
ar
X

iv
:1

81
1.

04
13

6v
3

 [c
s.L

G
]

19
 Ju

n
20

20

The GaussianSketch for Almost Relative Error

Kernel Distance

Jeff M. Phillips
School of Computing, University of Utah

jeffp@cs.utah.edu

Wai Ming Tai
School of Computing, University of Utah

wmtai@cs.utah.edu

Abstract

We introduce two versions of a new sketch for approximately embedding the Gaussian kernel into

Euclidean inner product space. These work by truncating infinite expansions of the Gaussian

kernel, and carefully invoking the RecursiveTensorSketch [Ahle et al. SODA 2020]. After providing

concentration and approximation properties of these sketches, we use them to approximate the

kernel distance between points sets. These sketches yield almost (1 + ε)-relative error, but with

a small additive α term. In the first variants the dependence on 1/α is poly-logarithmic, but has

higher degree of polynomial dependence on the original dimension d. In the second variant, the

dependence on 1/α is still poly-logarithmic, but the dependence on d is linear.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Kernel Distance, Kernel Density Estimation, Sketching

Category RANDOM

Acknowledgements We thank Rasmus Pagh for early conversations on this topic which helped

reignite and motivate this line of thought. Part of the work was completed while the first author

was visiting the Simons Institute for Theory of Computing.

1 Introduction

Kernel methods are a pillar of machine learning and general data analysis. These approaches

consider classic problems such as PCA, linear regression, linear classification, k-means clus-

tering which at their heart fit a linear subspace to a complex data set. Each of the methods

can be solved by only inspecting the data via a dot product 〈x, p〉. Kernel methods, and spe-

cifically the “kernel trick,” simply replaces these Euclidean dot products with a non-linear

inner product operation. The two most common inner products are the polynomial kernel

Kz(x, p) = (〈x, p〉 + 1)z and the Gaussian kernel K(x, p) = exp(−‖x − p‖2).

The “magic” of the kernel method works mainly because of the existence of a reproducing

kernel Hilbert space (RKHS) HK associated with any positive definite (p.d.) kernel [43] K.

It is a function space, so for any data point x ∈ R
d, there is a mapping φ : R

d → HK so

φ(x) = K(x, ·). Since φ(x) is a function with domain R
d, and each “coordinate” of φ(x) is

associated with another point p ∈ R
d, there are an infinite number of “coordinates,” and

HK can be infinite dimensional. However, since 〈φ(x), φ(p)〉
HK

= K(x, p), this embedding

does not ever need to be computed, we can simply evaluate K(x, p). And life was good.

However, at the dawn of the age of big data, it became necessary to try to explicitly,

but approximately, compute this map φ. Kernel methods typically start by computing and

then analyzing the n × n gram matrix KX where (KX)i,j = K(xi, xj) for a data sets X

of size n. As n became huge, this became untenable. In a hallmark paper, Rahimi and

Recht [37] devised random Fourier features (RFFs) for p.d. kernels (with max value 1, e.g.,

Gaussians) that compute a random map φ̃ : R
d → R

D̃ so
〈

φ̃(x), φ̃(p)
〉

is an unbiased estimate

http://arxiv.org/abs/1811.04136v3
mailto:jeffp@cs.utah.edu
mailto:wmtai@cs.utah.edu

2

of K(x, p), and with probability at least 1 − δ has error |K(x, p) −
〈

φ̃(x), φ̃(p)
〉

| ≤ ε. For

just one pair of points they require D̃ = O((1/ε2) log(1/δ)), or for all comparisons among n

points D̃n = ((1/ε2) log(n/δ)), or for any points in a region Λ of volume vol(Λ) ≤ V , then

D̃V = ((1/ε2) log(V/δ)).

However, relative-error-preserving RKHS embeddings for p.d. kernels are impossible

without some restriction on the size n or domain Λ of the data. Consider n data points

each far from each other so any pair x, p ∈ R
d satisfies K(x, p) < 1/n. In any relative-error-

approximate embedding φ̂ : R
d → R

D̂, each point must be virtually orthogonal to all other

points, and hence Ω(n) dimensions are required [28].

Instead, to obtain (almost) relative-error results in big data sets, researchers have relied

on other approaches such as sampling [45], exploiting structure of p.d. Gram matrices [34],

devising modified RFFs for regularized kernel regression [9], or building data structures for

kernel density estimate queries [12].

The kernel distance and data set embeddings. To address these difficulties, we first turn

our attention from the inner product 〈φ(x), φ(p)〉
HK

= K(x, p) in the RKHS to the natural

distance it implies. Before stating this distance, we generalize the inner product to point

sets P ⊂ R
d (which extends naturally to probability distributions µP with domain R

d).

We treat P as a discrete probability distribution with uniform 1/|P | weight on each point.

This can be represented in HK as Φ(P) = 1
|P |

∑

x∈P φ(x), known as the kernel mean [33].

Indeed, for any query point p ∈ R
d, the inner product 〈Φ(P), φ(p)〉

HK
= 1

|P |
∑

x∈P K(x, p)

is precisely the kernel density estimate at p. For two point sets P, Q ⊂ R
d we define

κ(P, Q) = 1
|P |

1
|Q|

∑

x∈P

∑

y∈Q K(p, q) = 〈Φ(P), Φ(Q)〉HK .

Now the kernel distance [36, 26] (alternatively known as the current distance [23] or

maximum mean discrepancy [24, 39]) is defined

DK(P, Q) = ‖Φ(P) − Φ(Q)‖HK =
√

κ(P, P) + κ(Q, Q) − 2κ(P, Q).

Under a slightly restricted class of kernels (a subset of p.d. kernels), called characteristic

kernels [42], this distance is a metric. These include the Gaussian kernels which we focus on

hereafter. This distance looks and largely acts like Euclidean distance; indeed, restricted to

any finite-dimensional subspace, it is equivalent to Euclidean distance.

In data analysis and statistics, kernel mean is a compact way to represent a point set

distribution. One can also use kernel distance to compare different point set as opposed

to more expensive measure such as Wasserstein distance. In practice, there are various

applications such as hypothesis test and geometric search (see section 4 for detail discussion)

that use kernel distance as a core component. We suggest the reader refer to [38, 40] for

more details on the statistical perspective of kernel distance. Therefore, making computation

of the kernel distance scalable by a kernel distance embedding is of significant importance

for those downstream applications. More generally, one can view oblivious kernel distance

embedding as special case of oblivious subspace embedding for RKHS [32, 2], which gives a

stronger guarantee than a subspace in the RKHS is preserved within relative error. However,

many application of kernel distance do not require such a strong guarantee, which generally

attain worse results (see below for more detail comparison).

So a natural question to ask is if this distance is preserved within relative error via some

approximate lifting. Clearly RFFs guarantee additive ε-error. However, relate this problem

to the Johnson-Lindenstrauss (JL) Lemma [25]: JL describe a family of random projections

from a high-dimensional space to a D′-dimensional space which preserve (1+ε)-relative error

J. Phillips and W.M. Tai 3

on Euclidean distance, again with D′ = O((1/ε2) log(n/δ)) for any
(

n
2

)

pairs of distances,

succeed with probability 1 − δ, but only guarantees additive error on inner products.

Moreover, it is possible to apply the JL Lemma to create such an approximate embedding.

First for any set of n points X , we can create n×n Gram matrix KX (that is positive definite),

and decompose it to KX = BXBT
X . Then each row (BX)i in BX is the n-dimensional

vector representation of the ith data point, and the Euclidean distance ‖(BX)i − (BX)j‖2

is the kernel distance between data points i and j [31, 8]. Then we can apply JL on these

rows {(BX)i} to obtain such an approximate embedding. However, this embedding is not

oblivious to the data (necessary for many big data settings like streaming) and still requires

Ω(n2) time just to create the Gram matrix, not to mention the time for decomposition.

Another recent approach [14] analyzed RFFs for this task, and shows that these approx-

imate embeddings do guarantee relative error on the kernel distance, but only between each

pair of points x, p ∈ R
d (e.g., so ‖φ̂(x)−φ̂(p)‖

DK (x,p) ∈ (1 ± ε)), and as we describe next many down-

stream analysis tasks require the distance preserved between point sets. Alternatively, if

we assume D
2
K(P, Q) > α, then standard RFFs can provide a relative error guarantee using

D̃ = O(1
ε2α2 log 1

δ). However, such a large factor in α is undesirable, since typically α ≪ ε.

