functionality in
Section 3 and in Section 4 we introduce the extended FFM model.
In Section 4.1, we detail the techniques used to identify largers con-
structs and how remedies are developed. In Section 5, we discuss
our techniques for automatically applying remedies to application
binaries. In Sections 4.2 and 5.4 we describe our experiments with
these techniques on real world applications. In Section 6we describe
other general improvements made to FFM.

2 RELATEDWORK
The techniques employed by FFM are inspired by previous research
on performance tools, profile guided optimizers, and autotuners.
FFM leverages contributions in these areas to create a new profiling
and analysis structure that reduces (or eliminates) the limitations
faced by existing techniques. We describe the techniques commonly
used in each area to identify (and correct) performance issues, the
limitations on the types of performance problems identifiable by
each technique, and how FFM’s approach differs.

2.1 Performance Measurement Tools
Profiling and tracing based performance tools [1, 6, 10, 13, 18, 21–
23, 25, 27, 32] describe resource consumption at points in the pro-
gram. The assumption is that points in the programwith the highest
resource consumption correlate to problems that, if fixed, would
result in the largest performance benefit. While resource consump-
tion can help a user identify problems, there are limits on the help
it can provide.

Early work on critical path analysis showed [16] that resource
consumption is not always a good predictor of the obtainable bene-
fit. When a point of high resource consumption is identified, the
user must perform a detailed manual analysis of the operation to
determine if it is problematic and what remedy to employ. FFM’s
approach differs by identifying the problem and providing the user
with an estimate of the performance benefit of fixing a problem.
The differences between FFM and previous performance tools are
described in our original paper [37].

Resource consumption reporting at single points in a program
can hide larger problems where the problem spreads resource con-
sumption across many points. These larger problems will appear
as a collection of smaller single point issues even though a single
remedy exists that would result in a reduction in resource con-
sumption of all of the smaller points. The result is that the user
expends effort trying to identify and fix a problem that may have
limited performance benefit while missing those that would have a
larger benefit. FFM addresses this problem by grouping together
points where a single remedy can be applied that will fix problems
at multiple points and automatically applying a fix to common
synchronization problems.

2.2 Profile Guided Optimization
Profile guided optimization (PGO) is a compiler code optimization
technique that uses performance data collected from a run of a
program to optimize the application. PGO’s insert instrumentation
into the application (typically during compilation), run the instru-
mented program with a representative input data set, and use the
collected profile data from the representative run to guide a recom-
pilation of the program to eliminate specific performance problems.
PGO techniques targeted problems such as reducing cache miss
rates [8, 24, 28, 29], loop restructuring [9], and identifying functions
where inlining would improve performance [4, 7, 9]. More recently,
PGO techniques have expanded their reach beyond performance
issues and have been used to identify issues in other areas such as
application security [17] and I/O performance [35].

PGO techniques rely on compiler assistance to both insert instru-
mentation into the application and to correct any issues identified.
The tying of an optimization technique to a compiler limits it only
to applications that have source code available. New hardware
counter sampling based techniques [8, 28] have been developed
that limit the compiler assistance required to collect profiling data.
However, sample based PGO data collection approaches still rely
on compiler assistance to correct any issues that are identified with
the data they collect. FFM operates purely on the binary without
requiring using a specific compiler or access to the source code
used to compile the binary.

Identifying and (Automatically) Remedying CPU/GPU Performance Problems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

PGOs focus on identifying and correcting simple problems intro-
duced during code generation by the compiler. These corrections
have been limited to problems where the fix is a simple transforma-
tion, such as reordering basic blocks. Complex operations, such as
CPU/GPU synchronizations that cross library boundaries, requires
understanding of non-synchronization GPU behavior to identify
that a problem is present and the correct transformation to apply.

2.3 Autotuning
Autotuning is the process of identifying optimal input and configu-
ration parameters for an application. Given a programmer defined
search space, the program is automatically run with different com-
binations of parameters to identify the ones that optimize a given
criteria. Commonly, the end goal for a developer is to find the
parameters that result in the largest reduction in execution time.
Autotuning techniques have been applied to identifying parameters
such as the best program inputs [5, 38, 39], compiler settings [2, 34],
and algorithm configurations [3, 11] to use to increase performance.

Effective use of autotuning techniques require that a developer
define the parameters that influence performance. The parame-
ters that influence performance can be unique to the application
being tuned, requiring application specific alterations to the auto-
tuning program to allow for searching the parameter space. For
large search spaces, a pruning method must also be devised that lim-
its the number of potential parameter combinations to reduce the
number of times the application must be run to a feasible amount.
This process can miss out on potential optimizations if the devel-
oper incorrectly identifies parameters that influence performance,
incorrectly prunes the search space, or makes a mistake in the
construction of the autotuner.

3 THE FEED FORWARD PERFORMANCE
MODEL

The Feed Forward Measurement Model (FFM) was originally de-
tailed in the work on Diogenes [37]. FFM was created to address
the actionability of feedback provided by performance tools. The
focus of FFM was to identify the presence of problems and giv-
ing the user feedback in the form of an estimate of the potential
performance benefit if the problem were fixed. FFM employes a
multi-stage/multi-run instrumentation approach to performance
analysis where data is collected over multiple executions of the pro-
gram. With each execution, the instrumentation and data collected
is adjusted based on application behavior. This approach allows
the applications behavior to guide FFM to potentially problematic
CPU/GPU interactions. When a potential problem is identified, FFM
uses finer-grained instrumentation to identify the type of problem
present. Spreading the collection of fine grained detail over multiple
runs allows for the use of high overhead instrumentation without
hiding problems sensitive to overheard.

Diogenes uses FFM to identify problematic synchronization and
memory transfer events between the CPU and GPU. A synchroniza-
tion was deemed problematic if the data it was protecting was never
accessed or if the synchronization could be moved to a different
location to improve performance. FFM records the locations of data
being transferred to and from the GPU. After a synchronization
takes place, it uses memory tracing to identify the instructions that

access these locations. A memory transfer was deemed problem-
atic if it contained data that had already been transferred. FFM
uses content-based data deduplication to identify when a transfer
contains data that has already been sent to or from the GPU.

FFM consists of five stages. The five stages are broken down into
four data collection stages and an analysis stage to identify problem-
atic operations. Figure 1 shows a visual representation of the stages
of FFM including the modifications made to support these new en-
hancements. Data is collected using binary instrumentation of CPU
code to collect performance data on synchronizations and mem-
ory transfer events, allowing the capture of events that are missed
by vendor-supplied performance data collection frameworks and
library interposition methods. The use of binary instrumentation
allows FFM to maintain compatibility with applications written in
a wide range of programming languages and parallelization frame-
works. The five stages of FFM are:

Stage 1 - Baseline Measurement: Identifies the functions per-
forming GPU synchronizations and measures application execu-
tion time. We identify functions performing GPU synchronizations
by instrumenting the internal driver function that performs the
synchronization. This internal driver function is called by public
API calls that need to perform a synchronization such as cuMem-
cpy. Instrumenting this function allows FFM to directly capture
when a synchronization takes place without the reliance on vendor
supplied tools, resulting in a more accurate picture of the synchro-
nizations taking place in the program. This list is the starting point
of the FFM model and dictates where more detailed information
will be collected in stages 2 and 3.

Stage 2 - Detailed Tracing: Trace function calls performing
synchronization and memory transfers. For each operation, we
record the amount of time spent in the operation along with a
stacktrace. We trace the function calls performing synchronizations
discovered in stage 1 and a predefined set of memory transfer
operations. The trace data is used by stage 5.

Stage 3 - Memory Tracing and Data Hashing: Collects the data
needed to determine if an operation is problematic. Two different
data collection approaches are employed based on the type of opera-
tion. For synchronization operations, a memory tracing approach is
used to identify locations where data protected by the synchroniza-
tion is accessed. We store the location of the first CPU instruction
accessing data that was computed by the GPU along with a stack
trace of the synchronization operation performed before the access.
For memory transfers, we use a content-based data deduplication
approach to identify duplicate transfers.

