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Abstract
We consider a decentralized stochastic learning
problem where data points are distributed among
computing nodes communicating over a directed
graph. As the model size gets large, decentralized
learning faces a major bottleneck that is the
heavy communication load due to each node
transmitting large messages (model updates) to its
neighbors. To tackle this bottleneck, we propose
the quantized decentralized stochastic learning
algorithm over directed graphs that is based on the
push-sum algorithm in decentralized consensus
optimization. More importantly, we prove that our
algorithm achieves the same convergence rates of
the decentralized stochastic learning algorithm
with exact-communication for both convex and
non-convex losses. Furthermore, our numerical
results illustrate significant speed-up compared to
the exact-communication methods.

1. Introduction
In modern machine learning applications we typically
confront solving optimization problems with massive data
sets which demands utilizing multiple computing agents to
accelerate convergence. Furthermore, in some applications
each processing agent has its own local data set. However,
communicating data among different workers is often
impractical from multiple aspects such as privacy and
bandwidth utilization. In such settings, computing nodes
rely on their own data to run (stochastic) gradient descent
algorithm while exchanging parameters with other workers
in each iteration to ensure converging to the optimal solution
of the (global) objective. More precisely, the goal of
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decentralized learning is to optimize a function f : Rd → R
defined as the average of functions fi(·), i ∈ [n] of all
computing nodes, i.e.,

x̂ := arg min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi(x)

}
. (1)

Here, each local function fi(·) can be considered as the loss
incurred over the local data-set of node i:

fi(x) :=
1

mi

mi∑
j=1

`(x, ζij), (2)

where ` : Rd × Rd′ → R is the loss function, mi is the
data-set size of node i, and ζij denotes the d′-dimensional
local data points. Classical decentralized setting consists
of two steps. First each computing node i runs (stochastic)
gradient descent algorithm on its local function fi(·) using
its local parameter xi(t) and local data-set. Then the local
parameters are exchanged between neighbor workers to
compute a weighted average of neighbor nodes’ parameters.
Local parameters of every node i at iteration t+ 1 is then
obtained by a combination of the weighted average of
neighboring nodes solutions and a negative descent direction
based on local gradient direction. In particular, if we define
xi(t) as the decision variable of node i at step t, then its
local update can be written as

xi(t+ 1) =
n∑
j=1

aij xj(t)− α(t)∇Fi
(
xi(t), ζi,t

)
. (3)

Here α(t) ≥ 0 is the stepsize and ∇Fi is the stochastic
gradient of function fi evaluated using a random sample of
data-set of node i. Matrix A represents the weights used
in the averaging step and in particular aij is the weight
that node i assigns to node j. It can be shown that under
some conditions for the weight matrix A, the iterates of
the update in (3) converge to the optimal solution x̂ when
local functions fi(·) are convex (Yuan et al., 2016) and
to a first-order stationary point in the non-convex case
(Lian et al., 2017). Most commonly in these settings,
workers communicate over an undirected connected graph
G = {V,E}, and to derive these theoretical results the
weight matrix A should have the following properties:
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1. A is doubly stochastic, i.e., 1TA = 1T ; A1 = 1,
where 1 indicates an n-dimensional vector of all 1’s;

2. A is symmetric: AT = A;

3. The spectral gap ofA is strictly positive, i.e, the second
largest eigenvalue of A satisfies λ2(A) < 1.

It can be shown that these assumptions guarantee that the
t-th power of A, i.e., At, converges to the matrix 1

n11T at
a linear rate (i.e., exponentially fast); see, e.g., Lemma 5
in (Lian et al., 2017). This ensures the consensus among
different workers in estimating the optimum solution x̂.
However for directed graphs, satisfying the first and second
constraints are not generally possible. Over the last few
years there have been several works to tackle decentralized
optimization over directed graphs, e.g., (Blondel et al.,
2005) showed that for row-stochastic matrices with positive
entries on the diagonal, the matrix At converges to 1φT at
a linear rate, where φ is a stochastic vector. Based on this
result (Nedić & Olshevsky, 2014) proposed the push-sum
algorithm for decentralized optimization over (time-varying)
directed graphs. The basic intuition is that the algorithm
estimates the vector φ by a vector y which is being updated
among all workers in each iteration.