Our Results. We provide two sketches G : R
d → R

D for the Gaussian kernel, improving on

work of Rahimi and Recht [37] and Avron et al. [9], which achieves almost relative error for

kernel distance. Let F (X) = 1
|X|

∑

x∈X G(x) extend the sketch to point sets X ⊂ R
d. Then

we show that for two point sets P, Q ⊂ R
d

∣

∣D
2
K(P, Q) − ‖F (P) − F (Q)‖2

∣

∣ ≤ εD
2
K(P, Q) + α.

As we can always reduce the dimension G : R
d → R

D using JL to about D = 1/ε2, we focus

on reducing the runtime dependence, in particular the dependence on α.

In the first sketch (the GaussianSketch) to process a single point with G(x) it takes

O
(

d2

ε2 log d
ε + ds

)

time, with s = Θ
(

log(d exp(dL2)/α)
log(1

L2 log(d exp(dL2)/α))

)

, where L describes the (L∞)

radius of the domain containing X . So the dependence on 1/α is less than a single logarithmic

term.

The second sketch (the GaussianSketchHD) is useful when the dimension d is po-

tentially large (it turns out to be very similar to a recent sketch in [2], but our ana-

lysis is different). Then the runtime to compute G(x) is O
(

s3

ε2 log s
ε + s2d

)

where s =

Θ
(

log(4 exp(2R2)/α)

log(1
R2 log(4 exp(2R2)/α))

)

, and R is the (L2) domain radius. Now the dependence on 1/α

is still poly-logarithmic, but the dependence on dimension d is linear.

For example, we can set α = n−C1 , R = C2

√
log n and L = C3

√
log n for some absolute

constant C1, C2, C3. In low dimension, we have s = Θ(log n
log d) and the running time is

O(d2

ε2 log d
ε + d log n

log d). In high dimension, we have s = Θ(log n) and the running time is

O
(

1
ε2 log3 n log(log n/ε) + d log2 n

)

.

Implications. Several concrete applications work directly on this kernel distance between

point sets. First, the kernel two-sample test [24, 33] is a non-parametric way to perform

hypothesis tests between two empirical distributions; simply, the null hypothesis of them

being drawn from the same distribution is rejected if the kernel distance is sufficiently large.

While the sketched kernel two-sample test has proven effective under additive error [48],

when the significance threshold is Θ(1/n), the RFF-based solutions require time O(n2), no

better than brute force; but setting ε constant and α = 1/n, our sketches provide near-

linear or almost-linear time runtimes. Second, devising a Locality Sensitive Hash (LSH)

4

between point sets (or geometrically-aware LSH for probability distributions) has lacked a

great general solution. Despite progress in special cases (e.g., for polygons [13], curves [18]),

more general distances between geometric distributions, like Earth-Mover distance require

Ω(log s) distortion on a domain with at least s discrete points [7]. In general, an LSH

requires relative error to properly provide (1 + ε)-approximate nearest neighbor results. In

Section 4 we specify how our new almost relative-error embeddings for the kernel distance

provide efficient solutions for these applications.

Furthermore, this embedding can be composed with a Johnson-Lindenstrauss-type em-

bedding [25, 3, 4, 1, 46] to create an overall oblivious embedding of dimension roughly

O(1
ε2 log 1

δ), that is with no dependence on 1/α or d (or n or domain radius L or R in the

for each setting), and roughly the same guarantees.

1.1 Comparison to Other Recent Work on Large Data and Kernels

Recent related works on kernel approximation do not provide our guarantees; we survey here

work that addresses similar problems, and often require similar sets of error parameters.

Approximated KDEs. Charikar and Siminelakis [12] describe a data structure of size nD̂

and query time D̂, which answers κ(P, t) queries within (1 + ε)-relative error as long as

κ(P, t) > α; it requires D̂ = O(1
ε2

1√
α

log 1
δ eO(log2/3 n log log n)). However, this cannot argue

much about how large DK(P, Q) has to be for this to achieve relative error on the kernel

distance since it could be DK(P, Q) is small but κ(P, t) and κ(P, P) are both large. Moreover,

its guarantees only work for a single point set P with point queries t, not for two or more

points sets P, Q, as we argue many downstream data analysis tasks require.

Approximated kernel regression. Avron et al. [9] modify the RFF embeddings using dif-

ferent sampling probability related to the statistical leverage in the kernel space. This

approximates a λ-regularized kernel regression problem, creating a D̃-dimensional embed-

ding; that is for an n × n gram matrix KX , and a regularization parameter λ it creates

a n × D̃ matrix Z so (1 − ε)(KX + λIn) � ZZ∗ + λIn � (1 + ε)(KX + λIn), using

D̃ = O(1
ε2 (Ld logd/2(n/λ) + log2d(n/λ)) log(sλ(K)/δ)). Following our forthcoming methods

for analysis, one can modify this result to (1 + ε)-approximate the kernel distance, with an

additive α term, with an embedding of dimension D = O
(

1
ε2 (Ld logd/2 n

α + log2d n
α) log n

δ

)

.

Also, Ahle et al. [2] recently showed that one can create such D̃-dimensional embedding

where D̃ = O(1
ε2 (R2 + log n

ελ)5sλ(KX)) in O(1
ε2 (R2 + log n

ελ)6sλ(KX)) time for each data

point. Again, in our setting, one can interpret this result as (1 + ε)-approximate the kernel

distance, with an additive α term, in O(1
ε2 (R2 + log n

εα)6sα(KX)) time.

Compared to our bounds (adapted to our problem using our techniques), these depend

on n and sλ (ours do not), the low-d one is exponential in d (ours is polynomial), and the

other powers are larger.

Approximate Kernel PCA. Suppose we are given a data set X = {x1, . . . , xn} ⊂ R
d, and

want to find a low rank (rank k) approximation of Xφ = {φ(x1), φ(x2), . . . , φ(xn)} ∈ HK .

In particular, this can be described concretely in the context of the Gram matrix KX and its

decomposition BXBT
X . Given any n×m matrix M , let [M]k be its best rank-k approximation.

A natural question is to find a rank-k matrix K̃X so

∥

∥KX − K̃X

∥

∥

2

F
≤ (1 + ε) ‖KX − [KX]k‖2

F .

J. Phillips and W.M. Tai 5

While most previous work [19, 30, 22, 41, 44] has focused on providing absolute (or additive)

error bounds. For instance, they showed roughly ‖KX −K̃X‖2
F ≤ ‖KX − [KX]k‖2

F +εn using

e.g., Nyström sampling and RFFs. More recently, Musco and Woodruff [35] for p.d. Gram

matrices KX show how to efficiently find K̃X with relative error. This only requires O(nkω−1·
poly(log n/ε)) inspections of entries of KX , where ω < 2.373 is the matrix multiplication

exponent. This is not data oblivious, and uses properties of the p.d. matrix, so it does not

provide an embedding sketch.

A closely related problem is approximate kernel PCA problem which is to find a n × k

orthonormal matrix V so that

‖BX − V V T BX‖2
F ≤ (1 + ε)‖BX − [BX]k‖2

F .

The RKHS basis V , provides a compact and non-linear set of attributes to describe a com-

plex data set X , and has many uses in analyzing complex data which lacks strong linear

correlations. Musco and Woodruff [34] provide an algorithm with runtime O(nnz(X)) +

Õ(nω+1.5(k
σk+1ε2)ω−1.5); which has polynomial dependence on 1/σk+1. They leave open

whether this can be removed or reduced while maintaining only roughly nnz(X) dependence

on X . The matrix V returned by their algorithm can be used to approximate the matrix

KX by writing BXP BT
X where P is the projection onto the row span of V V T BX .

Our techniques can be combined with the a sketch for the polynomial kernel [10] to

explicitly solve for V so

‖BX − V V T BX‖2
F ≤ (1 + ε)‖BX − [BX]k‖2

F + α.

with similar dimensions required for approximating the kernel distance; the s parameter

increases roughly by log n/ log log n. This is detailed in Appendix A. If the data size n has

a known bound, then this provides an oblivious sketch for this almost relative error kernel

PCA problem. Moreover, replacing the σk+1 with εα, it almost answers the kernel PCA

nnz(X) question of Musco and Woodruff [34] – however our algorithm does not depend on

the number-of-non-zeros of X through our sketches, so we leave as an open question if our

sketches G(x), particular the GaussianSketchHD or similar, can be generated in time

O(nnz(x)polylog(1/α) + npoly(k, 1/ε, log(1/α)).

2 The GaussianSketch and its Properties

In this section we describe our new sketches for approximate mapping from R
d to an RKHS

associated with a Gaussian kernel. They are based on the RecursiveTensorSketch of

Ahle et al. [2], so we first review its properties.