Stage 4 - Sync-Use Analysis: Collect timing information to deter-
mine if the synchronization was misplaced. The time between the
instruction that first accesses data computed by the GPU and the
synchronization is collected. The timing information is used in stage
5 to calculated the expected benefit for misplaced synchronizations.

Stage 5 - Modeling: Uses the information collected in stages 1
through 4 to determine if an operation is problematic and what
the potential benefit might be from correcting the operation. For
synchronization operations, a simple data flow analysis is used to
determine the necessity of a synchronization operation. For data
transfers, content-based data deduplication is used to detect prob-
lematic transfers. We use a new performance model to determine
what the effect on application execution would be if these problems

ICS ’20, June 29-July 2, 2020, Barcelona, Spain B. Welton. et al.

Stage 2
Detailed Tracing

For all sync and
memory transfers:
• Time operation
• Generate call stack
Trace memory
allocation/free
operations and build
data flow graph

Process

libcuda

Trace all Sync,
transfers, and
memory ops

App Code

Stage 3
Memory Tracing and

Data Hashing

Identify duplicate
transfers by hashing

Identify instructions
accessing GPU writable
data addresses

libcuda

Trace all
Sync and
Transfers

App Code

Capture data
uses/hash
transfers

Process

Stage 1
Baseline Measurement

Measure application
execution time

Identify synchronous
driver calls

Process

libcuda App Code

Stage 4
Sync-Use Analysis

Capture time
between
synchronization and
instruction accessing
protected data.

libcuda

Wrap Private
Sync function

L/S analysis
on instruction

Process

App Code

App Execution Time

Synchronizing
Calls

Transfer / Sync Traces with Timing data

Transfer and
Sync call stacks

Data Transfer Hashes + Sync’s with accesses to GPU data

Instruction’s
accessing GPU writable

data addresses

Problematic
synchronization

operations

Stage 5
Modeling and Remedy

Generation

Use performance
model to estimate
the benefit of fixing
problematic
operations.

Generate a list of
remedies for
problematic
synchronizations

Autocorrect larger
semantic problems

Trace
memory

ops

Wrap Private
Sync function

UninstrimentedKey Lightweight tracing Load/Store or data hashing instrumentation

Figure 1: Overview of the stages of the FFM model with Extended FFM components listed in green.

were corrected. Generating an estimate of potential benefit can
determine on which problems the user should focus on.

4 THE EXTENDED FEED FORWARD
PERFORMANCE MODEL

While FFM automatically identified the presence of a problem,
manual analysis was still required to determine how to remedy the
issue. Identifying the remedy may not be obvious and may require
an expert understanding of GPU programming to identify what was
wrong. A problematic operation may also be larger construct that
requires understanding of non-synchronization GPU behavior to
identify and resolve. Fixing problems exhibited by larger constructs
can result in greater performance benefits.

Once the remedy was identified, the user had to manually apply
the remedy to correct the problematic behavior. Implementing a
remedy can be time consuming if it requires major modifications
to the program. In some cases, if the problem appears in a binary
for which source code is not available, remedying the issue would
require manual modification of a binary object. While FFM can
deliver an estimate of benefit for remedying issues that it identifies,
a developer is much less likely to correct issues if the time needed
to remedy the issue is high and they are given only an estimate.

We introduce the extended FFM model with enhanced capabili-
ties to identify larger constructs that caused a problematic synchro-
nization to occur, identify the remedy to problematic operations,
and automatically correct a subset of problems. We extend stages 2
and 5 of FFM to support these new capabilities. The extensions to
the existing FFM stages are:

Stage 2 - Detailed Tracing: We enhanced the detailed tracing
stage to include the collection of memory allocation and free oper-
ations so that a dataflow graph could be constructed. The dataflow
graph is used by stage 5 to help detect the presence of larger prob-
lems and identify the remedy for a problematic operation. We dis-
cuss the construction of the dataflow graph and how it is used to
identify larger problems and to identify remedies in Section 4.1.

Stage 5 - Modeling and Remedy Generation: We enhanced the
modeling stage to generate a list of remedies for the problems
discovered by the model. We use the memory graph constructed
in stage 2 along with the list of problematic operations identified
by the model to determine what remedy to apply. We discuss our
technique to identifying the remedy in Section 4.1. When a remedy
is identified that we can automatically apply to the application, we
automatically correct the problem in the application using a generic
solution. We describe the automatic correction process in Section 5.

Identifying and (Automatically) Remedying CPU/GPU Performance Problems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

void fftw_execute_dft(plan, in, out){
...
cuMemcpyHtoD(dev, in,...);
[Compute FFT on GPU]
cuMemcpyDtoH(out, dev,...);
...

}

Figure 2: An illustrative example of an unnecessary synchroniza-
tion in cuFFT when used in compatibility mode with Qbox

4.1 Automatic Remedy Identification
When a problem is discovered, identifying the correct remedy to
employ requires an understanding of the cause of the problem. We
focus on identifying the cause of four of the most common types
of synchronization problems we have seen in the real-world appli-
cations: 1) memory transfer issues, 2) memory management issues,
3) unnecessary operations, and 4) misplaced operations. Fixing the
cause of these problems can result in a reduction in execution time
by up to 43%. In this section, we describe the challenges of identify-
ing the correct remedy for each problem type and howwe automate
the identification of the cause of the problem.

4.1.1 Memory Transfer Issues. The unnecessary use of synchro-
nous memory transfer operations is a problem that we previously
found to be common in large applications [36, 37], such as within
cuFFT [26] when used with Qbox [14], cuIBM [20], and cumf_-
als [33]. One such instance, originally presented in an exploration
of GPU performance problems [36], can be seen in Figure 2 with the
synchronizations performed in Nvidia’s cuFFT [26] library when
used as a drop-in replacement for FFTW. In this example, cuMem-
cpyHtoD and cuMemcpyDtoH both perform an implicit synchroniza-
tion during the process of performing a transfer. The implicit syn-
chronizations can be unnecessary depending on how the applica-
tion uses fftw_execute_dft. The molecular dynamics application
Qbox [14], when linked against cuFFT in compatibility mode, has
instances where both implicit synchronizations in fftw_execute_-
dft are unnecessary.

The obvious remedy for an unnecessary synchronization per-
formed at a transfer is to convert these call sites to their asyn-
chronous form, such as converting cuMemcpyDtoH to cuMemcpyD-
toHAsync. However, performing only this conversion may result
in the synchronous behavior remaining. If the CPU memory used
in the transfer was pinned, such as by allocating the CPU memory
with cuMemAllocHost, the transfer speed itself could be reduced
by as much as 50%. In cases where the transfer being performed is
from the GPU to the CPU, such as with cuMemcpyDtoH, converting
only the call site to its asynchronous form will not eliminate the
synchronous behavior unless the CPU memory is also pinned. A
proper remedy for this issue requires identifying and converting all
CPU memory used in a transfer call to use pinned pages. In large
programs, containing 100K+ lines of code with multiple levels of
indirection between the allocation of an address and its use in a
transfer, identifying the CPU memory allocations that would need
to be changed can be difficult without assistance.

Providing actionable feedback requires not only identifying the
problem but also describing what needs to change to remedy the

problem. The requirements to create a remedy that is actionable
by the developer are shown in Figure 3. We must identify 1) the
locations in the program where CPU memory is allocated, 2) the
problematic transfers and the CPU memory used in the transfer
request, and 3) the locations where the CPU memory is freed. For
the locations of memory allocation and free operations to be useful,
they should relate to a line (or a collection of lines) in application
source code. Relating back to the source code gives context to
allocation and free operations when they are performed by an
external library, such as an allocator in the C++ standard library,
allowing the developer to place blame for the improper transfer
behavior on a specific library, class, and function.