However, the mentioned algorithms for decentralized
settings over directed graphs require exchanging the agents’
model exactly and without any error in order to guarantee
convergence to a desired solution. As the model size gets
large, e.g., in deep learning algorithms, one can see that
communication overhead of each iteration becomes the
major bottleneck. Parameter quantization is the major
approach to tackle this issue. Although this approach might
increase the overall number of iterations, the reduction
in the communication cost leads to an efficient algorithm
for optimization or gossip problems with large model
size. In this paper, we exploit the idea of compressing
signals for communication to propose the first quantized
algorithms for gossip and decentralized learning algorithm
over directed graphs. The main contributions of this paper
are summarized below:

• We propose the first algorithm for communication-
efficient gossip type problems and decentralized
stochastic learning over directed graphs. Importantly,
our algorithm guarantees converging to the optimal
solution.

• We prove that our proposed method converges at
the same rate as push-sum with exact quantization.
In particular for gossip type problems we show
convergence in O(λT ). For stochastic learning
problems with convex objectives over a directed
network with n nodes, we show that the objective

loss converges to the optimal solution with the rate
O( 1√

nT
). For non-convex objectives we show that

squared norm of the gradient converges with the rate
O( 1√

nT
), suggesting convergence to a stationary point

with the optimal rate.

• The proposed algorithms demonstrate significant
speed-up for communication time compared to
the exact-communication method for gossip and
decentralized learning in our experiments.

Notation. We use boldface notation for vectors and small
and large letters for scalars and matrices respectively. MT

denotes the transpose of the matrix M . Mean of rows of a
matrix M , is denoted by M . We use [n] to denote the set
of nodes {1, 2, · · · , n}. ‖·‖ denotes the L2 norm of a matrix
or vector depending on its argument. The ith row of the
matrix M is represented by [M ]i. The identity matrix of
size d×d is denoted by Id and the d dimensional zero vector
is denoted by 0d. To simplify notation we represent the n-
dimensional vector of all 1’s as 1, where n is the number of
computing nodes.

1.1. Prior Work

Gossip and decentralized optimization. The consensus
problems over graphs are generally called Gossip problems
(Jadbabaie et al., 2003; Saber & Murray, 2003; Xiao &
Boyd, 2004). In the gossip type problems, the goal of each
node is to reach the average of initial values of all nodes over
an undirected graph. Over the last few years there have been
numerous research works which consider the convergence of
decentralized optimization for undirected graphs (Nedic &
Ozdaglar, 2009; Pu et al., 2020; Shi et al., 2015; Yuan et al.,
2016). In particular, (Nedic & Ozdaglar, 2009; Yuan et al.,
2016) prove the convergence of decentralized algorithm for
convex and Lipschitz functions, while (Lian et al., 2017)
prove the convergence of stochastic gradient descent for non-
convex and smooth loss functions with the rate O( 1√

nT
).

(Shi et al., 2015) propose the EXTRA algorithm which
using gradient descent converges at a linear rate for strongly-
convex losses.

Decentralized learning over directed graphs. The first
study of push-sum scheme for gossip type problems in
directed graphs is discussed in (Kempe et al., 2003). Authors
in (Tsianos et al., 2012) extend this method to decentralized
optimization problems and show the convergence of push-
sum for convex loss functions. (Nedić & Olshevsky, 2014)
extend these results to time-varying directed uniformly
strongly connected graphs. Convergence of push-sum
protocol for non-convex settings and for asynchronous
communication are discussed in (Assran & Rabbat, 2020;
Assran et al., 2018). General algorithms for reaching linear
convergence rate in decentralized optimization e.g., EXTRA
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can be combined with the push-sum algorithm to obtain
similar results for strongly-convex objective function in
directed graphs. See the following works for interesting
discussions regarding this topic (Nedic et al., 2017; Xi &
Khan, 2015; 2017; Xi et al., 2017; 2018; Xin & Khan, 2018;
Zeng & Yin, 2015).

Quantized decentralized learning. Over the last few years
there has been a surge of interest in studying communication
efficient algorithms for distributed/decentralized
optimization (Alistarh et al., 2017; Bernstein et al.,
2018; Doan et al., 2018; Karimireddy et al., 2019;
Koloskova et al., 2019; Nedic et al., 2009; Reisizadeh
et al., 2019a;b; Stich, 2018; Wang et al., 2019). In (Nedic
et al., 2009) authors discuss the effect of quantization
in decentralized gossip problems using quantization
with constant variance. However they show that these
algorithms converge to the average of the initial values of
the agents within some error. Authors in (Koloskova et al.,
2019) propose a quantized algorithm for decentralized
optimization over undirected graphs. Here we employ the
push-sum protocol to extend this quantized scheme for
directed graphs.