The RecursiveTensorSketch. We first introduce RecursiveTensorSketch hash fam-

ily [2]. Given positive integers n, m and k, RecursiveTensorSketchn,m,k is the family

of hash functions T : R
nk → R

m as constructed in [2]. This hash family will be used

to construct our main sketch and has the following guarantee [2]: suppose u, v ∈ R
nk

and picking m = O(k
ε2), then the expectation E(〈T (u), T (v)〉) = 〈u, v〉 and the variance

Var(〈T (u), T (v)〉) ≤ ε2

10 ‖u‖2 ‖v‖2
. Moreover, the running time of computing T (x) for any

x ∈ R
nk

is O(km log m + kn).

The GaussianSketch. Now, we can define the hash family of the first sketch for the Gaus-

sian kernel GaussianSketch. Given a vector x ∈ R
d and a positive integer s, we first define

6

d vectors y
(1)
x . . . , y

(d)
x ∈ R

s such that ith coordinate of y
(j)
x is exp(−x2

j)
√

2i−1

(i−1)! x
i−1
j . Given

an integer m, define GaussianSketchm,s to be the family of hash functions that if G is in it,

then G(x) = T (y
(1)
x ⊗· · ·⊗y

(d)
x) where T is randomly chosen from RecursiveTensorSketchs,m,d.

Here, x ⊗ y is Kronecker product. Namely, given x ∈ R
p and y ∈ R

q, x ⊗ y is a pq

dimensional vector indexed by two integers i, j where i = 1, . . . , p and j = 1, . . . , q such that

(x ⊗ y)i,j = xi · yj . For notational convenience, we extend Kronecker product when p and

q are infinity. Namely, given {xi}∞
i=1 and {yj}∞

j=1 are infinite sequences, x ⊗ y is also an

infinite sequence indexed by two positive integers i, j such that (x ⊗ y)i,j = xi · yj . Also,

denote x⊗k = x ⊗ x⊗k−1 and x⊗0 = 1.

The rationale for the GaussianSketch comes from the following infinite expansion of

the Gaussian kernel. Define ȳ
(j)
x (for j ∈ [d]) as the infinite dimensional analog of y

(j)
x with

its ith coordinate as exp(−x2
j)

√

2i−1

(i−1)! x
i−1
j .

◮ Lemma 1. For x, p ∈ R
d

exp(− ‖x − p‖2
)

=

∞
∑

j1=0

· · ·
∞

∑

jd=0

(

exp(− ‖x‖2
)

(

d
∏

i=1

√

2ji

ji!
xji

i

)) (

exp(− ‖p‖2
)

(

d
∏

i=1

√

2ji

ji!
pji

i

))

=
〈

ȳ(1)
x ⊗ · · · ⊗ ȳ(d)

x , ȳ(1)
p ⊗ · · · ⊗ ȳ(d)

p

〉

.

Proof.

exp(− ‖x − p‖2)

= exp(− ‖x‖2
) exp(− ‖p‖2

) exp(2 〈x, p〉)

= exp(− ‖x‖2
) exp(− ‖p‖2

)

d
∏

i=1

exp(2xipi)

= exp(− ‖x‖2
) exp(− ‖p‖2

)

d
∏

i=1





∞
∑

j=0

1

j!
(2xipi)

j



 by Taylor expansion of exp(·)

= exp(− ‖x‖2
) exp(− ‖p‖2

)

∞
∑

j1=0

· · ·
∞

∑

jd=0

(

d
∏

i=1

1

ji!
(2xipi)

ji

)

=

∞
∑

j1=0

· · ·
∞

∑

jd=0

(

exp(− ‖x‖2)

(

d
∏

i=1

√

2ji

ji!
xji

i

)) (

exp(− ‖p‖2)

(

d
∏

i=1

√

2ji

ji!
pji

i

))

=
〈

ȳ(1)
x ⊗ · · · ⊗ ȳ(d)

x , ȳ(1)
p ⊗ · · · ⊗ ȳ(d)

p

〉

. ◭

Note that the Gaussian sketch takes as input one element of these inner products, but

trimmed so that each ȳ
(j)
x is trimmed to y

(j)
x (without the ¯ marker) that only has s terms

each.

The GaussianSketchHD. We can also define another hash family of sketches for the Gaus-

sian kernel GaussianSketchHD, which works better for high dimension d, but will have

worse dependence on other error and domain parameters. For j = 1, . . . , s, it will use Tj as

randomly chosen from RecursiveTensorSketchd,mj,j−1. Given a vector x ∈ R
d, a pos-

itive integer s, and s positive integers m1, . . . , ms, define GaussianSketchHDm1,...,ms,s

J. Phillips and W.M. Tai 7

to be the family of hash functions that if G is in it, then G(x) ∈ R
m with (mj−1 + 1)th

coordinate to mjth coordinate be
√

2j−1

(j−1)! exp(− ‖x‖2
)Tj(x⊗j−1) = Tj(z

(j)
x) ∈ R

mj where

z
(j)
x =

√

2j−1

(j−1)! exp(− ‖x‖2
)x⊗j−1 ∈ R

dj−1

and m =
∑s

j=1 mj . Denote zx the ds−1
d−1 dimen-

sional vector where the first coordinate is z
(1)
x , the next d coordinates are z

(2)
x , the next d2

coordinates are z
(3)
x , and so on. The GaussianSketchHD uses the following, a different

infinite expansion of the Gaussian kernel (also explored by Cotter et al. [17]).

◮ Lemma 2. For x, p ∈ R
d,

exp(− ‖x − p‖2
) =

∞
∑

i=0

〈

exp(− ‖x‖2
)

√

2i

i!
x⊗i, exp(− ‖p‖2

)

√

2i

i!
p⊗i

〉

=

∞
∑

i=0

〈

z(i)
x , z(i)

p

〉

Proof.

exp(− ‖x − p‖2
)

= exp(− ‖x‖2) exp(− ‖p‖2) exp(2 〈x, p〉)

= exp(− ‖x‖2
) exp(− ‖p‖2

)

∞
∑

i=0

1

j!
(2 〈x, p〉)j

by Taylor expansion of exp(·)

= exp(− ‖x‖2
) exp(− ‖p‖2

)

∞
∑

i=0

2j

j!

〈

x⊗j , p⊗j
〉

=

∞
∑

j=0

〈

exp(− ‖x‖2
)

√

2j

j!
x⊗j , exp(− ‖p‖2

)

√

2i

j!
p⊗j

〉

◭

2.1 Concentration Bounds for GaussianSketch and GaussianSketchHD

The sketches will inherit the concentration properties of the RecursiveTensorSketch.

Similar observations were recently observed by Ahle et al. [2]. Consider a weighted set of

elements X ⊂ R
d with weights αx for x ∈ X , and we use the general concentration bounds

for these under the GaussianSketch.

◮ Lemma 3 ([2]). Let G be a randomly chosen hash function in GaussianSketchm,s

with m = O
(

d
ε2

)

. Let v =
∑

x∈X αxy
(1)
x ⊗ · · · ⊗ y

(d)
x , then E

[

∥

∥

∑

x∈X αxG(x)
∥

∥

2
]

= ‖v‖2

and Var

[

∥

∥

∑

x∈X αxG(x)
∥

∥

2
]

≤ ε2

10 ‖v‖4 and hence with probability at least 9/10 we have
∣

∣

∣

∥

∥

∑

x∈X αxG(x)
∥

∥

2 − ‖v‖2
∣

∣

∣ ≤ ε‖v‖2.

If G is randomly chosen from GaussianSketchHDm1,...,ms,s, then G(x) = Szx, where

S is a m × ds−1
d−1 random matrix (recall m =

∑s
j=1 mj) so, for the (mi−1 + 1)th row to the

mith row, and the (di−1−1
d−1 + 1)th column to the di−1

d−1 th column forms a matrix Si where

Ti(z
(i)
x) = Siz

(i)
x , and the rest of entries are zero.

◮ Lemma 4 ([2]). Suppose A, B has ds−1
d−1 columns. Denote Ai and Bi be ith row of A and B

respectively. By taking mi = O
(

i
ε2

)

, we have Pr

[

∥

∥ABT − AST SBT
∥

∥

2

F
≤ ε2 ‖A‖2

F ‖B‖2
F

]

≥
1 − δ.

8

2.2 Truncation Bounds for GaussianSketch and GaussianSketchHD

These sketches are effective when it is useful to analyze the effect of sketching a large data

set X of size n, and we desire to show the cumulative measured across all pairs of elements.

For each sketch we expand these infinite sums, and determine the truncation parameter s

so the sum of terms past s have a bounded effect.

In our analysis, we will use the following inequality which follows by standard calculus

analysis, for any η > 0,

∞
∑

j=s

ηj

j!
≤

(

supy∈[−η,η] exp(y)
)

ηs

s!
≤ exp(η)ηs

s!
(1)

The following expression also arises in our analysis.

