1804.11284v3 [cs.CG] 12 Jun 2019

arxiv

Simple Distances for Trajectories via Landmarks

Jeff M. Phillips
jeffp@cs.utah.edu
School of Computing, University of Utah.
Salt Lake City, Utah, USA

Abstract

We develop a new class of distances for objects including lines,
hyperplanes, and trajectories, based on the distance to a set of
landmarks. These distances easily and interpretably map objects
to a Euclidean space, are simple to compute, and perform well
in data analysis tasks. For trajectories, they match and in some
cases significantly out-perform all state-of-the-art other metrics,
can effortlessly be used in k-means clustering, and directly plugged
into approximate nearest neighbor approaches which immediately
out-perform the best recent advances in trajectory similarity search
by several orders of magnitude. These distances do not require a
geometry distorting dual (common in the line or halfspace case)
or complicated alignment (common in trajectory case). We show
reasonable and often simple conditions under which these distances
are metrics.
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1 Introduction

The choice of a distance is often the most important modeling
decision in any data analysis task. This choice is what determines
which objects are close and which are far. However, this task is
often taken lightly or made just based on what provides the simplest
or easiest to compute option.

In this paper we explore what we believe to be a new and natural
family of distances between objects, focusing on two cases when
the objects are hyperplanes (e.g., regressors or separators), or when
they are trajectories. Our proposed distance dp uses a set Q of
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landmark points, which could be the dataset that regressors or
separators are trained on, or in the case of trajectories these may be
points of interest for which a trajectory passing nearby has specific
meaning. However, in a general case, Q can be chosen as arbitrary
or random points placed to cover a domain of focus. Then the new
distances, instead of being directly between the objects themselves,
are based on how they interact with the set of landmarks. In the
simplest variant, for n landmarks Q, for any object ] we create an
n-dimensional vector vy = (v1,v2,...,v,) of the distance from
qi € Q to J, and the distance between two objects J; and J; is the
Euclidean distance between the vectors ||v;, — v}, ||. In other words,
we vectorize the distance between complex objects.

In this paper we explore several variants of this formulation,
derive convenient mathematical properties, and demonstrate its
efficacy in several data analysis scenarios.

Key properties of a distance. A definition of a distance d is the
key building block in most data analysis tasks. For instance, it is
at the heart of any assignment-based clustering (e.g., k-means) or
for nearest-neighbor searching and analysis. We can also define
a radial-basis kernel K(p, q) = exp(—d(p, g)?) (or similarly), which
is required for kernel SVM classification, kernel regression, and
kernel density estimation. A change in the distance, directly affects
the meaning and modeling inherent in each of these tasks. So the
first consideration in choosing a distance should always be, does it
capture the properties between the objects that matter?

As we will observe, by having a distance depend on a set of
landmarks Q, then we can tune it to focus on certain regions. In the
case of regressors or separators (e.g., infinite lines, hyperplanes) this
makes sure the distance is determined by how these infinite objects
interact with the support of the data. In the case of trajectories,
the distance can be adjusted to focus on one or more locations
of interest (e.g., a sporting event or school) or regions of interest
(e.g., how someone passes through an airport, but not how they get
there), as opposed to its full geometry.

A generic desired property of a distance is that it should be a
metric: for instance this is essential in the analysis for the Gonzalez
algorithm [11] for k-center clustering, and many other contexts
such as nearest-neighbor searching.

Another generic goal is analyzing the distance’s metric balls.
That is, given a set of objects J and a distance d : X J — R,
let B(J,r) = {J’ € J | d(J,J') < r} be a metric ball around
J € J of radius r. Then we can define a range space (J, R) where
R ={B(J,r) | J € d,r = 0}, and consider its VC-dimension [20].
When the VC-dimension v is small, it implies that the metric balls
cannot interact with each other in a too complex way, indicating the
distance is roughly as well-behaved as a v-dimensional Euclidean
ball. More directly, this implies, decision boundaries to classify ob-
jects can be learned with only e-fraction generalization error using
O(v/e-log(1/¢)) samples if the data is separable, or O(v/e?) samples



if the data is not separable [14]. Similar bounds can be shown for
other tasks such as preserving kernel density estimates derived
from such distances [13]. In other words, this ensures that many
tasks are stable with respect to the underlying family of objects .

Main results. We define a new data dependent distance dp for
trajectories and for linear models (e.g., regressors, separators) built
from a landmark data set Q. For the simpler cases of linear models
(in Section 2), we show it is a metric as long as Q is full rank.
We also show that its metric balls have VC-dimension bounded
only by the ambient dimension and not on the size of Q. We find
this surprising because the distance corresponds to an embedding
in |Q|-dimensional Euclidean space where an immediate bound
for the VC-dimension is |Q| + 1; and indeed this will be the best
bound we have for most of the trajectory variants. We show how to
directly extend all of these definitions of lines to trajectories, with
a somewhat unintuitive and restrictive distance measure dg.

For the pressing scenario of trajectories, in Section 3, we intro-

duce two more intuitive variants dp and d’Qr. We describe simple

conditions for Q under which they are metrics. We can immediately
see that both distances are pseudometrics (they satisfy triangle
inequality, and are symmetric, but might have distinct objects with
distance 0). We show they satisfy the final 0-property of a metric
as long as the waypoints are distinct and Q is sufficiently dense.
For all new variants we demonstrate that they are at the least as
effective for classification tasks (via KNN classifiers) as compared
to the best of 9 other common metrics, and in some cases signif-
icantly outperforms all of these measures. Moreover, the previous
competing variants are typically significantly more complicated or
computationally intensive, and may require parameter tuning,.

In contrast to most of these trajectory distance alternatives, all of
our proposed distances are very simple to compute and work with.
They map curves (or hyperplanes) to a |Q|-dimensional parameter
space where Euclidean distance (or similar) is used. In dg for curves,
each coordinate v; is the distance to the closest point on the curve
fromg; € Q.In d’Qr each “coordinate” is actually the d coordinates

of the closest point on the curve (not just the distance). In dg

each “coordinate” v; is actually k values, to the distance to the
closest point on the k lines extending the k lines segments of the
curve. These mappings are effective with only 10 or 20 landmark
points Q. And because they have a familiar Euclidean structure,
we can immediately invoke favorite algorithms in this space, from
Lloyds for k-means clustering, linear and kernel SVM, and highly-
engineered approximate nearest neighbor libraries. In comparison
to recent trajectory similarity search systems [19, 23], we show
using dg is much simpler and several orders of magnitude faster.

In summary, this paper introduces a family of metrics for regres-
sors, separators, and piecewise-linear curves which are incredibly
simple to use, provide a sketch vector in Euclidean space, have
many other desirable mathematical properties, and perform as well
as and often significantly better than any existing measure.

2 Distance Between Lines and Hyperplanes

As a warm up to the general case, we define a new landmark-based
distance dQ between two lines, and give the condition under which
it is a metric. Then we generalize to hyperplanes, and provide the
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general metric proof, the VC-dimension of metric ball proof, and
some algorithmic implications. We conclude with a direct extension
to trajectories.

2.1 Warm Up: Distance Between Lines

We begin by reviewing alternatives, starting with the default dual
Euclidean distance. Consider the least square regression problem in
R?: given Q = {(x1,y1),** » (Xn.yn)} € R%, return aline £ : y =
ax + b such that (a,b) = arg min, p)egz 2= (axi +b — y;)?. If
{1 : y = ajx + by is an alternate fit to this data, then to measure
the difference in these variants, we can define a distance between
¢ and ¢;. A simple and commonly used distance (which we called
the dual-Euclidean distance) is

dde(6, €1) = V(a—a1)? + (b - b2

This can be viewed as dualizing the lines into a space defined by
their parameters (slope a and intercept b), and then taking the
Euclidean distance between these parametric points. However, as
shown in Figure 1(Left), if both ¢; and {2 have the same slope
a1 = ay, and are offset the same amount from ¢ (|b — b1| = |b — b)),
then dgg(¢,¢1) = dge(¢, £2), although intuitively ¢; does a much
more similar job to ¢ with respect to Q than does ¢3.

More generically, a geometric object is usually described by an

(often compact) set in R?. There are many ways to define and
compute distances between such objects [1, 2, 9, 10]. These can be
based on the minimum [9, 10] or maximum (e.g., Hausdorff) [1, 2]
distance between objects. We review more later in the context of
trajectories in Section 4.1. For lines or hyperplanes which extend
infinitely and may intersect at single points, such measures are not
meaningful.

Our formulation. Suppose Q = {q1,42, -+ ,qn} C R? where g;
has coordinates (x;,y;) for 1 < i < n, and ¢ is a line in RZ? then ¢
can be uniquely expressed as

€={(x,y)eR2| u1x + ugy + uz = 0},

where (u1,uz,u3) € U3. Here U3 = {u = (ug,uz,u3) € R? | u% +
u% = 1 and the first nonzero entry of u is positive}, is a canonical
way to normalize u where (u1,u2) is unit normal vector and us3
is an offset parameter. Let vg,(f) = u1x; + uzy; + us; it is the
signed distance from q; = (x;,y;) to the closest point on ¢. Then

i

|@pi] = lve, (D]

0| ug| xT
(uru2)

Figure 1: Left: dyg(¢,¢1) = dqe(¢,€2), but which of ¢; and ¢,
is more similar to ¢ with respect to Q? Right: Each p; is the
projection of g; on .
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vo(l) = (le (), v0,(0),...,v0, (£)) is the n-dimensional vector
of these distances. For two lines ¢, £ in R2, we can now define

do(l1,62) = ”%(UQ(G) - UQ(fz))”

- (3 2ot - )
i=1

As shown in Figure 1(Right), |vg, (£)] is the distance from g; to £.
With the help of Q, we convert each line £ in R? to point ﬁvQ(f)

in R™, and use the Euclidean distance between two points to define
the distance between the original two lines. Via this Euclidean
embedding, it directly follows that dg is symmetric and follows the
triangle inequality. The following theorem shows, under reasonable
assumptions of Q, no two different lines can be mapped to the same
point in R", so dg is a metric.

THEOREM 2.1. Suppose in Q = {(x1,y1), (x2,y2), - -+, (Xn, yn)} C
R2 there are three non-collinear points, and £ = {€ | € is a line in R?},
then dg is a metric in L.

ProoF. The function dg (-, ) is symmetric and by mapping to R"
satisfies the triangle inequality, and {1 = £, implies dQ(f 1,€2) = 0;
we now show if dg (1, £2) = 0, then £1 = £5.