We modified stage 2 of FFM to construct a simple dynamic data
flow graph to track the location where memory addresses are al-
located, what memory addresses are used by transfers, and the
location that allocated memory was freed. We use a binary interpo-
sition approach that leverages the tool GOTCHA [30] developed by
Lawrence Livermore National Laboratory to track these operations.
GOTCHA is a tool that allows a user to programatically define and
insert function wrappers into an application.

We interpose on malloc, free, and memory transfer operations
to capture the locations where CPU memory addresses are used (or
created). Memory transfer operations, such as cuMemcpyHtoD and
cuMemcpyDtoH, are interposed to identify the CPU addresses used
as parameters to the call. When a memory transfer operation is
requested by the application, we check the CPU address that is used
in the call to determine if it was allocated by malloc. If the address
was allocated via malloc, we record the location of the transfer and
the location of the allocation. When the recorded address is freed
by free, we record the location it was freed. We also interpose
on the pinning functions of CUDA, such as cuMemAllocHost, to
identify when pinned memory is already being used for a transfer.

Stage 5 was modified to generate a remedy based on how the
memory was allocated for these transfers. We use the existing
data that Diogenes collects to determine if the synchronization per-
formed by the transfer is unnecessary. If the transfer is unnecessary,
we generate a remedy listing the transfer operation with the unnec-
essary synchronization along with the memory allocation and free
operations that would need to be modified to correct the problem.
We obtain source code line information using Dyninst [31] to tell
the user the lines that would need to be modified to correct the prob-
lem. If source code information is not available, such as when the

A

F

C

D

B

G

E

F

C

D

B

G
CPU Memory Allocator CPU Memory Free Unnecessary Synchronous

Memory Transfer
Other operations

A

F

B

G

E

Program CFG Remedy Requirements

1. Identify locations where CPU
memory is allocated

2. Identify the synchronous
transfers using these memory
regions

3. Identify where CPU
memory is freed

Figure 3: Information required to remedy a problematic syn-
chronization caused by a memory transfer

ICS ’20, June 29-July 2, 2020, Barcelona, Spain B. Welton. et al.

cuMemcpyHtoD_v2 called at...

Offset 131568 in libcufftw.so.8.0
...

cosft1(int, double*) at line 146 in sinft.C

Species::initialize_ncpp() at line 411 in Species.C
...

Problem: Unnecessary synchronous transfer,

replace with cudaMemcpyAsync and pin CPU memory
address

Pin non-pinned CPU Memory Allocated At:

operator new(unsigned long) at line 56 in new_op.cc
...

CPU memory freed at

operator delete(void*) at line 46 in del_op.cc

...

Figure 4: Example Diogenes remedy output for unnecessary syn-
chronizations caused by memory transfers in Qbox

synchronization occurs in a proprietary binary like cuFFT, we re-
port the offset address in the binary at which the transfer/allocation
occurs. An example of a remedy generated by Diogenes for Qbox
using cuFFT is shown in Figure 4. Figure 4 shows a stack of the call
site of the problematic synchronous transfer (cuMemcpyHtoD_v2
in libcufftw), a brief textual description of the problem, and the
locations of memory management operations that would need to
change to correct the issue.

4.1.2 Memory Management Issues. Frequent unnecessary syn-
chronizations caused by cudaFree operations is one of the most
common mistakes detected in GPU programs [36, 37]. Two fac-
tors play a key role in the overuse of cudaFree operations: the
application structure can hide where these operations take place
and fixing problematic behavior requires modifying other oper-
ations in the program. Figure 5 is an excerpt from the applica-
tion cuIBM [20] that shows how identifying the location of cud-
aFree operations can be difficult in modern programs. The function
cusp::system::detail::generic::multiply<...> is a template
function in the header-only library CUSP [12] used by cuIBM. This
function is called after multiple levels of template indirection. In
this function, two temporary_array objects are instantiated.While
the name implies that a temporary array will be created, it is only
after several more layers of indirection and template function calls
that a cudaMalloc is performed. Only when the temporary_array
object is being destroyed, and after calling another several layers of
destructors, is the cudaFree operation performed. An extra level of

void cusp::system::detail::generic::multiply<...>(...) {

// temporary_array<...> inherets thrust::temporary_array<...>

// eventually resulting in cudaMalloc(...) being called

cusp::detail::temporary_array<...> rows(...);

cusp::detail::temporary_array<...> vals(...);
...

// cudaFree called by temporary_array object deconstructor
}

Figure 5: Example of an unnecessary synchronization as a result
of memory management issue in cuIBM

complexity is added when the compiler optimizes this code by re-
moving some of these layers of indirection, increasing the difficulty
in locating the problem.

Unlike other unnecessary synchronization operations that FFM
detects, cudaFree is unique in that there is no asynchronous ver-
sion of the operation available. Fixing a synchronization issue at
cudaFree is limited to removing or moving the operation. However,
fixing a cudaFree operation cannot be done without also address-
ing the cudaMalloc that allocated thememory being freed.Without
moving or removing the cudaMalloc, a memory leak would result.

Providing actionable feedback requires that we identify the cud-
aFree operations with unnecessary synchronizations and identify
the corresponding cudaMalloc operations. The first step is to link
cudaMalloc operations with the cudaFree operations that freed
the memory. Similar to identifying remedies in memory transfer
issues, we modified stage 2 of FFM to construct a simple dynamic
data flow graph. We use GOTCHA to interpose on cudaMalloc and
cudaFree operations, and compare the memory locations allocated
by cudaMalloc operations to the memory freed by cudaFree. If a
match is found, we record the location of this pair of operations.
Stage 5 was modified to generate a remedy that reports these pairs
to the developer if the synchronization at the cudaFree operation
was unnecessary. We use the existing data that Diogenes collects to
determine if the synchronization is unnecessary at the cudaFree
callsite. If it is, the pair is reported to the developer. Figure 6 shows
an excerpt from the output of Diogenes for the program cumf_-
als [33]. The output contains the stack with line numbers at which
cudaFree was called at, the type of problem idenfied (unneces-
sary synchronization), and the stack with line numbers for all GPU
malloc sites that allocated memory freed at the cudaFree callsite.

4.1.3 Unnecessary and Misplaced Explicit Synchronizations. De-
tecting unnecessary explicit synchronization operations, such as
cuCtxSynchronize, was part of the original FFM design. While
FFM could detect the presence of these operations, it did not give
the user a remedy for these problems. FFM also did not differentiate
between a synchronization operation that was unnecessary and one
that needed to be moved. The result was that a developer needed
to do manual analysis to determine the type of problem that was
present and how to fix it. The extended FFM model addresses this
issue by modifying stage 5 to output the type of problem present
at the explicit synchronization (unnecessary or misplaced).

4.2 Experiments: Remedy Identification
We tested the effectiveness of the remedy identification extension
to FFM on three real world applications: cumf_als [33] (git revision
a5d918a), a GPU-based large matrix factorization library that uses
the alternating least square (ALS) method developed at IBM and
University of Illinois Urbana-Champaign; cuIBM [20] (git revision
0b63f86), a 2D Navier-Stokes solver using the immersed boundary
method developed at Boston University; and Qbox [14], (version
r140b) a molecular dynamics application developed at U.C. Davis
that uses nvidia’s cufft [26] (version 8.0) in compatibility mode.

All experiments were run on the Ray Coral early-access cluster
located at LLNL. Each compute node on Ray contains a 20-core
PowerPC 8-processor node with four Nvidia Pascal-class GPUs.
Each application was compiled with the GNU Compiler Collection

Identifying and (Automatically) Remedying CPU/GPU Performance Problems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

cudaFree called at:

doALS(...) at line 1031 in als.cu

main at line 146 in main.cpp
...

Problem: Unnecessary sync at cudaFree, use a memory
allocator

GPU Malloc Site:

doALS(...) at line 689 in als.cu

main at line 146 in main.cpp
...

