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ABSTRACT
We study learning-based trading strategies in markets where prices
can be manipulated through spoofing: the practice of submitting
spurious orders to mislead traders who use market information. To
reduce the vulnerability of learning traders to such manipulation,
we propose two variations based on the standard heuristic belief
learning (HBL) trading strategy, which learns transaction probabili-
ties from market activities observed in an order book. The first vari-
ation selectively ignores orders at certain price levels, particularly
where spoof orders are likely to be placed. The second considers
the full order book, but adjusts its limit order price to correct for
bias in decisions based on the learned heuristic beliefs. We employ
agent-based simulation to evaluate these variations on two criteria:
effectiveness in non-manipulated markets and robustness against
manipulation. Background traders can adopt (non-learning) zero
intelligence strategies or HBL, in its basic form or the two variations.
We conduct empirical game-theoretic analysis upon simulated pay-
offs to derive approximate strategic equilibria, and compare equi-
librium outcomes across a variety of trading environments. Results
show that agents can strategically make use of the option to block
orders to improve robustness against spoofing, while retaining a
comparable competitiveness in non-manipulated markets. Our sec-
ond HBL variation exhibits a general improvement over standard
HBL, in markets with and without manipulation. Further explo-
rations suggest that traders can enjoy both improved profitability
and robustness by combining the two proposed variations.

1 INTRODUCTION
The increasing automation of trading and interconnectedness of
markets have transformed the financial market from a human de-
cision ecosystem to an algorithmic one. With trades happening
on an extremely short timescale, often beyond the limit of human
decision-making, algorithms, or autonomous agents, are developed
to operate on behalf of human traders. They learn from new in-
formation, make decisions, and interact with each other at an un-
precedented speed and complexity. Whereas automated trading
and the consequent use of learning-based trading algorithms may
improve efficiency in some respects, they have also made new forms
of disruptive and manipulative practices possible.

In this paper, we study the strategic dynamics between traders
who learn from trading actions of other market participants and
a manipulator who creates artificial activities to maneuver others’
pricing beliefs. We focus on a common form of order-based market
manipulation, called spoofing. It is achieved by submitting large
spurious orders that are not intended for execution, but rather to
fool other traders. By feigning a strong buy or sell interest, spoof
orders may persuade other traders—those who learn from market
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Figure 1: Overview of the game between traders who learn
from order book information to trade and a manipulator
who injects spoof orders tomaneuver others’ pricing beliefs.

information—to believe that prices may soon rise or fall, thus al-
tering their behavior in a way that directly moves the price. Here,
both learning and manipulation rely on the order book disclosed by
a standard financial exchange as an interface. It lists outstanding
orders and reflects the aggregate supply and demand for a particular
security at any given time.

In ideal markets without manipulation, there is real informa-
tion to be gleaned from the order book, and thus, strategies that
learn from observable market activity have an advantage over
those that neglect such information. The less sophisticated non-
learning strategies, however, have the advantage of being oblivious
to spoofers, and thus, are not manipulable. The question we in-
vestigate is whether learning-based strategies can be designed to
be similarly robust to spoofing. Specifically, we consider scenarios
similar to real-world markets where traders are aware of potential
manipulation, but fail to perfectly detect spoof orders in real time.
We seek to identify strategies by which individual traders can learn
from market information, but in less vulnerable ways.

We start with one representative learning-based trading strategy,
proposed by Gjerstad [6] and referred to as heuristic belief learning
(HBL), which learns a belief state over acceptance of hypotheti-
cal buy and sell orders from historical trading activities. HBL was
previously adopted in the agent-based model of spoofing by Wang
and Wellman [16], where it was shown to be susceptible to simple
spoofing strategies. Here, we treat the original HBL as a baseline
strategy, and propose two variations that aim to reasonably trade off
learning effectiveness in non-manipulated markets for robustness
against manipulation. The first variation works by selectively ignor-
ing orders at certain price levels, particularly where spoof orders
are likely to be placed to fool other traders. The second variation
considers the full order book, but has the flexibility to adjust the
offer price by a stochastic offset. The adjustment serves to correct
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biases in learned price beliefs either caused by manipulation or the
intrinsic limitation built in the belief function.

We employ agent-based simulation to evaluate the proposed
variations in terms of the effectiveness in non-manipulated markets
and robustness against manipulation. Our market model imple-
ments a continuous double auction (CDA) market where multiple
background trading agents and one exploiter follow their respective
strategies to trade a single security. The exploiter makes profit by
first buying the underlying security at low prices and later selling
at higher prices. To increase its profit, the exploiter may choose to
spoof the market after its original purchase to manipulate prices up.
Background traders have private values on holding long or short
positions on the underlying security. They may choose to follow pa-
rameterized strategy instances from either the non-spoofable zero
intelligence (ZI) family or the learning-based HBL family which
includes its basic form and our two proposed variations.