Without loss of generality, we assume (x1, y1), (x2, y2), (x3,y3) €
Q are not on the same line, which implies

X1 yl 1
x2 Yy 1 |#0. (1)
X3 y3 1

Suppose {1 and ¢, are expressed in the form:

61 ={(x,y) eR| uﬁl)x + ugl)y + ugl) =0},

o ={(x,y) eR| ugz)x + ugz)y + ugz) =0},

D 4D 40, (@, @

(2) 3 ;
where (u; 7, u, g 1 sty s Us ) € U represent lines ¢; and

{3, respectively. If dg ({1, £2) = 0, then we have
xi(ugl) - u(lz)) + yi(ugl) - uéz)) + (ugl) - ugz)) =0

for i = 1,2,3. We can write this as the system

X1y 1 u 52)
x2 Y2 1 ugl) - ugz) =0.
x3 ys 1 ugl) — ugz)
Using (1), we know it has the unique solution [ugl) - u(lz), u(zl) -
ugz), uél) - ugz)]T = [0,0, O]T. So, we have ugl) = ugz), ugl) = ugz)

and ugl) :(32), and thus €1 = £5. O

Remark. In the above formulation, the absolute value |vg, (£)] is
the distance from (x;, y;) to theline £, i.e. [vg, (£)| = min(, yye ((x—

xi)? + (y — yi)z)%. Moreover, if £ is parallel to ¢’, then |vg, (£) -

. 1 :
v, ()| = mingy y)er, (v, y)ee (x=x"V+(y=y)*)2 forany i € [n],
which means dg is a generalization of the natural offset distance
between two parallel lines.

Remark. There are several other nicely defined variants of this
distance. For a line £ we could define 9g,(f) = |vp,(f)|, as the
unsigned distance from ¢; € Q to the line £. When we consider
the distance from g; to some bounded object (e.g., a trajectory in
place of ¢), this distance is more natural. We are able to show in
Appendix A that under similar mild restrictions on Q that this is a
metric; the condition requires 5 points instead of 3. However, we
are not able to show constant-size VC-dimension for its metric balls
(as we do for dp in Section 2.3). There we also introduce another
matrix Frobenius norm variant.

2.2 Distance Between Hyperplanes

Now let H = {h | h is a hyperplane in R?} represent the space of
all hyperplanes. Suppose Q = {1,492, ,qn} C R9, where qi has
the coordinate (x;,1,Xj,2.*** , X; ¢). Any hyperplane h € H can be
uniquely expressed in the form

d
h= {x =(x1,--,%Xq) € R4 | ijl UjXj + Ugpy = 0},

UL = (= (ur, - ugar) €

R4+ | Z}i:l uJ2 =1 and the first nonzero entry of u is positive},

where (u1,- - ,ug41) is a vector in

ie. (u1, - ,ug) is the unit normal vector of h, and uy,; is the
offset. We introduce the notation vg(h) = (vg,(h), -+ ,vg, (h))
where v, (h) is again the signed distance from g; to the closest
point on h. We can specify vg, (h) = Z}izl ujxj j + ug41, which is
a dot-product with the unit normal of h, plus offset uy, . Now for
two hyperplanes hy, hy in R? define

do(hy. hy) = ||%(Ug(h1) |

= (D Lot - w0, k)’

i=1

ForQ C Rd, similar to dp in R2, we want to consider the case
that there are d+1 points in Q which are not on the same hyperplane.
We refer to such a point set Q as full rank since if we treat the points
as rows, and stack them to form a matrix, then that matrix is full
rank. Like lines in R?, a hyperplane can also be mapped to a point
inR™, and if Q is full rank, then no two hyperplanes will be mapped
to the same point in R”. So, similar to Theorem 2.1, we can prove
dp is a metric in .

THEOREM 2.2. IfQ = {q1,92, -
is a metric in H.

,qn} € R is full rank, then do

Remark. The distance can be generalized to weighted point sets
and continuous probability distributions. Suppose Q = {q1, - , qn}
CRLW = {wy,--
on R4, For two hyperplanes h1, hy in R¢, we define

,Wn} C (0,00), and y is a probability measure

do.w (s hz) = (i wi(vg; (h1) - UQi(hZ))Z)%,
i=1

1

duth ) = ( [ (oxh) = ouh)Puo) )

where v (+) is defined in the same way as v, (-) for x € RY.



2.3 VC-Dimension of Metric Balls for dgp

The distance dg can induce a range space (H, Rp), where again H
is the collection of all hyperplanes in RY, and Ro ={Bg(h,r)| h €
H,r > 0} with metric ball Bo(h,r) = {h’ € H | dg(h,h’) < r}. We
prove that the VC dimension [20] of this range space only depends
on d, and is independent of the number of points in Q.

THEOREM 2.3. SupposeQ C R4 is full rank, then the VC-dimension
of the range space (3}(, Rp) is at most %(d2 +5d + 6).

Proor. Forany Bg(hg,7) € Rg, suppose Q = {x1,- -+ ,xp} with
x; = (xi,1,*** ,x;,q) and h € Bg(ho, r). This implies dp(h, ko) < 7,
so if h is represented by a unique vector (u, -+ ,ug4;) € U+,

then we have

n 1 d 2
Z*(Zujxi,j+ud+1—vgi(ho)) Srz. (2)
£ n\ 4
i=1 Jj=1
Since this can be viewed as a polynomial of uq, - -- ,ug,, we can

use a standard lifting map to convert it to a linear equation about
new variables, and then use the VC-dimension of the collection of
halfspaces to prove the result.

To this end, we introduce the following data parameters a; [for
0 <j<d+1]andaj j [for 1 < j < j < d+ 1] which only depend
on Q, hy, and r. That is these only depend on the metric do and
the choice of metric ball.

n n
ap = Z vo; (ho)? = nr?, ag. =-2 Z v, (ho),
i=1 i=1

n
aj = —Zin,iji(hg) [for1 <j <d],
i=1

n
Adi1,d+1 =N G de1 = Zin,j [for1<j<d]
i=1

n
ajj = inj [for1 <j<d], and
i=1

n
aj j ZZin,jx,—’jr[forl <j<j <d].
i=1

We also introduce another set of new variables y; [for 1 < j < d+1]
and y; j» [for 1 < j < j* < d + 1] which only depend on the choice
of h:

yj=uj[for1 <j<d+1] and

yj 7 =ujuy [for1 <j <j <d+1].

Now (2) can be further rewritten as

d+1
Zajyj+ Z aj iy, +ao <0.
J=1 1<j<j <d+1

Since the a;j and a; j» only depend on do, ho, and r, and the above
equation holds for any y; and y; 7 implied by an h € Bg(ho, 1),
then it converts Bg(ho, ) into a halfspace in RY where d’ = 2(d +
1)+ (dgl) = %(d2 + 5d + 4). Since the VC-dimension of halfspaces
inR? is d’ + 1, the VC dimension of (H, Rp)isatmostd’ +1 =
1(d? +5d +6). O
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Remark. This distance, metric property, and VC-dimension re-
sult extend to operate between any objects, such as polynomial
models of regression, when linearized to hyperplanes in RA.

2.4 Applications in Analysis

The new distance dp for hyperplanes has many applications in
statistical and algorithmic data analysis where hyperplanes map
to linear models. For instance, given a large varieties of regres-
sion models H = {hy, ha, ..., hm} (e.g., stemming from different
algorithms or model parameters) we can define a Gaussian-like
kernel K(h1, h) = exp(=dg(hi, h2)?) and kernel density estimate
KDEg(h) = ﬁ 2h;er K(h, hi). The VC-dimension v of the metric
balls of dg implies numerous stability and approximation proper-
ties of the KDE. For instance, given a sample S C H of size O(v/e?)
ensures that with constant probability ||KDEf — KDEg || < € [13].
The embedding implies we can use Llloyd’s algorithm for k-means
clustering, and the metric property implies Gonzalez algorithm [11]
for k-center clustering will give a 2-approximation.

2.5 Direct Extension (literally) to Trajectories

In this section, we show how dg can be simply generalized to
the distance between two piecewise-linear curves, while retain-
ing the many nice properties described above. Let I}, = {y |
yisacurve in R? defined by k ordered line segments} represent
the space of all k-piecewise linear curves.

For any curve y € I, letits k segments be (s1, s2, . . ., St ), and let
these map to k lines ¢1, . .., {; where each ¢; contains s; (literally
an “extension” of s j to a line £}, ). Next add two more lines: €
which is perpendicular to ¢; and passes through the first end point
of s1, and €, which is perpendicular to £} and passes through the
last end point of sy (in high dimensions, some canonical choice of £y
and €y 1 is needed). We now represent y as the ordered set of k + 2
lines (€, {1, . . ., €k, €k +1)- This mapping is 1tol, since segments s;
and s;+1 share a common end point, and this defines the intersection
between ¢; and £;1. The intersections with the added lines ¢ and
{41 define first and last endpoints of s; and s, and these endpoints
are sufficient to define y.

Now for two curves y(l), y(z) € Ty, we define the distance us-

(2) ),

ing their line representations (5(1), o f;:il) and (5(2), e, €k+1

respectively, as
1 k+1 1) ,(2)
k+2(zi:0 do(6.4; ))'

Metric. Ifdg(y(l), y(z)) = 0, then dQ(fgl),fgz)) = 0foralli € [k],

which implies L’El) = 42) if Q is full rank. Combined with the 1to1l
nature of the mapping from y = (s1,...,8g) to (€o, ..., {k41), We
have that if Q is full rank, then dg is a metric over I}.

dg (r M y®) =

VC dimension. The distance d5 (-, -) can induce a range space
(Tx> 8, k), where again I} is the collection of all k-piecewise linear
curves in R?, and 80,k = {Bo(y.r) |y € Ty, r > 0} with metric ball
Bo(y,r) = {y’ € Iy | d‘é’(y,y’) < r}. Using the straightforward
extensions of the method in the proof of Theorem 2.3, we can show
the VC dimension of this range space only depends on k, and is
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Figure 2: Illustrating q; and p; on a trajectory for dp and dg.
independent of the number of points in Q. Specifically, for full rank
Q C R?, the VC-dimension of (T}, 80, ) is at most 9k + 19.

While retaining all above mathematical properties, this distance
is unintuitive, and as we show in Section 4, can perform less than
optimally. We next develop other trajectory distances which are
more intuitive, but have weaker mathematical properties.

3 Landmark Distances Between Trajectories

In this section, we define two variants of do for trajectories, focused
on their modeling as piecewise-linear curves on R?. We let T define
the set of such curves, and they are specified by a series of critical
points {co, c1, - . ., cx). The curve y € T is the subset of R? defined
by the k segments s1, s2, . . ., s Where s; = c¢j_1c; is the continuous
set of points between critical points ¢;—; and c;. For notational
convenience, we will describe all curves as having k segments,
but the distance will not require this. Moreover, since we model
the trajectory as a continuous subset of R?, it will not distinguish
trajectories of different speeds or moving in opposite directions but
following the same paths.

