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ABSTRACT
We define several new models for how to define anomalous
regions among enormous sets of trajectories. These are
based on spatial scan statistics, and identify a geometric
region which captures a subset of trajectories which are
significantly different in a measured characteristic from the
background population. The model definition depends on
how much a geometric region is contributed to by some
overlapping trajectory. This contribution can be the full
trajectory, proportional to the time spent in the spatial
region, or dependent on the flux across the boundary of that
spatial region. Our methods are based on and significantly
extend a recent two-level sampling approach which provides
high accuracy at enormous scales of data. We support these
new models and algorithms with extensive experiments on
millions of trajectories and also theoretical guarantees.

Keywords
computational geometry, sampling, trajectory, range space,
anomaly detection

1. INTRODUCTION
Large data sets of trajectories have driven much recent

research with the goal of understanding the intentions and
causes of various correlations hidden within the data. These
data objects are structured to capture movements, inter-
actions, and possibly the intentions of humans and other
objects. Yet, when one considers these trajectories in unison,
they usually appear as just a tangled mess. And as the data
grows (e.g., millions of objects with billions of data points),
this task does not seem to aggregate and statistically simplify,
rather it just becomes more unwieldy and unmanageable.

∗Jeff Phillips thanks his support from NSF CCF-1350888,
ACI-1443046, CNS- 1514520, CNS-1564287, and IIS-1816149.
Part of the work was completed while visiting the Simons
Institute for Theory of Computing.

We consider new methods that use the underlying geom-
etry of the trajectories to identify statistically significant
spatial anomalies. Critically, these models deviate from
density-based models (like DBScan [9]) which would only
identify populous regions (of course a lot of traffic exists in
New York or Beijing!) Rather, our new models and algo-
rithms identify geometric regions where some labeled aspect
(e.g., trajectories of sick people) significantly deviates from
what is expected or is in contrast to the trajectories of the
background population. And our approaches work at enor-
mous scale – required for modern large data sets, and for
the statistics to be meaningful.
Developing such models for trajectories, comparing to a

background population, is highly motivated: identifying sig-
nificant population or demographic shifts, pinpointing the
likely location responsible for disease due to prolonged expo-
sure among a dynamic population, or geolocating a nefarious
wifi access point affecting cell phones which transiently pass
by. There are no existing mechanisms for addressing some
of these goals specific to trajectory data, and certainly not
for massive data sets.

When base objects are points (not trajectories), such com-
parative anomaly tasks are typically resolved with a Spatial
Scan Statistic (SSS) [14]. This is one of the most common
tasks within Geographic Information Science, with applica-
tions to detecting hotspots with elevated levels of disease,
crime, or demographic traits [14, 10, 22, 26, 4]. These identify
a region with maximum log-likelihood score Φ, out of a large
prescribed family of regions C, and have been shown empiri-
cally and theoretically to have high statistical power [14, 4].
But this search of all regions C ∈ C (usually associated with
a geometric family of shapes) is computationally onerous,
and the most common software SatScan [15] is only able to
scale by restricting the class of regions to ones specifically
chosen by the user. Moreover, there are only a few limited
extensions towards trajectory data [23, 17] and these rely
heavily on heuristic aggregation.

Our Contributions. We introduce three new models to allow
for geometric analysis of trajectory data. These models
(derived in Section 3) identify geometric regions where many
trajectories of interest have passed through (full model),
spent time in (partial model), or began or ended in (flux
model). These models are new and well-motivated, but they
have not before been a computationally feasible objective to
consider at scale.
We design sampling and scanning algorithms (in Section

6) that allow for extremely scalable methods for identifying
anomalous patterns captured in the above geometric mod-
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els. Our methods are not limited by the data size, instead
they depend on the error—spatial and combinatorial—that
researchers are willing to approximate the final statistical
quantity to. The scalability as well as statistical power of
these models are demonstrated on enormous data sets con-
taining up to several million trajectories with over 1 billion
waypoints (in Section 7).

Of the three models, we develop a reduction for the flux and
partial model to a scalable point-based scanning framework
(see Section 6). However for the third model, full, such
reductions are not possible, and considerable new scanning
and sampling mechanisms are developed: Section 4 designs
compact coresets for each trajectory that preserves spatial
guarantees and converts trajectories to labeled point sets.
Section 5 provides trajectory specific sampling theorems
(VC-dimension bounds for trajectory-based range spaces)
necessary to apply the underlying sample approach. Section
6.2 develops algorithms that use new data structures to scan
the data resulting from trajectory coresets and their samples
in a scalable way. The overall accuracy and runtime bounds
for of our sampling, coreset, and scanning algorithms are
ultimately summarized in Table 1.

2. PRELIMINARIES AND OVERVIEW
We begin with an overview of the mathematical modeling,

geometric, statistical, and algorithmic preliminaries to frame
our new contributions.

Trajectory models. We model a trajectory t via waypoints
Pt = 〈p1, . . . , pm〉 as the tracing out of the ordered sequence
of connected segments s1, . . . , sm−1, with sj = pjpj+1. Tra-
jectory t has total arclength L(t) (or when t is clear, just
L). Computationally and also as a way of defining regions,
it is usually necessary to consider trajectories via just some
set of ordered waypoints p1, . . . , pm constructed via one of
the methods discussed in Section 4 instead of as an ordered
sequence of connected segments. For the partial model the
parameterization of the trajectories will be important, and
we use arclength by default. We could alternatively use a
time-based parametrization, but we otherwise do not explic-
itly modeling timing information in this paper, leaving this
potential extension to future work.

Range spaces. To study spatial anomalies applied to tra-
jectories we need a way to model how or when a trajectory
interacts or intersects with a potential region of interest. To
do this we review the definition of a range space. A range
space is a pair (X,A) consisting of a set of objects X (the
ground set) and a set A ⊂ 2X of subsets of X (the ranges),
that is a subset of all possible subsets 2X . Range spaces
are essential objects in both data structures (e.g., for range
searching [2]) and machine learning (for sample complexity
of learning [27, 11]). For example, classically let X be points
in R2, and AC be the subsets induced by intersection with a
disk C ∈ C.

For this paper, we will define new families AC induced by a
set of shapes C, focusing on those induced by halfspaces, disks,
or axis-aligned rectangles. In particular, we are interested
when the ground set is a set of trajectories T (or derived
appropriately from T ). The new models (we will define in
Section 3) will specify the definition of intersection T ∩ C,
for prescribed spatial regions C ∈ C, to induce a set AC ∈
AC. That is each induced subset of trajectories AC ∈ AC
corresponds with a potentially anomalous region of interest.

Trajectories T N defines CN Measure S \ C on S

Figure 1: A sparse sample of the data defines a set of regions
and these regions can be efficiently measured on a larger
sample that maintains the density of the original data set.

Statistical discrepancy. In all of the forthcoming models,
each trajectory t ∈ T has a recorded value r(t) and baseline
value b(t). It is typically sufficient to consider all trajectories
t ∈ T have b(t) = 1 (that is they are all part of an observed
background population) and that r(t) ∈ {0, 1} where the
set Tr = {t ∈ T | r(t) = 1} are the trajectories of interest –
although these can change in accordance with objective func-
tion φ in a variety of statistical settings [15, 1]. Even when
we study parts of trajectories and segments of trajectories,
these traits (especially the recorded value r(t)) is held fixed
for the entire trajectory.

