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ABSTRACT
Empirical experience regarding how real-life performance issues
are caused and resolved can provide valuable insights for practition-
ers to effectively and efficiently prevent, detect, and fix performance
issues. Prior work shows that most performance issues have their
roots in poor architectural decisions. This paper contributes a large
scale empirical study of 192 real-life performance issues, with an
emphasis on software design. First, this paper contributes a holistic
view of eight common root causes and typical resolutions that recur
in different projects, and surveyed existing literature, in particular,
tools, that can detect and fix each type of performance issue. Second,
this study is first-of-its-kind to investigate performance issues from
a design perspective. In the 192 issues, 33% required design-level
optimization, i.e. simultaneously revising a group of related source
files for resolving the issues. We reveal four design-level optimiza-
tion patterns, which have shown different prevalence in resolving
different root causes. Finally, this study investigated the Return on
Investment for addressing performance issues, to help practitioners
choose between localized or design-level optimization resolutions,
and to prioritize issues due to different root causes.

CCS CONCEPTS
• Software and its engineering→ Software design tradeoffs;
Software design engineering.
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1 INTRODUCTION
Performance issues can result in long execution time, memory bloat,
and even program crash [1]. Prior work by Smith and Williams [2–
5] shows that most performance issues have their roots in poor
architectural decisions made before coding is done. This paper
presents an empirical study regarding how real-life performance
issues are caused and resolved, with an emphasis on the design
structure of software systems. The findings in this paper can pro-
vide valuable insights for practitioners to effectively and efficiently
prevent, detect, and fix performance issues.

This paper investigated 192 real-life performance issues from
five popular open source projects implemented in Java. We identi-
fied eight types of recurring root causes and their corresponding
resolutions. Through extensive literature review, we found that
different types of performance issues were investigated separately
in previous studies, and there are detecting and/or fixing tools
available for Java and C/C++ projects [6–27]. However, only a very
limited amount of research has provided a holistic view of differ-
ent types of performance issues and their prevalence. Selakovic
et al.’s work [28] is a most recent example, which revealed seven

types of performance issues based on 98 performance issues exclu-
sively from JavaScript projects. The findings in this paper generally
agree with Selakovic et al.’s findings. However, we observed that
the prevalence of different root causes are impacted by different
factors, including, but not limited to, programming languages and
project domains.

To the best of our knowledge, this study is the first to investigate
the resolutions of performance issues from a design perspective.
In existing literature, performance issues are usually treated by
localized code revisions, i.e. a few lines of code revisions in a sin-
gle source file. However, many proprietary projects might have
encountered performance issues with architectural roots, includ-
ing the unwitting use of architectural performance anti-patterns,
such as god classes that induce foci of overload in hardware or
software objects [29]. This study underscores this finding in open
source projects—in the 192 issues, 33% are addressed by design-level
optimization. We revealed four typical patterns of design-level opti-
mization that are necessary for some performance issues: 1) classic
design patterns, where developers employ classic design patterns to
improve performance and achieve good design; 2) change propaga-
tion, where the core performance optimization propagates changes
to a group of structurally related source files; 3) optimization clone,
where developers clone the same performance optimization in mul-
tiple locations of the code base; and 4) parallel optimization, where
developers make independent optimizations in parallel for address-
ing a performance issue. These patterns are necessary to treat archi-
tectural performance anti-patterns. For example, in issue AVRO-753
(discussed in detail in Section 4), the program becomes very slow
for special input types. In the resolution, developers employed a fac-
tory design pattern to separate and encapsulate the algorithms for
treating different input types into different factories. Without the
factory design pattern, there will be a potential god class overloaded
with responsibilities of treating all input types.

Finally, this study investigates the ROI (Return on Investment)
for addressing performance issues. As the proxy for the “invest-
ment", we measure the number of engaged developers and the
number of discussions for resolving each issue. As for the “return",
we measure the extent of performance improvement from fixing
each issue. This analysis helps practitioners choose between local-
ized or design-level optimization solutions, and prioritize issues
due to different root causes. We found that design-level optimiza-
tion requires more developers and more discussions compared to
localized optimization; but it does not warrant higher performance
improvement. However, we argue that design-level optimization
will provide long-term benefits in other aspects, such as design
quality and code maintainability. The tricky part is that these bene-
fits are often not explicit to measure and not immediately visible to
practitioners. Consequently, practitioners are more likely to choose



localized optimization over design-level optimization, for conve-
nience and immediate benefits. We conjecture that this is how
technical debts start to accumulate [30].

In summary, the key contributions of this study are:
1) This study reveals eight common root causes and the corre-

sponding resolutions to performance issues based on 192 real-life
performance issues. This study surveyed 60 related literature that
investigated these root causes and found 24 available tools that can
detect and/or fix different performance issues.

2) This study provides empirical findings of design-level opti-
mization that are necessary for addressing some performance issues.
This study revealed four typical design-level optimization patterns.
We believe that these findings are the first of their kind.