Now for a curve y € T and size n point set Q ¢ R?, define
v; = mingpey |lg; — pll and p; = argminyey |lg; — pl|; see Figure 2.
For two curves y(l) and y(z) denote these values as 1)51), pgl) and

vl@, pgz) respectively. Our distances are then defined as:

1 1 2)\2\2
do(y"r®) = (=3 (0 - o))",
i=1

_ 1 n_ @
dg(y(l),y(z)) = ; Z (”Pi _Pi ”)

i=1

3

S o~
1l

The standard variant dg is the analog of the version for halfspaces,
where as the second variant dg (the projected landmark distance)
projects Q onto the closest points of the curves, and then computes

the average distances with respect to these projected points.

3.1 Metric Properties

In this section, we show a reasonable condition for the trajectories
and Q so that both variants are metrics. As with lines and half-
spaces, these distances are always pseudometrics: the symmetry
and triangle inequality are direct consequences of the embedding
to Euclidean space. The only restriction of the trajectories is to
ensure that two distinct curves do not have a distance 0, and in our

Figure 3: ¢; is a critical point of y(l)

arguments this requires that the critical points have some non-zero
separation from other parts of the curve. These restrictions may
not be necessary, but it makes the proofs simple enough. Then we
basically just require that Q is sufficiently dense; if we decide many
of these points are irrelevant, we can reduce the weights on those
points (keeping them non-zero) and the metric properties still hold.

We define a family of curves I+ € TI' so each y € I’y has two
restrictions: (R1) Each angle /[, , ¢, c,.,] about an internal critical
point ¢; is non-zero (i.e., in (0, 7)). (R2) Each critical point c; is
T-separated, that is the ball B(c;,7) = {x € R? | |lx — ¢;|| < 7}
only intersects the two adjacent segments s;—; and s; of y, or one
adjacent segment for end points (i.e., only the s; for ¢y and s for
ck, if y has k line segments). The r-separated property, for instance,
enforces that critical points are at least a distance 7 apart.

We next restrict that all curves (and Q) lie in a sufficiently large
bounded region Q c RZ. Let I (Q) be the subset of I where all
curves y have all critical points within Q, and in particular, no
ci € y € I'+(Q) is within a distance 7 of the boundary of Q. Now
for n > 0, define an infinite grid G, = {g, € R?| g» = nv forv =
(v1,v2) € Z%}, where Z is all integers.

THEOREM 3.1. For Q = Gy N Q andn < {7, bothdg and dg are
metrics in T (Q).

Proor. We prove this theorem for dg, and the proof for dg is

similar and given in Appendix B. Suppose y!), y? € I;(Q) have
critical points co, ¢1, ...cx and ¢g, ¢, ...c;, respectively. We only need
to show if dg(y(l), y@) = 0 then y = y(z). Here, if two piecewise-
linear curves have the same critical points and their orders are the
same or reverse of each other, then these two curves are regarded
as the same curve.

The argument follows 4 steps assuming dg(y(l) .7®) = 0: (Step

1) Around each critical point ¢; of yV), we can identify at least 4
points q1, g2, g3, g4 that map to p1, p2, p3, p4, two each on the two
segments adjacent to c;. (Step 2) The segments between defined by
P1p2 and p3ps must also be part of y). (Step 3) The line extension
of those two line segment must intersect at c;, and this must also be
critical point on y(z) (Step 4) Because these Steps 1-3 can be repeated
for all critical points on y(1) and on y(z), they must share critical
points and connecting line segments, and be the same curves.

We formalize these steps based on three observations: (O1) For
g€ Q,y €T,p=argminyey [|p’ —ql|, suppose ! is the tangent line
of the circle C(q, ||qg — p||) where q is center and ||q — p|| its radius, at
point p. If | N B(p, §) is not apart of y for all § > 0, then p must be
a critical point of y. (02) If y € I';, then in any ball with radius Z,



there is at most one critical point of y. (O3) If a point moves along
y €T, then it can only stop or change direction at critical points.
Step 1: Suppose ¢; = (x;,y;) (1 < i < k — 1) is a critical

point of y(l), and consider a ball B(c;, %T), as shown in Figure
3. Since the side length of each grid cell is n < 11—61, from the
-separated property (R2) we know for any ¢ € Q N B(ci, ),
p=arg minp,eym llp” — qll is in B(c;, 5 ). So, there exist two points
q1,q2 that are mapped to points p1, p2 on one line segment of y(l)
and another two points g3, g4 are mapped to points p3, p4 on the
other line segment of y(!) in B(c;, Z). Since digf(),(l)’ @) =0, we

know p1, p2, p3, p4 are also on y(z).
Step 2: We assert the line segment p;p, must be a part of y(z),

From (02), we know p; and py cannot both be the critical point
of },(2) at the same time, so we assume p; is not a critical point.
Thus, from (O1) we know a small part of tangent line [ of circle
C(q1, llq1 — p1ll) at p1 is a part of y(z). If py is a critical point of y(z),
then from (O3) and (02) we know the line segment p;ps must be a
part of y(z). If p, is not a critical point of y(z), then from (O1) we
know a small part of tangent line  of circle C(q1, ||q1 — p1||) at pz is
apart of y(z). So, in this case, (03) and (O2) implies the line segment
p1p2 is a part of y(z). Using a similar argument, we know the line
segment p3py is also a part of y(z).

Step 3: We extend the line p1p; from p; to pp and the line p3ps
from ps to py4. Suppose they intersect with the boundary of B(c;, 5)

at p; and p; respectively. Since y(z) cannot go into the interior of
any ball with centers in QN B(c;, %), from (03) we know there must
be one critical point in line segment pyp;. For the same reason, there
must be one critical point in line segment p4p;. Thus, (02) implies
cj is a critical points of y(z).

Step 4: Considering that y(z) has to pass through p1, p2, p3, pa

and c;, from r-separated property (R2), we know y(l) and y(z) must
overlap with each other in B(c;, ). For two endpoints ¢y and cj
we can make the same argument, which means in a neighborhood
of each critical point of y(l), y(l) overlaps with y(z). This means
{co,c1," - ,cr} is a subset of{c(’), c{, cee c,’c,}. Using the same ar-
gument {cé,c{, e ,c]'c,} is a subset of {cg, c1,- - - , ¢k }. Therefore,

k = k’ and we know y(l) and )/(2) must have the same critical points
and their orders must be the same or reverse of each other. o

Remark. We did not try to optimize constants. The point is that
for most families of trajectories, with Q sufficiently dense our dis-
tances are metrics, not just pseudometrics. In practice these dis-
tances will work for small sets Q (see below).

4 Trajectories Analysis via New Distances

We demonstrate that dg and dg (and to lesser extent dg) work ef-
fectively on real world problems. These approaches achieve state-of-
the-art performance, are incredibly simple to use, and their sketched
representation plugs directly into k-means clustering, KNN or SVM
classifiers, or ANN libraries. We show that only a small number of
landmarks are needed for good accuracy, and when certain land-
marks are especially meaningful, our approaches can be easily
tuned to achieve very high accuracy.
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4.1 Related Trajectory Distances, and Landmarks

There are by now numerous definitions of trajectories, with a vari-
ety of different aspects they can model and take into account.

We compare the classification errors found using dS, dp and
dg with a series of representative distances for trajectories. These

are: Euclidean distance among the critical points (Eu) [25], dis-
crete Frechet distance (dF) [6], dynamic time warping distance
(DTW) [24], discrete Hausdorff distance (dH) [16], longest common
subsequence distance (LCSS) [21], edit distance for real sequences
(EDR) [4]. We also compare against the recently proposed locality
sensitive hashing distance (LSH1p), and the ordered version of
locality sensitive hashing distance (LSH2() [3], which consider the
intersection of the trajectories with a set of disks. This is conceptu-
ally similar to our methods, where we can think of the landmarks Q
as the centers of disks (as we do in experiments), and their approach
requires a radius parameter r for all disks, and is not a metric. The
definitions of these distances are given in Appendix C.

To find the best parameters to minimized the error, for LCSS
we tested ¢ € {0.001,0.005,0.01,0.015, - - ,0.055}, 8 € {1,2,3,--- ,
10}, and for EDR we tested ¢ € {0.001, 0.005,0.01,0.015, - - - , 0.055},
and for LSH1p and LSH2 we tested r € {0.005,0.01,0.02, - - ,0.11}.
Since in all experiments (except Section 4.6), each trajectory is rep-
resented by a sequence of 10 critical points, it is enough to take the
largest value of § as 10 for LCSS. We only show the best results in
this section, but provide the results of other parameter settings in
Appendix D.2.

Zhang et al. [25] conducted a large comparison of trajectory
distances and showed that in most cases Eu is general enough,
efficient, and a superior or nearly as good model as any other ; we
include dF and DTW as examples which search over all possible
alignments and thus do not require the same number of or aligned
critical points on both curves. The restriction that trajectories have
the same number of critical points is also not required for dH, EDR,
LSH1g, and LSH2g, but in comparisons we always first reduce all
trajectories to 10 critical points (with Douglas-Peucker), except in
Section 4.6, so a fair comparison to all metrics can be made.

Even beyond the recent trajectory LSH paper [3], the use of
waypoints to provide a distance between trajectories is not new.
However, they are typically used in other contexts, such as anno-
tating with geolocated social media [22]. Or for instance, in the
context of a line of work [8, 12, 15] seeking to find the k nearest
time-encoded trajectories to a given point at a specific time, Lin
et al. [15] use a set of landmarks Q to map trajectories and query
points into the Voronoi cells of Q to quickly help in pruning.

4.2 Warm-up: k-means Clustering

As a warm up, we consider clustering the 42 trajectories from
user idjs5 in the Geolife GPS trajectory dataset [26]. We randomly
choose 20 spread-out Beijing POIs as the landmark set Q, shown as
orange dots in Figure 4. Using dg, this maps each trajectory y to
R?, and we directly run Lloyd’s algorithm for k-means clustering
with k = 2,3, and color-code the corresponding trajectories in
Figure 4. We observe that although the trajectories are intertwined,
there is a central-city cluster found in both cases, and either 1 or 2
clusters found on the north side.
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Table 1: Classification error on Beijing Drivers with KNN.

dy  do dp  Bu dF DIW dH LCSS EDR  LSHIlo LSHZg

best param - - - - - - - £=0.005,0=10 £=0.005 r=0.06  r=0.1
mean | 0.1703 0.0817 0.0724 0.0811 0.1045 0.0722 0.0883 0.0714 0.0802  0.1290  0.2409
median | 0.1458 0.0667 0.0581 0.0654 0.0873 0.0571 0.0722 0.0500 0.0554  0.0949  0.2182
variance | 0.0108 0.0039 0.0033 0.0040 0.0054 0.0036 0.0043 0.0054 0.0070  0.0128  0.0210

Figure 4: 2 or 3 clusters (color-coded) under k-means on dg
with 20 landmarks Q shown overlaid on Beijing.