We conduct extensive simulation over hundreds of strategy pro-
files across parametrically distinct market environments with and
without manipulation to derive empirical equilibria. We then evalu-
ate the strategy performances and market outcomes in equilibrium
where every agent chooses its best response to both the market
environment and others’ behavior. Our results show that learning
traders can strategically make use of the option to block orders
to improve robustness against spoofing, while retaining a compa-
rable competitiveness in non-manipulated markets. Our second
HBL variation exhibits a general improvement over the baseline
HBL, in markets with and without manipulation. Further explo-
rations suggest that traders can enjoy both improved profitability
and robustness by combining the two HBL variations.

Roadmap. In the next section, we present additional background
on market manipulation, and discuss related work on modeling
and mitigating manipulation. Section 3 describes our agent-based
market model, and formally defines the two proposed strategy varia-
tions of HBL. In Section 4, we present results from extensive simula-
tion, employing control experiments and empirical game-theoretic
analysis to evaluate the two variations. Section 5 concludes.

2 RELATEDWORK
2.1 Background on Market Manipulation
The US Securities and Exchange Commission formally defines mar-
ket manipulation as “intentional conduct designed to deceive in-
vestors by artificially affecting the market.” Spoofing, as a specific
manipulation strategy, has been outlawed under the 2010 Dodd-
Frank Wall Street Reform and Consumer Protection Act. Despite
the regulatory enforcement, detecting manipulation in real time or
even after the fact from high-volume, high-velocity order streams
is challenging. Legal definitions cannot be easily translated to com-
puter programs to direct detection, and the lack of datasets with
actual order streams identified as cases of manipulation makes
training a reliable detector infeasible. Moreover, though trading
activities are observable, the intent and effect of misleading others
behind certain activities is hard to verify purely from data. For both
reasons, we follow prior literature that studies phenomena in finan-
cial markets [8, 9, 13, 16] in pursuing an agent-based simulation
approach to incorporate causal premises and evaluate the effects of
proposed strategies.

2.2 A Computational Model of Spoofing
We build our study on an existing agent-based model of spoofing
developed by Wang and Wellman [16]. The model illustrates the
strategic interactions between a manipulator and two groups of
background traders: those who use and do not use market infor-
mation to trade. In their model, learning traders who adopt the
standard HBL trading strategy can benefit social welfare, but their
existence also renders a market vulnerable to manipulation. The
designed spoofing strategy can effectively fool HBL traders about
the market state, and make profits from their spoofed pricing beliefs.
A comparison of equilibrium outcomes shows that manipulation
decreases the proportion of learning traders in equilibrium and
hurts market welfare.

Our work extends the prior spoofing model to study effective
adjustments that can be made on learning-based trading strategies
to resist manipulation.We treat the standard HBL as a baseline strat-
egy, and explore an expanded strategy space (i.e., the two proposed
variations) to find strategic adaptations that can improve its robust-
ness while not compromising much on the learning effectiveness.

2.3 Proposals to Mitigate Market Manipulation
Due to difficulties in directly detecting manipulation, regulators
and researchers seek systematic approaches to render manipulative
practices uneconomical. For example, advocates propose to impose
cancellation fees to increase the cost of manipulative strategies
that rely on massive cancellations to avoid transaction risk [1, 10].
Opponents argue that such cancellation fees could instead make
liquidity providers suffer from adverse selection and react slowly to
new information [3, 5]. Wang et al. [15] propose to deter spoofing
by strategically cloaking certain market information, introducing
risks and difficulties for the manipulator to post misleading bids.
They show that hiding certain price levels in the order book sig-
nificantly diminishes the efficacy of spoofing, but can be at the
cost of degrading the general usefulness of market information in
non-manipulated markets. Our first strategy variation is inspired by
the cloaking mechanism, but works by granting individual traders
the flexibility to decide which prices to ignore.

3 MARKET MODEL AND TRADING
STRATEGIES

3.1 Market Mechanism
We model the trading of a single security in a CDA market mech-
anism. Agents trade the security by submitting limit orders that
specify the maximum (minimum) price at which they would be
willing to buy (sell) some number of units. Limit order prices take
on discrete integer values with a tick size of one. The market main-
tains a limit order book of outstanding orders, from which traders
may learn at their own discretion.

Our market model is implemented in a discrete-event simulation
systemwhere time is discrete over a finite horizon𝑇 . The fundamen-
tal value 𝑟𝑡 of the underlying security changes over time according
to a mean-reverting stochastic process [2, 14]: for 𝑡 ∈ [0,𝑇 ],

𝑟𝑡 = max{0, 𝜅𝑟 + (1 − 𝜅)𝑟𝑡−1 + 𝑢𝑡 } and 𝑟0 = 𝑟, (1)

where 𝜅 ∈ [0, 1] specifies the degree to which the time series
reverts back to the fundamental mean 𝑟 . 𝑢𝑡 ∼ 𝑁 (0, 𝜎2𝑠 ) represents a
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systematic random shock upon the fundamental at time 𝑡 , where 𝜎2𝑠
is the fundamental shock variance. This fundamental shock controls
the intensity of fluctuations in the time series, and consequently
influences the predictability of future price outcomes.