2. Network Model
We consider a directed graph G = {V,E}, where V is the
set of nodes and E denotes the set of directed edges of the
graph. We say there is a link from node i to node j when
(i, j) ∈ E. Indeed, as the graph is directed this does not
guarantee that there is also a link from j to i, i.e., (j, i) ∈ E.
The sets of in-neighbors and out-neighbors of node i are
defined as:

N in
i := {j : (j, i) ∈ E} ∪ {i},

N out
i := {j : (i, j) ∈ E} ∪ {i}.

We denote d out
i := | N out

i | to be the out-degree of node
i. Throughout this paper we assume that G is strongly
connected.

Assumption 1 (Graph structure). Graph G of workers is
strongly connected.

Additionally we assume that the weight matrix has non-
negative entries and each node uses its own parameter as
well as its in-neighbors. This implies that all vertices of
graph G have self-loops. Also we assume that the weight
matrix is column stochastic.

Assumption 2 (Weight matrix). Matrix A is column
stochastic, all entries are non-negative and all entries on
the diagonal are positive.

Given the above assumptions, we next state a key result
from (Nedić & Olshevsky, 2014; Zeng & Yin, 2015) that
will be useful in our analysis.

Proposition 2.1. Let Assumptions 1 and 2 hold and let A
be the corresponding weight matrix of workers in a graph G.
Then, there exist a stochastic vector φ ∈ Rn, and constants
0 < λ < 1 and C > 0 such that for all t ≥ 0:∥∥∥At − φ1T∥∥∥ ≤ Cλt. (4)

Moreover there exists a constant δ > 0 such that for all
i ∈ [n] and t ≥ 1 [

At1
]
i
≥ δ. (5)

Note that the column-stochastic property of the weight
matrix is considerably weaker than double-stochastic
property. As explained in the next example, each computing
node i can use its own out-degree to form the i’th column of
weight-matrix. Thus the weight matrix can be constructed
in the decentralized setting without each node knowing n or
the structure of the graph.

Example 1. Consider a strongly connected network of n
computing nodes where aij = 1

d out
j

for all i, j ∈ [n], and
each node has a self-loop. It is straight-forward to see that
A is column stochastic and all entries on the diagonal are
positive. Therefore the constructed weight matrix satisfies
Assumption 2.

3. Push-sum for Directed Graphs
Before explaining our main contributions on quantized
decentralized learning, we discuss gossip or consensus
algorithms over directed graphs. Consensus algorithms in
the decentralized setting are denoted as gossip algorithms.
In this problem, workers are exchanging their parameters
xi(t) at time t over a connected graph. The goal is to reach
the average of initial values of all nodes, i.e., X̄(1), at every
node, guaranteeing consensus among workers. The gossip
algorithm is based on the weighted average of parameters of
neighboring nodes, i.e.,xi(t+ 1) =

∑n
j=1 aijxj(t). (Xiao

& Boyd, 2004) showed that for doubly stochastic graphs
with spectral gap smaller than one, the weight matrix A
converges in linear iterations to the average matrix; thus,
X(t+1) = AtX(1) asymptotically converges to 11T

n X(1),
which guarantees convergence to the initial mean with
linear rate. The condition on A being column-stochastic
guarantees that average of workers is preserved in each
iteration, i.e., X̄(t) = X̄(t − 1) = · · · = X̄(1). On the
other hand, if the weight matrix A is not row-stochastic,
xi(t) converges to φiX̄(1), where φi is the ith entry of the
stochastic vector φ with the property that At → φ1T . The
main approach to tackle consensus in directed networks
or for non-doubly stochastic weight matrices is the push-
sum protocol introduced for the first time in (Kempe et al.,
2003). In the push-sum algorithm each worker i updates
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its auxiliary scalar variable yi(t) according to the following
rule:

yi(t+ 1) =
∑
j∈N in

i

aijyj(t).