Then let r(C) = |Tr∩C|
|Tr| (resp. b(C) = |T∩C|

|T | ) be the frac-

tion of all recorded trajectories (resp. all trajectories) within
the range C. Modeling r as Poisson, the log-likelihood of the
recorded rate being different than the baseline rate is Φ(C) =
φ(r(C), b(C)), where φ(r, b) = r log r

b
+ (1− r) log 1−r

1−b . How-
ever, in general, we can computationally reduce to a simpler
subproblem [1, 19] with a “linear” model e.g., φ(r, b) = |r−b|.
Ultimately, the SSS is maxC∈C φ(C). It uses the magnitude
of Φ(C∗) (and permutation testing) to determine if the most
anomalous region C∗ is statistically significant. We will
specifically be interested in an approximate variant:

Definition 2.1 (ε-Approx. Spatial Scan Statistic).
Consider a range space (X,AC) defined by a family of shapes
C, and a discrepancy function Φ : C → R. An ε-approximate
spatial scan anomaly is a shape Ĉ ∈ C so that

Φ(Ĉ) + ε > Φ(C∗)

where C∗ = arg maxC∈C Φ(C). Then the corresponding ε-

approximate spatial scan statistic is Φ(Ĉ).

Two-level sampling. The algorithmic goal in this paper is
to find an ε-approximate spatial scan anomaly for trajectory
range spaces (with forthcoming definitions in Section 3). Our
scanning algorithms are based on recent work for calculating
ε-approximate spatial scan statistics on simple geometric
shapes over point sets at scale [20, 18]. The main ideas are
to construct a two-level sampling of a large data set into sets
S and N ; see Figure 1. The larger “sample” set S = Sr ∪ Sb
(where Sr is the recorded set and Sb is the baseline set) is
used as proxy for the density of the data in any range, and the
smaller “net” data sets N is used to define the combinatorial
set of ranges we will consider. That is, N defines a subset of
shapes C ∈ CN ; those which include combinatorial distinct
subset of points in N , and then S is used to estimate the Φ(C)
value via C ∩ S. To achieve ε error in Φ(C), we (roughly)
need to set n = ν/ε and s = ν/(2ε)2, where ν is the VC-
dimension of the range space [18]. Then there exist shape
specific methods to quickly scan and evaluate the ranges
(induced by N) and values (from S) [18].
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Remaining challenges. Several significant tasks remain to
adapt this framework to the new trajectory scanning models
defined next. First, we require to spatially approximate the
trajectories – the raw trajectories are either unnecessary or
too difficult to work with; we describe our methods in Section
4. Second, we need to formalize the definitions of regions
CN from the set N , and bound the VC-dimension ν with
respect to the resulting range spaces; we do so in Section 5.
Next, for the partial and flux models, we devise reductions to
point set variants in Section 6.1. Given these reductions, we
can invoke existing fast scanning algorithms [18]. However,
for the full model such reductions are not possible, and we
need to develop new methods to quickly iterate over all these
ranges on S; that is how to quickly “scan” over the net. This
varies with the geometric properties of the shapes; we focus
on halfspace, disk, and rectangle ranges, and devise new
scanning methods for each of them in Section 6.2.

3. NEW TRAJECTORY RANGE MODELS
We introduce three new models of how to define range

spaces when applied to trajectory-derived ground sets and
geometric ranges which define the region of interest. These
models capture: (i) regions with a high percentage of mea-
sured trajectories passing from inside to outside (the flux
model), (ii) regions with a high percentage of the total ar-
clength of measured trajectory data (the partial range model),
and (iii) regions with a high percentage of measured trajec-
tories pass through them (the full range model).

Figure 2: Models of how 3 trajectories intersect (in red) with
circular shape (in green). From left to right: point-based
model; partial range model; full range model; flux model.

3.1 Flux Model
The simplest version of this problem is the flux model. We

search for a shape C ∈ C where a proportionally high number
of trajectories start inside the shape C, and end outside of
the shape C, or vice versa.

Mathematical Definition. In this setting, we can reduce each
trajectory to two waypoints: the first and the last. To satisfy
a range intersection, the first must be inside and the last
must be outside (or vice-versa with opposite effect). That
is we define two sets Xb = {p1 | t ∈ T, t = 〈p1, . . . , pm〉}
(the beginning set) and Xe = {pm | t ∈ T, t = 〈p1, . . . , pm〉}
(the end set). Then we attempt to find the range where
arg maxC∈C |C ∩ Xe| − |C ∩ Xb| or vice-versa. Since we
only care about the endpoints of trajectories we can directly
reduce this problem to highly-scalable techniques for point-
based algorithms (see Section 6.1).

Motivating scenarios. This model arises when finding a
boundary that differentiates two types of traffic. For instance
say a city would like to place a toll fee that mostly affects
tourists (using rental cars as proxy) versus locals (using other
GPS databases as proxy). The shape boundaries with high
flux are potential good choices. Alternatively, if trajectories

Flux Model Example

In the image above, let the trajectories represent
fair paths of a Kakao Taxi driver in Seoul over a
day. The red trajectories represent significant tips,
and the blue ones all other fairs paths. Identifying a
region (in green) where red (high tip) routes started,
and left from, without too many blue routes of the
same form, will indicate a good place to try to find
profitable customers. This would correspond with
the disk maximizing Φ under the flux model. 1

document addresses of people over time (for instance the
Utah Population Database which tracks addresses for 50
years), this can be used to identify significant migratory
patterns of parts of the population. Regions of unusually
high flux or any fixed window of time may also be useful for
managing crowd control in packed sporting or music events.

3.2 Partial Range Model
In the partial range model, we want to find a shape C ∈ C

where the weight a trajectory contributes to C is propor-
tional to the normalized length of the trajectories inside. A
trajectories intersection with a shape C ∈ C is fractional;
specifically µ(t∩C) is the fraction of the total arclength of t
within C. That is if 1/3 of a trajectory t intersects C, then
µ(t ∩ C) = 1/3 or if 1/50th of the total length of all trajec-
tories intersect C then µ(T ∩ C) = 1/50. The contribution
µ(t ∩C) depends on the parametrization of t. This could be
by arclength, by time, by fuel used, or any other quantity.
In this paper we simply use arclength in our experiments.

Mathematical Definition. More formally, the set C ∩ T
corresponds to the set of points comprising partial trajec-
tories which are inside C. The true ground set X is then
X = {x ∈ R2 | x ∈ sj ∈ t ∈ T}. That is X is a subset of
R2 so any x ∈ X lies on some t ∈ T . This corresponds to
an infinite (not combinatorially defined) range space [27] as
(X,AC) where AC = {AC = X ∩ C | C ∈ C}. A random
sample of points from this infinite point set X falls into the
existing theory from [18, 20]. Therefore existing scanning
algorithms can be directly applied, even ignoring the rela-
tionship between these sampled points and the trajectories,
since the ground set X is a subset of R2.