Figure 6: Example Diogenes remedy output for unnecessary syn-
chronizations caused by memory mangement issues in cumf_als

(GCC) version 4.9 and linked against CUDA version 9.2 (cuIBM
and cumf_als). Qbox differed in that the FFTW compatable library
used was cuFFT from CUDA version 8.0. The experiments were
conducted on a single node using a single GPU with system GPU
driver version of 418.87.

Table 7 summarizes the remedies prescribed by FFM for each ap-
plication. We categorize the remedies based on the type of problem:
memory management, memory transfer, and explicit synchroniza-
tion. Each remedy represents the suggested correction to a problem
of a specified type that occured at a unique execution stack during
program execution. If the same execution stack is responsible for
multiple occurences of a problem, the remedies necessary to correct
those occurrences are combined to form a single remedy that would
address all occurrences.

We validated, via manual source code analysis, that the remedies
identified in cumf_als and the memory transfer remedies identified
in QBox addressed actual problems that existed in the program. Due
to the complexity of the source code and high number of problems
identified for cuIBM, we did not manually validate every remedy.
However, for the problems that we employ autocorrection on (most
memory and transfer issues), we validated that the program output
remained identical. The performance benefit that we have observed
from applying remedies to all three applications resulted in perfor-
mance gains between 9% and 43%. We describe the performance
obtained from remedying these issues in Section 5.4.

Our experiments for cumf_als were run using the GroupLens
MovieLens [15] 10M data set run with an iteration count of 5000.
FFM identified remedies for 22 memory management, 3 memory
transfer, and 10 explicit synchronization issues. The memory man-
agement issues identified in cumf_als were primarily cudaMalloc
and cudaFree pairs that were inside the main execution loop of
the program. The memory transfer issues identified were caused
by implicitly synchronous cudaMemcpy calls. In these instances,
the CPU memory used in the transfer was already pinned and the
problem was caused by not using the asynchronous version of the
call. The explicit synchronization issues were primarily cudaDe-
viceSynchronization calls that were unnecessary.

The remedies identified for cuIBM and QBox addressed similar
problematic behavior as those of cumf_als. For cuIBM, FFM identi-
fied remedies for 539 memory management, 31 memory transfer,
and 168 explicit synchronization issues. The major difference in
the problems identified in cuIBM to those identified in cumf_als

FFM Perscribed Remedies
Memory Transfer Explicit

Application Source Size Mgmt Sync Sync
Name (lines of code) Problems Problems Problems

cumf_als [33] 5K 22 3 10
cuIBM [20] 36K 539 31 168
QBox [14] 100K 0 79 1

Figure 7: Number of remedies perscribed for synchroniza-
tion problems identified by FFM

was the transfer remedies identified were primarily targeted un-
necessary synchronization caused by not using pinned memory
with asynchronous memory transfer requests. Our experiments
with cuIBM were run using the lid-driven cavity with Reynolds
number 5000 dataset supplied in the public source code repository
for cuIBM (lidDrivenCavity/Re5000).

In QBox, FFM identified remedies for 79 memory transfer and
1 explicit synchronization issue. The memory transfer remedies
targeted implicitly synchronous cuMemcpyHtoD and cuMemcpyDtoH
function calls that occured in the Nvidia cufft library that needed
to both be converted to an asynchronous form and to use pinned
memory in the transfer. Our experiments with QBox were run using
the Gold 16 data set automatically generated by the tool contained
in the QBox distribution.

5 AUTOCORRECTION OF PROBLEMATIC
OPERATIONS

Fixing problems identified by FFM can require a significant restruc-
turing of application code or the modification of closed-source
binaries. Developers are left with a tough choice of leaving these
issues unresolved or potentially spending significant effort refactor-
ing their code. If they choose to address the issues, the benefit they
get may not have been worth the effort they place into fixing the
problem. The high cost of developer time to fix problematic opera-
tions in combination with the potential risk of limited performance
benefit results in the choice being made to not address these issues.

FFM was originally created to provide an estimate of potential
benefit to a developer to lessen the risk. While FFM was able to
provide accurate estimates of benefit of fixing problematic opera-
tions, significant risk for the developer still remained. The developer
needed to devise a plan on how to fix the issue, determine if that
plan would be efficient enough to obtain the benefit FFM predicted,
and then do the work to apply the fixes.

The autocorrection technique was created to lessen the risk to
developers by identifying a class of fixable problematic operations
in their program, selecting transformations that can be applied to
correct the problems, and applying these transformations to the ap-
plication binary to reveal the actual benefit that could be obtained.
Autocorrection supplies the developer with transformations that
can be used as starting point for the creation of a permanent solu-
tion. Unlike an estimate of benefit, this starting point is an actual
benefit obtained if these transformations were made permanent
to the program, reducing the risk to the developer that their time
will be wasted. While the transformations implemented by auto-
correction can be used as permanent solutions in some instances,
application specific fixes may exist that a developer can identify that
can offer greater benefits. We are also still bound by the limitation
of FFM in that it can only give assurances on transformation safety

ICS ’20, June 29-July 2, 2020, Barcelona, Spain B. Welton. et al.

for the program inputs for which it has seen. Thus a developer still
must ensure that these transformations are valid for other inputs
not exercised by FFM, either by manual analysis or by reruning
FFM with these inputs.

Autocorrection is performed using binary code modification
that takes place at application startup. We focus on correcting the
problematic of memory management and memory transfers op-
erations. We focus on these issues since they are the most likely
to require large structural changes to the application to resolve.
The transformation we apply for memory management issues is
to use a memory pool that limits the number of memory alloca-
tion and free operations that are passed to the GPU driver. This
transformation eliminates a large portion of overhead from ex-
cessive memory allocation and free opertions while also allowing
us to selectively enable/disable synchronization behavior when it
is required. Without this transformation, we would have no abil-
ity to control synchronization behavior due to non-existance of
asynchronous GPU memory free routines.

The memory transfer transformations that we apply convert the
call to its asynchronous form then selectively apply a synchroniza-
tion operation when required. Supporting the asynchronous call
requires that we ensure that any CPU memory address passed to
the transfer request falls on CUDA pinned page. If the CPU address
is not on a pinned page, a temporary pinned page is allocated that
will be used for the transfer.

Autocorrection takes place in two phases: 1) a setup phase at
application startup to identify and apply the transformations to
remedy the problem and 2) the execution phase where the transfor-
mation dynamically decides what remedy to employ based on the
operation invoked by the application. In this section, we describe
the model of application execution created to identify problematic
operations and how these phases work together to remedy these
common synchronization problems.

5.1 Model of Application Execution
To identify problematic operations in the program and identify the
corrective measure to apply, we extend the model of application
execution used in our original implementation of FFM. This model
is used by the setup and execution phases to apply corrections to the
application. We model application execution as a graphG = (N ,V),
where N is the set of operations performed by a processor andV is
the set of edges. The set of operations N = {C,G}, whereC is the set
of CPU operations in the graph and G is the set of GPU operations
in the graph. An edge describes the Lamport happens-before [19]
ordering between operations. On the same processor, an outbound
edge from a node nx to a node ny denotes the operation peformed
by nx completes processing before ny starts executing. An edge
between processors denotes a dependency where a node nx must
wait for an operation on the other processor to complete before
beginning execution.

Each node inN represents an operation that takes place in the ap-
plication and has attributes (NType, Problem,CallStack,MemPtr ,
Size) associated with it. NType denotes the type of operation per-
formed by the node: a CPU memory operation (CPUMalloc or
CPU Free), a GPU memory operation (GPUMalloc or GPU Free),
a pinned page memory operation (PinnedMalloc or PinnedFree),

CPU (C) GPU (G)

CN

CN+1

GY

GY+1

Edges denote
happens-before
relationships
between nodes

Node Annotation

NType: Type of operation performed at node
(GPUMalloc, SyncTransCPUtoGPU,…)

Problem: Problem discovered by Diogenes
(None or Synchronization)

Callstack: Processor stack recorded at start of nodes
execution

MemPtr: If NType denotes a GPU memory
operation, MemPtr is the address
created or freed.