3.2 Agents in the Market
For the purpose of our study, we partition agents in the market
into two roles: background traders and an exploiter. Multiple back-
ground traders represent investors with private preferences on
holding long or short positions in the underlying security, whereas
the exploiter has no private value and seeks only to profit by buying
at lower prices and later selling at higher ones. We use the exploiter
to control market environments with and without manipulation. In
selected treatments, the exploiter can manipulate the market with
spoof orders to push the price up, and thereby boost profit based
on other traders’ misled beliefs.

3.2.1 Private Valuation. A background trader 𝑖 has a private value
vector Θ𝑖 of length 2𝑞max that captures its position preference. The
parameter 𝑞max specifies the maximum number of units one can be
long or short at any time. Element 𝜃𝑞+1

𝑖
represents themarginal gain

from buying an additional unit, given the current net position 𝑞. We
generate Θ𝑖 from a set of 2𝑞max values independently drawn from
𝑁 (0, 𝜎2

𝑃𝑉
), where 𝜎2

𝑃𝑉
denotes the private value variance. We then

sort elements to reflect diminishing marginal utility and assign 𝜃𝑞
𝑖

accordingly. The trader’s overall valuation for a unit of the security
is the sum of its private value and the fundamental value.

3.2.2 Background Agent Arrivals and Observations. Agents are al-
lowed to enter the market multiple times throughout a trading
period. Arrivals of a background trader follow a Poisson process
with an arrival rate of 𝜆a. On each entry, the trader observes an
agent- and time-specific noisy fundamental 𝑜𝑡 = 𝑟𝑡 + 𝑛𝑡 with the
observation noise following 𝑛𝑡 ∼ 𝑁 (0, 𝜎2𝑛), where 𝜎2𝑛 represents
the observation variance. The noisy observation captures investors’
different perceptions of the intrinsic value of the underlying secu-
rity at a given time. As this noisy observation only gives imperfect
information about the fundamental, traders can benefit from con-
sidering market information, which is influenced by the aggregate
observations and trading actions of all the other traders. To react to
a new observation, the background trader withdraws its previous
order (if not transacted) upon arrival, and submits a new single-unit
order to either buy or sell as instructed with equal probability. The
order price is jointly decided by the background trader’s valuation
and trading strategy, which we describe in detail in the next section.

3.2.3 Payoff and Surplus Calculation. We evaluate the payoffs of
individual agents at the end of a trading period. A background
trader’s surplus is its net profits from trading plus the final val-
uation of holdings at 𝑇 . Specifically, the market’s final valuation
of background trader 𝑖 with final holdings 𝐻 is 𝑟𝑇𝐻 +

∑𝑘=𝐻
𝑘=1 𝜃

𝑘
𝑖

for long position 𝐻 > 0, or 𝑟𝑇𝐻 −
∑𝑘=0
𝑘=𝐻+1 𝜃

𝑘
𝑖
for short position

𝐻 < 0. An exploiter’s payoff is simply its gain or loss from trading.
We calculate total surplus as the sum of all agents’ payoffs, and
background surplus as the sum of all background agents’ payoffs.

3.3 Background Trading Strategies
3.3.1 Estimation of the Terminal Fundamental. As security hold-
ings are evaluated at the end of a trading period, background agents
maintain an estimate of the final fundamental value, updated based
on information received at each market entry. Specifically, given a
new noisy observation 𝑜𝑡 , a trader estimates the current fundamen-
tal by updating its posterior mean 𝑟𝑡 and variance �̃�2𝑡 . Let 𝑡

′ denote
the trader’s preceding arrival time. We first update the previous
posteriors (𝑟𝑡 ′ and �̃�2𝑡 ′ ) by taking account of mean reversion for the
interval since preceding arrival (𝛿 = 𝑡 − 𝑡 ′):

𝑟𝑡 ′ ← (1 − (1 − 𝜅)𝛿 )𝑟 + (1 − 𝜅)𝛿𝑟𝑡 ′ ;

�̃�2𝑡 ′ ← (1 − 𝜅)2𝛿 �̃�2𝑡 ′ +
1 − (1 − 𝜅)2𝛿
1 − (1 − 𝜅)2

𝜎2𝑠 .

The new posterior estimates at time 𝑡 are then given by:

𝑟𝑡 =
𝜎2𝑛

𝜎2𝑛 + �̃�2𝑡 ′
𝑟𝑡 ′ +

�̃�2
𝑡 ′

𝜎2𝑛 + �̃�2𝑡 ′
𝑜𝑡 ; �̃�2𝑡 =

𝜎2𝑛�̃�
2
𝑡 ′

𝜎2𝑛 + �̃�2𝑡 ′
.

Based on the posterior estimate of 𝑟𝑡 , the trader computes 𝑟𝑡 , its
estimate at time 𝑡 of the terminal fundamental 𝑟𝑇 , by adjusting for
mean reversion:

𝑟𝑡 =
(
1 − (1 − 𝜅)𝑇−𝑡

)
𝑟 + (1 − 𝜅)𝑇−𝑡𝑟𝑡 . (2)

Notice that this estimation of the terminal fundamental is a poste-
rior update on an agent’s individual observations, and thus will not
be affected by other agents’ trading activities.