Motivating scenarios. The partial range model is important
to help automatically identify regions which statistically lead
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Partial Range Model Example

Let the image above model the daily commutes of pa-
tients that have checked into Paris hospitals. The red
curves correspond with patients who reported a seri-
ous lung and stomach symptoms when they arrived
to work, consistent with exposure to a dangerous
chemical. The blue trajectories are other patients
with more standard and mainly benign symptoms. A
region where more red trajectories spent significant
time, and blue trajectories did not spend much time,
would help pinpoint the region with largest potential
to be the source of these symptoms. And finding
such region corresponds with the disk that maximizes
Φ under the partial range model. 1

to some measured characteristic, proportional to how long the
object generating the trajectory spends in that region. For
instance, consider a mysterious sickness that health officials
suspect is tied to prolonged exposure to some chemical event.
By finding a compact region where many of the inflicted
people spend a considerable amount of time, compared to
all in that region, this will provide a candidate location for
the epicenter of that exposure. Alternatively, consider a
measured set of unprofitable (or highly profitable) taxi/Uber
drivers; can we identify regions of a city where they spend a
proportionally higher percentage of their time. These and
similar scenarios are directly modeled by the partial range
scan statistic, and hence demand scalable solutions.

3.3 Full Range Model
In the full range model, we seek to find the shape C ∈ C

which intersects the most trajectories of interest, compared to
some baseline set of trajectories. A trajectory’s contribution
to C is not proportional to intersection size, but instead all
or nothing.

Mathematical Definition The contribution of a trajectory
t ∈ T in a shape C ∈ C is binary. It is 1 if there is any point
where the trajectory enters the shape, and is only 0 if the
trajectory is never inside the shape. And as such ranges
AC ∈ AC are defined AC = {t ∈ T | t intersects C}, for
some shape C ∈ C. There is no need to parameterize the
trajectories in this scenario.

1 Map tiles by Stamen Design, under CC BY 3.0. Data by
OpenStreetMap, under ODbL.

Full Range Model Example

Consider the set of limousine trajectories from a day
in Beijing in the image above. The red trajectories
may represent taxis which reported navigation sys-
tems malfunctioning, while the blue ones did not.
You suspect a jamming devise, with a fixed radius,
was placed by a competitor. Detecting the circular
shape (in green) which maximizes the fraction of red
trajectories which pass through, while minimizing
the fraction of blue, is the most likely model for
where a jamming devise could have been located.
This corresponds precisely to finding the disk with
largest Φ value under the full range model. 1

We will typically simplify trajectories by creating a small
set of labeled points P ′t to represent them. In this scenario,
we say t intersects shape C if any p′j ∈ P ′t intersects C.

Trajectory simplification is in fact necessary for several
reasons: trajectories with an unbounded number of way-
points do not satisfy VC dimension based approximation
guarantees (see Section 5), for certain range spaces there is
no obvious way to define a set of regions to enumerate when
considering line segments directly, and it is computationally
easier than checking for full intersection with t in most sce-
narios. Unfortunately this reduction does not allow direct
application of some of the previous approaches in [18], since
it needs to only count a trajectory as intersecting a range
once even if multiple points are inside.

Motivating scenarios. This model arises when just the fleet-
ing intersection with a spatial region is enough to trigger
a measured event for that entire trajectory. Consider a set
of cars with slow leaks from nails in their tires (found at
the end of the day); a region many of them passed through
would more likely be someplace with nails on the road. Or
consider a set of people’s cell phones which a virus, suspected
to be infected when they pinged some wifi access point; then
just passing near that access point may be enough to trigger
the event, and finding a region with high-density of cases of
the virus would provide a probable location of the offending
access point. Or consider tracking a set of animals (e.g.,
cows, migrating birds) where a subset become sick; then
a full range spatial anomaly may indicate a contaminated
watering hole.
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4. SPATIAL APPROXIMATION
As described, for a shape C ∈ C and trajectory t, the

critical operation in the full model is determining t ∩ C = ∅.
This is far more efficient if we can approximate t by a set
of k approximate waypoints P ′t = {p′1, p′2, . . . , p′k}, and then
use P ′i ∩ C as a proxy for t ∩ C. The critical aspects of such
an approximation is to keep the size of the approximation
k small, even for long trajectories, and to ensure that the
answer to the intersection between a shape C and the point
set P ′t approximates C ∩ t.

Specifically, we desire an α-spatial approximation (or just
α-approximation for short). For a trajectory t and any range
C ∈ C, we say P ′t is an α-spatial approximation of t under
two conditions (see Figure 3(Left)):

1. (no false positives) If t does not intersect C, then P ′t
does not intersect C.

2. (limited false negatives) If for all unit vectors v, t+ vα
intersects C, then P ′t intersects C; here t+αv is a shift
of the entire trajectory in a direction v by α.

We next list a series of trajectory approximations we study;
all bounds assume all trajectories lie in a [0, 1]× [0, 1] domain,
otherwise α is scaled accordingly.

All Waypoints. This baseline simply sets P ′t = Pt and retains
all waypoints. This does not deal with long segments well,
and does not achieve an α-approximation except for halfs-
paces, but may be appropriate for data collected at regular
and short intervals.

Random Sampling. This baseline randomly samples k points
from segments proportional to arclength. Let L be the total
arclength of a trajectory t. Based on VC-dimensional [27] and
ε-net [11] arguments, if (R2, C) has constant VC-dimension
(as with disks, halfspaces, and rectangles) then for k =
O((L/α) log(L/α)), with constant probability it is an α-
approximation.

Even. In this sketch, we select k = L/α points evenly
spaced according to arclength, where again L is the total
arclength of a trajectory. This deterministically creates an
α-approximation. To preserve the proportionality property
for the partial case, we treat the trajectories as if they are
chained together to adjust the first selected point from each
trajectory – so the first points on trajectory tj is a distance
α from last point on trajectory tj−1.

α

p

2`
r

p1

p2

Figure 3: Left: Converting a trajectory into a set of points
which approximate its shape preserves an α-spatial guarantee,
since we can find a nearby disk that still intersects the
trajectory. Right: The relation between α, γ, and r in proof
of Lemma 4.3 for some line segment p1p2 on the boundary
of one of our kernels.

DP algorithm. The Douglas-Peucker (DP) algorithm [12] is
frequently used in practice as a compression step for trajec-
tory simplification. This method iteratively removes way-
points from the original trajectory in a greedy fashion until
removing another one would cause the Hausdorff distance
between the original and the simplified one to exceed a cho-
sen parameter α. This ensures, for instance, that no query
shape C ∈ C can intersect the original trajectory t at a depth
α into C without also intersecting the simplified trajectory.
For halfspaces this provides an α-approximation (see Lemma
4.1). However for rectangles and disks, this guarantee is only
over the trajectory’s segments, but not the waypoints P ′t , so
does not provide an α-approximation as desired.

Convex Hull. This puts all vertices on the convex hull of Pt
in P ′t . This is a 0-approximation (has no error) for halfspaces.

Lemma 4.1. A halfspace h ∈ C intersects a trajectory if
and only if it intersects at least one of its waypoints.

Proof. A halfspace h intersects part (but not all) of a
trajectory if and only if its boundary intersects one (or more)
of its segments. If it intersects all of the trajectory, it must
contain all waypoints. For a boundary plane to intersect a
segment sj , it must be that one of its waypoints pj , pj+1 is
inside the halfspace and the other is not since the segment is
a convex object with these points as the only extreme points.
Hence, we can check intersection of a trajectory t with h by
checking if any of its waypoints are in h; otherwise all of the
waypoints and the entire trajectory must be outside of h.

Approx Hull. We create P ′t as the α-kernel coreset which
approximates the convex hull of Pt [3]. This provides an
α-approximation for halfspaces with only O(1/

√
α) points,

independent of arclength, but with restriction that all tra-
jectories are in [0, 1]× [0, 1].