4.3 Classifying Trajectories 1: Beijing Drivers

We also consider classifying trajectories from users in the Geolife
dataset [26] with the same 20 POI landmarks Q as in the clustering
example. There are 182 users, and each user has several trajectories
in Beijing. We only consider those trajectories with more than
10 critical points, and if a user has less than 10 such trajectories,
then we remove this user. Thus, 54 users are removed, and in the
remaining 128 users, 20 of them have more than 200 trajectories.
For each of these users, we just randomly sample 200 trajectories
(without replacement), to avoid severe imbalance in classification —
dealing with the imbalance challenge is not the focus of this paper.

Suppose two users with id; and idy have two sets of trajectories
D and 7@ respectively. Letting |F(1)| = mj and IF(Z)I = mg, we
randomly sample L%J trajectories from D and L%J trajec-
tories from ') respectively to form a test set, and use the other
trajectories in D uT® as the training data. Then we choose an
algorithm and metric to do classification, and compute the error.
For users with idy and idy, we do this 10 times and take the mean
error as error(idy, idy). We compute error(idy, idz) for all 8128 pairs

Table 2: Classification error on Beijing Drivers with SVM.

kernel statistics dg do dg Eu
mean | 0.2170 0.2066 0.2046 0.2173
linear median | 0.1987 0.1851 0.1892 0.2000
variance | 0.0140 0.0158 0.0149 0.0164
mean | 0.2327 0.2190 0.2000 0.2377
quadratic =~ median | 0.2000 0.1778 0.1455 0.1949
variance | 0.0200 0.0281 0.0284 0.0278
mean | 0.1725 0.0727 0.0733 0.0845
Gaussian median | 0.1509 0.0587 0.0588 0.0690
variance | 0.0110 0.0035 0.0036 0.0045

of 128 uses, and then output the mean, median, and variance of
these 8128 errors.

For all of these 10 distances, we use the KNN classification (K =
5); see Table 1. The lowest error rates of about 7% error is achieved
by dg, DTW and LCSS; they are within the variance bounds of each
other. Then do, Eu, and EDR achieve error about 8%, again within
the error bounds of each other. Other metrics perform worse with
for example, dF at 10%, LSH1g at 13%, dg at 17%, and LSH2g at
24% error.

For dg, dg and Eu, since they map a trajectory to a vector in
Euclidean space, we can also directly use SVM to classify these
vectors. We use fitcsvm in matlab R2018b and set ‘TterationLimit’
(the maximum iteration number) as 200,000 for all kernel functions,
and set ‘KernelScale’ as ‘auto’ for Gaussian kernel. From Table 2, we
can see for SVM with three kinds of kernel functions, both do and
dg are better than Eu. In the case of Gaussian SVM, both dg and
d’f achieve an error rate of about 7% which is less than the about
8% achieved by Eu, and this difference is larger than the variances.
Again in this SVM setting d‘a performs much worse (for Gaussian
kernels) or comparable to other measures, about the same as Eu,
(linear quadratic kernels).

As we increase the size of Q to 200 (chosen at random), then both
dp and dg slightly improve in performance, but not drastically,
and dg performs about the same. The error statistics is shown in
Table 3, from which we can see for KNN, the performance of dg is
better than Euclidean distance, and d’; provides the smallest error
(mean error 0.0708, smaller than 0.0714 of LCSS). Moreover, we
can see as |Q| increases, the error of dg and dg with three kernel
functions all decrease, except d”- with quadratic kernel. When we
use quadratic kernel, the algorithm takes a long time to converge,
and for |Q| = 200, the dimension of vectors used in d7 is 400, so the
algorithm may not converge within 200000 iterations. The relatively
small improvement also demonstrates that even with a small size,
random Q, the distances still perform at or near the state-of-the-art.

Table 3: Classification error on Beijing with |Q| = 200.

statistics| KNN  linear-SVM  quad-SVM  Gauss-SVM
mean | 0.0801 0.1419 0.1398 0.0722
dp median | 0.0650  0.1125 0.0909 0.0581
variance | 0.0038 0.0112 0.0203 0.0035
mean | 0.0708  0.1432 0.2606 0.0726
dg median | 0.0558 0.1179 0.2222 0.0583
variance | 0.0033 0.0104 0.0373 0.0036
mean | 0.1711 0.2362 0.2673 0.1735
dg median | 0.1471 0.2200 0.2460 0.1529
variance | 0.0108  0.0138 0.0212 0.0110




4.4 Classifying Trajectories 2: Bus versus Car

As another example, we consider the GPS Trajectories Data Set [5]
in UCI machine learning repository. There are 87 car trajectories,
and 76 bus trajectories in Aracaju, a city of Brazil. We remove
those trajectories having less than 10 critical points, and then 78 car
trajectories and 45 bus trajectories are left. For these 123 trajectories
are shown in Figure 5(Left), where pink curves are car trajectories
and blue curves are bus trajectories. We hand-pick 10 points as
Q7 such that each point is close to one class of trajectories, and
randomly generate 20 points as Q. Each time we randomly choose
23 car trajectories and 13 bus trajectories as test data, and use other
trajectories as training data to perform classification experiments,

Table 4: Classification error on Bus vs. Car.

distance | mean median variance
d< | 0.2027  0.1944  0.0042
d< | 0.2148  0.2222  0.0039
dQ1 0.2331  0.2222  0.0045
dQ2 0.2229  0.2222 0.0041
dz 0.2608  0.2500  0.0039

Q1
dgz 0.2505  0.2500  0.0039
Eu | 03323  0.3333  0.0044
KNN dF | 0.3431  0.3333  0.0045

DTW | 0.3118 0.3056  0.0046

dH | 0.3284 0.3333  0.0039

LCSS (¢=0.015,6=3) | 0.2448  0.2500  0.0037
EDR (€=0.015) | 0.2640  0.2500  0.0039
LSH1g, (r=0.02) | 0.2673  0.2778  0.0020
LSH2p, (r=0.08) | 0.2516 0.2500  0.0022
LSH1g, (r=0.03) | 0.2209 0.2222  0.0039
LSH2¢, (r=0.05) | 0.2690  0.2778  0.0022
Eu | 0.3624 0.3611  0.00007

ds | 03652 03611  0.0002

NSNS N

Qi
dg, | 03655 03611  0.0002
linear SVM do, | 03611 03611 0
do, | 03611 03611 0
d7 | 03611 03611 0
d7 | 03612 03611  0.000003
Eu | 0.3609 03611 0.0044
d3 | 03645 03611 0.0004
dg, | 03140 03056 0.0017
quadratic SVM do, | 03617 03611  0.00003
do, | 03625 03611  0.00008
d7 | 02644 02500 0.0042
d7 | 02828 02778  0.0045
Eu | 0.2239 02222 0.0034
d3 | 01940 0.1944  0.0031
d | 02120 02222 0.0032
Gaussian SVM

dp, | 0.1894 0.1944  0.0029
dp, | 0.1968  0.1944  0.0033
d% 10.1659 0.1667 0.0033

dz 0.1731  0.1667  0.0033
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and compute the error. We do this 1000 times and then compute
the mean, median and variance of the error for each algorithm.
The results are shown in Table 4, and we see the KNN classifica-
tion results using all 14 distance, using either Q; (10 chosen near
data) or Qz (20 randomly chosen). The results are slightly better
for Q7 in almost all distances do, dg, LSH1g, and LSH2( - except
d‘a. In these experiments on Qy, the best mean error (about 21% to
22%) is achieved by dg, dg, and LSH1g (which required a param-
eter search). The best error is about 20% by dS using Q2. While
d’é, LCSS, EDR, and LSH2g achieve error between 25% and 27%.

T

Q
on the Beijing Drivers data are EDR, which required a parameter

tuned, as well as DTW and Eu, which now have error rate above
31%. As a baseline, always predicting “car” obtains 36% error.

We show the results of applying SVM in Table 4. Again the
difference is small between Q; and Q1. And while the linear and
quadratic SVM do not perform that well; for the Gaussian kernel
on dgp and d’é the mean error is only 16% to 20%, and 19% to 21%

Noticeably, the methods which were competitive with dp and d

for d‘é’. The overall best is dp T achieving a mean error of 16.59%.

4.5 Classifying Trajectories 3: Landmark-Sensitivity

To show the further advantage of dp and dg, we create a synthetic
data set that appears random, except one set of trajectories pass
nearby a POI and the others do not. We randomly generate two
classes of trajectories on the map of Beijing, and each class has
30 trajectories. Each trajectory has 10 critical points, and all blue
trajectories passes through some point close to the city center, and
all pink trajectories do not. We hand-pick a point at the Palace
Museum, the center of the city, and randomly choose other 9 points
to form the set Q. As shown in Figure 5(Right), these trajectories are
a mess and largely indistinguishable, except that the blue set passes
near the landmark: Palace Museum. We next show that dp and
dg which are landmark-aware (e.g., POI-aware) have significantly
more power in distinguishing these classes.

We randomly choose 21 trajectories from each class to form a
training data set of size 42, and use the other trajectories as test
data. Each time, we record the error, and repeat this 1000 times to
output the mean, median and variance of these errors.

Figure 5: Left: Bus (blue) and car (pink) trajectories with landmark
sets Q; (green points), Q, (red points). Right: Two classes of trajec-
tories and Q (orange points).
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Table 5 shows the KNN classification results. Distances Eu and
dF provide no advantage over a random classifier (which would
report error 0.5). d’é, do, de, DTW, and Hausdorff achieve only
slight advantage over random classifiers, with error rates about
43% to 48%, with the best achieved by dg. This extends to the SVM
approaches in Table 6. The best parameter free approach is dg at
43.85% error. The parameterized distances LCSS, EDR, LSHigp, and
LSH2¢ perform better with error rates 25% to 40%; but these can be
sensitive to the parameter choices — we only show the best results.