◮ Lemma 5. For ξ, a, b > 0, setting s = Θ

(

log ξ·a
α

log(1
b log ξ·a

α)

)

then the we have ξ · a
(

b
s

)s ≤ α.

Proof. By setting s
b = C γ

log γ for some large constant C where γ = 1
b log ξa

α , we have

s

b
log

s

b
= C

γ

log γ
log

(

C
γ

log γ

)

= γ · C

(

1 +
log C

log γ
− log log γ

log γ

)

≥ γ =
1

b
log

ξa

α
.

Now, if we rearrange the inequality then ξ · a
(

b
s

)s ≤ α. ◭

Consider a point set X = {x(1), x(2), . . . , x(n)} ⊂ R
d, denote KX as the n × n matrix

with (KX)i,j = exp(−
∥

∥x(i) − x(j)
∥

∥

2
). First truncate KX using Lemma 1 to obtain the n×n

matrix KGS
X,s with

(KGS

X,s)i,j

=
s−1
∑

j1=0

· · ·
s−1
∑

jd=0

(

exp(−
∥

∥

∥
x(i)

∥

∥

∥

2

)

(

d
∏

a=1

√

2ja

ja!
(x(i)

a)ja

))

·
(

exp(−
∥

∥

∥x(j)
∥

∥

∥

2

)

(

d
∏

a=1

√

2ja

ja!
(p(j)

a)ja

))

◮ Lemma 6. Suppose X ⊂ R
d so for all x(i) ∈ X has

∥

∥x(i)
∥

∥

∞ ≤ L for some L > 0. Given

a vector w ∈ R
n with (

∑n
i=1 |wi|)2 ≤ ξ, we have

wT (KX − KGS

X,s)w ≤
(

n
∑

i=1

|wi|
)2

d exp(2dL2)

(

2eL2

s

)s

≤ α,

where the last ≤ α inequality follows from setting s = sL,d,α = Θ

(

log ξ·d exp(2dL2)
α

log
(

1
2eL2 log

ξ·d exp(2dL2)
α

)

)

.

Proof. From Lemma 1, we have

(KX − KGS

X,s)i,j

=
∑

j1,...,jd

one of jb ≥ s

(

exp(−
∥

∥

∥
x(i)

∥

∥

∥

2

)

(

d
∏

a=1

√

2ja

ja!
(x(i)

a)ja

))

·
(

exp(−
∥

∥

∥x(j)
∥

∥

∥

2

)

(

d
∏

a=1

√

2ja

ja!
(x(j)

a)ja

))

J. Phillips and W.M. Tai 9

Then we can analyze these in aggregate with respect to a test vector z. The first line uses

the fact that a matrix A (for instance with A = KX − KGS
X,s) written as

∑

j(
∑

xi∈X ψj(xi))(
∑

x′

i
∈X ψj(x′

i)) can be simplified wT Aw =
∑

j(
∑

xi∈X wiψj(xi))
2.

wT (KX − KGS

X,s)w

=
∑

j1,...,jd

one of jb ≥ s

(

n
∑

i=1

wi exp(−
∥

∥

∥x(i)
∥

∥

∥

2

)

(

d
∏

a=1

√

2ja

ja!
(x(i)

a)ja

))2

≤
d

∑

b=1

∑

j1,...,jd

jb≥s

(

n
∑

i=1

wi exp(−
∥

∥

∥
x(i)

∥

∥

∥

2

)

(

d
∏

a=1

√

2ja

ja!
(x(i)

a)ja

))2

by union bound

≤
d

∑

b=1

∑

j1,...,jd

jb≥s

(

n
∑

i=1

|wi|
(

d
∏

a=1

√

2ja

ja!
Lja

))2

assuming
∥

∥

∥x(i)
∥

∥

∥

∞
≤ L

≤
(

n
∑

i=1

|wi|
)2









d
∑

b=1

∑

j1,...,jd

jb≥s

(

d
∏

a=1

(2L2)ja

ja!

)









The term
∑d

b=1

∑

j1,...,jd

jb≥s

(

∏d
a=1

(2L2)ja

ja!

)

can be expressed as the follows.

d
∑

b=1

∑

j1,...,jd

jb≥s

(

d
∏

a=1

(2L2)ja

ja!

)

=

d
∑

b=1





∞
∑

j1=0

(2L2)j1

j1!



 · · ·





∞
∑

jb=s

(2L2)jb

jb!



 · · ·





∞
∑

jd=0

(2L2)jd

jd!





=

d
∑

b=1







d
∏

a=1
a6=b

exp(2L2)











∞
∑

jb=s

(2L2)jb

jb!





≤
d

∑

b=1

(

exp((d − 1)2L2)
) exp(2L2)(2L2)s

s!
by (1)

=
d exp(2dL2)(2L2)s

s!

≤ d exp(2dL2)

(

2eL2

s

)s

by the fact s! ≥
(s

e

)s

Thus, we have

wT (KX − KGS

X,s)w ≤
(

n
∑

i=1

|wi|
)2









d
∑

b=1

∑

j1,...,jd

jb≥s

(

d
∏

a=1

(2L2)ja

ja!

)









≤
(

n
∑

i=1

|wi|
)2

d exp(2dL2)

(

2eL2

s

)s

≤ α

10

where the last inequality follows Lemma 5 using ξ = (
∑n

i=1 |wi|)2
, a = d exp(2dL2) and

b = 2eL2. ◭

Now truncate KX based on Lemma 2 to obtain KHD
X,s with

(KHD

X,s)i,j =

s−1
∑

a=0

〈

exp(−
∥

∥

∥x(i)
∥

∥

∥

2

)

√

2a

a!
(x(i))⊗a, exp(−

∥

∥

∥x(j)
∥

∥

∥

2

)

√

2a

a!
(x(j))⊗a

〉

◮ Lemma 7. Define Λd
R = {x ∈ R

d | ‖x‖2 ≤ R}. For a point set X ⊂ Λd
R, and a vector

w ∈ R
n with (

∑n
i=1 |wi|)2 ≤ ξ, we have

wT (KX − KHD

X,s)w ≤
(

n
∑

i=1

|wi|
)2

exp(2R2)

(

2eR2

s

)s

≤ α

where the last ≤ α inequality follows from setting s = sR,α = Θ

(

log
ξ·exp(2R2)

α

log
(

1
2eR2 log

ξ·exp(2R2)
α

)

)

.

Proof. From Lemma 2, we have

(KX − KHD

X,s)i,j =
∞

∑

a=s

〈

exp(−
∥

∥

∥p(i)
∥

∥

∥

2

)

√

2a

a!
(p(i))⊗a, exp(−

∥

∥

∥p(j)
∥

∥

∥

2

)

√

2a

a!
(p(j))⊗a

〉

Then we can analyze these in aggregate with respect to a test vector z. The first line uses

the fact that a matrix A (for instance with A = KX − KHD
X,s) written as

∑

j(
∑

xi∈X ψj(xi))(
∑

x′

i
∈X ψj(x′

i)) can be simplified wT Aw =
∑

j(
∑

xi∈X wiψj(xi))
2.

wT (KX − KHD

X,s)w

=

∞
∑

a=s

∥

∥

∥

∥

∥

n
∑

i=1

wi exp(−
∥

∥

∥x(i)
∥

∥

∥

2

)

√

2a

a!
(x(i))⊗a

∥

∥

∥

∥

∥

2

≤
∞

∑

a=s

(

n
∑

i=1

|wi|
∥

∥

∥

∥

∥

exp(−
∥

∥

∥
x(i)

∥

∥

∥

2

)

√

2a

a!
(x(i))⊗a

∥

∥

∥

∥

∥

)2

≤
∞

∑

a=s

(

n
∑

i=1

|wi|
√

2a

a!
Ra

)2

assuming
∥

∥

∥x(i)
∥

∥

∥ ≤ R

=

(

n
∑

i=1

|wi|
)2 (∞

∑

a=s

(2R2)a

a!

)

≤
(

n
∑

i=1

|wi|
)2

exp(2R2)(2R2)s

s!
by (1)

≤
(

n
∑

i=1

|wi|
)2

exp(2R2)

(

2eR2

s

)s

by the fact s! ≥
(s

e

)s

≤ α

where the last inequality follows Lemma 5 using ξ = (
∑n

i=1 |wi|)2
, a = exp(2R2) and

b = 2eR2. ◭

J. Phillips and W.M. Tai 11

3 Application to the Gaussian Kernel Distance

Let K : R
d×R

d → R be Gaussian kernel. Namely, for any x, y ∈ R
d, K(x, y) = exp(− ‖x − y‖2).