Note that the matrix A is column stochastic but not
necessarily row-stochastic, thus one can see that if the
scalars yi are initialized with yi(1) = 1, for all i ∈ [n], then
Y (t) = AtY (1) = At1. This implies that Y (t)

t→∞−−−→ n·φ.
Thus for all i ∈ [n],

xi(t)

yi(t)

t→∞−−−→ φi1T ·X(1)

n · φi
= X̄(1).

This shows the asymptotic convergence of xi

yi
to the initial

mean. Since the parameters xi(t) and yi(t) are kept locally
at each node, in every iteration each node can obtain its
variable zi(t) := xi(t)

yi(t)
in the decentralized setting. Based

on this approach, we present a communication-efficient
algorithm for Gossip over directed networks which uses
quantization for reducing communication time (Section 4.1).
Moreover, we will show exact convergence with the same
rate as the push-sum algorithm without quantization.

3.1. Extension to decentralized optimization

As studied in (Nedić & Olshevsky, 2014; Tsianos et al.,
2012) the push-sum method for reaching consensus among
nodes can be extended to decentralized convex optimization
problems with some modifications. The push-sum algorithm
for decentralized optimization with exact communication,
can be summarized in the following steps:

xi(t+ 1) =
∑n
j=1 aij xj(t)− α(t)∇fi (zi(t))

yi(t+ 1) =
∑
j∈N in

i
aij yj(t)

zi(t+ 1) = xi(t+1)
yi(t+1)

Here, local gradients ∇fi are computed at the scaled
parameters zi(t), while the parameters zi(t) are obtained
similar to the gossip push-sum method. It is shown by
(Nedić & Olshevsky, 2014) that for all nodes i ∈ [n] and all
T ≥ 1 the iterates of gossip push-sum method satisfy

f (z̃i(T ))− f (z?) ≤ O
(

1√
T

)
,

for α(t) = O(1/t) and z̃i(T ) denoting the weighted
time average of zi(t) for t = 1, · · · , T . This result
indicates that for column stochastic matrices, the push-sum
protocol achieves the optimal solution at a sublinear rate of
O(1/

√
T ). In the following section, we show that one can

obtain the similar complexity bound even for the case that
nodes exchange quantized signals Section 4.2.

Algorithm 1 Quantized Push-sum for Gossip

for each node i ∈ [n] and iteration t ∈ [T ] do
Qi(t) = Q (xi(t)− x̂i(t))
for all nodes k ∈ N out

i and j ∈ N in
i do

send Qi(t) and yi(t) to k and receive Qj(t) and
yj(t) from j.
x̂j(t+ 1) = x̂j(t) +Qj(t)

end for
xi(t+ 1) = xi(t)− x̂i(t+ 1) +

∑
j∈N in

i
aijx̂j(t+ 1)

yi(t+ 1) =
∑
j∈N in

i
aijyj(t)

zi(t+ 1) = xi(t+1)
yi(t+1)

end for

4. Quantized Push-sum for Directed Graphs
In this section, we propose two variants of the push-sum
method with quantization for both gossip (consensus) and
decentralized optimization over directed graphs.

4.1. Quantized push-sum for Gossip

We present a quantized gossip algorithm for the consensus
problem in which nodes communicate quantized parameters
over a directed graph. The steps of our proposed algorithm
are described in Algorithm 1. Basically, Algorithm 1
consists of two parts: First, the “Quantization” step, in
which each node computes

Qi(t) := Q (xi(t)− x̂i(t)) ,

where x̂i(t) is an auxiliary parameter stored locally at each
node and is being updated at each iteration. Importantly
every node i, communicates Qi(t) to its out-neighbors.
Quantizing and communicating xi(t) − x̂i(t) instead of
xi(t) is a crucial part of the algorithm as it guarantees that
the quantization noise asymptotically vanishes. Second
part of the proposed algorithm is the “Averaging” step,
in which every node i updates in parallel its parameters
(xi(t), yi(t), zi(t)). The variables zi(t) and yi(t) are
updated similar to the push-sum algorithm. For updating
xi, the algorithm uses estimates of the value of xj(t) of its
in-neighbors, denoted by x̂j . Each worker keeps track of the
auxiliary parameters of its in-neighbors x̂j(t), for all j ∈
N in
i with updating it with Qj(t) received from them:

x̂j(t+ 1) = x̂j(t) +Qj(t).