Lifting and Convex Hull for Disks. For disks, there is a
reduction via a data transformation (the Veronese Map v)
that provides similar approximations as the convex hull
approach for halfspaces. Given a point set P ∈ R2, the
intersection of that point set with a disk is preserved under
a map to R3 where disks are mapped to halfspaces. For p =
(px, py) ∈ R2 we replace it with v(p) = (px, py, p

2
x + p2y) ∈ R3.

Every disk becomes a halfspace in R3 and contains the same
subset of points as the disk did in R2.

After this transformation, set P ′t as the points on the
convex hull (or in the α-kernel coreset [3]) in R3. However,
because Lemma 4.1 does not apply to disks, this does not
have any approximation guarantee. That is, a disk C in R2

which intersects a segment but no waypoints, transforms to
a halfspace hC ∈ R3 which contains part of a segment (these
segments are now quadratic curves, and are not straight),
but still no waypoints.

Lemma 4.2. The number of cells of a regular grid with
grid cells of size `× ` that a polyline can enter is O(L/`).

Proof. We will group cells into 9 groups and analyze
each separately. Each cell is in the same group as other cells
two hops over in one of the 8 directions (left, right, 45 deg,
etc...). Each cell touches 8 other cells which are not in its
group, and each one is in a distinct group. Now within each
group, to intersect a cell and enter another one the trajectory
must travel a distance of Ω(`), since it will have to pass the
complete vertical or diagonal distance of a cell. Thus, within
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Figure 4: Full scanning coresets from left to right: DP for halfplanes, Approx Hull for halfspaces, Grid Kernel for disks (radius
r), Grid Kernel for disks (radius 2r), and Even.

a group a trajectory of length L can touch at most O(L/`)
cells. And in 9 groups, the total number of cells is at most
9O(L/`) = O(L/`).

Grid Kernel. For disks it makes sense to adjust the approxi-
mation for different radii as smaller values of k are needed for
very large radii disks which can potentially intersect many
trajectories. By constructing multiple approximations and
scanning each with different radii significant speedups in
practice can be realized.

We adjust the gridding technique for disks, and specifically
for a family Cr which only considers disks of radius at least r.
We consider grid cells of size γ × γ with γ =

√
2αr − α2/2.

Within each grid cell we retain multiple points in P ′t , specifi-
cally those on a (α/(2

√
2γ))-kernel coreset of the points in

that cell.

Lemma 4.3. For a trajectory with arclength L, at most
O(L/(r1/4α3/4)) points are put in P ′t for Grid Kernel, and it
is an α-approximation for Cr.

Proof. The maximum distance between two points in a
grid cell is

√
2γ. Thus the (α/(2

√
2γ))-kernel incurs at most√

2γ · (α/2
√

2γ) = α/2 error between the convex hull of all
points in that cell, and the hull of the approximate ones.

However, a disk may intersect part of a trajectory without
intersecting any of the waypoints on the convex hull. But, if
the longest possible edge in convex hull is

√
2γ then a disk

of radius r not containing a waypoint can protrude into the
hull at most a distance (see Figure 3(Right))

r −
√
r2 + (

√
2γ/2)2 = r −

√
r2 + (

√
2αr − α2/2/

√
2)2

= r −
√
r2 + (αr − α2/4)

= r −
√

(r + α/2)2 = r − r + α/2 = α/2.

The sum of these two errors is at most α/2 + α/2 = α, as
desired.

The total number of points associated with a trajectory of
length L is: the number of cells it intersects O(L/γ) times the

number of points in each cell O(1/
√

(α/(2
√

2γ) = O(
√
γ/α).

In total this is

O
(L
γ
·
√
γ/α

)
=O
( L
√
αγ

)
=O
( L√

α
√
αr

)
=O
( L

α3/4r1/4

)
.

5. TRAJECTORY SAMPLING
To enable efficient scanning for the full model we require

that the number of regions grows polynomially with the
number of trajectories as otherwise random sampling cannot

be used to attain an additive approximation bound. For the
trajectory range spaces we consider it was not previously
known if this was true. A bound on the VC-dimension of
these range spaces would ensure this. It turns out the VC-
dimension bounds are tied in some manner to k, the number
of points representing each trajectory; the number of possible
subsets is then a function of the range complexity (ν, e.g.,
dimension d) and the trajectory complexity (k).

We now consider that each trajectory t is represented
by exactly k labeled points P ′t (if it is less than k, we can
duplicate the last point to increase to k). That is P ′t ⊂ Rd×k.
Next consider an alternative range space (Rd×k,Ak) where
the ground set is the approximate waypoints. The number of
ranges induced on a set of labeled points (two ranges are the
same if they contain the same set of labels) is upper bounded
by the number of unique subsets on the mk unlabeled points.
Therefore the growth function on m sets is upper bounded by
O((mk)ν) = mO(ν log k), where the base range space (Rd,A)
has VC-dimension ν.

Lemma 5.1. The growth constant for (Rd×k,Ak) is O(ν log k)
where ν is the growth constant of the range space (Rd,A).
Hence the VC-dimension is O(ν log k).

In our context, this means after trajectories in R2 are
represented by at most k points, then the VC-dimension
for ranges defined by disks, halfspaces, or rectangles have
VC-dimension O(log k).

So as long as the number of trajectory waypoints is bounded
by k, the sample sizes for S and N (needed in the two-level
framework [20, 18]) are increased by a rather benign near-
logarithmic in k. We will invoke this in the context of
scanning algorithms in Section 6.2.

Bounded k is needed. It seems hopeful that a better bound
independent of k may be possible, but we can show that for
halfspaces, disks, and rectangles it is possible to construct
cases where the complexity of the trajectories, and hence
the VC dimension is unbounded. To see this we will first
restrict to the set of ranges Hd induced by halfspaces in
Rd. Indeed, we can replace each trajectory with a convex
set by Lemma 4.1, so we only need to work with a ground
set of all convex sets C. However, if the complexity of the
trajectories, and hence the convex sets, is unbounded, then
so is the VC-dimension even in R2, as the next lemma shows.

Because disks in Rd are special cases of halfspaces in Rd+1

(by the Veronese map), this bound holds for disks as well.

Lemma 5.2. The VC-dimension of (C,H2) is unbounded,
and hence so is the VC-dimension of (T,H2) with no restric-
tion on k.

Proof. For any integer z, we can design a set of z convex
sets c1, c2, . . . , cz ∈ C in R2 so that we can shatter the set.
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Let each cj be a nearly identical convex polygon with 2z

vertices. Each of the 2z vertices, which are in nearly the
same location for each polygon, corresponds with one of
the 2z different subsets we seek to define. If the vertex is
in a polygon that should be in the subset, shift it slightly
counter-clockwise; if it is not in the subset, shift it slightly
clockwise. Then a halfspace can include the vertex with
all points shifted counter-clockwise (those intended for the
subset) and nothing else in any polygon. Since we can do
this independently for all 2z subsets for any z, we can shatter
a subset of any size z.

Now because a halfspace intersecting a trajectory t is equiv-
alent to intersecting any of its waypoints (see Lemma 4.1),
then it is equivalent to intersecting the convex hull of those
waypoints. Thus, we can generate the same construction
with a trajectories with k = 2z waypoints for any value z,
and thus if we have no bound on k, we have no bound on
the VC-dimension of (T,H2).

For rectangles we can construct a similiar proof.

Lemma 5.3. The VC-dimension of (T,R2) is unbounded
if there is no restriction on k.