Next we can consider re-weighting the importance of the land-
marks Q, for instance in the case where one particular POI (in this
case q1) is known to have a specific meaning in the classification
task (e.g., did someone stop by the sporting event, or a military
point of interest). Suppose w; > 0 is a weight of ¢; € Q, and
W = (w1, wa, ..., wn). Then we can generalize the definitions to:

1
dow(y W,y @) =( 37 wild? - a?)’)’,

a5 w i y®) =" wi(lp” - pl)-

Table 5: Landmark-sensitive classification error with KNN.

distance | mean median variance
Eu | 0.5226 0.5000 0.0100
dF | 0.5056  0.5000 0.0096
DTW | 04777 0.5000 0.0107
dH | 0.4627 0.4444 0.0105
LCSS (¢ = 0.001,6 = 8) | 0.3437  0.3333 0.0066
EDR(e = 0.02) | 0.3916  0.3889 0.0068
LSHlQ (r=0.01) | 0.2524  0.2222 0.0098
LSHZQ (r=0.02) | 0.3248 0.3333 0.0084
dQ 0.4729  0.5000 0.0101
dQ’W (w1 =0.3) | 0.4133  0.3889 0.0111
dQ,W (w1 =0.6) | 0.2687 0.2778 0.0094
do,w (w1 =0.9) | 0.0592  0.0556  0.0037

d’é 0.4385 0.4444 0.0092

d’Qr,W (w1 =0.3) | 0.3846  0.3889 0.0085
dZ),W (w1 =0.6) | 0.2396  0.2222 0.0065
d’é’w (w1 =0.9) | 0.1002 0.0556 0.0067

dS | 04711  0.4444 0.0106

Q

dS,W (w1 =0.3) | 0.4468 0.4444 0.0113

oy (w1 =0.6) [ 04377 04444 0.0112
5w (W1 =0.9) | 04466  0.4444 00100

Table 6: Landmark-sensitive classification error with SVM.

kernel statistics ds do dz Eu

Q Q
mean | 0.5000 0.4586 0.4941 0.5887
linear median | 0.5000 0.4444 0.5000 0.6111
variance | 0.0095 0.0097 0.0099 0.0085

mean | 0.5403 0.4617 0.5574 0.4795

quadratic =~ median | 0.5556 0.4444 0.5556 0.5000
variance | 0.0092 0.0094 0.0101 0.0112

mean | 0.5059 0.4567 0.4556 0.5906

Gaussian median | 0.5000 0.4444 0.4444 0.6111

variance | 0.0092 0.0089 0.0099 0.0088

Let wq € (0,1) be the weight of g1, and w; = %(1 —wp)(for2 <i<
10) be the weight of all other points in Q.

Now observe in Table 5 that the landmark-based distance using
a KNN classifier can achieve very low error (6% for dp w and
10% for dg’w) as we gradually increase the weight of the point g;
from wy = 0.1 (i.e., dg or dg) to wi = 0.9 to emphasize a desired
POL The result is even more pronounced for the Gaussian SVM, as
shown in Table 7; similar plots are shown for linear and quadratic
kernels in Appendix D.1. As wj is increased from (uniform) 0.1 to
0.9, the mean error decreases from 45% to 1.5% for do,w and from
45% to 3% for d”’w. Thus, while all other distances we tried are
only slightly better than random unless their parameters are tuned,
by emphasizing a particular POI (a very intuitive adjustment), we
achieve almost no error in classifying these trajectories.

4.6 Using dp in Nearest Neighbor Search

We demonstrate that dp’s sketched representation of the trajecto-

ries in RI9! allows for extremely efficient k-nearest neighbor search.
We consider two representative methods [19, 23] for comparison;
but do all, e.g., [7]) which require timing information.

As a first comparison, consider a recent heavily-optimized KNN
search algorithm focusing on Hausdorff and dF distances [23]; this
system, DFT, is optimized for distributed algorithms on a cluster,
but show results on 1 node which we compare against. We obtained
a random sample of the GEN-TRA] data set containing m = 3 mil-
lion trajectories, using 36GB of storage (larger than their 30.9GB
dataset [23]). From their Figure 10, their indexes take 2000 to 6000
sec to build, and kNN queries require 50 to 200 seconds for k = 10.

Another distributed system DITA [19] for trajectory similarity
search focuses on DTW, returning all trajectories within a threshold.
In their [19] Figures 7(a) and 8(a), using 256 cores they achieve
query time between 0.001 and 0.01 seconds on Beijing (10.4GB) and
Chengdu (28GB) datasets.

To perform kNN queries using dp we can sketch trajectories as
|Q|-dimensional vectors and use Euclidean distance. Hence, once we
create the sketches, we can use any of the highly optimized packages
for kNN Euclidean queries (c.f., http://ann-benchmarks.com); we
choose a consistent top performer K-Graph (https://github.com/
aaalgo/kgraph) with settings: recall=0.99 and max_iteration=50. We
run on a desktop with a 6-core Intel Xeon CPU ES-1650 v3 @3.5GHz
processor, and 128GB RAM; the same processor as in DFT [23].

Table 7: Landmark-sensitive classification error with
weighted Gaussian SVM.

metrics mean median variance
do,w (w1 =0.3) [ 0.1487  0.1667  0.0065
dQ’W (w1 =0.6) | 0.0303 0 0.0014
do,w (w1 =0.9) | 0.0159 0 0.0007
dg’w (w1 =0.3) | 0.2997 0.2778 0.0088
dg’w (w1 =0.6) | 0.1053 0.1111 0.0049
dg’w (w; =0.9) | 0.0316 0 0.0015
dS,W (w1 =0.3) | 0.4942 0.5000 0.0095
dS,W (w1 =0.6) | 0.4726  0.5000 0.0095
daw (w1 =0.9) | 0.4687 0.4444 0.0095
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Table 8: The running time experiment of KNN search.

O [ 12 20 28 36 44 52
preprocessing time (s) | 38 62 88 114 138 160
sketch size (MB) | 337 560 785 1012 1331 1536
index time (s) | 106 109 114 119 124 129
index file size (MB) | 999 999 1005 1002 1007 1001
query time (107%s) | 42 3.7 42 32 3.5 3.7

For experiments, we randomly choose a set of landmarks among
the trajectories with |Q| = {12, 20, 28, 36, 44, 52}. From these Q we
preprocess the data to derive m X |Q| sketches, a txt file we pass to
K-Graph. Then K-Graph builds an index, and allows queries. The
preprocessing time (to build sketch), sketch file size, time to build
K-Graph’s index, that index size, and the average query time are
shown in Table 8. For all these different values of |Q|, the K-Graph
algorithm reaches recall=0.99 within 7 iterations.

The preprocessing and index building times take 38 to 160 sec-
onds and 106 to 129 seconds, respectively. By comparison, it takes
673 seconds to load the raw data into memory. Combined they are
an order of magnitude faster than the index build time for Hausdorff
in DFT [23]. The sketch size is only 300 to 1500 MB, and the index
sizes are 1000 MB; reducing the size by 1 or 2 orders of magnitude
from the original size. Finally, the query times are only 0.00032
to 0.00042 seconds; that is 5 orders of magnitude faster than the
DFT index optimized for Hausdorff distance! and 1 to 2 orders of
magnitude faster than DITA optimized for DTW and using 256
cores on smaller data. Thus, using dg (and existing libraries) allows
for small data sketches, and extremely efficient kNN queries.

5 Conclusion and Discussion

We introduce a new family of landmark-based distances dg, with
applications to trajectories and hyperplanes (regressors, separators).
These have nice mathematical properties, e.g., being psuedo-metrics,
metrics, and bounded VC-dimension metric balls. On trajectories,
new metrics dg and dg are the most general and best or competitive
against all other distances in all analysis tasks; see Table 9.

The landmark set Q can be randomly chosen and small, or its
points can hold specific meaning in which case, the interpretation
and discriminatory ability of the distances are greatly enhanced.
A companion paper [18] provides an in depth theoretical study of
how many landmarks are required to preserve certain errors, how
to chose them, and when curves can be explicitly recovered from
them. In the present paper, we simply empirically show that in
most cases 20 random landmarks are sufficient.

Table 9: Distances on analysis tasks as: best o, competitive
e, near competitive o; possible v'or possible but slower ..

task | do d’é dg Eu dF DTW dH LCSS EDR LSHgp
easyclust | v v Vv vV - - - - - N
learn 1 ° ° - ° o ° ° ° ° -
learn 2 ° . o o - ° - o ° o
learn3 | e ° - - - - _ - _ _
fastNN | v+« v v - v - - - v
anyk | vV - - v v v v v v
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These provide meaningful vectorized representations. They are
general and simple to compute and work with. We believe many
applications of these sorts of vectorized distances will be discov-
ered. And there are more mathematical questions to ask about the
geometric and statistical power of these landmark-based distances.

Software. Code for reproducing experiments in Section 4 is avail-
able here https://drive.google.com/open?id=1Z_NalnfioM_We8b1F
nTU5UVuOYCjbP-j
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Simple Distances for Trajectories via Landmarks

A Metric Property for Unsigned Variant on the
Distance

Suppose Q = {q1,92," - »qn} C R2,£1,6y € L = { ]| £isaline in
RZ}. Given ¢ € £, we write ¢ in the form as before and define
00(6) = (D9, (€),00,(0), . . ., D@, (€)) where 5, (£) = |urx;+uzy;+
u3| and (x;,y;) is the coordinates of ¢; € Q, and then define the
first variant of dg as

do(tr, &) = ||%(77Q(51) ~ o0(&)|
)

=3 Lo, (61) - 00,(£2)7) 7.

s

1l
—_

1
n
i

For (3), we have the following theorem.

THEOREM A.1. Suppose in Q C R? there is a subset of five points,
and any three points in this subset are non-collinear, then dg is a
metric in L.

Proor. We only need to show if aQ(fl,fz) = 0, then {1 = 05.
Suppose O = {q1, - ,¢s5} C Q, and any three points in Q are not
on the same line. If {1 # {2, then let £] and ] be the two bisectors
of the angles formed by ¢; and £;. From dg(¢1, £2) = 0, we know
90, (1) = 0g,({2) for i € [5], which means the distances from
gi € Qto £y and to {5 are equal. So, any point g; € O must be either
on £] or on {3, which implies there must be three collinear points
in O. This is contradictory to the fact that any three points in Q are
not on the same line. O

Remark. Definition (3) can be generalized to hyperplanes in R¥:

n

, 1, ) o1

do(hi, hy) = (; ;(in(hl) - 09, (h2))*) 2, ()
where hi, hy € H = {h | his a hyperplane in R4}, and o0, (hj) is
the distance from point g; in Q ¢ R? to hj (j = 1,2). Using the
similar method, we can show if there is a subset of 2d + 1 points in Q
and any d + 1 points in this subset are not on the same hyperplane,
then (4) is a metric in H.

A.1 Matrix Norm Variant

In another variant of dp we define 9g, (€) as a vector from g; to the
closest point on £. More specifically, suppose ¢ is in the same form
as before, then the projection of point ¢; = (x;,y;) on € is (X, §;) =
(xi cos?(a)—y; sin(a) cos(ar)—c sin(a), —x; cos(a) sin(a)+y; sin?(xr)
¢ cos(a)), and we define D, (¢) = (X; — x4, §; — y;) for (xi,y;) € Q,

the ith row of Vg ;. For {1, {2 € £ we define the distance between
these two lines as

do(1, €)= |IVo,e, = Vo, t, |IF, )

where || - ||r is the Frobenius norm of matrices. For (5), we have
the following theorem.

THEOREM A.2. Suppose in Q C R? there are two different points
q1 and qo, then do is a metric in L.

Proor. We only need to show if aQ(fl,fz) = 0, then {1 = 5.
There are two cases.

4

Qe

q3e

Figure 6: Left: {1 L {3 and B(q1, /g1 — ¢c||) € B(q2.llg2 —cll) U
B(gs3, |lg3—c||)- Right: ¢; is a critical point of y(l) and B(q1, ||q1 —
cill) € B(gas llgz — cill) U B(gs, llgs — cill)-

(1) 9, (£1) = (0,0) and B, (£1) = (0,0). From dg(£1, £2) = 0 we
know 9, (£2) = 0 and g, ({2) = 0, which means g and g are on
both ¢1 and €3, so €1 = £5.