3.3.2 Zero Intelligence. We follow prior work [13, 16] in adopting
an extended and parameterized version of ZI as a representative
non-learning trading strategy. Since ZI decides order prices without
utilizing order book information, it is non-spoofable. The strategy
has been widely adopted in agent-based finance due to its simplicity
and effectiveness for market modeling [4, 7].

The ZI trader computes a limit-order price by shading its val-
uation with a random offset uniformly drawn from [𝑅min, 𝑅max].
It further takes into account the current market quote price, con-
trolled by a strategic surplus threshold parameter 𝜂 ∈ [0, 1]. Before
submitting a new limit order, if the ZI could achieve a fraction 𝜂 of
its requested surplus by accepting the most competitive order, it
would take that quote by submitting an order at the same price.

3.3.3 Heuristic Belief Learning and Its Variations. The two pro-
posed HBL variations, together with its basic form, serve as our
representative learning-based trading strategies. They use transac-
tion and order book information to decide offer prices, and thus can
be affected by others’ trading actions. Without directly detecting
any suspicious orders, the two variations expand HBL to a larger
strategy space to reduce vulnerability to manipulation. We are in-
terested in understanding their robustness against manipulation as
well as competitiveness to other trading strategies across different
market environments.

We first provide a brief description on how the standard HBL
works, and describe in detail its two variations. The HBL trading
strategy is centered on belief functions that traders form on the
basis of observed market data D in memory. Upon an arrival at
time 𝑡 , HBL estimates the probability that orders at various prices
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would be accepted in the market according to the heuristic: 1

𝑓𝑡 (P | D) =


TBL𝑡 (P |D)+AL𝑡 (P |D)

TBL𝑡 (P |D)+AL𝑡 (P |D)+RBG𝑡 (P |D) if buying,

TAG𝑡 (P |D)+BG𝑡 (P |D)
TAG𝑡 (P |D)+BG𝑡 (P |D)+RAL𝑡 (P |D) if selling.

(3)

Based on the interpolated probabilities, HBL chooses an optimal
limit price P∗

𝑖
(𝑡) that maximizes its own expected surplus at the

current valuation estimate. That is,

P∗𝑖 (𝑡) =
{
argmax𝑝 (𝑟𝑡 + 𝜃𝑞+1𝑖

− 𝑝) 𝑓𝑡 (𝑝 | D) if buying,
argmax𝑝 (𝑝 − 𝜃𝑞𝑖 − 𝑟𝑡 ) 𝑓𝑡 (𝑝 | D) if selling.

(4)

HBL with Selective Price Level Blocking. In a normal market,
traders submit orders that reflect their private observations and
preferences, and learning from others’ actions at no discretion helps
to make informed trades and benefits price discovery. Manipulation
strategies exploit such learning process, and rely on the instant
order book information disclosed by standard market mechanisms.
For instance, spoof orders are often placed at price levels just out-
side the best market quotes to mislead other investors to the largest
possible extent, and are withdrawn with high probability before
any market movement could trigger a trade.

To take advantage of such regular characteristics in misleading
bids, our first HBL variation grants agents the flexibility to neglect
limit orders at a specified price level when assembling a dataset to
learn from. The strategy extends the standard HBL with a blocking
parameter 𝐾 , which specifies the index of a price level to ignore
symmetrically from inside of the limit order book. For example,
when 𝐾 = 1, the trading agent constructs a dataset, D \𝑂𝐾=1, by
considering any order but the best bid and ask, whereas when𝐾 = 0,
the agent learns from D and acts the same as the standard HBL.
With this additional strategic parameter, agents may strategically
exclude certain price levels where spoof orders are likely to appear.
However, ignoring orders may also come at the cost of less effective
learning, especially when information that conveys true insight is
blocked from the belief function. In Section 4.4, we further evaluate
these trade-offs.

HBL with Price Offsets. Our second HBL variation considers full
order book information, and simply translates the target price P∗

𝑖
(𝑡)

derived by surplus maximization (4) with a random offset uniformly
drawn from [𝑅min, 𝑅max]. Specifically, a trader 𝑖 arriving at time 𝑡
with the calculated price P∗

𝑖
(𝑡) submits a limit order for a single

unit of the security at price

𝑝𝑖 (𝑡) ∼
{
𝑈 [P∗

𝑖
(𝑡) − 𝑅max, P∗𝑖 (𝑡) − 𝑅min] if buying,

𝑈 [P∗
𝑖
(𝑡) + 𝑅min, P∗𝑖 (𝑡) + 𝑅max] if selling.