Proof. Again for any integer z, we can design a set of z
trajectories t1, t2, . . . , tz ∈ T in R2 so that we can shatter the
set. Each ti will have z! vertices such that for each trajectory
ti it has t!/2 vertices where each vertex takes part in a
permutation of t1, t2, . . . , tz on the line y = x and similarly
t!/2 vertices on the line y = x+1 partaking in their own set of
permutations. Between the two lines every permutation can
be constructed. The corner of a rectangle can then cut off a
subset of each permutation independendently of intersecting
another subset and since all possible 2z subsets are contained
in the permutations, every subset of trajectories can be
induced. Thus if we have no bound on k, we have no bound
on the VC-dimension of (T,R2).

6. SCALABLE ALGORITHMS FOR FIND-
ING TRAJECTORY ANOMALIES

We next describe how to efficiently scan over the trajectory
range spaces to efficiently find ε-approximate spatial scan
anomalies on the various range spaces defined for trajectories,
and statistical discrepancy functions Φ. In the case of the
flux and partial models, we provide new direct reductions
to the point-set based scanning algorithms. For the full
model these reductions are not possible, and we require
the development of several new insights – different ones for
each scanning shape. In particular, for scanning under the
full model with disks (perhaps the most intuitive definition)
we develop new ways (the MultiScale Disk approach) to
represent and approximate the range space which becomes
much more efficient that what was even previously known
about point-set based scanning.

6.1 Reductions for Partial and Flux Models
We first describe two reductions for the flux model and

partial range model to algorithms for scanning over points
instead of trajectories.

Flux model reduction. For the flux model, the reduction
starts again by sampling trajectory subsets S,N ⊂ T . Now
we convert each trajectory t ∈ S (or in N) to a point set
in SP (or NP ) as follows. We first convert every trajectory

t into only its two endpoints p1 and pk and place both of
these points in SP (or in NP ). In S we require r (recorded)
and b (baseline) values, and we only focused on the simpler
variant which considers the linear model φ(r(C), b(C)) =
|r(C) − b(C)|. The we set b(pk) = b(t), r(pk) = −r(t)
and b(p1) = −b(t), r(p1) = r(t). Note now that if both
p1, pk ∈ C, then the total contribution r(C) and b(C) is 0;
the points cancel each other out. When only p1 ∈ C, then
the contribution is r(p1) − b(p1) = r(t) − b(t) as desired,
and if only pk ∈ C, then the contribution is r(pk)− b(pk) =
−r(r) + b(t) = −(r(t)− b(t)), also as desired.

Theorem 6.1. A flux model scan statistic for the linear
statistical discrepancy function Φ on trajectories can be re-
duced to a point-based scan statistic on the endpoints.

Partial model reduction. For the partial range model, the
key quantities for Φ(C) are r(C) and b(C), the fraction of
all possible contributions from trajectories from the recorded
and baseline sets. Since in the partial range model we restrict
to parts of trajectories, independently of which trajectory
they are part of, we can convert to a point set input as
follows. Given the full sets of trajectories T , we denote the
continuous set of points in these trajectories as XT . We then
take uniform (or weighted) samples of XT to construct ST
and NT .

Since the contribution of a point in ST towards Φ(C)
is independent of the contribution of other points on the
trajectory (unlike the full model), running a point-based
scanning model on ST , NT will return the same Φ(C) value
for any C as the trajectory-based partial range model.

Theorem 6.2. A partial range model scan statistic on
trajectories can be reduced to a point-based scan statistic on
a uniform sample over the trajectory by arclength.

6.2 Scanning under the Full Model
There are three major challenges in extending scanning

algorithms to the full model – even after first converting
each trajectory t into a point set P ′t of size k. The resulting
approaches are multi-faceted, and different for each scanning
shape, and summarized in Table 1.

First, in order to obtain the runtime bounds of point-based
two-level sampling algorithms, the sets N and S, were of size
roughly n = ν/ε and s = ν/(2ε2) in the point-based model,
now need to be of size nk = n · k and sk = s · k, respectively.
Each object placed into the “net” or “sample” set now is
required to be a set of k points (on average) from each of the
trajectories sampled. The scanning algorithms have linear
time in sk and moderate polynomial (degree 1 to 3) in nk, so
this increases the runtimes beyond the point-based setting
by a moderate polynomial factor in k. The results for the
various spatial approximation techniques are summarized
in Table 2. We will demonstrate that for halfspaces and
rectangular ranges, this increase is tolerable if the right α-
spatial approximation is used, but for disks we design a new
multi-level approximate scanning approach which works in
tandem with the α-spatial approximation.

Second, extra bookkeeping is required to maintain which
point sets P ′t are already intersecting a shape C during the
scanning process–so that a trajectory is not overcounted
when multiple points intersect C. For this we use a global
integer counter array S.counter, where a non-zero counter
serves as an indicator that the trajectory t ∈ S is in the
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shape C in question. We maintain and only update Φ when
a counter toggles between zero and non-zero. This extra
bookkeeping may seem a trivial change, but it prevents the
use of some approaches, in particular for rectangle scanning.

Third, to extend the approximation guarantee [20, 19]
based on two-level sampling to this setting, we need to bound
the VC-dimension ν of the range space (T ,AC). In Section 5
we showed that for halfspaces, disks, and rectangles, if there
is no bound on k, then the VC-dimension is unbounded.
However, we also showed for all of these shapes that when
each trajectory is represented by a point sets of size k (the
ground set is Rd×k), then the VC-dimension is only O(d log k)
in d dimensions. That is when the objects are point sets of
size at most k, they only increase the VC-dimension by a
benign log k factor, and hence the coreset sizes for nk and
sk. These sample bounds are incorporated into Table 3.

Rectangles. We extend a O(n4 + s) time algorithm for
scanning rectangles [18], which in our case becomes O( 1

α3 sk).

The faster algorithms from that paper [18] (taking O(n3)
and O(n2 log log n) time do not extend because they require
a special decomposition for implicit processing of the ranges
which cannot accommodate the maintenance of the counter.

This algorithm defines a non-uniform grid by using a scan
line in the x and y direction to ensure each row and column
has at most εs trajectories or has at least α width whichever
is larger. We recommend the Gridding approach for an α-
approximation since then many of these coordinates are
duplicated reducing the effective grid size. Then all of the
points in S (of size sk) are mapped into the appropriate grid
cells, and duplicates for the same trajectory can be removed.
Then we consider each of the at most n4

k rectangles defined
on this grid. We can scan them efficiently by fixing every
possible upper, bottom, and left side of the rectangle (there
are O(n3

k) combinations), and then sliding the right side
of the rectangle from the left edge until it hits the end of
the grid. The entire scanning of the right edge updates the
counters at most sk times. So the total runtime is O(n3

ksk).

Spatially-approximated Rectangles. An important optimize
for rectangles takes advantage of the α-spatial approximation.
Instead of setting consider all n3

k rectangles, we only need
to consider endpoints differing by at least 1/α, there are no
more than O(1/α3) of these. Thus the total runtime becomes
O(sk/α

3). This variant is used in experiments.
We can also add a restriction where we short circuit the

algorithm if the resulting subgrid will have height or width
greater than some set value. This restriction can significantly
decrease the runtime.

Halfspaces. To create approximate sets for each trajectory
we use the Convex Hull and the Approx Hull methods to reduce
to size k point sets. The former induces no spatial error,
and the later provides and absolute bound on the size k (at
k = O(1/

√
α)).