Using the same initialization for all x̂j(t) kept locally in all
out-neighbors of node j, one can see that x̂j(t) remains the
same among all out-neighbors of node j for all iterations t.
Similar to the push-sum protocol with exact quantization,
the role of yi(t) in Algorithm 1 is to scale the parameters
xi(t) of all nodes i in order to obtain zi(t) which is the
estimation of the average of initial values of nodes X̄(1).
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Algorithm 2 Quantized Decentralized SGD over Directed
Graphs

for each node i ∈ [n] and iteration t ∈ [T ] do
Qi(t) = Q (xi(t)− x̂i(t))
for all nodes k ∈ N out

i and j ∈ N in
i do

send Qi(t) and yi(t) to k and receive Qj(t) and
yj(t) from j.
x̂j(t+ 1) = x̂j(t) +Qj(t)

end for
wi(t+ 1) = xi(t)− x̂i(t+ 1) +

∑
j∈N in

i
aijx̂j(t+ 1)

yi(t+ 1) =
∑
j∈N in

i
aijyj(t)

zi(t+ 1) = wi(t+1)
yi(t+1)

xi(t+ 1) = wi(t+ 1)− α∇Fi(zi(t+ 1), ζi,t+1)
end for

4.2. Quantized push-sum for decentralized
optimization

Using the push-sum method for optimization problems
we propose Algorithm 2 for communication efficient
collaborative optimization over Directed Graphs. Similar to
the method described in Algorithm 1, this method also has
the Quantization and Averaging steps, with the difference
that the update rule for xi(t) is similar to one iteration of
the stochastic gradient descent:

xi(t+ 1) = xi(t)− x̂i(t+ 1) +
∑
j∈N in

i

aijx̂j(t+ 1)

−α∇Fi(zi(t+ 1), ζi,t+1).

Importantly, we note that stochastic gradients are evaluated
at the scaled values zi(t) = wi(t)/yi(t). One can observe
that similar to Algorithm 1, here the role of zi(t) is to correct
the parameters xi(t) through scaling with yi(t).

In Section 5, we show that the locally kept parameters zi(t)
will reach consensus at the rate O( 1√

T
) for α = O( 1√

T
).

Furthermore, with the same step size, the time average of
the parameters zi(t) for t = 1, · · · , T will converge to the
optimal solution for convex losses and it will converge to
a stationary point for non-convex losses with the same rate
as Decentralized Stochastic Gradient Descent (DSGD) with
exact communication. This reveals that quantization and
structure of the graph (e.g, directed or undirected) have
no effect on the rate of convergence under the proposed
algorithm, however, these dependencies on quantization
and the structure of graph appear in the terms of the upper
bound.

5. Convergence Analysis
In this section, we study convergence properties of our
proposed schemes for quantized gossip and decentralized

stochastic learning with convex and non-convex objectives.
To do so, we first assume the following conditions on the
quantization scheme and loss functions are satisfied.

Assumption 3 (Quantization Scheme). The quantization
function Q : Rd → Rd satisfies for all x ∈ Rd :

E
[∥∥∥Q(x)− x

∥∥∥2] ≤ ω2 ‖x‖2 , (6)

where 0 ≤ ω < 1.

In the following, we mention a specific quantization scheme
and formally state its parameter ω.

Example 2 (Low-precision Quantizer). (Alistarh et al.,
2017) The unbiased stochastic quantization assigns ξi(x, s)
to each entry xi in x, where s is the number of levels used
for encoding xi and

ξi(x, s) =

 (`+ 1)/s w. p.
|xi|
‖x‖2

s− ` ,

`/s otherwise.

Here ` is the integer satisfying 0 ≤ ` < s and |xi|
‖x‖2 ∈

[`/s, (`+ 1)/s]. The node at the receiving end, recovers the
message according to :

Q (xi) = ‖x‖2· sign (xi) · ξi(x, s).

This quantization scheme satisfies Assumption 3 with

ω2 = min
(
d/s2,

√
d/s
)
.

For convenience we assume that the parameters xi and x̂i of
all nodes are initialized with zero vectors. This assumption
is without loss of generality and is taken to simplify the
resulting convergence bounds.

Assumption 4 (Initialization). The parameters xi and x̂i
are initialized with 0d and yi(1) = 1 for all i ∈ [n].

Additionally we make the following assumptions on the
local objective function of each computing node and its
stochastic gradient.