If Ntype denotes a memory transfer,
MemPtr is the CPU memory address used
in the transfer

Size: Size of memory allocated or transferred
(if NType is a memory transfer or allocation)

Func1 in binary A
Func2 in binary B
…

Func3 in binary C (CN)

NType: GPUMalloc (cuMemAlloc)
MemPtr: Allocated address 0xFFF….

NType: SyncTransCPUtoGPU (cuMemcpyHtoD)
MemPtr: CPU memory address used in

operation

Figure 8: Illustrative example of the annotated graph used
to model application execution during autocorrection

or a synchronous transfer operation (SyncTransCPUtoGPU and
SyncTransGPUToCPU). The Problem attribute denotes the prob-
lematic operation identified in stages 3 and 4 of the FFM model
(None or Sync). The CallStack attribute denotes the current execu-
tion stack on the processor at the beginning of the operation. The
MemPtr and Size attributes vary based the NType of the node. For
GPU memory operations,MemPtr is the memory address created
or freed. For transfer operations,MemPtr is the CPU memory ad-
dress used by the transfer. Figure 8 shows a visual representation
of the graph constructed and the annotation applied to each node.

5.2 Setup Phase of Autocorrection
The autocorrection process begins by using the model of applica-
tion execution created by the original implementation in stages 1
through 4 of FFM to identify unnecessary synchronization opera-
tions. For use in autocorrection, we slightly alter FFM’s model of
application execution to generate call stacks for each unnecessary
synchronization operation. The call stacks will be saved for use by
the execution stage to determine what corrections are safe to apply
at an instance of a synchronization. We also use the setup phase to
insert instrumentation into the application around the functions
required to support autocorrection.

Figure 9 shows the algorithm used during the setup phase. In
function AutocorrectSetup on line 7 and 8, we insert instrumen-
tation to intercept calls to common transfer operations (such as
cudaMemcpy and cudaMemcpyAsync) and GPU memory operations
(such as cudaMalloc and cudaFree). The interception instrumenta-
tion modifies the code to redirect the calls made by the application
to apply the appropriate remedy at execution time. On line 9, we
insert instrumentation to wrap common CUDA pinned page mem-
ory operations (such as cudaHostAlloc and cudaHostFree). The
wrapping instrumentation captures the paramerters and return
values of the wrapped call but does not alter the behavior of the

Identifying and (Automatically) Remedying CPU/GPU Performance Problems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

call performed. The captured information is used to help identify
the appropriate remedy at execution time. On line 10, we insert
instrumenation at the exit of the internal GPU driver synchroniza-
tion function to be notified when a synchronization operation has
completed. At synchronization exit, we execute code to finalize the
remedies applied during interception of problematic operations.
TransIntercept, PinnedWrap, GPUMemIntercept, and PostSyn-
chronization are defined in the execution stage.

On lines 11-18, we iterate through the nodes in the graph to iden-
tify the synchronization operations that are problematic. We look
at every transfer and memory free operation performed by the ap-
plication, recording the call stack of the operation and whether the
operation is performing a required synchronization. The necessity
of the synchronization operation was determined by the original
FFM analysis. A synchronization is deemed necessary by FFM if
data protected by the synchronization is accessed. Data protected
by the synchronization includes the CPU memory regions used in
all pending memory transfers and the CPU memory regions of all
memory pages shared between the CPU/GPU. A memory access
by the CPU to the memory regions of protected data marks the
synchronization as required. The call stacks later are used by the
execution phase to determine if a synchronization operation should
be skipped. On line 15, IsTransFromStack checks if the node is
performing a GPU to CPU transfer with a destination on the CPU
stack. We force a synchronization if a transfer has a destination of
a CPU stack due to potential dangers that can occur with delaying
writes to stack addresses during autocorrection. If the operation is
performing an unnecessary synchronization, we add the call stack
to the set uSync. Likewise for required synchronizations, we add
the call stack to the set rSync. After we have iterated through the
graph, we remove any call stack that appears in rSync from uSync
to ensure that only unnecessary synchronizations are remedied.
On line 20, we write the call stacks out to a file to be read by the
execution phase.

5.3 Execution Phase of Autocorrection
The execution phase identifies and corrects problematic operations
that occur during program execution. We intercept potentially prob-
lematic operations that the application performs, such as memory
allocation and free routines, and use the information collected dur-
ing the setup phase to determine what corrective measure should
be applied. For all synchronous operations intercepted, we change
the default behavior to be asynchronous. We then use the data
from the setup phase to identify if the intercepted call requires a
synchronization. If a synchronization is required, we invoke an
explicit synchronization operation before returning control back to
the application.

Figure 10 shows the algorithm used during execution to correct
synchronization problems in the program and apply general fixes
to problematic behavior. Memory management operations are in-
tercepted and modified to apply the appropriate remedy by the
function GPUMemIntercept on line 32. Similarly, TransIntercept
on line 14 intercepts and modifies memory transfer operations to
apply remedies. The wrapper function PinnedWrap on line 7 sup-
ports the interceptor function TransIntercept by providing data

1 // uSync - Set of unnecessary sync ops stacks

2 uSync = []

3 // rSync - Set of necessary sync ops stacks

4 rSync = []

5
6 def AutocorrectSetup(Graph):

7 InterceptTransOps(TransIntercept)

8 InterceptGPUMemOps(GPUMemIntercept)

9 WrapPinnedMemoryOps(PinnedWrap)

10 PostCallSyncNotify(PostSynchronization)

11 for Node in Graph.N:

12 if (Node.NType == SyncTransCPUtoGPU or

13 Node.NType == SyncTransGPUToCPU or

14 Node.NType == GPUFree):

15 if (Node.Problem == Sync and

16 !IsTransFromStack(Node)):

17 uSync = uSync U Node.CallStack

18 else:

19 rSync = rSync U Node.CallStack

20 uSync = uSync - rSync

21 WriteToFile(uSync)

InterceptTransOps(TransIntercept) - Intercepts a set of known transfer ops
InterceptGPUMemOps(GPUMemIntercept) - Intercepts a set of known

GPU memory ops
WrapPinnedMemoryOps(PinnedWrap) - Wraps a set of known pinned

memory ops
PostCallSyncNotify(PostSynchronization) - Inserts a call to Function at end

of sync
WriteToFile([Stacks]) - Writes the set of stacks performing unnecessary

sync to a file.
IsTransFromStack(MemPtr) - Returns true if CPU stack address is used in

a GPU to CPU transfer at Node
Functions TransIntercept, GPUMemIntercept, PinnedWrap, and

PostSynchronization are defined in Figure 10
Figure 9: Setup phase used to identify unnecessary synchro-
nizations and insert function wrappers to support Autocor-
rection

on pinned memory allocation operations. The function exit wrap-
per PostSynchronization on line 27 notifies the execution phase
of a synchronization and performs post synchronization tasks.

GPUMemIntercept (line 32) intercepts memory allocation and
free operations, redirecting these operations to use a memory pool.
By using a memory pool, we limit the number of calls to cudaFree
made to the driver, reducing the number of synchronization oper-
ations that take place. When an allocation request is intercepted,
we redirect the call to allocate memory using the memory pool
(line 34). cudaMalloc is called only if the memory pool does not
have enough allocated memory to satisfy the request. When a free
request is intercepted, we return the memory region to the memory
pool (line 36). Since we may not call cudaFree, and thus may not
perform the implicit synchronization, we must check to see if the
intercepted call requires a synchronization. We compare the call
stack that initiated the request to the call stacks that were identified
as unnecessary in the setup phase (line 37). If there is no match, we
perform an explicit synchronization.

ICS ’20, June 29-July 2, 2020, Barcelona, Spain B. Welton. et al.