Let nk represent the total number of net points required,
with n trajectories sampled into N and then on average
requiring k points P ′t to approximate. Using a combinato-
rial arrangement view of halfspaces and point sets, these
can be scanned in O(ns) time [6], using advanced tech-
niques from computational geometry. This can be converted
into a O(nksk) bound in our setting. We review a simpler
model here that takes O(ns log n) time on point sets, and
O(nksk log nk) in our setting. Let Nk be the nk points ap-
proximating the n trajectories in N , and similarly let Sk

Runtime Overview in the Full Model

SSS runtimes for the full model vary by shape, and er-
ror parameters, and methods of spatial approximation.
From the scanning perspective they depend on nk = nk
and sk = sk, shown in the middle column of Table 1.
Parameters n is the small net size, and s is the large
sample size are described in Table 2 for allowing ε-error
in Φ. The spatial approximation size k is described in
Table 3, and depends on the method used to achieve an
α-approximation. The best runtime bounds for ε-error
on Φ and α-spatial error are shown in the right column
of Table 1.

Shape Runtime Best Bounds

Rectangles O(n3
ksk) Õ

(
L
α4

1
ε2

log( L
εα

)
)

Halfspaces O(nksk log nk) Õ
(

1
α

1
ε3

log3( 1
εα

)
)

Disks O(n2
ksk log nk) Õ

((
L
α

)3 1
ε4

log4( L
εα

)
)

Table 1: Overall algorithm runtimes in terms of sample
size (nk = nk and sk = sk) or error parameters (statistical

error ε, spatial error α, and arclength L). Õ(·) hides
log log factors and is for constant probability of success.
Derivations of bounds are in Section 6.

Method Size = k Error Shapes

Convex Hull m 0 H2

DP Algorithm m α H2

Approx Hull O(1/
√
α) α H2

Grid Kernel O(L/(r1/4α3/4)) α Cr
Random Sample O

(
(L/α) log L

α

)
α All

Even O (L/α) α All

Gridding O(L/α) α All

Table 2: The α-spatial approximation bounds for trajec-
tory coreset algorithms with output of size k. Trajectories
are of length L and with m waypoints, and all in a domain
[0, 1]× [0, 1]. Derivations of bounds in Section 4.

Sample Size

Sparse Net N n = O
(
log k
ε

log log k
εδ

)
Dense Sample S s = O

(
1
ε2

(log k + log 1
δ

)
Table 3: Sample size bounds to obtain |Φ(C∗)−Φ(Ĉ)| ≤ ε
with probability 1 − δ where C∗ is the true maximum
and Ĉ is the found approximation or trajectories of size
k. Derivations of bounds in Sections 5 and Section 6.2.

be the sk points from S. For each point q ∈ Nk sort all sk
points in Sk radially around q. Then consider halfspaces
with q on the boundary, and scan through them radially
around q updating the the counters and Φ as necessary.

Higher dimensional halfspaces can be reduced to lower
dimensional halfplane problems by doing an affine projection
down into the 2-dimensional space. Using the halfplane algo-
rithm to solve these problems gives a runtime of O(nd−1

k sk).
An optimization we call the “Hull Trick” does an additional
pruning step after each projection to 2 dimensions; it creates
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the convex hull in 2-dimensions, and only retains the points
on the hull before scanning.

Disks. After approximating trajectories by point sets, disk-
scanning can be implemented as halfspace scanning for d = 3
using the Veronese map. This gives runtime bounds of
O(n2

ksk).
However, these shapes are significantly more sensitive to

the α-spatial approximation technique, especially if there are
long edges. For instance in our experimental data we found
disks might need 10 or even 50 times more points to generate
an α-approximation for a trajectory (see Table 4). As such
we design a new scanning method that works in concert with
the Grid Kernel approach.

MultiScale Disks. The previous disk scanning algorithm is
not tractable or scalable, but we can combine a large number
of tricks to handle these issues.

We consider scanning over disks with radius in a range
[rmin, rmax], specifically where rmax = rmin2z for a small
integer z. We decompose this into z subranges, so in each
the radius is in a range [r, 2r] and handle these subranges
independently. In experiments, we set z = 4 (or in some
cases z = 5) which covers a natural and intuitive set of radii.

Then we scan in concert with the α-spatial approximation
method Grid Kernel using parameter r. This reduces the
size of each trajectory approximation k, especially for large
r; see Table 4. Assuming the data has been mapped to a
[0, 1]× [0, 1] range, we can create a 1/r × 1/r grid, with cell
edge length r. We now consider the O(1/r2) 5× 5 subsets
of grid cells where the center cell has at least one point in
the Nk set of points. Then for each such center cell point
q (a “pivot” point), we consider only disks with q on the
boundary, and other boundary points among those in this
5× 5 subset of Nk. Especially for small r, the restriction to
this local subset of the data greatly reduces the number of
points which are considered when constructing disks with
respect to each pivot q: from all nk net points to only those
points from Nk inside this 5 × 5 subset. Furthermore this
also significantly reduces the number of sample points in Sk
that must be tested for inclusion in each disk.

Together the effects of lower bounding the radius (to reduce
k), and upper bounding the radius (to effectively reduce the
number of considered regions and the the number of points
to scan sk for each pivot), makes every range [r, 2r] of this
MultiScale Disk approach quite tractable.

This method can be further improved with the Hull Trick,
especially for complex trajectories. Focusing on the disk
scanning algorithm for all disks passing through the pivot
q; this maps to the problem of scanning all 2d halfspaces in
a different lifted parameter space, as discussed in Section
4. This reduction allows us to apply the Hull Trick from
the Halfspace algorithm section or another halfspace coreset
method from Table 2 to significantly reduce the number of
points that must be considered.

7. EXPERIMENTS
In this section we show scalability of all of the proposed

algorithms, and their effects on the statistical power of the
scan statistics. We show for the partial and flux models,
through our new direct reductions to recent work, we can
compute scan statistics in a scalable yet statistically powerful
way. For the full model, the most naive reductions to existing
methods are not viable, but our proposed geometric and

algorithmic observations for each scanning shape lead to
significant speed ups.

We demonstrate these improvements with two types of
measurements. The first is directly showing the runtime of
the algorithms as a function of either the statistical error pa-
rameter ε or the spatial error parameter α. We also measure
the discrepancy error, where we attempt to find a large Φ(C)
value, and we show at increasing parameter settings how
the largest Φ(C) region found approaches arg maxC∈C Φ(C)
as a function of the runtime. This demonstrates that these
algorithms are not just fast, but they become statistically
powerful in tractable runtimes.

7.1 Setup and Data
All of our code and the scripts used to generate experiments

are publicly available on github and our project website 2.
All of our code is written in C++ with an easy to use python
wrapper that we hope will allow for researchers to apply
these algorithms to many other data sets. Current algorithm
implementations are serial, but the algorithms are embar-
rassingly parallel, so converting to a parallel implementation
would be trivial.

Experiments were conducted using the python wrapper on
computers with an Intel Core i7-3820 and 64GB of memory.
It ran Ubuntu 14.04 with kernel version 3.13.0-147. Code
was compiled with GCC version 8.1.0, Boost version: 1.69.0,
and Python version 3.4.3. Experiments were run in succes-
sive fashion on a per node basis. No experiments were run
together on the same node at the same time to minimize the
effect of other processes on run time.