Assumption 5 (Lipschitz Local Gradients). Local functions
fi(·), have L-Lipschitz gradients i.e., for all i ∈ [n]∥∥∥∇fi(y)−∇fi(x)

∥∥∥ ≤ L∥∥∥y − x
∥∥∥, ∀x,y ∈ Rd.

Assumption 6 (Bounded Stochastic Gradients). Local
stochastic gradients ∇Fi(x, ζi) have bounded second
moment i.e., for all i ∈ [n]

Eζi∼Di

∥∥∥∇Fi(x, ζi)∥∥∥2 ≤ D2, ∀x ∈ Rd.
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Assumption 7 (Bounded Variance). Local stochastic
gradients have bounded variance i.e., for all i ∈ [n]

Eζi∼Di

∥∥∥∇Fi(x, ζi)−∇fi(x)
∥∥∥2 ≤ σ2, ∀x ∈ Rd.

First, we show that in Algorithm 1, the parameters zi of
all nodes recover the exact value of initial mean in linear
iterations. For convenience we denote by γ := ‖A− I‖ and
λ1 := 1

2λ−1/2+4C(λ−λ3/2)−1 .

Theorem 5.1 (Gossip). Recall the definitions of λ and δ in
Proposition 2.1. Under Assumptions 1-3, the iterations of
Algorithm 1 satisfy for ω ≤ λ1

1+γ , i ∈ [n] and all t ≥ 1 :

E
∥∥∥∥zi(t+ 1)− 1

n

n∑
i=1

xi(1)

∥∥∥∥ ≤ 4C2

δ
· ωγ‖X(1)‖
λ− λ3/2

λt/2+

2C‖X(1)‖
δ

λt.

(7)

This bound signifies the effect of parameters related to the
structure of graph and weight matrix, i.e. λ, C, δ and γ and
the quantization parameter ω. In particular ω emerges as the
coefficient of the larger term, and choosing ω = 0 which
corresponds to gossip with exact communication, results in
convergence with rate O(λt).

Next, we show that the quantization method for
decentralized stochastic learning over directed graphs as
described in Algorithm 2 converges to the optimal solution
with optimal rates for convex objectives. In particular
we show that global objective function evaluated at time
average of zi(t) converges to the optimal solution after
T iterations with the rate O( 1√

nT
). The next theorem

characterizes the convergence bound for Algorithm 2 with
convex objectives. For compactness we define constants
λ2 := (1 + 6C2

(1−λ)2 )−1/2 and ξ := 6nD2(1 + γ2)(1 +
6C2

(1−λ)2 ).

Theorem 5.2 (Convex Objectives). Assume local functions
fi(·) for all i ∈ [n] are convex, then under Assumptions
1-7 Algorithm 2 for ω ≤ λ2√

6(1+γ2)
, α =

√
n

8L
√
T

and T ≥ 1

satisfies for all i ∈ [n] :

Ef

(
1

T

T∑
t=1

zi(t+ 1)

)
− f(z?) ≤

8L(L+ 1)√
nT

‖z?‖2 +
σ2(L+ 1)

4L
√
nT

+

nC2 (L+ 1)
(
L
√
n

2
√
T

+ L+ 1
) (
ξω2 + 2nD2

)
10 δ2(1− λ)2L2 T

.

(8)

Remark 1. In the proof of the theorem we show that
(see (37)) for fixed arbitrary α the error decays with the

rate O( 1
αT ) + O(α2n) + O(αn ). The inequality in the

statement of the theorem follows by the specified choice
of α. More importantly, we highlight that the largest term
in (8), i.e., 1√

T
, is directly proportionate to 1√

n
and σ2

which emphasizes the impact of the number of workers and
mini-batch size in accelerating the speed of convergence.
Additionally parameters related to the structure of graph, i.e.,
λ,C, and δ and the quantization parameter ω, only appear
in the terms of order 1

T and 1
T
√
T

which are asymptotically
negligible compared to 1√

T
.

In the next theorem we show convergence of Algorithm 2
with non-convex objectives. Importantly, we demonstrate
that the gradient of global function converges to the zero
vector with the same optimal rate as in decentralized
optimization with exact-communication over undirected
graphs(See (Lian et al., 2017)).