(2) 99,(£1) # (0,0) or Tg,(£1) # (0,0). In this case, without
loss of generality we assume 0, (£1) # (0,0). From aQ(fl,fz) =0
we have g, (£2) = 9g,(€1) # (0,0), so introducing the notation
(%i — xi,§i — yi) = 99, ({1), we know (%;, 7j;) is on {1 and {3, and
90, (£1) is the normal direction of £; and 3. Since a point and
a normal direction can uniquely determine a line, we have {; =
fz. m]

Remark. Definition (5) can be generalized to hyperplanes in R%:
do(hy, h2) = Vo, n, — Vo, h, lIF. (6)

where hy, hy € H = {h | his a hyperplane in R4}, and Vo.h, (=
1, 2) is an n X d matrix with each row being a projection vector from
a point in Q to hj. Using the similar method, we can show if there
are d different points in Q, then (6) is a metric in J.

B Metric Properties for dp on Trajectories

In this section, we prove Theorem 3.1 for dg. We first introduce
the following lemma.

LEMMA B.1. As shown in Figure 6, suppose the line {3 passes
through q1 and c, {1 is perpendicular to {3 at q1, and c is on the right
side of €1. If q2 is outside the circle C(q1, ||q1 —c||), on the left side of €2
and above {5 (the yellow-shaded region)), and q3 is outside the circle
C(q1, llq1 —cl|), on the left side of {2 and below {5 (the pink-shaded re-
gion), then we have B(q1, |lq1 —c|l) < B(qz, llg2—cll)UB(qz, llgz—clD).

ProoF. We use q; as the origin, ¢, as the x-axis and ¢; as the
y-axis to build a coordinate system, and assume the coordinates of
¢, g2 and g3 are (r,0), (x2, y2) and (x3, y3) respectively. So, we have
x% +y§ > rz,xg +y§ > r? and x2,x3 < 0, y2 > 0 and y3 < 0. Our
goal is to prove if x? + y? < r? then either

(x = x2)* + (y —y2)? < (x2 = 1)* + 43, (7)
(x—x3)* + (y—y3)® < (x3 —r)* +45. (8)



Figure 7: Left: ¢; is a critical point of y(l) and B(q1, ||q1—cil])
B(qz. lIg2—cill)UB(g3, llgs—cill). Right: B(q1. [lg1—p1 ), B(qz, llg2—
pa) are tangent to s, and B(gs, g3 - psll), B(gs, g« — pall) are
tangent to s’. For each one of these four circles, any tangent
line segment, except s, s’ cannot be extended outside B(c;, %)
without intersecting with any other circle.

Ify > 0, then fromx < r,x3 < 0,y2 > 0 we have (r —x)x2 < yys,
which is equivalent to —2xx2 — 2yys < —2rx2. Since x% + y% < r?,
we obtain x? — 2xx2 + y? — 2yy, < —2rxz + r?, which implies (7)
is true. Similarly, if y < 0 then we can show (8) is true. Thus, the
proof is completed.

m|

Now, we can give the proof of Theorem 3.1 for dg.

PROOF. Suppose dQ(y(l), y(z)) = 0, we only need to prove y!) =
y(z). We draw a ball B(c;, %T) at a critical point ¢; (1 <i < k—1)of
y(l) . There are three possibilities.

Case 1. As shown in Figure 6(Right), c; is an endpoint of y(l),
and B(c;, %) contains one line segment s of y(l). In this case, we
assume s is part of line £, and draw a line £, through c¢; which is
perpendicular to £. Then, we choose a point g; from Q N B(c;, %),
which is on the left side of £, close to ¢ and satisfies ||q1 —¢|| < 2.
Suppose {3 is the line through g1 and c;, and ¢; is perpendicular to
{5 at q1. We choose a point g2 € Q N B(c;, %) from the region that
is outside B(q1, ||q1 — cil|), on the left side of ¢; and ¢, , and above
{3 (the yellow-shaded region), and choose a point g3 € Q N B(c;, 5)
from the region that is outside B(q1, ||g1 —cil|), on the left side of ¢;
and ¢, , and below ¢ (the pink-shaded region). Obviously, {c;} =
C(q1, llq1 —cilD)NC(gz, llg2—cill)NC(gs, I3 —cill), and from Lemma
B.1, we know B(qx, llg1 — cill)  B(gz. llgz — esll) U B(gs, liqs — cil).
So, ¢; must be on y(z). Since the tangent line of C(q1, ||q1 —cil|) at ¢;
goes into the interior of B(qz, |lg2 — cil|) and B(gs, |lg3 — cil|), from
(01) we know ¢; must be a critical point of y(z). There also exists
g4 € B(ci, §) and py € s such that B(qq, [|gs — pal|) is tangent to s at
point ps. From (O1) and (O2) we know the tangent line segment of
C(q4. |lg4 — p4l]) through ¢; must be a part of y?), and this tangent
line segment must be s because the other tangent line segment
through c; intersects with other circles. Thus, s is a part of y(z).

Case 2. As shown in Figure 7(Left), ¢; is an internal of y(l),
B(ci, %) contains two line segments s, s’ of y(l), and the angle
between s, s’ is at most %. In this case, we assume { is the line
bisecting the angle formed by s and s’, and draw two lines £, and
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¢’ which is perpendicular to s and s” at ¢; respectively. Then, we
choose a point g from Q N B(c;, %), which is on the left side of
¢, and ¢’ , close to { and satisfies llg1 — cll < 2. Suppose £ is
the line through ¢; and ¢;, and ¢; is perpendicular to ¢, at q;. We
choose a point g2 € Q N B(c;, 5) from the region that is outside
B(q1,1lq1 — cill), on the left side of €1, £, and ¢/ and above ¢ (the
yellow-shaded region), and choose a point g3 € Q N B(c;, 5) from
the region that is outside B(q1, |[q1 — cil|), on the left side of 1, £
and ¢/ and below {3 (the pink-shaded region). Obviously, {c;} =
Clq1, llq1 —cilDNC(qz, llgz—c:l)NC(gs, lIg3 —cill), and from Lemma
B.1, we know B(q1, I|q1 — cill) € B(qz, llgz — cill) U B(gs, lIg3 — cill)-
So, ¢; must be on y(z). Since the tangent line of C(q1, ||q1 —ci||) at c;
goes into the interior of B(qz, |lg2 — ¢i||) and B(gs, ||g3 — cil|), from
(0O1) we know ¢; must be a critical point of y(z). There also exists
g4.95 € B(ci, 5) and py € s, ps € s’ such that B(qq, [lq4 — pall) is
tangent to s at point p4, and B(gs, |lg5s —ps||) is tangent to s” at point
ps. Using the similar argument in Case 1,we can show s and s” both
belong to y(z).

Case 3. As shown in Figure 7(Right), ¢; is an internal of y1),
B(ci, %) contains two line segments s, s’ of y(D, and the angle
between s, s” is greater than %. In this case, we choose four points
q1.92. 93, q4 from Q N B(c;, §) such that the circles with center
q1,q2 are tangent to s at pi, p2, and the circles with center g3, q4
are tangent to s’ at p3, ps. Moreover, we can require ||g; — ¢j|| <
for 1 < j < 4 and these four circles do not intersect with each other.
Then, we can choose three points gs, g, g7 outside the angle region
formed by s and s, and two points gs, g9 inside this angle region.
Using Cj» (5 < j’ < 9) to represent the circles corresponding to
these five points, we can choose these points close to the boundary
of B(c;, %), and require Cg contains c;, Cs, Cg are tangent to s, C7, Cg
are tangent tos”, and C5NCg # 0, CoNC7 # 0,and CsNCoy # 0. Thus,
any tangent line segment of C(qj, [q; — pjll) (1 < j < 4), except
s,s’, can not be extended outside B(c;, %) without intersecting with
Us<j’<9Cjr. From (O1) and (O2) we know y(z) must be tangent to
C(q1, llq1 — p1l]) or C(q2, llq2 — p21]), and without loss of generality
we assume a tangent line segment of C(q1, ||q1 —p1||) is a part of y?).
Since (02), (O3) imply this tangent line segment must be extended
outside B(c;, ) without going into the interior of any other circle,
we know s N B(q1, 8) is a part of y(z) for some § > 0. Similarly, we
have s N B(gs3, §) is a part of y(z) for some § > 0. Since there is at
most one critical point of y(z) in B(c;, %), from (O3) we know c;
must be a critical point of y(z)A Thus, s and s” both belong to y(z).

From the discussion of above three cases, we know y(z) overlaps
with y() in the ball B(c;, %), and a similar argument leads to y =
r@.

m]

C Common Distance Measurements for Trajec-
tories

In this section, we briefly introduce the definition of Euclidian dis-
tance, discrete Frechet distance and dynamic time warping distance.

Suppose y(l) and y(z) are two trajectories in R? with critical points

c((]l), cgl), .‘.cill) and c(()z), cgz), ..‘cgcz) respectively.

2



Simple Distances for Trajectories via Landmarks

Euclidean Distance. It requires k1 = k and takes the average
Euclidean distance between corresponding critical points.

1 k1
B .49 - 1 3 [0~

Discrete Frechet Distance. It measures the similarity between
two piecewise-linear curves by taking into account their location
and time ordering. Here, we introduce its definition in [6]. Suppose
A = {ag, a1, ,am} € {0,1,--- ,k1}, B = {bo,b1,...,bm} C
{0,1,--- ,ko},and ap = by = 0, apym = ki, by, = ky. If for each
i€{0,---,k;—1} we have aj+1 = aj or aj+1 = a; + 1, and for each
i€{0,---,ka—1}, we have bj41 = b; or bjy1 = b; + 1, then we say
A and B can determine a coupling L between y(l) and y(z), which
is a sequence (cﬁllo) cfo)), (c(all), CZ))’ cee (c<al,>n cf;). We define the

cg,) - cg)z_)l . The discrete Frechet

length of L as ||.L]| = maxo<i<m |
distance is defined as:
dr(y ™, y®)

=min{|| £L||| £ is aa coupling between y») and y?}.

Dynamic Time Warping (DTW) Distance. DTW [24] is an
algorithm to find the optimal matching between the critical points
of two trajectories, and it does not require k; = ky. It is defined

and computed by the recursion formula: D(i, j) = Hcgl) - cﬁ.z)“ +
min (D(i-1,), D(i~1,j-1), D(i, j-1), where D(0, ) = llc;" ||,
D(i,0) = ||c£1) - c(()2>||, and DTW distance between y(l) and y(z) is
defined as DTW(y(D, y@) = D(ky, ky).