TransIntercept (line 14) intercepts andmodifies memory trans-
fer operations to remove unnecessary synchronizations.We convert
the synchronous memory copy operation to its asynchronous form,
applying a synchronization only when it is required. Converting
the call to its asynchronous form requires that we first identify if
the transfer is going to or from a CUDA managed pinned page. We
compare the CPU memory pointer used in the transfer to a set of
pinned pages allocated by the program (line 15). The set of allocated
pinned pages (pinnedSet) is captured by the wrapper PinnedWrap
on line 7. PinnedWrap inserts allocated memory ranges into a set
(line 10) and removes those that are freed (line 12).

If the intercepted transfer request is not going to or from a pinned
page CPU memory address, we must modify the transfer to use a
temporary pinned page. The temporary pinned page stages the data
being transferred to or from the GPU, allowing for the transfer to
become asynchronous and accelerating the rate data is transferred.
For transfers of data going to the GPU, the data to be transferred
from the CPU is copied to this temporary page and the transfer
request ismodified to use the pinned page (lines 17-19). If instead the
transfer is from the GPU to the CPU, we modify the transfer request
to use the pinned page. However, the data transferred from the
GPU is expected by the program to be at the CPU memory address
used in the original transfer request. We ensure this behavior by
delaying the copy from the temporary pinned page to the original
CPU destination memory address to occur at the completion of
the transfer at the next synchronization (line 21). The function
PostSynchronization is called when a synchronization completes
and the copy is performed (line 27-30). While the additional copy
does add overhead to the operation, both the allocation of a pinned
page and the copy operation would be performed by CUDA driver
if we did not perform this ourselves. On line 23, we initiate the
modified asynchronous transfer. On line 24-25, we determine if a
synchronization must be performed. If the current execution stack
is not contained in the unnecessary synchronization set collected
during the setup phase, a synchronization is performed.

5.4 Experiments: Autocorrection
We tested the effectiveness of the autocorrection on the applications
cuIBM, cumf_als, and Qbox. All experiments were conducted using
the same input datasets used and described in remedy identification
experiments (Section 4.2). Table 1 summarizes the benefit obtained
using autocorrection. For each application, we list its unmodified
execution time, the percentage of execution time saved in the origi-
nal study of FFM by manually correcting a subset of problems in
the program, and the percentage of execution time saved by using
the autocorrection method. The use of autocorrection reduced exe-
cution time by 43.3% for cuIBM, 33.2% for cumf_als, and 9.9% for
Qbox. When compared to the results obtained using the original
implementation of FFM, we obtained an additional 25.7% reduction
in execution time using autocorrection for cuIBM and a 24.9% reduc-
tion for cumf_als. Qbox itself was not manually corrected as part
of the original work on FFM. However, a reduction in execution
time of 85% [36] was achieved by modifying a few hundred lines
of the FFT component of Qbox to use the native cufft interface.
These changes required refactoring the code to use a library with

1 uSync = ReadFromFile ()

2 Ordered.Map pinnedSet = ∅

3 // DelayedCopies - List of [(TransPtr ,

4 // TmpPin)] pairs

5 DelayedCopies = []

6
7 def PinnedWrap(Node):

8 CallOriginalFunction(Node)

9 if Node.NType == PinnedMalloc:

10 pinnedSet[Node.MemPtr] = Node.size

11 else:

12 pinnedSet = pinnedSet - Node.MemPtr

13
14 def TransIntercept(Node):

15 TmpPin = Node.MemPtr;

16 if (pinnedSet ∩ Node.MemPtr == ∅):

17 TmpPin = GeTmpPinMemFromPool(Node.TransSize)

18 if (Node.NType == SyncTransCPUtoGPU):

19 memcpy(TmpPin , Node.MemPtr)

20 else if (Node.NType == SyncTransGPUToCPU):

21 DelayedCopies = DelayedCopies ∪

22 (Node.MemPtr , TmpPin)

23 AsyncTransfer(TmpPin , Node)

24 if (uSync ∩ CallStack == ∅):

25 PerformSynchronization ()

26
27 def PostSynchronization ():

28 for pair in DelayedCopies:

29 memcpy(pair.MemPtr , pair.TmpPin)

30 DelayedCopies = []

31
32 def GPUMemIntercept(Node)

33 if Node.NType == GPUMalloc:

34 return GetGPUMemFromPool(Node.size)

35 else:

36 ReturnGPUMemToPool(Node.MemPtr)

37 if (uSync ∩ CallStack == ∅)

38 PerformSynchronization ()

ReadFromFile() - reads call stacks from file provided by the setup phase
IsPinnedPage(Map, Ptr) - returns true if Ptr is contained in Map
GetPinnedMemFromPool(size) - returns a temp pinned page from a

memory pool (reclaimed when no longer used)
PerformSynchronization() - performs an explicit CPU/GPU

synchronization
AsyncTransfer(CPUMemAddress, Node) - Performs an async transfer

using the original parameters in node, replacing
the CPU address used in the transfer with CPUMemAddress

GetGPUMemFromPool(size) - Get a GPU memory allocation with a
specified size from a memory pool

ReturnGPUMemToPool(MemPtr) - Return memory address to memory
pool

CallOriginalFunction(Node) - Calls the original function that was
requested by the application

Figure 10: Execution Phase of Autocorrection

Identifying and (Automatically) Remedying CPU/GPU Performance Problems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Savings With
Original Original FFM by Savings With

App Exec Time Manual Correction Autocorrection
Name (seconds) (% of exec) (% of exec)
cumf_als 1169 8.3% 33.2%
cuIBM 1909 17.6% 43.3%
Qbox 2243 No Manual Correction 9.9%

Table 1: Summary of the performance benfits obtained using auto-
correction compared to the original implementation of FFM

different abstraction and manually managing the GPU memory and
synchronization.

The major cause of the performance difference seen between
manual correction using FFM and autocorrection is the larger num-
ber of problems that are actually corrected. The original FFM ex-
periments focused on fixing only the top few problems with the
largest potential performance benefit. This choice was made to
mimic the typical behavior of a performance tool user who only
typically fix the most problematic operations. This leaves, in some
cases, hundreds of smaller issues that are viewed as not having large
enough benefit to justify fixing them by themselves but can result
in large aggregate benefit if they were all corrected. Autocorrection
allows for these potential large gains available from fixing smaller
issues to be exposed without having to perform the tedious repair
of hundreds of smaller issues.

Table 2 summarizes the number of problems automatically reme-
died and the resulting number of synchronization operations that
were eliminated by the applied remedies. We categorize the reme-
dies using the same criteria as the remedy identification experi-
ments: memory management problems and unnecessary synchro-
nous memory transfer problems. Each remedy represents the cor-
rection of a problem of a specified type at a unique execution stack.
We verified the output of each application to ensure that the remedies
did not result in incorrect behavior.

Our experiments for cumf_als resulted in remedies being applied
to 22 memory management and 3 memory transfer issues. The
22 remedies applied to memory management issues intercepted
approximately 85K calls to cudaMalloc and 85K calls to cudaFree.
These operations were primarily the cudaMalloc/cudaFree pairs
inside of the main execution loop of the program that we described
in the remedy identification phase. The result of this remedywas the
elimination of 85K synchronizations that took place unnecessarily
at cudaFree operations. The 3 remedies applied to memory transfer
issues removed an additional 45K synchronization operations. Total
benefit obtained was a reduction in execution time by 33.2%.

cuIBM shows an extreme example of unnecessary synchroniza-
tions caused by cudaFree operations. Remedies were applied to
539 problematic synchronizations occuring at cudaFree operations.
The application of the remedies resulted in the interception of 45

Memory Management Memory Transfer
Application Problems Sync Ops Problems Sync Ops
Name Remedied Removed Remedied Removed
cumf_als 22 85,005 3 45,005
cuIBM 539 45,290,724 31 32
Qbox 0 0 79 32,048,836

Table 2: Synchronization operations removed using autocorrection

million calls to cudaMalloc and 45 million calls to cudaFree, re-
moving 45 million synchronizations. Remedies applied to the 31
memory transfer problems resulted in 32 synchronizations being
removed. Total benefit obtained was a reduction in execution time
by 43.3%. Qbox shows an extreme example of unnecessary syn-
chronizations caused by memory transfer operations. Remedies
were applied to 79 problematic synchronizations that occured at
various memory transfer operations (such as cuMemcpyHtoD). The
result was the elimination of 32 million synchronization operations,
reducing execution time by 9.9%.