Theorem 5.3 (Non-convex Objectives). Under
Assumptions 1-7, Algorithm 2 after sufficiently large
iterations (T ≥ 4n), and for ω ≤ λ2√

6(1+γ2)
and α =

√
n

L
√
T

satisfies:

1

T

T∑
t=1

E

∥∥∥∥∥∇f
(

1

n

n∑
i=1

xi(t)

)∥∥∥∥∥
2

+

1

2T

T∑
t=1

E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(zi(t+ 1))

∥∥∥∥∥
2

≤ σ2L√
nT

+

2L (f (0)− f?)√
nT

+
12C2

δ2(1− λ)2T

(
ξω2 + 2nD2

)
.

(9)

Moreover for all i ∈ [n] and T ≥ 1, it holds that

E
∥∥∥∥zi(T + 1)− 1

n

n∑
i=1

xi(T )

∥∥∥∥2 ≤
6C2n

δ2(1− λ)2L2T

(
ξω2 + 2nD2

)
.

(10)

Remark 2. The inequality (9) implies convergence of the
average of xi(t) among workers to a stationary point
as well as convergence of average of local gradients
∇fi(zi(t)) to zero with the optimal rate O( 1√

T
) for non-

convex objectives. Interestingly similar to the convex-
case discussed in Remark 1, the number of workers n and
stochastic gradient variance σ2 emerge in the dominant
terms while the parameters related to weight matrix, graph
structure and quantization appear in the term of order O( 1

T ).
Remark 3. As the proof of theorem shows, for arbitrary fixed
step size α we derive the inequality in (44) and the desired
result of theorem is concluded by the specified choice of α
in the theorem. Importantly we note that the condition on
the number of iterations ,i.e. T ≥ 4n, is a direct result of the
specified choice of α. Therefore one can get the same rate
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Figure 1. The experimented directed graphs representing
communication between computing nodes

for convergence for all T ≥ 1, with other choices for the
step size. For example using the relation (44), by choosing
α = L

2
√
T

we achieve convergence for all T ≥ 1.

Remark 4. Based on (10), the parameters zi of nodes reach
consensus with the rate O( 1

T ) for the specified value of α.
For an arbitrary value of α, consensus is achieved with the
rate O(α2) (see (29)) which implies that smaller values of
α will result in faster consensus among the nodes. However
due to the termO( 1

αT ) in the convergence of objective to the
optimal solution or in the convergence to a stationary point,
this fast consensus will be at the cost of slower convergence
of objective function in both convex and non-convex cases.

6. Numerical Experiments
In this section, we compare the proposed methods
for communication-efficient message passing over
directed graphs, with the push-sum protocol using exact
communication (e.g., as formulated in (Kempe et al., 2003;
Tsianos et al., 2012) for gossip or optimization problems).
Throughout the experiments we use the strongly-connected
directed graphs G1 and G2 with 10 vertices as illustrated in
Figure 1. For each graph we form the column-stochastic
weight matrix according to the method described in
Example 1. In order to study the effect of graph structure
we consider G2 to be more dense with more connection
between nodes. For quantization, we use the method
discussed in Example 2 with B = log(s) + 1 bits used for
each entry of the vector (one bit is allocated for the sign).
Moreover the norm of transmitted vector and the scalars
yi are transmitted without quantization. In the push-sum
protocol with exact communication the entries of the vector
xi and the scalar yi are each transmitted with 54 bits.

Gossip experiments. First, we evaluate performance of
Algorithm 5.1 for gossip type problems. We initialize
the parameters xi(1) ∈ [0, 1]1024 of all nodes to be i.i.d.

0 40 80 120 160 200
10-6

10-5

10-4

10-3

10-2

10-1

100

0 2 4 6 8 10 12

106

10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 2. Comparison of the proposed algorithm for the gossip
problem and the push-sum protocol using exact-communication
based on iteration (Top) and total number of bits communicated
between two neighbor nodes (Bottom) over the graphs G1 and G2.

uniformly distributed random variables. Moreover we
initialize the auxiliary parameters x̂i = 0 and yi = 1 for all
i ∈ [n]. In Figure 2(Top) we compare the performance
of Algorithm 1 with the push-sum protocol with exact-
communication for both networks G1 and G2. While
Algorithm 1 has almost the same performance as push-sum
over G1, it is outperformed by push-sum over G2.