A positive offset can be viewed as a hedge against misleading infor-
mation, effectively shading the bid to compensate for manipulation
risk. Negative offsets increase the probability of near-term trans-
action, which may have benefits in reducing exposure to future
spoofing. Offsets (positive or negative) may also serve a useful cor-
rection function even when manipulation is absent. In particular,
negative offsets may compensate for the myopic nature of HBL
1It uses the observed frequencies of transacted and rejected orders (𝑇 and 𝑅), bids and
asks (𝐵 and𝐴), and orders with prices less than or equal to and greater than or equal
to P (𝐿 and𝐺 ) within the HBL’s memory. For example, TBL𝑡 (P | D) is the number
of transacted bids found in memory at time 𝑡 with price less than or equal to P.

optimization Eq. (4), which considers only the current bid, ignoring
subsequent market arrivals and opportunities to trade additional
units. Our design here is in line with prior literature [11, 12] that
refines the original HBL to become more competitive.

3.4 Exploitation and Spoofing Strategies
We follow the CDA spoofing model [16] in using an exploitation
agent (EXP) to control market environments with and without ma-
nipulation. We extend the manipulation strategy with a spoof-price-
level parameter, which allows EXP to flexibly inject and maintain
spoof orders at a single selected price level in the order book.

The strategy includes three stages. At the beginning of a trading
period [0,𝑇spoof], EXP buys as many units as possible by accepting
any sell order at prices lower than the fundamental mean 𝑟 . During
the second stage [𝑇spoof,𝑇sell], if EXP does not spoof, it simply
waits until the selling stage. If EXP also manipulates, it submits and
maintains spoof buy orders at one tick behind a chosen price level
𝐾 with some large volume𝑄sp ≫ 1. Spoof orders aim to artificially
boost prices so that units purchased earlier in the first stage can be
later sold at higher prices. The spoof-price-level parameter allows
EXP to strategically respond to HBL traders who selectively block
orders. In such a game, EXPmay sacrifice the manipulation effect by
placing spoof orders at less influential price levels that are less likely
to be ignored by HBL traders. In Section 4.4, we conduct control
experiments to empirically evaluate how manipulation intensity
can be affected by different price levels that EXP chooses to place
spoof orders. During the last stage [𝑇sell,𝑇 ], EXP begins to sell
by accepting any buy orders at a price higher than 𝑟 . EXP, if it
also manipulates, continues to spoof until the end of the trading
period 𝑇 or when all units previously purchased are sold.

4 EMPIRICAL GAME-THEORETIC ANALYSIS
We conduct agent-based simulation of the market model described
in Section 3 to evaluate the proposed HBL variations with respect to
both effectiveness in learning and robustness against manipulation.
We explore a range of market environments varying in fundamental
volatility and observation noise. A game is defined by a specific
market environment and a strategy set fromwhich each background
trader can choose. For each game, we evaluate a wide variety of
agent strategy assignments, or profiles. To evaluate strategies in a
profile, we calculate the average payoff of agents adopting the same
strategy in the profile, averaged over at least 40,000 simulations
to account for stochastic effects such as the market fundamental
series, agent arrival patterns, and private valuations.

As not all strategic contexts are equally relevant for evaluation,
we focus on measuring trading strategies and market performance
in equilibrium, where agents have no incentive to deviate to other
strategies. Specifically, we use the simulation results to estimate a
game model over the heuristic strategies, and derive approximate
Nash equilibria over this restricted strategy space. Based on fixed
equilibrium strategy profiles, we further perform control experi-
ments to quantify the manipulation effect and the competitiveness
of any newly introduced trading strategy. In such paired simulation
instances, we control all other stochastic factors (e.g., agent arrivals,
fundamental evolution, and private values), so that any change in
agent behavior is caused by the experimental factor of interest.
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Env Shock 𝜎2𝑠 Observation 𝜎2𝑛
LSHN 105 109

MSMN 5 × 105 106

HSLN 106 103

(a) Market environments.

Strategy ZI1 ZI2 ZI3 ZI4 ZI5 HBL1 HBL2 HBL3 HBL4 HBL5 HBL6 HBL7
𝐾 NA NA NA NA NA 0 1 2 0 0 0 0
𝑅min 0 0 0 0 0 0 0 0 -10 -20 -40 -80
𝑅max 1000 1000 1000 500 250 0 0 0 0 0 0 0
𝜂 0.4 0.8 1 0.8 0.8 1 1 1 1 1 1 1

(b) Background trading strategies.

Table 1: Market environments and background trading strategies included in empirical game-theoretic analysis.

This section is structured as follows. Section 4.1 specifies a set of
parametrically defined market environments. Section 4.2 summa-
rizes the empirical game-theoretic analysis (EGTA) methodology
that we adopt to identify equilibrium solutions. In Sections 4.4,
4.5, and 4.6, we present the EGTA results on the effectiveness and
robustness of the proposed HBL variations.

4.1 Market Environment
The global fundamental time series is generated according to Eq. (1)
with a fundamental mean 𝑟 = 105 and a mean reversion constant
𝜅 = 0.05. Each trading period lasts 𝑇 = 10, 000 discrete time steps.
We consider three environments listed in Table 1(a) that vary in
fundamental shock variance 𝜎2𝑠 and observation noise variance 𝜎2𝑛 .
They cover representative market conditions that can affect HBL’s
preference on learning from market information to different extent
(e.g., when the market shock is high, prices fluctuate more and
become hard to predict; when observation noise is high, agents
can glean only limited information from their own observations
and may prefer to learn from the market’s aggregated order book
information.) We use LSHN to denote a market with low shock and
high observation noise, MSMN a market with medium shock and
medium observation noise, and HSLN a market with high shock
and low observation noise.