Discrete Hausdorff Distance. It measure the spatial similarity
between two trajectories [16]:

dH(yW, y@) = max(d(y ™, y?), d(y?, y))
. 1 2
where d(y"), y®) = max, <; <, ming<; <, ||C§ )~ C; 1.

Longest Common Subsequence Distance. It finds the align-
ment between two sequences that maximize the length of common
subsequence. Let Head(y(l)) be the first k; — 1 critical points of
¥, and Head(y?)) be the first ks — 1 critical points of y®). Given
£,0 > 0, the lcssg,g(y(l), y(z)) is defined as follows [25]:

lesse, 5(r™, y®) =

0, ify®™ or y® is empty

1+ lcssg’(s(y(l), y(z)), if ||c§:1) - CECZZ) || < eand |[k; — k| < &

max (less ., s (Head(y (1), y@), Iess,, 5(y(V, Head(y®))), otherwise
LCSS distance is defined as LCSS, 5(y(,y®) = 1- Jesse, 5 (r Dy ®)

s 80 Y= max(ki,k2) -

Edit Distance for Real Sequences. It is similar to the edit dis-
tance on strings, and seeking the minimum number of edit oper-
ations required to change one trajectory to another [4]. For EDR

with € > 0, y(l) and y(z) are considered to be the same if k1 = kg
 _

and ||c; ng)” <e&.

Locality Sensitive Hashing Distance. Given a point set Q C
R% and r > 0, It consider the disks with centers in Q and radius
equal to r. For LSH1p, each trajectory is converted to a bit vector of
length |Q|, and each bit represents the intersection of the trajectory
with a disk. and uses Hamming distance of two bit vectors to define

the distance between two curves. For LSH2, each trajectories
is converted to a sequence representing the order in which the
trajectory enters and exits the disks, and uses edit distance of two
sequence to define the distance between two curves [3].

D More Trajectory Experiments

D.1 Different Weightings

For SVM with linear kernel and quadratic kernel, as we increase
w1, the error of do and d’; also decreases, although not as obvious
as Gaussian kernel. The results are shown in Table 10 and Table 11.

Table 10: Landmark-sensitive classification error with weighted
linear SVM.

metrics mean median variance
do,w (w; =0.3) | 03309  0.3333 0.0070
dQ,W w; =0.6) | 0.3083 0.3333 0.0104
do,w (w; =0.9) | 03051  0.3333 0.0119

(

(
dg,w (w1 =0.3) | 04936  0.5000 0.0082
dg’w (w1 =0.6) | 04191  0.4444 0.0049
dg,w (w1 =0.9) | 04104 0.3889 0.0048
daw (w; =0.3) | 04372 0.4444 0.0081
daw (w1 =0.6) | 04340  0.4444 0.0080
daw (w1 =0.9) | 04329 0.4444 0.0080

Table 11: Landmark-sensitive classification error with weighted
quadratic SVM.

metrics mean median variance
do,w (w; =0.3) | 03309  0.3333 0.0070
do,w (w; =0.6) | 03084  0.3333 0.0104
do,w (w; =0.9) | 03051  0.3333 0.0119

(

(
dg,W (w1 =0.3) | 05302  0.5000 0.0098
dg w (w1 =0.6) | 05270  0.5000 0.0105
dg w (w1 =0.9) | 03909 0.3889 0.0060
dg w (w; =0.3) | 04367 0.4444 0.0081
daw (w; =0.6) | 04333  0.4444 0.0079
d5 y, (wg =0.9) | 04322 0.4444 0.0079

D.2 The error of LCSS, EAR and LSH with Other Pa-
rameters in Section 4

In the experiment of Section 4, the computation of LCSS, EAR
LSH1g and LSH2g involves some parameters, and we only give
the result of best parameter for these distances. In this section, we
describe the change of error statics for these distances with different
parameters, and show how we obtain the best parameter in each
experiment. We use bold font to mark the smallest mean error and
the corresponding median and variance.
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Table 12: Mean error of LCSS in Table 1 with different parameters.

mean\ &
0.0010  0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

0.1115 0.0822 0.0856 0.0969 0.1105 0.1297 0.1532 0.1749 0.1902 0.2003 0.2087 0.2182
0.0940 0.0785 0.0840 0.0954 0.1085 0.1278 0.1511 0.1731 0.1879 0.1987 0.2064 0.2164
0.0901 0.0769 0.0833 0.0946 0.1078 0.1271 0.1503 0.1718 0.1865 0.1977 0.2057 0.2160
0.0860 0.0755 0.0823 0.0936 0.1077 0.1267 0.1496 0.1707 0.1861 0.1966 0.2050 0.2151
0.0846 0.0745 0.0819 0.0935 0.1079 0.1269 0.1495 0.1704 0.1857 0.1961 0.2046 0.2150
0.0826 0.0739 0.0821 0.0939 0.1079 0.1265 0.1494 0.1706 0.1855 0.1958 0.2045 0.2149
0.0816 0.0734 0.0823 0.0937 0.1078 0.1261 0.1490 0.1702 0.1853 0.1957 0.2043 0.2147
0.0802 0.0729 0.0817 0.0935 0.1075 0.1261 0.1489 0.1702 0.1852 0.1957 0.2041 0.2145
0.0795 0.0721 0.0815 0.0933 0.1075 0.1262 0.1490 0.1699 0.1849 0.1955 0.2039 0.2142
0.0783 0.0714 0.0811 0.0930 0.1072 0.1258 0.1485 0.1695 0.1845 0.1951 0.2037 0.2140

O 00 N N U W N =

[u—
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Table 13: Median error of LCSS in Table 1 with different parameters.

mean\ &
0.0010  0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

0.0869 0.0577 0.0589 0.0652 0.0741 0.0889 0.1029 0.1143 0.1240 0.1325 0.1387 0.1474
0.0707 0.0536 0.0576 0.0643 0.0722 0.0868 0.1000 0.1118 0.1222 0.1304 0.1360 0.1458
0.0667 0.0531 0.0571 0.0640 0.0720 0.0867 0.1000 0.1103 0.1200 0.1297 0.1357 0.1464
0.0625 0.0526 0.0565 0.0640 0.0720 0.0864 0.1000 0.1094 0.1200 0.1278 0.1353 0.1449
0.0608 0.0524 0.0564 0.0643 0.0728 0.0865 0.1000 0.1087 0.1194 0.1274 0.1357 0.1449
0.0590 0.0516 0.0567 0.0649 0.0729 0.0857 0.1000 0.1088 0.1189 0.1267 0.1353 0.1449
0.0583 0.0512 0.0571 0.0647 0.0728 0.0857 0.0987 0.1088 0.1187 0.1267 0.1353 0.1446
0.0571 0.0506 0.0568 0.0646 0.0730 0.0857 0.0984 0.1083 0.1187 0.1266 0.1346 0.1444
0.0566 0.0500 0.0564 0.0645 0.0731 0.0857 0.0984 0.1079 0.1182 0.1261 0.1340 0.1444
0.0556  0.0500 0.0563 0.0643 0.0728 0.0850 0.0976 0.1076 0.1179 0.1256 0.1336 0.1440
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Table 14: Error variance of LCSS in Table 1 with different parameters.

variance \ &

1)

0.0010  0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

0.0087 0.0070 0.0077 0.0099 0.0127 0.0162 0.0220 0.0280 0.0315 0.0336 0.0350 0.0367
0.0073 0.0068 0.0075 0.0096 0.0123 0.0161 0.0218 0.0276 0.0311 0.0335 0.0349 0.0365
0.0072 0.0063 0.0074 0.0094 0.0121 0.0160 0.0216 0.0274 0.0310 0.0333 0.0348 0.0364
0.0068 0.0060 0.0072 0.0092 0.0121 0.0158 0.0216 0.0273 0.0310 0.0332 0.0346 0.0363
0.0068 0.0058 0.0071 0.0091 0.0120 0.0158 0.0215 0.0273 0.0309 0.0332 0.0346 0.0363
0.0065 0.0058 0.0071 0.0090 0.0120 0.0158 0.0215 0.0273 0.0309 0.0332 0.0346 0.0363
0.0065 0.0057 0.0071 0.0090 0.0120 0.0158 0.0214 0.0272 0.0308 0.0331 0.0346 0.0363
0.0063 0.0056 0.0070 0.0090 0.0120 0.0158 0.0215 0.0272 0.0308 0.0331 0.0346 0.0363
0.0063 0.0056 0.0070 0.0090 0.0120 0.0158 0.0215 0.0273 0.0308 0.0332 0.0346 0.0363
0.0060 0.0054 0.0070 0.0089 0.0119 0.0157 0.0214 0.0272 0.0308 0.0332 0.0346 0.0363
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Table 15: Classification Error of EDR in Table 1 with different parameters.

e | 0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

mean | 0.1070 0.0802 0.0846 0.0957 0.1096 0.1289 0.1521 0.1744 0.1894 0.1997 0.2078 0.2175
median | 0.0833 0.0554 0.0581 0.0640 0.0731 0.0875 0.1009 0.1139 0.1229 0.1319 0.1378 0.1462
variance | 0.0084 0.0070 0.0077 0.0098 0.0127 0.0162 0.0219 0.0279 0.0314 0.0336 0.0350 0.0367
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Table 16: Classification Error of LSH1p and LSH2 in Table 1 with different parameters.