However the superiority of exact-communication methods
compared in each iteration could be predicted. In order to
compare the two methods based on time spent to reach a
specific level of error, we compare their performances based
on the number of bits that each worker communicates. In
Figure 2 (Bottom) the number of bits required to reach a
certain error performance is illustrated for both methods.
For the graphs G1 and G2 we observe up to 10x and 6x
reduction in the total number of bits, respectively.

Decentralized optimization experiments. Next, we
study the performance of Algorithm 2 for decentralized
stochastic optimization using convex and non-convex
objective functions. First, we consider the objective

f(x) =
1

2nm

n∑
i=1

m∑
j=1

∥∥x− ζij∥∥2 ,
where we set m = n = 10 and d = 256. Thus each node
i has access to its local data-set {ζi1, ζi2, · · · , ζi10} and is
using one sample at random in each iteration to obtain the
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Figure 3. Comparison of the proposed method and exact-
communication push-sum method using least-square as objective,
based on the iteration number (Top) and total number of
communicated bits over the graphs G1 and G2.

stochastic gradient of its own local function. Here we use
the data-set generated according to

ζij
i.i.d.∼ ζ? +N (0, I 256) , for all i, j,

where ζ? is a fixed vector initialized as Uniform[0, 100]256.
The step size α for each setting, is fine-tuned up to iteration
50 among 20 values in the interval [0.01, 3]. The Loss
at iteration T is presented by 1

d‖z̃1(T ) − ζ opt‖, where
z̃1(T ) := 1

T

∑T
t=1 z̃1(t) is the time-average of the model

of worker 1 and ζ opt is the optimal solution.

The results of this experiment are in Figure 3 (Top) which
illustrates the convergence of Algorithm 2 based on the
number of iterations for different levels of quantization and
over the two graphs G1 and G2. The non-quantized method
outperforms the quantized methods based on iteration. This
is due to the quantization noise injected in the flow of
information over the graph which depends on the number
of bits each node uses for encoding and the structure of
graph. However this error asymptotically vanishes resulting
in small overall quantization noise. This implies that with
less quantization noise (i.e., using more bits to encode) the
loss decay based on iteration number gets smaller. However
as we observe in Figure 3 (Bottom), more quantization
levels will result in larger number of bits required to achieve
a certain level of loss. Consequently, the push-sum protocol
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Figure 4. Comparison of the proposed method and exact-
communication push-sum method in training a neural network
with MNIST data-set, based on the iteration number (Top) and
total number of communicated bits (Bottom).

with exact communication for optimization over directed
graphs is not communication-efficient as we demonstrated
that using smaller number of bits with Algorithm 2 results
in 5x reduction in transmitted bits.

As we showed in Theorem 5.3 in Section 5, our proposed
method guarantees convergence to a stationary point for non-
convex and smooth objective functions. In order to illustrate
this, we train a neural-network with 10 hidden units with
sigmoid activation function to classify the MNIST data-
set into 10 classes. We use the graph G1 with 10 nodes
where each node has access to 1000 samples of data-set
and uses a randomly selected mini-batch of size 10 for
computing the local stochastic gradient descent. For each
setting, the step-size α is fine-tuned up to iteration 200 and
over 15 values in the interval [0.1, 3]. Figure 4 illustrates
the results for training loss of two aforementioned methods
based on number of iteration (Top) and total number of bits
communicated between two neighbor nodes (Bottom). We
note the close gap in each iteration between the loss decay of
our proposed method with 8 bits quantization, and the push-
sum with exact communication. However since our method
uses significantly less bits in each iteration, it reaches the
same training loss in fewer iterations. In particular Figure 4
(Bottom) demonstrates 5x reduction in total number of bits
communicated using our proposed method.
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7. Conclusion and Future Work
In this paper, we proposed a scheme for communication-
efficient decentralized learning over directed graphs. We
showed that our method converges at the same convergence
rate as non-quantized methods for both gossip and
decentralized optimization problems. As we demonstrated
in Section 6, the proposed approach results in significant
improvements in communication-time of the push-sum
protocol. An interesting future direction is extending
these results to algorithms that achieve linear convergence
for strongly-convex problems (e.g., (Xi & Khan, 2017)).
Another direction is extending our results to asynchronous
decentralized optimization over directed graphs (e.g., as
formulated in (Assran & Rabbat, 2020)).
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