We perform experiments on two large trajectory data sets,
described next, which have very different conditions. One is
diverse, and has trajectories of significantly different sizes
and lengths, but the overlap is clustered. The other has
more uniform trajectory sizes and lengths, but they are all
intermingled.

Open Street Map Trace Data. This data set is our default,
and consists of a subset of close to 6 million traces from
Open Street maps with 1.282 billion total waypoints. We
restrict the set to ones contained completely inside of a
rectangular region in Europe with latitude and longitude of
[35, 60]× [−10, 25]. The large extent of these traces means
that there are comparatively sparse regions corresponding
to rural areas and also densely packed regions such as cities.
Many trajectories are restricted to small regions compared
to the full domain size.

Beijing Taxi Data. This is a densely packed and highly over-
lapping set of roughly 3 million trajectories with 129 million
total waypoints collected from taxi drivers in Beijing [16].
This data set has a very high sampling frequency per trajec-
tory with 75% of the points being collected less than 1 minute
apart. Many roads have been driven over by hundreds to
even thousands of separate traces. Since small regions can be
densely packed with trajectories, local scanning approaches
that restrict the region of interest to be of small size work
comparatively worse. There are comparatively few sparse
regions. A set of only 25 of these trajectories are shown in
the extended Full Range Model Example. We have restricted
the trajectories to be confined to a region with latitude and
longitude of [39.788, 40.094]× [116.15, 116.612].

2https://mmath.dev/pyscan
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Name Beijing #Pts OSM #Pts
Grid Kernel r = .1km 489 117
Grid Kernel r = .2km 286 69.6
Grid Kernel r = .4km 191 47.3
Grid Kernel r = .8km 134 34.1

Grid Kernel r = 1.6km 96.9 25.4
Grid Kernel r = 3.2km 71.8 19.5

DP 24.6 8.74
Approx Hull 7.27 3.35
Convex Hull 10.0 9.50

Gridding 389 106
Even 395 110.9

Table 4: Setting α = 0.1km shows the average value of k
(size of approximation) for α-approximation algorithms.

7.2 Spatial Approximation Size
We first empirically evaluate how well the various α-spatial

approximation algorithms work on average. We simplify all
trajectories in each data set such that α is set to 0.1km –
about one city block (when normalized to [0, 1]× [0, 1], for
Beijing this is α = 1/500 and for OSM it is 1/α = 30,000).
We show the average value of k for the various algorithms
in Table 4. We observe that the OSM data is much easier
to approximate than the Beijing data – and in fact we use
a larger α as default later which would lead to even smaller
k values on average. Next we observe that the methods
designed for halfspaces (Convex Hull, Approx Hull, and DP)
generate very small average values of k of 3 to 10 (or 25 for
DP on Beijing). For large values of r, Grid Kernel can start
to approach k of around 20 or 30 for OSM, but otherwise
the methods for rectangles and disks (Grid Kernel large r,
Gridding, and Even) have larger average k of around 100 for
OSM, and over 300 for Beijing. This factor of 10 difference
in k can cause dramatic slow-downs in the experiments.

7.3 Scalability Experiments
We next demonstrate how various parameters affect the

runtime, and how various algorithms compare in scalability.
The runtime as a function of 1/ε for flux model and partial
model algorithms are shown in Figure 5; setting s = 1/(2ε)2

and n = 1/ε as suggested [20]. The partial data is sampled
using the Even mechanism. Some runtime curves become
linear as S becomes the entire data set (12 million), and only
n increases.

We observe that the rectangle-based algorithms are quite
scalable, and are able to set 1/ε ≈ 1,500 and still complete in
about 1 minute. The generic two-level sampling algorithm for
halfspace scanning is almost as scalable, and performs better
than rectangle when the “Ham” coreset [19] is used. However,
the scanning algorithms for disks require several minutes to

0 1000 2000 3000
Inverse Statistical Error 1/

0

25

50

75

100

125

150

Ti
m

e 
(s

ec
)

Flux Runtime
Halfplane
Halfplane Ham
Disk
Rectangle

0 2000 4000 6000
Inverse Statistical Error 1/

0

200

400

600

800

1000

1200

1400

Ti
m

e 
(s

ec
)

Partial Runtime
Halfplane + Even
Halfplane Ham + Even
Disk + Even
Rectangle + Even
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Figure 6: Runtime for full model scanning as function of
inverse spatial error, 1/α, or inverse statistical error, 1/ε, on
OSM data. The inverse spatial error and inverse statistical
error act as a size parameter for our algorithm since our
guarantees and runtime do not depend on the initial data
size – only on the statistical or spatial resolution.

deal with even 1/ε ≈ 100, and becoming intractable for
anything larger. In summary, using our new reductions
to the point-based algorithms, under the partial and flux
models, rectangles and halfplanes scanning for trajectory
anomalies is already scalable.

Full Scanning on OSM. The algorithms for the full intersec-
tion model are significantly more nuanced. These runtimes
are shown as a function of 1/ε and 1/α in Figure 6. While
the other is varied we set 1/α = 6000 and 1/ε = 100 (for
Disk and for Best in Class) and 1/ε = 20 (for Baseline and
for Halfplane). Rectangles are restricted to having max side
length less than 1/150 to make them have roughly the same
size as the restricted disk variants in all OSM plots. Note
that all runtimes are on a logarithmic scale.

The Baseline rows shows the scalability of the basic al-
gorithms using Even α-spatial approximation. Again, for
halfspace and rectangle scanning, the runtimes are tolera-
ble, but the disk scanning becomes already intractable for
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Figure 7: Runtime for full model scanning as function of
inverse spatial error, 1/α, or inverse statistical error, 1/ε, on
Beijing data.

moderate parameter values. Note that now the runtimes
are quite noisy due to the high variance in the trajectories
length in the OSM data – even if k is small on average, for
some trajectories sampled it might be quite large.

The Halfplane row shows the difference in runtimes for the
All Waypoints, Convex Hull, and Approx Hull methods for
spatial approximation. The All Waypoints and Convex Hull
have 0 spatial error (by Lemma 4.1), so horizontal lines with
error bars are shown. Convex Hull provides a dramatic im-
provement over All Waypoints, of 2 to 3 orders of magnitude
(i.e., from several minutes to less than a second). The Approx
Hull approach shows smaller but tangible improvement over
using all hull points, but adds some spatial error.

The Disk row shows another dramatic improvement in scal-
ability as we restrict the radii considered to r ∈ [1/6000, 1/300]
and apply other improvements. With no bound on the radius,
the (Disk + Even) algorithms are intractable. Still invoking
Even, but using a 1/r × 1/r grid to prune the scanning to
a radius range bound (Small Disk + Even) allows for mod-
erate values of 1/ε and 1/α to complete in minutes. But
combining the MultiScale Disk approach with the adaptive
Grid Kernel spatial approximation allows the same moderate
error parameter runs to complete in 10s of seconds, and in
about 1 or 2 minutes this approach can scale to 1/ε ≈ 400.
Adding the Hull Trick does not induce significant gains here.

Finally in the Best in Class, row we show the best algo-
rithms runtime for each scanning shape – the improvement
over the baseline for halfspaces and disks is dramatic. With
these algorithms it is now possible to set 1/α ≈ 100,000 and
complete in about 10 seconds for any shape. Halfspaces and
radius restricted disks can set 1/ε ≈ 500 or 1000 and com-
plete in about a minute or two; they are now very scalable in
1/ε. For Rectangles it can set 1/ε ≈ 250 and still complete
in a minute or two. On the other hand, the algorithm for
rectangles is more tolerant to very small values of α.