The overhead of running FFM is significantly higher than that
of other performance tools. The overhead of running the entire
extended FFM model was between 7x (for cumf_als) to 45x (for
Qbox) of execution time. While the cost of FFM is high in terms
of time, the targeted feedback that a tool user receives and the
performance benefits that can be obtained can save programmer
time.

6 IMPLEMENTATION IMPROVEMENTS TO
FFM

Unlike most other performance tools, FFM directly instruments
the user space GPU driver to trace synchronizations. Direct in-
strumentation gives us the ability to detect synchronizations that
are missed by other performance tools reliant on vendor supplied
tracing methods. A major drawback is that this technique requires
the identification of an unmarked internal GPU driver function
responsible for performing the synchronization. The identification
of this function was a manual process and needed to be performed
on every update to the device driver. The requirement for manual
identification limited the applicability of FFM to only a few drivers.

We created a method that can automatically identify the internal
synchronization function of the user space driver. The technique
starts by creating call graphs for functions known to perform syn-
chronization operations (such as cuCtxSynchronize and cuMem-
cpy). We intersect the call graphs of these functions to generate a
list of common functions that are called by the known synchronous
functions. To identify the function in which we are interested in,
we run a small program that live-locks on a synchronization with
the GPU. We instrument the list of common functions and record
which functions never return. This generates a small stack, typi-
cally 2 to 3 functions, that do not return when a synchronization
is performed. We select the deepest function on the stack as the
synchronization function. We are currently working on extracting
this funcitonality out of FFM so that other tools can benefit from
more accurate synchronization information.

7 CONCLUSION
We have presented the extended feed-forward measurement model
that automates the detection of synchronizations problems, iden-
tifies if the synchronization problem is a component of a larger
construct, identifies remedies that can correct the issue, and au-
tomatically applies remedies to problems exhibited by larger con-
structs. We developed a prototype implementation of the extended
FFM model, employing it on three real world applications. Using
this implementation, we were able to automatically identify reme-
dies for several hundred synchronization issues across the three

ICS ’20, June 29-July 2, 2020, Barcelona, Spain B. Welton. et al.

applications. The autocorrection technique was able to correct the
problems exhibited by larger constructs identified in FFM to re-
duce application execution time between 9% and 43%. While the
implementation focused on the identification and correction of
synchronization issues on applications running on Nvidia GPUs,
the general technique of the extended FFM model should be easily
modified to apply to other GPU accelerators as they become more
prevalent in the high performance computing space.

8 ACKNOWLEDGEMENTS
This work is supported in part by Department of Energy grant DE-
AC05-00OR22725 under Oak RidgeNational Lab contracts 4000151982
and 4000164398; National Science Foundation Cyber Infrastruc-
ture grant ACI-1449918; Lawrence Livermore National Lab grant
B617863; and a grant from Cray Inc. The U.S. government is au-
thorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright notation thereon.

REFERENCES
[1] T. E. Anderson and E. D. Lazowska. 1990. Quartz: A Tool for Tuning Parallel

Program Performance. In The 1990 Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’90). Boulder, Colorado, 115–125. https:
//doi.org/10.1145/98457.98518

[2] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U. O’Reilly,
and S. Amarasinghe. 2014. OpenTuner: An extensible framework for program
autotuning. In 2014 23rd International Conference on Parallel Architecture and Com-
pilation Techniques (PACT). 303–315. https://doi.org/10.1145/2628071.2628092

[3] J. Ansel, Y. L.Wong, C. Chan,M. Olszewski, A. Edelman, and S. Amarasinghe. 2011.
Language and compiler support for auto-tuning variable-accuracy algorithms.
In International Symposium on Code Generation and Optimization (CGO 2011).
85–96. https://doi.org/10.1109/CGO.2011.5764677

[4] Andrew Ayers, Richard Schooler, and Robert Gottlieb. 1997. Aggressive Inlining.
In Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language
Design and Implementation (PLDI ’97). ACM, New York, NY, USA, 134–145. https:
//doi.org/10.1145/258915.258928

[5] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt, Q. Koziol, and M.
Snir. 2013. Taming parallel I/O complexity with auto-tuning. In SC ’13: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. 1–12. https://doi.org/10.1145/2503210.2503278

[6] R. Bell, A. D. Malony, and S. Shende. 2003. ParaProf: A Portable, Extensible, and
Scalable Tool for Parallel Performance Profile Analysis. In EuroPar Conference on
Parallel Processing (EuroPar ’03), Harald Kosch, László Böszörményi, andHermann
Hellwagner (Eds.). Berlin, Heidelberg.

[7] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-Mei W. Hwu. 1992.
Profile-guided automatic inline expansion for C programs. Software: Practice
and Experience 22, 5 (1992), 349–369. https://doi.org/10.1002/spe.4380220502
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380220502

[8] D. Chen, T. Moseley, and D. X. Li. 2016. AutoFDO: Automatic feedback-directed
optimization for warehouse-scale applications. In 2016 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 12–23.

[9] Robert Cohn and P. Geoffrey Lowney. 1999. Feedback directed optimization in
CompaqâĂŹs compilation tools for Alpha. In In 2nd ACM Workshop on Feedback-
Directed Optimization (FDO.

[10] B. R. Coutinho, G. L. M. Teodoro, R. S. Oliveira, D. O. G. Neto, and R. A. C. Ferreira.
2009. Profiling General Purpose GPU Applications. In the 21st International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD ’09). Sao Paulo, Brazil, 7. https://doi.org/10.1109/SBAC-PAD.2009.26

[11] Yufei Ding, JasonAnsel, Kalyan Veeramachaneni, Xipeng Shen, Una-MayO’Reilly,
and Saman Amarasinghe. 2015. Autotuning Algorithmic Choice for Input Sensi-
tivity. SIGPLAN Not. 50, 6 (June 2015), 379–390. https://doi.org/10.1145/2813885.
2737969

[12] Richard Galvez and Greg van Anders. 2011. Accelerating the solution of families
of shifted linear systems with CUDA. (2011). arXiv:hep-lat/1102.2143

[13] M. Gerndt, K. Fürlinger, and E. Kereku. 2005. Periscope: Advanced Techniques for
Performance Analysis.. In the 2005 International Conference on Parallel Computing
(PARCO ’05). Malaga, Spain.

[14] F. Gygi. 2008. Architecture of Qbox: A Scalable First-principles Molecular Dy-
namics Code. IBM Journal of Research and Development 52, 1 (January 2008), 8.
http://dl.acm.org/citation.cfm?id=1375990.1376003

[15] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19 pages.
https://doi.org/10.1145/2827872

[16] J. K. Hollingsworth and B. P. Miller. 1994. Slack: A New Performance Metric
for Parallel Programs. Technical Report. University of Wisconsin - Madison.
https://doi.org/10.13140/RG.2.2.27600.97285

[17] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz. 2013. Profile-
guided automated software diversity. In Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). 1–11.
https://doi.org/10.1109/CGO.2013.6494997

[18] A. Knüpfer, C. Rössel, D. A. Mey, S. Biersdorff, K. Diethelm, D. Eschweiler, M.
Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E. Nagel, Y. Oleynik, P. Philippen,
P. Saviankou, D. Schmidl, S. Shende, R. Tschüter, M. Wagner, B. Wesarg, and F.
Wolf. 2011. Score-P: A Joint Performance Measurement Run-Time Infrastructure
for Periscope, Scalasca, TAU, and Vampir. In the 5th International Workshop
on Parallel Tools for High Performance Computing. Berlin, Heidelberg. https:
//doi.org/10.1007/978-3-642-31476-6_7

[19] Leslie Lamport. 1978. Time, Clocks and the Ordering of Events in a Distributed
System. Communications of the ACM 21, 7 (July 1978), 558-565. Reprinted in
several collections, including Distributed Computing: Concepts and Implementations,
McEntire et al., ed. IEEE Press, 1984. (July 1978), 558–565.