r | 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100
mean | 0.4145 0.3792 0.3143 0.2645 0.2197 0.1374 0.1290 0.1501 0.1487 0.1774 0.1680 0.1633
LSH1gp median | 0.3913 0.3500 0.2693 0.2121 0.1667 0.1000 0.0949 0.1114 0.1046 0.1133 0.1154 0.1179
variance | 0.0616 0.0530 0.0448 0.0404 0.0315 0.0153 0.0128 0.0168 0.0176 0.0286 0.0232 0.0207
mean | 0.4161 0.3873 0.3449 0.3043 0.2798 0.2637 0.2574 0.2494 0.2445 0.2415 0.2409 0.2426
LSH2p median | 0.3919 0.3644 0.3154 0.2605 0.2333 0.2281 0.2255 0.2275 0.2216 0.2195 0.2182 0.2191
variance | 0.0621 0.0531 0.0457 0.0405 0.0381 0.0301 0.0271 0.0224 0.0220 0.0210 0.0210 0.0215
Table 17: Mean error of LCSS in Table 4 with different parameters.
mean\ &
3 0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550
1| 0.2761 0.2956 0.2634 0.2676 0.2839 0.3046 0.3049 0.3147 0.3256 0.3459 0.3527 0.3582
2103123 0.2761 0.2718 0.2647 0.2866 0.3148 0.3112 0.3160 0.3267 0.3458 0.3552 0.3598
3| 0.3116 0.2905 0.2685 0.2448 0.2941 0.3350 0.3129 0.3160 0.3267 0.3458 0.3542 0.3598
4| 03112 0.2911 0.2552 0.2556 0.2937 0.3347 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
5] 0.2823 0.2919 0.2680 0.2656 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
6 | 0.2883 0.2904 0.2691 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3596
7 1 0.2931 0.2887 0.2645 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
8| 0.2952 0.2828 0.2655 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
19 | 0.2946 0.2831 0.2655 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
10 | 0.2934 0.2831 0.2655 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
Table 18: Median error of LCSS in Table 4 with different parameters.
median\ ¢
3 0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550
1] 0.2778 0.3056 0.2500 0.2778 0.2778 0.3056 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
2 103056 0.2778 0.2778 0.2500 0.2778 0.3056 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
3 | 0.3056 0.2778 0.2778 0.2500 0.2778 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
41 0.3056 0.2778 0.2500 0.2500 0.2778 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
51 0.2778 0.2778 0.2778 0.2500 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
6 | 0.2778 0.2778 0.2778 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
7 | 0.3056 0.2778 0.2500 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
8 | 0.3056 0.2778 0.2500 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
9 1 03056 0.2778 0.2500 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
10 | 0.3056 0.2778 0.2500 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
Table 19: Error variance of LCSS in Table 4 with different parameters.
variance \ €
5 0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550
1| 0.0030 0.0037 0.0038 0.0041 0.0036 0.0034 0.0025 0.0013 0.0008 0.0004 0.0002 0.0003
2 1 0.0034 0.0035 0.0038 0.0038 0.0036 0.0038 0.0026 0.0012 0.0007 0.0003 0.0002 0.0003
3 | 0.0030 0.0035 0.0038 0.0037 0.0037 0.0038 0.0025 0.0012 0.0007 0.0003 0.0002 0.0003
4 | 0.0030 0.0036 0.0035 0.0037 0.0036 0.0038 0.0025 0.0012 0.0007 0.0003 0.0002 0.0003
51 0.0031 0.0035 0.0037 0.0039 0.0035 0.0038 0.0025 0.0012 0.0007 0.0003 0.0002 0.0003
6 | 0.0029 0.0033 0.0036 0.0039 0.0035 0.0038 0.0025 0.0012 0.0007 0.0003 0.0002 0.0003
7 | 0.0029 0.0034 0.0035 0.0040 0.0035 0.0038 0.0025 0.0012 0.0007 0.0003 0.0002 0.0003
8 | 0.0030 0.0031 0.0035 0.0040 0.0035 0.0038 0.0025 0.0012 0.0007 0.0003 0.0002 0.0003
9 | 0.0029 0.0031 0.0035 0.0040 0.0035 0.0038 0.0025 0.0012 0.0007 0.0003 0.0002 0.0003
10 | 0.0029 0.0031 0.0035 0.0040 0.0035 0.0038 0.0025 0.0012 0.0007 0.0003 0.0002 0.0003
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Table 20: Classification error of EDR in Table 4 with different parameters.

e | 0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

mean | 0.2748 0.2932 0.2661 0.2640 0.2854 0.3036 0.3050 0.3147 0.3256 0.3459 0.3527 0.3582
median | 0.2778 0.2778 0.2639 0.2500 0.2778 0.3056 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
variance | 0.0028 0.0038 0.0037 0.0039 0.0035 0.0035 0.0025 0.0013 0.0008 0.0004 0.0002 0.0003

Table 21: Classification error of LSH1p and LSH2 in Table 4 with different parameters.

r | 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100

mean | 0.3360 0.2767 0.2673 0.2784 0.3211 0.3804 0.3647 0.3707 0.3627 0.3616 0.3611 0.3659
LSH1gp, median | 0.3611 0.2778 0.2778 0.2778 0.3333 0.3611 0.3611 0.3611 0.3611 0.3611 0.3611 0.3611
variance | 0.0013 0.0026 0.0020 0.0028 0.0038 0.0012 0.0007 0.0012 0.0002 0.0000 0.0000 0.0004

mean | 0.3361 0.2959 0.2789 0.2997 0.2869 0.2830 0.2811 0.2543 0.2516 0.2619 0.2684 0.2834
LSH2, median | 0.3611 0.3056 0.2778 0.3056 0.2778 0.2778 0.2778 0.2500 0.2500 0.2778 0.2778 0.2778
variance | 0.0013 0.0020 0.0016 0.0026 0.0027 0.0031 0.0022 0.0021 0.0022 0.0017 0.0016 0.0014

mean | 0.3365 0.2517 0.2352 0.2209 0.2468 0.2642 0.3334 0.3020 0.3754 0.3668 0.3626 0.3611
LSH1p, median | 0.3333 0.2500 0.2222 0.2222 0.2500 0.2500 0.3333 0.3056 0.3611 0.3611 0.3611 0.3611
variance | 0.0007 0.0026 0.0037 0.0039 0.0035 0.0027 0.0028 0.0024 0.0009 0.0005 0.0004 0.0000

mean | 0.3472 0.3480 0.3428 0.2879 0.3131 0.2690 0.2945 0.2857 0.3217 0.3072 0.3249 0.3164
LSH2, median | 0.3611 0.3611 0.3333 0.2778 0.3056 0.2778 0.3056 0.2778 0.3333 0.3056 0.3333 0.3056
variance | 0.0008 0.0006 0.0022 0.0018 0.0028 0.0022 0.0023 0.0023 0.0015 0.0021 0.0022 0.0015

Table 22: Mean error of LCSS in Table 5 with different parameters.

mean\ &
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

0.4961 04776 0.4484 0.4584 0.4068 0.4395 0.4412 0.4033 0.4233 0.4585 0.5073 0.5142
0.4112 0.3867 0.4405 0.4520 0.4363 0.4539 0.4238 0.4611 0.4999 0.5007 0.5062 0.5299
0.4025 0.4163 0.4903 0.4728 0.4343 0.4307 0.4389 0.4448 0.4656 0.4737 0.4814 0.5158
0.3504 0.4115 0.4320 0.4481 0.4435 0.4066 0.4319 0.4546 0.4397 0.4511 0.4631 0.4901
0.3509 0.4190 0.4082 0.4217 0.4177 0.4061 0.4378 0.4453 0.4606 0.4389 0.4738 0.4983
0.3481 0.4117 0.3961 0.4000 0.3939 0.4045 0.4368 0.4465 0.4592 0.4391 0.4759 0.4993
0.3527 0.4241 0.3996 0.4009 0.3947 0.4071 0.4308 0.4387 0.4569 0.4397 0.4780 0.4993
0.3437 0.4141 0.3998 0.4009 0.3947 0.4064 0.4308 0.4324 04554 0.4390 0.4780 0.4993
0.3499 0.4244 0.4039 0.3969 0.3961 0.4064 0.4308 0.4324 0.4554 0.4390 0.4780 0.4993
0.3582 0.4329 0.4041 0.3969 0.3961 0.4064 0.4308 0.4324 0.4554 0.4390 0.4780 0.4993
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Table 23: Median error of LCSS in Table 5 with different parameters.

median\ &

1)

0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

0.5000 0.5000 0.4444 0.4444 0.3889 0.4444 0.4444 0.3889 0.4444 0.4444 0.5000 0.5000
0.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000 0.5000 0.5000
0.3889 0.4444 0.5000 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000
0.3333 0.3889 0.4444 0.4444 0.4444 0.3889 0.4444 0.4444 0.4444 0.4444 0.4444 0.5000
0.3333 0.4444 0.3889 0.4444 0.4444 0.3889 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000
0.3333 0.3889 0.3889 0.3889 0.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000
0.3333 0.4444 0.3889 0.3889 0.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000
0.3333 0.4167 0.3889 0.3889 0.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000
0.3333 0.4444 0.3889 0.3889 0.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000
0.3333 0.4444 0.3889 0.3889 0.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000
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Table 24: Error variance of LCSS in Table 5 with different parameters.

variance \ &

1)

0.0010  0.0050

0.0100 0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0.0500

0.0550
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0.0015
0.0051
0.0053
0.0058
0.0069
0.0070
0.0066
0.0066
0.0066
0.0066

0.0036
0.0063
0.0058
0.0065
0.0078
0.0075
0.0072
0.0074
0.0072
0.0070

0.0064
0.0066
0.0071
0.0073
0.0077
0.0077
0.0076
0.0076
0.0076
0.0076

0.0062
0.0070
0.0070
0.0072
0.0073
0.0075
0.0079
0.0079
0.0078
0.0078

0.0070
0.0074
0.0068
0.0073
0.0063
0.0067
0.0070
0.0070
0.0068
0.0068

0.0068
0.0062
0.0056
0.0058
0.0059
0.0059
0.0058
0.0057
0.0057
0.0057

0.0066
0.0069
0.0069
0.0074
0.0072
0.0074
0.0072
0.0072
0.0072
0.0072

0.0058
0.0069
0.0069
0.0072
0.0072
0.0070
0.0068
0.0063
0.0063
0.0063

0.0061
0.0069
0.0079
0.0078
0.0076
0.0072
0.0070
0.0069
0.0069
0.0069

0.0068
0.0073
0.0084
0.0080
0.0078
0.0078
0.0078
0.0077
0.0077
0.0077

0.0076
0.0074
0.0079
0.0077
0.0078
0.0077
0.0076
0.0076
0.0076
0.0076

0.0077
0.0081
0.0093
0.0090
0.0091
0.0090
0.0090
0.0090
0.0090
0.0090

Table 25: Classification error of EDR in Table 5 with different parameters.

e | 0.0010

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0.0500

0.0550

mean | 0.4632
median | 0.4444
variance | 0.0026

0.4541
0.4444
0.0043

0.4171
0.4444
0.0065

0.4450
0.4444
0.0068

0.3916
0.3889
0.0068

0.4134
0.3889
0.0064

0.4422
0.4444
0.0058

0.4259
0.4444
0.0060

0.4618
0.4444
0.0062

0.4559
0.4444
0.0079

0.4681
0.4444
0.0081

0.5123
0.5000
0.0087

Table 26: Classification Error of LSH1p and LSH2 in Table 5 with different parameters.

r

0.0050

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

0.1000

0.1100

mean
LSH1g median
variance

0.5098
0.5000
0.0006

0.2524
0.2222
0.0098

0.2950
0.2778
0.0067

0.4878
0.5000
0.0064

0.4443
0.4444
0.0062

0.4691
0.4444
0.0066

0.4494
0.4444
0.0085

0.4558
0.4444
0.0059

0.5046
0.5000
0.0045

0.5103
0.5000
0.0068

0.4439
0.4444
0.0068

0.4305
0.4444
0.0061

mean
LSH2¢p median
variance

0.5000
0.5000
0

0.4547
0.4444
0.0074

0.3248
0.3333
0.0084

0.3850
0.3889
0.0076

0.5271
0.5278
0.0068

0.5400
0.5556
0.0049

0.5216
0.5000
0.0046

0.5130
0.5000
0.0072

0.4828
0.5000
0.0052

0.4943
0.5000
0.0049

0.4406
0.4444
0.0076

0.4865
0.5000
0.0070
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