Full Scanning on Beijing. The runtimes for the algorithms
under the full model on the Beijing data set are shown in
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Figure 8: Statistical power vs time for partial and flux.

Figure 7. We restrict r ∈ [1/50, 1/500] for radius-restricted
disks, and for rectangles side length is restricted to be less
than 1/25. The first (Disk) row shows the improvement when
scanning with radius-restricted disks. Fixing 1/ε = 20, only
the MultiScale Disk scanning with Approx Hull and the Hull
Trick can complete 1/α > 2000 in under an hour, and indeed
can scale to 1/α = 5000 in that time. Here the consistent
long trajectories greatly benefit from the extra Hull Trick
pruning. Fixing 1/α = 500 only this disk scanning variant
can reach a moderate 1/ε = 50 in under an hour.

The second (Best in Class) row shows that now the rectan-
gle scanning times are strictly worse than the radius restricted
disk times. The halfspace algorithms have similar runtimes
as with the OSM data, and are now much more scalable
than the MultiDisk approach. Thus the tangled nature of
the Beijing data affects the rectangle scanning the most and
the halfspace the least.

7.4 Statistical Power Tests
In this section we measure the statistical power of these

scanning algorithms. We fix the spatial layout of trajectories
from the OSM or Beijing data sets, and introduce a spatially
anomalous region under the various models by adjusting the
r and b values of trajectories. Such regions (either a halfplane,
disk, or rectangle to match the scanning region) are “planted”
by choosing a shape C ∈ C and setting a desired rates for
inside C as q = r(C)/b(C), for all data p = r(T \C)/b(T \C),
and the anomaly size f = b(C)/b(T ). The optimal shape may
be different (usually slightly shifted), and so we evaluate these
tests by tracking the value maxC∈C Φ(C) (the “Measured
Discrepancy”) found for various parameter settings. When
this maximum value plateaus, it indicates those parameters
settings and runtime have high power and are sufficient to
recover the anomalous shapes.

This process is much noisier than just measuring runtime
as a function of parameter settings. So in plots we show many
data points and fit a trend line using a local average. In the
same plots, different scanning shapes naturally converge to
distinct Measured Discrepancy values.

For all of these experiments we use a rate of p = .5 for the
data outside of the planted region and a rate of q = .8 for
the data inside of the region.
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Figure 9: Statistical Power on OSM data with full model.

Flux Scanning Power. The time required to achieve statisti-
cal power for the flux scanning model is shown in Figure 8.
It shows the Measured Discrepancy values for disk, rectan-
gle, and halfspace algorithms under the flux model on the
Beijing data. We fix the planted shape to contain 5% of the
data (f = 0.05). As observed earlier, the disk regions are
very slow to scan for under this model, and do not achieve
high power until 2 hours of runtime. However, the rectangle
and halfspace scanning algorithms converge to a high power
setting in about 10 seconds to 1 minute – hence for the flux
model, we recommend these shapes.

Partial Scanning Power. Figure 8 also shows the time require
to achieve high statistical power under the partial model on
OSM data. We plant small ranges of size f = 0.005. Each
scanning shape (rectangle, disk, halfplane) is in a separate
chart. They all eventually achieve high statistical power,
but the halfplane scanning algorithms only take about 1 − 2
seconds, while the disk and rectangle algorithms require
about 30 minutes. We can also observe that Even spatial
approximation consistently converges faster than Random
Sampling.

Full Scanning Power. Finally, Figure 9 shows how long it
takes to achieve high statistical power under the full model.
We plant regions in the OSM data with size f = 0.005. We
show the results of scaling runtime by varying 1/ε (setting
1/α = 6000) and varying 1/α (setting 1/ε = 200). For
halfplanes, we use Convex Hull which has no spatial error,
so it only has its runtime vary as a function of 1/ε; and it
achieves high power after about 1 hour. For rectangles, it
achieves high power through larger 1/ε values in about 10
minutes in both 1/ε and 1/α scaling. For radius-restricted
disks, we show the MultiDisk scanning with Grid Kernel (and
Hull Trick); it appears less tied to the choice of α as this
setting is tied to the resolution of the grid approximation.
For a fixed 1/ε = 200, it sometimes, but does not consistently
find a high score region indicating that the setting 1/ε = 200
might be too small, but as 1/ε increases after about 10
minutes it achieves high power.

8. PREVIOUS AND RELATED WORK
Our algorithms build upon the recent two-level sampling

framework for spatial scan statistics by Matheny et al. [20,
18]. This focused on making scalable ε-approximate spatial
scan statistics over point sets. This line of work provides
improvements over non-approximate variants [14, 15], in
terms of the number samples, and the runtime of the scanning
algorithms for the same shapes we study: halfspaces, disks,
and rectangles. The introduction of two-level sample makes

these approaches tractable, and better coresets or faster
scanning makes them extremely efficient. However, these
fast SSS methods only apply for point sets.

There exist other mechanisms for finding anomalous behav-
ior among trajectories; these involves clustering by density
and then identifying outliers, or training learning models on
pre-labeled data [21, 5, 13, 25, 28]. These approaches do not
specifically identify spatial regions from characteristics of the
trajectories or compare against a background population.

A few papers have attempted to port scan statistics to
trajectories, with goal of finding spatial anomalous regions.
Pang et al. [23] discretized cities into grids and recorded traf-
fic conditions in each cell. They then computed a likelihood
ratio test over all sub-grids to detect the most anomalous
region. And Liu et al. [17] partitions a city into regions
defined by the road network, and their adjacency defines
a graph. Then spatial anomalous links in this graph are
scanned over various times to find a time×region of high
traffic. But neither of these approaches directly operate on
the trajectories, and fix regions ahead of time which restricts
the set and nature of possible anomalies.

An alternative approach (for point sets) removes the notion
of shapes, and focuses on clustering the measured objects
to find potential anomalies [7, 8, 24, 26, 10]. However, this
approach already does not have guarantees about statistical
accuracy for point sets, and the task of clustering trajectories
appropriately (and in this case one should be concerned
about not over-fitting) has its own set of challenges, which
are beyond the scope of this paper.

9. CONCLUSION
We introduce three new models for quantifying spatial

anomalies among large sets of trajectories using spatial scan
statistics and defined by geometric shapes. These identify
regions which exhibit high flux, a large percentage of the
total arclength of a measured quantity, or a large percentage
of a set of trajectories of interest pass through that region.
These models have numerous applications in traffic analysis,
disease outbreak monitoring, epidemiology, and demography.

Through either combinatorial, geometric reductions, or
new scanning algorithms, we are able to identify these anoma-
lous regions efficiently on data sets containing millions of tra-
jectories with billions of waypoints. This efficiency requires
various insights tuned to the families of shapes we considered
which include halfplanes, disks, and rectangles. This includes
careful ways to approximate trajectories by point sets, and
fast enumeration methods. These approximations are backed
by a theoretical analysis, which shows guaranteed bounded
error in the spatial trajectory approximation (α) as well as
in the measurement of the statistical quantities (ε). The
runtime depends only on these parameters.

And most importantly, we also measure the statistical
power of the scanning algorithms. That is, if we plant an
anomalous region under each of the models, our scanning
algorithms can with high probability, recover that region
(or a similarly anomalous one) in tractable amounts of time.
Even on the millions of trajectories, high statistical power
is often achieved within minutes, or for more challenging
variants, in hours.
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