For each environment, we consider two settings where back-
ground traders are provided with the two proposed HBL variations
respectively, and compare equilibrium outcomes to those of a mar-
ket where background traders can only choose from the standard
HBL and ZI strategies. In our final set of explorations, we further
offer background traders the option to combine the two variations.
This altogether gives us a total of twelve market settings, hence 24
games with and without spoofing.

Our market is populated with 64 background traders and a single
exploiter. Background traders arrive at the market according to a
Poisson distribution with rate 𝜆𝑎 = 0.005 and observe a noisy fun-
damental 𝑜𝑡 . Private values are drawn from a Gaussian distribution
with zero mean and a variance of 𝜎2

𝑃𝑉
= 5×106. Themaximum num-

ber of units that they can hold at any time is 𝑞max = 10. Table 1(b)
specifies our background trading strategy set, comprising seven
parameterized instances of HBL and five of ZI.2 Background traders
can choose from this restricted strategy set to maximize payoffs.

EXP follows the strategy described in Section 3.4. If it manip-
ulates, EXP submits spoof orders with volume 𝑄sp = 200 at time
𝑇spoof = 1000. After 𝑇spoof, EXP maintains its spoof orders at a tick

2We explored a much wider range of background strategies in our preliminary set
of experiments, and only include those that are competitive in at least one market
environment in Table 1(a).

behind a chosen price level 𝐾 on the bid side of the order book to
push prices up. At time𝑇sell = 2000, it starts to liquidate its position
by selling units at prices above 𝑟 .

4.2 EGTA Process
We provide a brief overview of empirical game-theoretic analysis
(EGTA), a methodology for performing strategy selection to find
equilibria in games defined by heuristic strategy space and simu-
lated payoff data [17]. EGTA takes an iterative process to identify
candidate equilibria in subgames (games over strategy subsets), and
searches for potential deviations until a candidate is confirmed.
Exploration starts with subgames where all agents play a single
strategy, and incrementally spread to other strategies. Equilibria
from a subgame are considered as candidate solutions of the full
game, and are refuted if we identify a beneficial deviation to a
strategy outside the subgame set. If we examine all deviations with-
out refuting, the candidate is confirmed. We continue to refine
the empirical subgame with additional strategies and correspond-
ing simulations until at least one equilibrium is confirmed and all
non-confirmed candidates are refuted.

We model the market as a role-symmetric game, which is de-
fined by an environment and agents representing two roles: back-
ground traders and a single exploiter. Since game size can grow
exponentially in the number of players and strategies, we apply the
deviation-preserving reduction (DPR) [18] technique to approximate
large games with many agents as games with fewer players. We
obtain this approximation through aggregation, which preserves
payoffs from single-player deviations. To facilitate DPR, we choose
values to ensure that the required aggregations come out as inte-
gers. For example, in this study, we choose 64 background traders
and one exploiter, so that a market can be aggregated to a smaller
one with four background traders and one exploiter; as one back-
ground trader deviates to a new strategy, the remaining 63 can be
represented by three aggregate traders.

4.3 Standard HBL
We start with our baseline market environments (Fig. 4 dark grey
columns) where background traders are restricted to choose from
the baseline standard HBL strategy and five parametrically different
ZI strategies in Table 1(b).3 Fig. 4 (dark grey columns) shows that
(1) the learning-based trading strategy is more widely preferred
in environments where fundamental shock is low and observation
noise is high (e.g., LSHN is the most learning-friendly environment);
3Details of strategy profiles and market surpluses of all found equilibria in games with
and without manipulation are available in an online appendix at https://www.dropbox.
com/s/dmkaol5mypbwafy/learning-trading-strategies-icaif20-appendix.pdf.

https://www.dropbox.com/s/dmkaol5mypbwafy/learning-trading-strategies-icaif20-appendix.pdf
https://www.dropbox.com/s/dmkaol5mypbwafy/learning-trading-strategies-icaif20-appendix.pdf
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Env HBL HBL𝐾=1 HBL𝐾=2 HBL𝐾=3 EXP𝐾=1 EXP𝐾=2 EXP𝐾=3 EXP

LSHN 651 643∗ 652 651 494 475∗,∗∗ 470∗ 468∗

MSMN 655 643∗ 652∗ 652 330 313∗,∗∗ 305∗ 305∗

HSLN 645 634∗ 646 646 221 195∗ 202∗ 199∗

Table 2: Average payoffs of learning-based trading agents and the EXP agent as they deviate from the equilibrium profiles
found in Section 4.3. We deviate either HBL or EXP, one at a time, to its corresponding strategy variation. Asterisks denote
statistical significance at the 1% level of the paired t-test for payoffs compared to either HBL or EXP𝐾=1 (∗) and EXP(∗∗).