[20] S. Layton, A. Krishnan, and L. A. Barba. 2011. cuIBM - A GPU-accelerated
Immersed Boundary Method. In the 23rd International Conference on Parallel
Computational Fluid Dynamics ((ParCFD ’11)). Barcelona, Spain.

[21] K. A. Lindlan, J. Cuny, A. D. Malony, S. Shende, B. Mohr, R. Rivenburgh, and
C. Rasmussen. 2000. A Tool Framework for Static and Dynamic Analysis of
Object-Oriented Software with Templates. In 2000 ACM/IEEE Conference on Su-
percomputing (SC ’00). Dallas, TX. https://doi.org/10.1109/SC.2000.10052

[22] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland, R.
Dietrich, D. Poole, and C. Lamb. 2011. Parallel Performance Measurement of
Heterogeneous Parallel Systems with GPUs. In the 2011 International Conference
on Parallel Processing (ICPP ’11). Taipei City, Taiwan, 10. https://doi.org/10.1109/
ICPP.2011.71

[23] A. D. Malony, S. Biersdorff, W. Spear, and S. Mayanglambam. 2010. An Experi-
mental Approach to Performance Measurement of Heterogeneous Parallel Appli-
cations Using CUDA. In the 24th ACM International Conference on Supercomputing
(ICS ’10). ACM, Tsukuba, Ibaraki, Japan. https://doi.org/10.1145/1810085.1810105

[24] S. McFarling. 1989. Program Optimization for Instruction Caches. In Proceedings
of the Third International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS III). ACM, New York, NY, USA, 183–
191. https://doi.org/10.1145/70082.68200

[25] J. Mellor-Crummey, R. Fowler, and D. Whalley. 2001. Tools for Application-
oriented Performance Tuning. In Proceedings of the 15th International Conference
on Supercomputing (ICS ’01). Sorrento, Italy. https://doi.org/10.1145/377792.
377826

[26] Nvidia. 2018. The Cuda FFT Library (9.2 ed.).
[27] Nvidia. 2018. The Nvidia CUDA Profiler Users’ Guide (9.2 ed.).
[28] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. BOLT:

A Practical Binary Optimizer for Data Centers and Beyond. In Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO 2019). IEEE Press, Piscataway, NJ, USA, 2–14. http://dl.acm.org/citation.
cfm?id=3314872.3314876

[29] Karl Pettis and Robert C. Hansen. 1990. Profile Guided Code Positioning. In
Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation (PLDI ’90). ACM, New York, NY, USA, 16–27. https:
//doi.org/10.1145/93542.93550

[30] David Poliakoff and Matt LeGendre. 2019. Gotcha: An Function-Wrapping Inter-
face for HPC Tools. In Programming and Performance Visualization Tools, Abhinav
Bhatele, David Boehme, Joshua A. Levine, Allen D. Malony, and Martin Schulz
(Eds.). 185–197.

[31] Paradyn Project. [n. d.]. Dyninst: Putting the Performance in High Performance
Computing. http://www.dyninst.org

[32] S. Shende and A. D. Malony. 2006. The TAU parallel performance system. The
International Journal of High Performance Computing Applications Vol 20, Num 2
(2006), 287–311.

[33] W. Tan, S. Chang, L. Fong, C. Li, Z.Wang, and L. Cao. 2018. Matrix Factorization on
GPUs with Memory Optimization and Approximate Computing. In Proceedings of
the 47th International Conference on Parallel Processing ((ICPP ’18)). ACM, Eugene,
OR, USA, Article 26, 10 pages. https://doi.org/10.1145/3225058.3225096

[34] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. 2009. A scalable
auto-tuning framework for compiler optimization. In 2009 IEEE International
Symposium on Parallel Distributed Processing. 1–12. https://doi.org/10.1109/
IPDPS.2009.5161054

[35] YijianWang and David Kaeli. 2003. Profile-guided I/O Partitioning. In Proceedings
of the 17th Annual International Conference on Supercomputing (ICS ’03). ACM,
New York, NY, USA, 252–260. https://doi.org/10.1145/782814.782850

[36] B. Welton and B. P. Miller. 2018. Exposing Hidden Performance Opportunities in
High Performance GPU Applications. In 18th IEEE/ACM International Symposium

https://doi.org/10.1145/98457.98518
https://doi.org/10.1145/98457.98518
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1109/CGO.2011.5764677
https://doi.org/10.1145/258915.258928
https://doi.org/10.1145/258915.258928
https://doi.org/10.1145/2503210.2503278
https://doi.org/10.1002/spe.4380220502
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380220502
https://doi.org/10.1109/SBAC-PAD.2009.26
https://doi.org/10.1145/2813885.2737969
https://doi.org/10.1145/2813885.2737969
http://arxiv.org/abs/hep-lat/1102.2143
http://dl.acm.org/citation.cfm?id=1375990.1376003
https://doi.org/10.1145/2827872
https://doi.org/10.13140/RG.2.2.27600.97285
https://doi.org/10.1109/CGO.2013.6494997
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1109/SC.2000.10052
https://doi.org/10.1109/ICPP.2011.71
https://doi.org/10.1109/ICPP.2011.71
https://doi.org/10.1145/1810085.1810105
https://doi.org/10.1145/70082.68200
https://doi.org/10.1145/377792.377826
https://doi.org/10.1145/377792.377826
http://dl.acm.org/citation.cfm?id=3314872.3314876
http://dl.acm.org/citation.cfm?id=3314872.3314876
https://doi.org/10.1145/93542.93550
https://doi.org/10.1145/93542.93550
http://www.dyninst.org
https://doi.org/10.1145/3225058.3225096
https://doi.org/10.1109/IPDPS.2009.5161054
https://doi.org/10.1109/IPDPS.2009.5161054
https://doi.org/10.1145/782814.782850

Identifying and (Automatically) Remedying CPU/GPU Performance Problems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

on Cluster, Cloud and Grid Computing (CCGRID ’18). Washington, D.C., 301–310.
https://doi.org/10.1109/CCGRID.2018.00045

[37] B. Welton and B. P. Miller. 2019. Diogenes: Looking For An Honest CPU/GPU
Performance Measurement Tool. In The International Conference for High Per-
formance Computing, Networking, Storage, and Analysis (SC ’19). Denver, CO,
301–310. https://doi.org/10.1109/CCGRID.2018.00045

[38] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. 2007. Opti-
mization of sparse matrix-vector multiplication on emerging multicore platforms.
In SC ’07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. 1–12.
https://doi.org/10.1145/1362622.1362674

[39] Yixun Liu, E. Z. Zhang, and X. Shen. 2009. A cross-input adaptive framework for
GPU program optimizations. In 2009 IEEE International Symposium on Parallel
Distributed Processing. 1–10. https://doi.org/10.1109/IPDPS.2009.5160988

https://doi.org/10.1109/CCGRID.2018.00045
https://doi.org/10.1109/CCGRID.2018.00045
https://doi.org/10.1145/1362622.1362674
https://doi.org/10.1109/IPDPS.2009.5160988

	Abstract
	1 Introduction
	2 Related Work
	2.1 Performance Measurement Tools
	2.2 Profile Guided Optimization
	2.3 Autotuning

	3 The Feed Forward Performance Model
	4 The Extended Feed Forward Performance Model
	4.1 Automatic Remedy Identification
	4.2 Experiments: Remedy Identification

	5 Autocorrection of Problematic Operations
	5.1 Model of Application Execution
	5.2 Setup Phase of Autocorrection
	5.3 Execution Phase of Autocorrection
	5.4 Experiments: Autocorrection

	6 Implementation Improvements to FFM
	7 Conclusion
	8 Acknowledgements
	References