Given two point sets P, Q ⊂ R
d, one can define a similarity function κ(P, Q) = 1

|P |
1

|Q|
∑

x∈P

∑

y∈Q K(x, y)

and a squared kernel distance

D
2
K(P, Q) = κ(P, P) − 2κ(P, Q) + κ(Q, Q).

We make the important observation that the above formulation is equivalent to the

following form which will be much simpler to fit within our framework:

D
2
K(P, Q) =

∑

x∈P ∪Q

∑

y∈P ∪Q

βxβy exp(− ‖x − y‖2)

where βx is 1
|P | if x ∈ P and − 1

|Q| if x ∈ Q.

We now express D
2
K(P, Q) as the infinite sum using Lemma 1.

D
2
K(P, Q)

=
∑

x∈P ∪Q

∑

y∈P ∪Q

βxβy exp(− ‖x − y‖2)

=
∑

x∈P ∪Q

∑

y∈P ∪Q

βxβy

∞
∑

j1=0

· · ·
∞

∑

jd=0

(

exp(− ‖x‖2
)

(

d
∏

i=1

√

2ji

ji!
xji

i

))

·
(

exp(− ‖y‖2
)

(

d
∏

i=1

√

2ji

ji!
yji

i

))

=

∞
∑

j1=0

· · ·
∞

∑

jd=0





∑

x∈P ∪Q

βx exp(− ‖x‖2
)

(

d
∏

i=1

√

2ji

ji!
xji

i

)





2

=

∥

∥

∥

∥

∥

∥

∑

x∈P ∪Q

βxȳ(1)
x ⊗ · · · ⊗ ȳ(d)

x

∥

∥

∥

∥

∥

∥

2

,

where each ȳ
(j)
x is an infinite dimension vector with ith coordinate exp(−x2

j)
√

2i−1

(i−1)! x
i−1
j .

◮ Theorem 8. For any ε, R, α > 0, let G be randomly chosen from GaussianSketchm,s

with m = O
(

d
ε2

)

and s = Θ

(

log 4d exp(2dL2)
α

log
(

1
2eL2 log

4d exp(2dL2)
α

)

)

. Let Ωd
L = {x ∈ R

d | ‖x‖∞ ≤ L}.

Define a mapping function F from any X ⊂ Ωd
L so F (X) =

∑

x∈X G(x), which is a vector

in R
m. Then for any P, Q ⊂ Ωd

L with probability at least 9/10
∣

∣‖F (P) − F (Q)‖2 − D
2
K(P, Q)

∣

∣ ≤ εD
2
K(P, Q) + α.

The mapping G : R
d → R

m can be computed in O
(

d2

ε2 log d
ε + ds

)

time.

Proof. To analyze the GaussianSketch, we need to account for error from two sources:

from the RecursiveTensorSketch (using Lemma 3) and parameter m, and from the

truncation of the Taylor expansion at s (using Lemma 6). In this case we analyze the

following infinite expansion

D
2
K(P, Q) =

∥

∥

∥

∥

∥

∥

∑

x∈P ∪Q

βxȳ(1)
x ⊗ · · · ⊗ ȳ(d)

x

∥

∥

∥

∥

∥

∥

2

,

12

where each ȳ
(j)
x is an infinite dimension vector with ith coordinate exp(−x2

j)
√

2i−1

(i−1)! x
i−1
j .

Let v =
∑

x∈P ∪Q βxȳ
(1)
x ⊗ · · · ⊗ ȳ

(d)
x . Then by Lemma 3 by setting m = O(d/ε2) we have

with probability at least 9/10 that

∣

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

∑

x∈P ∪Q

βxG(x)

∥

∥

∥

∥

∥

∥

2

− ‖v‖2

∣

∣

∣

∣

∣

∣

∣

≤ ε‖v‖2.

Next note that (
∑

x∈P ∪Q |βx|)2 ≤ 4 = ξ. So by Lemma 6 the truncation by only s terms

can be accounted for as

D
2
K(P, Q) − ‖v‖2 = βT

(

KP ∪Q − KGS

P ∪Q,s

)

β ≤ 4d exp(2dL2)

(

2eL2

s

)2

≤ α,

where KP ∪Q and KGS
P ∪Q,s are defined as in Lemma 6 with X = P ∪ Q.

Combining these together we have

(1 − ε)
(

D
2
K(P, Q) − α

)

≤ (1 − ε)‖v‖2 ≤ |F (P) − F (Q)| ≤ (1 + ε)‖v‖2 ≤ (1 + ε)D2
K(P, Q).

and hence as desired

∣

∣‖F (P) − F (Q)‖2 − D
2
K(P, Q)

∣

∣ ≤ εD
2
K(P, Q) + α.

Recall that the running time of G for mapping a point is

O(dm log m + ds) = O

(

d2

ε2
log

d

ε
+ ds

)

. ◭

Using the Gaussian Sketch HD for high dimensions. We first express exp(− ‖x − y‖2
) as

another infinite sum using Lemma 2. Starting with

D
2
K(P, Q) =

∑

x∈P ∪Q

∑

y∈P ∪Q βxβy exp
(

− ‖x − y‖2
)

where βx is 1
|P | if x ∈ P and − 1

|Q| if

x ∈ Q, we have

D
2
K(P, Q) =

∑

x∈P ∪Q

∑

y∈P ∪Q

βxβy

〈

exp(− ‖x‖2
)

√

2i

i!
x⊗i, exp(− ‖y‖2

)

√

2i

i!
y⊗i

〉

=

∞
∑

i=0

∥

∥

∥

∥

∥

∥

∑

x∈P ∪Q

βx exp(− ‖x‖2
)

√

2i

i!
x⊗i

∥

∥

∥

∥

∥

∥

2

.

◮ Theorem 9. For any ε, R, α > 0, let G be randomly chosen from

GaussianSketchHDm1,...,ms,s with mi = O
(

i
ε2

)

and s = Θ

(

log
4 exp(2R2)

α

log
(

1
2eR2 log 4 exp(2R2)

α

)

)

. Let

Λd
R = {x ∈ R

d | ‖x‖2 ≤ R}. Define a mapping function F from any X ⊂ Λd
L so F (X) =

∑

x∈X G(x), which is a vector in R
m where m =

∑s
i=1 mi. Then for any P, Q ⊂ Λd

R with

probability at least 9/10

∣

∣‖F (P) − F (Q)‖2 − D
2
K(P, Q)

∣

∣ ≤ εD
2
K(P, Q) + α.

The mapping G : R
d → R

m can be computed in O(s3

ε2 log s
ε + s2d) time.

J. Phillips and W.M. Tai 13

Proof. Suppose G(x) ∈ R
m with (mi−1 + 1)th coordinate to mith coordinate be

√

2i−1

(i−1)! exp(− ‖x‖2
)Ti(x

⊗i−1). Here, Ti is randomly chosen from

RecursiveTensorSketchd,mi,i−1 for i = 1, . . . , s.

We first need to invoke Lemma 4 to inherit the appropriate concentration bounds from the

RecursiveTensorSketch. We use t× ds−1
d−1 matrices A and B as just row vectors with t =

1, and let A = B. In particular, define this single row as z =
∑

x∈P ∪Q βx[z
(1)
x , z

(2)
x , . . . , z

(s)
x],

then the conclusion of Lemma 4 is that with probability at least 1 − δ

∣

∣

∣

∣

∣

∣

∣

‖z‖2 −

∥

∥

∥

∥

∥

∥

∑

x∈P ∪Q

βxG(x)

∥

∥

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

∣

∣

2

=
∥

∥

∥‖z‖2 − zST SzT
∥

∥

∥

2

F
≤ ε2 ‖z‖4

.

So by Lemma 7 the truncation by only s terms can be accounted for as

D
2
K(P, Q) − ‖z‖2 = βT (KP ∪Q − KHD

P ∪Q,s))β ≤ 4d exp(2dL2)(2eL2/s)2 ≤ α,

where KP ∪Q and KHD
P ∪Q,s are defined as in Lemma 7 with X = P ∪ Q.

Combining these together we have

(1 − ε)(D2
K(P, Q) − α) ≤ (1 − ε)‖z‖2 ≤ ‖F (P) − F (Q)‖2 ≤ (1 + ε)‖z‖2 ≤ (1 + ε)D2

K(P, Q).

and hence as desired

∣

∣‖F (P) − F (Q)‖2 − D
2
K(P, Q)

∣

∣ ≤ εD
2
K(P, Q) + α.