(2) the presence of spoofing generally hurts the competitiveness
of the learning-based strategy and reduces background-trader sur-
pluses. These findings confirm our hypotheses and results from
prior studies [15, 16]. We next move to evaluate our main extension:
the two HBL variations.

4.4 HBL with Selective Price Level Blocking
Blocking Orders in Non-manipulated Markets. Learning traders

who choose to ignore certain orders face a natural trade-off between
losing useful information and correctly blocking spoof orders to
become immune to manipulation. We first examine, under non-
spoofing environments, how learning effectiveness may be com-
promised by excluding orders at each price level. Starting with the
equilibrium strategy profile of each non-spoofing market environ-
ment found in Section 4.3,4 we perform control experiments by
letting the HBL traders ignore orders from a selected price level
throughout the trading period. Table 2 compares the payoffs ob-
tained by HBL in its standard form and variations that respectively
block orders at the first, second, and third price level in the order
book. We find that consistently across market settings, HBL agents
benefit the most by learning frommarket best bids and asks, and can
achieve fairly similar performance even when orders at a selected
level beyond the market quotes are ignored.

Placing Spoof Orders at Different Price Levels. In response to HBL
traders who ignore price levels, we extend EXP to be able to strate-
gically place spoof orders behind a chosen price level. Here, we
start with the same set of equilibrium strategy profiles, and conduct
control experiments to evaluate how injecting spoof orders at differ-
ent levels can change the manipulation effect, even when learning
agents are considering the full order book (i.e., adopting the stan-
dard HBL strategy). We measure the effectiveness of a spoofing
strategy by EXP payoff as well as the market price deviation. The
price deviation at a specific time is calculated as the most recent
transaction price of a game with manipulation minus that of the
paired game without manipulation, thus quantifying the extent to
which HBL traders are spoofed. Experiments show that EXP bene-
fits the most by spoofing behind the best bid (Table 2), and moving
spoof orders to less competitive levels only reduces EXP payoff.
We further confirm this weakened manipulation effect in Figure 2,
which showcases market price deviations caused by different spoof-
ing strategies in the MSMN environment. We find the market price
rise diminishes as spoof orders are placed further away from the
best bid.

4We randomly select one equilibrium if there is more than one in certain environments.
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Figure 2: Market price deviations caused by spoof orders
placed behind different price levels in the order book.
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Figure 3: Correctly blocking spoof orders increases
background-trader surplus and mitigates manipulation.

Re-equilibrating Games. Our preliminary explorations on a re-
strictive set of spoofing strategies suggest that spoof orders are
more likely to appear near the market quotes to maximize manipu-
lation effect. In response, HBL traders who adapt to the presence
of spoofing may naturally block orders at such levels. Fig. 3 shows
that by blocking the correct level, HBL traders can significantly
increase their payoffs, and reduce the amount EXP could profit via
manipulation. This mitigated manipulation effect is further verified
in Fig. 2, which shows market price deviations (the dashed blue
line) are close to zero.5

Given such beneficial payoff deviations, in the final set of exper-
iments, we conduct EGTA to find Nash equilibria in games where
background traders may choose any trading strategies from the ZI
family and HBLs that block a selected price level (refer to Fig. 4 light

5In the dashed line, price differences are not strictly zero before spoofing (time 1000),
as traders who adopt HBL𝐾=2 consistently block orders throughout the trading period.
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Figure 4: Total background-trader surpluses and HBL strategy adoption rates achieved at equilibria across different market
settings. For each market environment, we compare four settings where background traders are respectively provided with
the standard HBL strategy (dark grey), HBL with selective price blocking (light grey), HBL with price offsets (white), and HBL
that combines the two variations (striped). Each marker specifies one equilibrium outcome in markets with spoofing (orange)
and without spoofing (blue). Error bars represent 95% confidence intervals on background-trader surpluses.

grey columns). We find that (1) adding the blocking strategic param-
eter does not affect the competitiveness of learning-based strategies
to the ZI ones (HBL adoption rates in equilibrium remain in similar
ranges as those of markets where only the standard HBL strategy is
provided); and (2) the extended order blocking ability improves the
learning robustness of HBL traders (compared to surplus decreases
caused by manipulation in markets where background agents are
restricted to the standard HBL, background-trader surpluses are no
longer significantly reduced when agents can strategically block
orders in the face of manipulation). In other words, background
traders who learn from market information but also strategically
ignore orders can have both the robustness against manipulation
and a comparable effectiveness in non-manipulated markets.