Recall that the running time of G for mapping a point is O(
∑s

i=1 imi log mi + id) =

O(
∑s

i=1
i2

ε2 log i
ε + id) = O(s3

ε2 log s
ε + s2d). ◭

4 Extensions and Data Analysis Implications

There are many data analysis applications where useful sketched bounds almost immediately

follow from this new embedding. Before we begin, we start by improving the dimensionality

of the embedding with a simple post-processing. We can applying a Johnson-Lindenstrauss-

type embedding [25, 3, 4, 1] to the m-dimensional space to obtain O(1/ε2)-dimensional space

that, with constant probability, preserves the distance of a pair of point sets. Furthermore,

we can use median trick to boost the success probability to 1 − δ by running O(log 1
δ)

independent copies. For applications in kernel two-sample hypothesis testing and nearest

neighbor searching, setting δ depends on the number of queries q we make, for instances

the bounded number needed for k-means clustering [16], now applied to kernel k-means.

These results are useful for reducing the storage space of data representations. Recall that

the running time of JL embedding from m-dimensional space to ρ-dimensional space is

O(m log ρ + ρ2) [3, 4].

4.1 Kernel Two-Sample Test

The kernel two-sample test [24] is a “non-parametric” hypothesis test between two probab-

ility distributions represented by finite samples P and Q; let n = |P ∪ Q|. Then this test

simply calculates DK(P, Q), and if the value is large enough it rejects the null hypothesis that

P and Q represent the same distribution. Since its introduction a few year ago it has seen

many applications and relations; see the recent 140 page survey [33]. Zhao and Deng [48]

14

proposed to speed this test up for large sets using RFFs which improves runtime and in

some cases even statistical power. While several improvements are suggested [47] including

using FastFood [29], these all only provide additive ε-error.

Consider P ∼ µP and Q ∼ µQ. If µP = µQ, then empirical distributions P, Q may have

DK(P, Q) = Θ(1/n). Hence distinguishing the case of µP = µQ from them not being equal

would either require additive error ε = Θ(1/n), or relative (1 + ε)-error with a minimum

Θ(1/n) additive error. RFFs would require Θ(1/ε2) = Θ(n2) dimensions, so one may just as

well compute DK(P, Q) exactly in O(n2) time. In our approach, we can set ε to be a constant

(say ε = 0.2) and α to be Θ(1/n). Assuming a constant region diameter, the total running

time is O
(

n log n
log log n

)

in the low dimensional case (by Theorem 8) or O
(

n log2 n(log n+d)
log2 log n

)

in

the high dimensional case (by Theorem 9).

Another way to determine if DK(P, Q) should estimate P and Q as distinct, is to run

permutation tests. That is for some large number (e.g., q = 1000) of trials, select two sets

Pj , Qj iid from P ∪ Q, of size |P | and |Q| respectively. For each generated pair we calculate

(or estimate using Theorem 8 or Theorem 9) the value of DK(Pj , Qj), and then use the

95th-percentile of these values as a threshold. Note since each Pj , Qj is drawn from the

same domain as P, Q, then the guarantees on the accuracy of the featurized estimate carries

over directly even under a large q number of permutations.

4.2 LSH for Point Sets, Geometric Distributions

The new results also allow us to immediately design LSH and nearest neighbor structures for

the kernel distance by relying on standard Euclidean LSH [6]. Building a search engine for

low-dimensional shapes [21] has long been a goal in computational geometry and geometric

modeling. A difficulty arises in that many of the best-known shape distance measures require

an alignment (e.g., Frechet [20, 5] or earth movers [11]) which creates many challenges in

designing LSH-type procedures. Some methods have been designed, but with limitations,

e.g., on point set size for earth mover distance [7] or number of segments in curves for

discrete Frechet [18]. The kernel distance provides an alternative distance for shapes, low-

dimensional distributions, or curves [26]; it can encode normals or tangents as well to encode

direction information of curves [23]. That is, given two shapes composed of (or approximated

by) point sets Pi, Pj , the distance between the shapes is simply DK(Pi, Pj).

Given a family of point sets P = {P1, P2, . . . , PN } such that each Pi ⊂ R
d has size at

most n, an ε-approximate nearest neighbor of a query point set Q is a point set P̂ ∈ P

so that DK(P̂ , Q) ≤ (1 + ε) minPj∈P DK(Pj , Q). Here, we assume that DK(Pi, Pj) ≥ α′

for any i 6= j. For ε ≤ 1/2, we can embed each Pj to F (Pj) ∈ R
D, and then invoke

the key result from Andoni and Indyk [6] for a c′-approximate nearest neighbor, so the

total error factor is c′(1 + ε). Overall, we can retrieve a c-approximate nearest neighbor

(setting c = c′(1 + ε)) to a query Q ⊂ R
d with O(DN1/c2+o(1)) query time after using

O(DN1+1/c2+o(1)) space and O(DN1+1/c2+o(1)+N(
n log 1

εα′

log log 1
εα′

+ 1
ε2 log 1

ε)) preprocessing when

d is small or O(DN1+1/c2+o(1) + Nn(
log2 1

εα′
(log 1

εα′
+d)

ε2 log2 log 1
εα′

)) preprocessing when d is large, both

assuming a data region with constant diameter.

References

1 Dmitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary

coins. Journal of Comp. & Sys. Sci., 66:671–687, 2003.

J. Phillips and W.M. Tai 15

2 Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Velingker,

David P Woodruff, and Amir Zandieh. Oblivious sketching of high-degree polynomial kernels.

In SODA, 2020.

3 Nir Ailon and Edo Liberty. Fast dimension reduction using rademacher series on dual bch

codes. Discrete & Computational Geometry, 42(615), 2009.

4 Nir Ailon and Edo Liberty. An almost optimal unrestricted fast johnson-lindenstrauss trans-

form. In SODA, 2011.

5 Helmut Alt and Leonidas J. Guibas. Discrete geometric shapes: Matching, interpolation, and

approximation: A survey. In Handbook of Computational Geometry. -, 1996.

6 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions. In FOCS, 2006.

7 Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over high-

dimensional spaces. In SODA, 2008.

8 N. Aronszajn. Theory of reproducing kernels. Trans. AMS, 68:337–404, 1950. URL:

http://www.jstor.org/stable/1990404.

9 Haim Avron, Michael Kapralov, Cameron Musco, Chistopher Musco, Ameya Velingker, and

Amir Zandier. Random fourier features for kernel ridge regression: Approximation bounds

and statistical guarantees. In ICML, 2017.

10 Haim Avron, Huy L. Nguyen, and David P. Woodruff. Subspace embeddings for the polyno-

mial kernel. In NIPS, 2014.

11 Khanh Do Ba, Huy L. Nguyen, Huy N. Nguyen, and Ronnit Rubinfeld. Sublinear time

algorithms for earth mover’s distance. Theory Comput Syst, 48:428–442, 2011.

12 Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high

dimensions. In FOCS, 2017.

13 Edgar Chav́ez, Ana C. Chávez Cáliz, and Jorge L. López-López. Affine invariants of general-

ized polygons and matching under affine transformations. Computational Geometry: Theory

and Applications, 58:60–69, 2017.

14 Di Chen and Jeff M. Phillips. Relative error embeddings for the gaussian kernel distance. In

Algorithmic Learning Theory, 2017.

15 Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the streaming model.

In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 205–

214. ACM, 2009.

16 Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Mădălina Persu.

Dimensionality reduction for k-means clustering and low rank approximation. In STOC,

2015.

17 Andrew Cotter, Joseph Keshet, and Nathan Srebro. Explicit approximations of the gaussian

kernel. arXiv preprint arXiv:1109.4603, 2011.

18 Anne Driemel and Francesco Silvestri. Locality-sensitive hashing of curves. In 33rd Interna-

tional Symposium on Computational Geometry, 2017.

19 Petros Drineas and Michael W Mahoney. On the nyström method for approximating a

gram matrix for improved kernel-based learning. The Journal of Machine Learning Research,

6:2153–2175, 2005.

20 Thomas Eiter and Heikki Mannila. Computing discrete Frechet distance. Technical report,

Christian Doppler Laboratory for Expert Systems, 1994.

21 Thomas Funkhouser, Patrick Min, Michael Kazhdan, Joyce Chen, Alex Halderman, David

Dobkin, and David Jacobs. A search engine for 3D models. ACM Transactions on Graphics,

22:83–105, 2003.

22 Mina Ghashami, Daniel Perry, and Jeff M. Phillips. Streaming kernel principal component

analysis. In AIStats, 2016.