4.5 HBL with Price Offsets
Exploring Different Price Offsets. Different from the first variation

which strategically constructsD, our second HBL variation instead
relies on a price adjustment to adapt to different market conditions.
We start with exploring a set of price offset intervals [𝑅min, 𝑅max],
ranging from positive values that understate the learned offer prices
(e.g., similar to price shading) to negative values that adjust prices
to become more competitive. Similar to Section 4.4, we conduct
control experiments basing off of equilibrium profiles found in Sec-
tion 4.3, and deviate agents who adopt the standard HBL to use
corresponding price offsets. Fig. 56 showcases in the MSMN non-
spoofing environment how the HBL surpluses and the total number
of transactions vary in markets where HBL traders adopt different
offset intervals.We find adjusting learned prices with a range of neg-
ative offsets can be generally beneficial in our setting where agents
have reentry opportunities. It increases HBL payoffs and facilitates
transactions, thus improving overall price convergence in markets.
6HBL with positive offsets usually achieves much lower payoffs. For presentation
simplicity, we cropped the surplus decrease at -200 in Fig. 5.
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Figure 5: Average HBL surplus differences and total number
of transactions in non-spoofingmarkets where HBL traders
use different price offsets.
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Figure 6: Market price deviations caused by spoofing inmar-
kets where HBL traders use different price offsets.

Spoofing HBL with Price Offsets. To test the effectiveness of spoof-
ing against the new HBL variation, we further have the EXP𝐾=1
spoof in markets where the learning background traders respec-
tively adopt the standard HBL, HBL[−10,0] , HBL[−20,0] , HBL[−40,0] .
Fig. 6 compares market price deviations caused by spoof orders in
those markets. We find that though all markets experience initial
price rises as a result of misled pricing beliefs, the spoofing effect
tends to wear off faster in markets where HBL traders adopt neg-
ative price offsets. This may be because negative offsets promote
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near-term transaction; as more transactions happen, HBL traders
can glean true information from the transaction prices to construct
belief functions Eq. (3), whereas the EXP𝐾=1 may only place spoof
orders at lower prices due to the widened bid-ask spreads. Indeed,
we find that markets populated with the standard HBL, HBL[−10,0] ,
HBL[−20,0] , and HBL[−40,0] respectively have average spoof-order
prices of 99980, 99966, 99963, and 99964.

Re-equilibrating Games. Finally, we conduct EGTA in games with
and without spoofing to find Nash equilibria where background
traders can choose from ZI strategies and HBL variations that adjust
learned prices with certain offsets (Fig. 4 white columns). Equilib-
rium results show that the extended price offsets tend to largely
improve HBL’s profitability and background-trader surpluses, in
both markets with and without manipulation. Such price adjust-
ments can especially help learning traders to better adapt to high
shock environments where prices are less predictable from past ob-
servations. However, the extended offsets may not directly address
manipulation and improve learning robustness against spoofing.

4.6 Combine Order Blocking and Price Offsets
Since the second HBL variation demonstrates a general improve-
ment in both settings with and without manipulation, we augment
this variation with price level blocking to reduce vulnerability to
spoofing. Specifically, we extend the background trading strategy
set in Table 1(b) with three strategies: HBL𝐾=2[−10,0] , HBL

𝐾=2
[−20,0] , and

HBL𝐾=2[−40,0] , which appear to be competitive in our preliminary ex-
plorations. We conduct EGTA in a similar manner across market
environments with and without spoofing. Equilibrium outcomes
(Fig. 4 striped columns) show that (1) compared to markets where
only the standard and the price-blocking HBL are provided, HBL
that combines the two variations is more widely preferred and
can help to increase overall background-trader surplus in equilib-
rium; and (2) across all environments, background-trader surpluses
in markets with and without spoofing fall roughly into the same
ranges. These suggest that by combining the two proposed varia-
tions, HBL traders can enjoy both improved competitiveness and
robustness against manipulation.

5 CONCLUSION
We study learning-based trading strategies by which individual
traders can adopt to utilize order book information, but in less vul-
nerable ways when prices can be manipulated through spoofing.
We explore two strategy variations based on the standard HBL strat-
egy, which constructs a belief function from any observed trading
activities. Our first HBL variation considers common characteristics
of spoofing activities, and works by offering agents the flexibility
to neglect limit orders at a specified price level when assembling
a dataset to learn from. Our second variation learns from full or-
der book information, and later adjusts the target price derived
from surplus maximization with a random offset to correct any
biases in the learning process. We employ agent-based simulation
to evaluate the proposed variations in terms of their effectiveness
in non-manipulated markets and the robustness against manipula-
tion. Background traders can adopt the non-learning ZI strategies
or HBL, in its basic form or the two proposed variations. We con-
duct extensive simulation to characterize the strategic interactions

between agents in our defined empirical game model, and com-
pare outcomes in equilibrium where agents optimally react to each
other’s presence.

Our analysis show that the first HBL variation offers learning
traders a way to strategically block orders to improve robustness
against spoofing, while achieving similar competitiveness in non-
manipulated markets. Our second HBL variation exhibits a general
improvement over baseline HBL, in both markets with and with-
out manipulation. Further explorations suggest that traders can
enjoy both improved profitability and robustness by combining the
two HBL variations. We note that our results reflect the specific
modeling and simulation choices adopted, and several factors (e.g.,
sampling error, restricted strategy and environment exploration)
may affect our equilibrium analysis. Despite these limitations that
are inherent in any complex modeling effort, we believe our pro-
posed strategy variations and analysis can further help the design
and evaluation of other strategic adjustments that individual traders
could adopt to improve robustness against manipulation or other
fraudulent behaviors.
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