23 Joan Glaunès and Sarang Joshi. Template estimation form unlabeled point set data and

surfaces for computational anatomy. In Math. Found. Comp. Anatomy, 2006.

http://www.jstor.org/stable/1990404

16

24 Arthur Gretton, Marsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alex J.

Smola. A kernel two-sample test. Journal of Machine Learning Research, 13:723–773, 2012.

25 William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz maps into a Hilbert

space. Contemporary Mathematics, 26:189–206, 1984.

26 Sarang Joshi, Raj Varma Kommaraju, Jeff M. Phillips, and Suresh Venkatasubramanian.

Comparing distributions and shapes using the kurrent distance. In Proceedings 27th Annual

Symposium on Computational Geometry, 2011. arXiv:1001.0591.

27 Ravi Kannan, Santosh Vempala, and David Woodruff. Principal component analysis and

higher correlations for distributed data. In Conference on Learning Theory, pages 1040–1057,

2014.

28 Kasper Green Larsen and Jelani Nelson. Optimality of the johnson-lindenstrauss lemma. In

FOCS, 2017.

29 Quoc Le, Tamás Sarlós, and Alex Smola. Fastfood — approximating kernel expansions in

loglinear time. In ICML, 2013.

30 David Lopez-Paz, Suvrit Sra, Alex Smola, Zoubin Ghahramani, and Bernhard Schölkopf.

Randomized nonlinear component analysis. ICML, 2014.

31 J. Mercer. Functions of positive and negative type, and their connection with the theory of in-

tegral equations. Philosophical Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 209:441–458, 1909.

32 Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. Ker-

nel mean embedding of distributions: A review and beyond. arXiv preprint arXiv:1605.09522,

2016.

33 Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. Ker-

nel mean embedding of distributions: A review and beyond. Foundations and Trends in

Machine Learning, 10:1–141, 2017.

34 Cameron Musco and David Woodruff. Is input sparsity time possible for kernel low-rank

approximation? In NeurIPS, 2017.

35 Cameron Musco and David P. Woodruff. Sublinear time low-rank approximation of positive

semidefinite matrices. In FOCS, 2017.

36 Jeff M. Phillips and Suresh Venkatasubramanian. A gentle introduction to the kernel distance.

Technical report, Arxiv:1103.1625, 2011.

37 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances

in neural information processing systems, pages 1177–1184, 2007.

38 Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fukumizu. Equivalence

of distance-based and rkhs-based statistics in hypothesis testing. The Annals of Statistics,

pages 2263–2291, 2013.

39 Alex J. Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A Hilbert space embedding

for distributions. In ICALT, 2007.

40 Bharath Sriperumbudur et al. On the optimal estimation of probability measures in weak

and strong topologies. Bernoulli, 22(3):1839–1893, 2016.

41 Bharath Sriperumbudur and Nicholas Sterge. Approximate kernel pca using random features:

Computational vs. statistical trade-off. Technical report, arXiv: 1706.06296, 2018.

42 Bharath K. Sriperumbudur, Kenji Fukumizu, and Gert R. G. Lanckriet. Universality, char-

acteristic kernels and rkhs embedding of measures. JMLR, pages 2389–2410, 2011.

43 Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert

R. G. Lanckriet. Hilbert space embeddings and metrics on probability measures. Journal of

Machine Learning Research, 11:1517–1561, 2010.

44 Enayat Ullah, Poorya Mianjy, Teodor V. Marinov, and Raman Arora. Streaming kernel pca

with õ(
√

n) random features. In NeruIPS, 2018.

45 Shusen Wang, Alex Gittens, and Michael W. Mahoney. Scalable kernel k-means clustering

with nystrom approximation: Relative-error bounds. JMLR, [arXiv:1706.02803], (to appear).

J. Phillips and W.M. Tai 17

46 David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends

in Theoretical Computer Science, 10:1–157, 2014.

47 Wojciech Zaremba, Arthur Gretton, and Matthew Blaschko. B-tests: Low variance kernel

two-sample tests. In NIPS, 2013.

48 Ji Zhao and Deyu Meng. Fastmmd: Ensemble of circular discrepancy for efficient two-sample

test. Neural Computation, 27:1354–1372, 2015.

A Gaussian Kernel PCA

Let k be a positive integer and ε > 0. Avron et al. [10] provide the following algorithm.

Suppose S and T are randomly chosen from RecursiveTensorSketchs,m,d and

RecursiveTensorSketchs,r,d respectively where m = Θ(d(k2 + k
ε)) and r = Θ(dm2

ε2).

Given n vectors v(1), . . . , v(n) ∈ R
sd

, compute n × m matrix M with ith row as S(v(i)) and

n × r matrix N that ith row as T (v(i)). Let U be the orthonormal basis for column space

of M and W be m × k matrix containing top k left singular vector of UT N . Finally, return

V = UW . This algorithm has the following guarantee.

◮ Lemma 10 ([10] with straightforward modification). Given a n-by-sd matrix A, a positive

integer k and ε > 0. The above algorithm that has rows of A as input returns a matrix V

such that

∥

∥A − V V T A
∥

∥

2

F
≤ (1 + ε) ‖A − [A]k‖2

F

where [A]k is the best rank-k approximation of A.

Now, we can directly modify the above algorithm into our context for rank-k Gaussian

low-rank approximation. Given a point set X = {x1, . . . , xn} ⊂ R
d and a positive integer s.

Suppose G and H are randomly chosen from GaussianSketchm,s and GaussianSketchr,s

respectively. Recall that m = Θ(d(k2 + k
ε)) and r = Θ(dm2

ε2). Compute the n × m matrix M

with ith row as G(xi) and n × r matrix N with ith row as H(xi). Let U be the orthonormal

basis for column space of M and W be m × k matrix containing top k left singular vector

of UT N . Finally, return V = UW .

◮ Theorem 11. Let ε, L, α > 0 and s = Θ

(

log
4n2d exp(2dL2)

α

log
(

1
2eL2 log

4n2d exp(2dL2)
α

)

)

. For Ωd
L = {x ∈ R

d |

‖x‖∞ ≤ L} and X ⊂ Ωd
L, and let AX be a pd matrix with elements (AX)i,j = K(xi, xj) =

exp(− ‖xi − xj‖2
) for xi, xj ∈ X and factorization AX = BXBT

X . Then with constant

probability

∥

∥BX − V V T BX

∥

∥

2

F
≤ (1 + ε) ‖BX − [BX]k‖2

F + α.

The runtime to compute V is O
(

nds + n
d4(k2+ k

ε)3

ε2

)

.

Proof. Let v
(i)
x be a vector in R

s with jth coordinate to be exp(−x2
i)

√

2j−1

(j−1)! x
j−1
i for any

x ∈ R
d.

By Lemma 10, taking As as an n × sd matrix with ith row as v
(1)
xi ⊗ · · · ⊗ v

(d)
xi . We have

∥

∥As − V V T As

∥

∥

2

F
≤ (1 + ε) ‖As − [As]k‖2

F

From Lemma 6, vT (BXBT
X − AsAT

s)v ≤ (
∑n

i=1 |vi|)2
d exp(2dL2)

(

2eL2

s

)s

≤ α/n. To

see this expression is at most α/n, first observe that columns of V are orthonormal, and

18

therefore, the norm of each row of I − V V T is at most 2. Hence, (
∑n

i=1 |vi|)2 ≤ 4n. Then

the choice of s and Lemma 5 with ξ = 4n2, a = d exp(2dL2) and b = 2eL2 complete this

derivation.

We now have

∥

∥BX − V V T BX

∥

∥

2

F
= Tr((I − V V T)BXBT

X(I − V V T)T)

≤
∥

∥As − V V T As

∥

∥

2

F
+ Tr((I − V V T)(BXBT

X − AsAT
s)(I − V V T)T)

≤
∥

∥As − V V T As

∥

∥

2

F
+ α

On the other hand, by Lemma 1, BXBT
X − AsAT

s is still positive definite. Therefore,

‖As − [As]k‖2
F

=
∥

∥As − UUT As

∥

∥

2

F
where U is the matrix of top-k left singular vectors of As

≤
∥

∥As − U ′U ′T As

∥

∥

2

F
where U is the matrix of top-k left singular vectors of BX

= ‖BX − [BX]k‖2
F − Tr((I − U ′U ′T)(BXBT

X − AsAT
s)(I − U ′U ′T))

≤ ‖BX − [BX]k‖2
F recall that BXBT

X − AsAT
s is positive definite

We can plug in everything.

∥

∥BX − V V T BX

∥

∥

2

F
≤

∥

∥As − V V T As

∥

∥

2

F
+ α

≤ ‖As − [As]k‖2
F + α

≤ ‖BX − [BX]k‖2
F + α.

To see the running time, it takes O(d(s+m log m)) to compute G(·) and O(d(s+r log r))

time to compute H(·), and hence n times as much to compute matrices M and N . We

can compute the basis U of M in O(nm2) time, and the projection UT N in O(nrm) time.

The basis W takes O(rm2) time, and the final low rank basis V = UW takes O(nmk)

time. Thus the total runtime is O(nd(s + m log m + r log r) + nm2 + nrm + rm2 + nmk) =

O(nd(s + rm)) using that r > m2 > k4 that m > log r, and assuming n > r. Now using

m = O(d(k2 + k/ε)) and r = O(dm2/ε2) = O(d3(k4 + k2/ε2)/ε2) and we have a total time

of O
(

nds + n
d4(k2+ k

ε)3

ε2

)

. ◭

Gaussian Low Rank Approximation with Gaussian Sketch HD in High Dimensions. Now,

we can also modify the above algorithm into our context for rank-k Gaussian low-rank

approximation in another way. Given a point set X = {x1, . . . , xn} ⊂ R
d and a positive

integer s. Suppose G and H are randomly chosen from GaussianSketchHDm1,...,ms,s and

GaussianSketchHDr1,...,rs,s respectively. Here, mi = Θ(i(k2 + k
ε)) and ri = Θ(im2

ε2) where

m =
∑s

i=1 mi. Compute the n × m matrix M with ith row as G(xi) and n × r matrix N

with ith row as H(xi). Let U be the orthonormal basis for column space of M and W be

m × k matrix containing top k left singular vector of UT N . Finally, return V = UW .

Note that a hash function in GaussianSketchHD is not directly applying a hash func-

tion in RecursiveTensorSketch. Therefore, Lemma 10 cannot be directly applied. How-

ever, we can still exploit the structure of it in order to prove the same lemma.

As Avron et al. [10] suggest, it is generally possible by combining Lemma 4 and arguments

in [10, 15, 27]. We have the following lemma. Here, denote As is a n × ds−1
d−1 matrix that ith

row as zxi for given point set X = {x1, x2 . . . , xn} ⊂ R
d.

J. Phillips and W.M. Tai 19

◮ Lemma 12. Given a point set X ⊂ R
d, a positive integer k and ε > 0. The above

algorithm returns a matrix V such that

∥

∥As − V V T As

∥

∥

2

F
≤ (1 + ε) ‖As − [As]k‖2

F

where [A]k is the best rank-k approximation of A.

Before getting into Lemma 12, the following lemma from [10] which is implied by Lemma

4 would be helpful.

◮ Lemma 13 ([10] implied by Lemma 4 with straightforward modification). For any positive in-

teger k′, given any ds−1
d−1 ×k′ matrix B with orthonormal columns, we have

∥

∥BT ST SB − I
∥

∥

2
≤

ε. Here, S is randomly chosen from GaussianSketchHDn1,...,ns,s where ni = ik′2

ε2 .

Proof. (of Lemma 12)

In the proof of Theorem 3.1 from [15], the only properties of S used are

Given any ds−1
d−1 ×k matrix B with orthonormal columns, we have

∥

∥BT ST SB − I
∥

∥

2
≤ ε0

for some constant ε0 > 0

For any two matrices A, B with ds−1
d−1 columns,

∥

∥ABT − AST SBT
∥

∥

F
≤

√

ε
k ‖A‖F ‖B‖F

The first property can be shown by Lemma 13 since we pick mi = Ω(ik2) and the second

property can be shown by Lemma 4 since we pick mi = Ω(ik
ε). Also, Theorem 3.1 of

[15] implies Lemma 4.2 of [15] which means there is a matrix Z such that ‖UZ − As‖F ≤
(1 + ε) ‖As − [As]k‖F in our context. Combining Lemma 4.3 of [15], we have

∥

∥U [UT As] − As

∥

∥

F
≤ (1 + ε) ‖As − [As]k‖F (2)

Now, Lemma 13 implies Lemma 2.1 from [27] and further implies

∥

∥WW T UT As − As

∥

∥

f
≤ (1 + ε) ‖As − [As]k‖F (3)

by setting k′ in Lemma 13 be m and picking ri = Θ(3im2

ε2). Using equation (2) and (3)

in the proof of Theorem 1.1 from [27], we have our conclusion
∥

∥As − UWW T UT As

∥

∥

2

F
=

∥

∥As − V V T As

∥

∥

2

F
≤ (1 + ε) ‖As − [As]k‖2

F .

◭

◮ Theorem 14. Let ε, R, α > 0 and s = Θ

(

log
4n2 exp(2R2)

α

log
(

1
2eR2 log

4n2 exp(2R2)
α

)

)

. For Λd
R = {x ∈ R

d |

‖x‖2 ≤ R} and X ⊂ Λd
R, and let AX be a pd matrix with elements (AX)i,j = K(xi, xj) =

exp(− ‖xi − xj‖2
) for xi, xj ∈ X and factorization AX = BXBT

X . Then with constant

probability

∥

∥BX − V V T BX

∥

∥

2

F
≤ (1 + ε) ‖BX − [BX]k‖2

F + α.

The runtime to compute V is O(nds2 + n
34s(k2+ k

ε)3

ε2).

Proof. By Lemma 12, we have

∥

∥As − V V T As

∥

∥

2

F
≤ (1 + ε) ‖As − [As]k‖2

F .

From Lemma 7, vT (BXBT
X − AsAT

s)v ≤ (
∑n

i=1 |vi|)2
exp(2R2)

(

2eR2

s

)s

≤ α/n with our

setting of s as long as (
∑n

i=1 |vi|)2 ≤ 4n. Indeed the columns of V are orthonormal, so the

norm of each row of I − V V T is at most 2, and thus (
∑n

i=1 |vi|)2 ≤ 4n.

20

We now have

∥

∥BX − V V T BX

∥

∥

2

F
= Tr((I − V V T)BXBT

X(I − V V T)T)

≤
∥

∥As − V V T As

∥

∥

2

F
+ Tr((I − V V T)(BXBT

X − AsAT
s)(I − V V T)T)

≤
∥

∥As − V V T As

∥

∥

2

F
+ n · (α/n)

Also by Lemma 2, BXBT
X − AsAT

s is still positive definite. Therefore,

‖As − [As]k‖2
F

=
∥

∥As − UUT As

∥

∥

2

F
where U is the matrix of top-k left singular vectors of As

≤
∥

∥As − U ′U ′T As

∥

∥

2

F
where U ′ is the matrix of top-k left singular vectors of BX

= ‖BX − [BX]k‖2
F − Tr((I − U ′U ′T)(BXBT

X − AsAT
s)(I − U ′U ′T))

≤ ‖BX − [BX]k‖2
F recall that BXBT

X − AsAT
s is positive definite

We can plug in everything.

∥

∥BX − V V T BX

∥

∥

2

F
≤

∥

∥As − V V T As

∥

∥

2

F
+ α

≤ ‖As − [As]k‖2
F + α

≤ ‖BX − [BX]k‖2
F + α

To see the running time, it takes O(
∑s

i=1 i(d + mi log mi)) to compute G(·) and

O(
∑s

i=1 i(d + ri log ri)) time to compute H(·). Using that ri > m2
i > k4 and mi > 1/ε

then it takes less time to compute H(·) than G(·), and this runtime is O(ds2 + s2rs log rs) =

O(ds2 + s2r log r) since the ri values are exponentially increasing in i, and so rs = O(r) for

r =
∑s

i=1 ri. The time to compute M and N is n time longer.

We can compute the basis U of M in O(nm2) time, and the projection UT N in O(nrm)

time – this step is the post-sketch bottlneck. The basis W takes O(rm2) time, and the final

low rank basis V = UW takes O(nmk) time. Thus the total runtime is O(n(ds2 +s2r log r)+

nm2 + nrm + rm2 + nmk) = O(n(ds2 + rm)) using that r > m2 > k4 that m > s2 log r, and

assuming n > r. Now using m = O(s2(k2+k/ε)) and r = O(sm2/ε2) = O(s3(k4+k2/ε2)/ε2)

and we have a total time of O(nds2 + ns4(k2 + k
ε)3/ε2). ◭

	1 Introduction
	1.1 Comparison to Other Recent Work on Large Data and Kernels

	2 The GaussianSketch and its Properties
	2.1 Concentration Bounds for GaussianSketch and GaussianSketchHD
	2.2 Truncation Bounds for GaussianSketch and GaussianSketchHD

	3 Application to the Gaussian Kernel Distance
	4 Extensions and Data Analysis Implications
	4.1 Kernel Two-Sample Test
	4.2 LSH for Point Sets, Geometric Distributions

	A Gaussian Kernel PCA