3) This study measures the Return on Investment (ROI) for ad-
dressing performance issues. It compares the ROI of localized and
design-level optimization resolutions, and compared the ROI of
performance issues due to different root causes.

4) This paper contributes a new design structure modeling tech-
nique for analyzing design-level optimization, named Diff-Design
Structure Matrix. This technique can be used for research related to
software design structure evolution.

5) This study contributes a rich, high-quality dataset of 192 per-
formance issues, with the annotated information regarding: the
symptoms, the root cause, the resolution, and the profiling data. The
data is available here: https://sites.google.com/view/icpe-archperf-
2020/home.

2 RESEARCH QUESTIONS
This paper aims to answer three research questions.

RQ1: What are the common root causes of real-life soft-
ware performance issues? Is each type well-addressed in the
existing literature? Practitioners should be aware of the common
types of performance issues to be able to effectively prevent, iden-
tify, and fix performance issues. We answer this question in two
parts: 1)what are the common root causes of performance is-
sues (RQ-1.1 )?We assume that there are common root causes that
recur in different software projects. And 2) how well is each root
cause addressed in the literature (RQ-1.2)?We are particularly
interested in tools that detect and fix different performance issues.

RQ2: Are performance issues addressed by design-level
optimization? If so, how? We hypothesize that some perfor-
mance issues require design-level optimization to maximize per-
formance improvements and ensure code quality at the same time.
We address this RQ in three parts: 1) are performance issues
usually addressed by localized optimization or complicated
design-level optimization (RQ-2.1)?We analyze the scope of the
performance resolution and examine the design structure change
to answer this question. 2) What are the typical design-level
optimization patterns (RQ-2.2)? If some performance issues re-
quire design-level resolution, we further investigate what are the
typical design-level optimization patterns and why they are neces-
sary. And 3) how prevalent is each design-level optimization
pattern, especially for addressing different root causes (RQ-
2.3)? This part investigates the application of different design-level
optimization patterns for issues with different root causes.

Table 1: Study Subjects
Subject Since #Issues Perf-key Verified Solved
PDFBox 2008 3855 135 93 74
Avro 2009 2151 135 113 41
Ivy 2005 1522 54 41 18
Commons-Collections 2006 435 51 46 23
Groovy 2003 8476 137 107 36

Total 16439 512 400 192

RQ3: What is the ROI (Return on Investment) for fixing
performance issues? Software development is constrained by
limited resource and time. This RQ helps practitioners treat per-
formance issues economically. Our investigation is three-fold: 1)
what is the overall ROI for addressing performance issues
(RQ-3.1)? We measure the number of involved developers and the
number of discussions as the proxy of “investment", and measure
the extent of performance improvement as the “return". 2) How
is the ROI of localized and design-level optimization com-
pared to each other (RQ-3.2)? The purpose is to compare the
ROI of localized and design-level optimization to help prioritize
different optimization strategy. And 3) how is the ROI of perfor-
mance issues affected by different root causes (RQ-3.3)? This
question aims to provide insight for the practitioners to prioritize
performance issues of different root causes.

3 STUDY SUBJECTS AND APPROACH
3.1 Study Subjects
We study performance issues from fiveApache open source projects:
PDFBox[31], Avro[32], Ivy[33], Commons-Collections[34], and
Groovy[35] as listed in Table 1. The PDFbox library is a Java tool for
working with PDF documents. Avro is a remote procedure call and
data serialization framework. Ivy is a transitive package manager
to resolve complex project dependencies. Commons-Collections
is a Java collections library of JDK Collection, Set, List and Map
interfaces. Groovy is a Java-syntax-compatible object-oriented pro-
gramming language for the Java platform.

These subjects were selected due to the following considerations.
First, they are in different domains, such as document process-
ing, data serialization, web server etc. Performance plays a critical
role in all these projects. The goal is to draw general observa-
tions across different problem domains. Second, these projects are
all well accepted, successful, and are all still active Apache open
source projects. The source code, version control repository, and
bug-tracking systems are all well organized and readily available.
This provides high quality data for our study.

3.2 Study Approach
Figure 1 shows the overview of this study with four steps:

• Step 1: Data Collection. This step collects performance issues
that are resolved from the five projects.

• Step 2: Issue Annotation and Categorization. This step manu-
ally annotates/summarizes key information, including the
symptom, root cause, proposed resolution, and profiling data,
in each issue report and the respective code revisions. We
categorize the collected issues based on their root causes and
corresponding resolutions. This step addresses RQ1.

https://sites.google.com/view/icpe-archperf-2020/home 
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Figure 1: Study Overview

• Step 3: Design-level Optimization Modeling and Analysis. This
stepmodels and analyzes the design-level optimization, where
a group of source files are revised simultaneously for ad-
dressing a performance issue. This step contributes a new
modeling technique named Diff-Design Structure Matrix to
facilitate the analysis. This step addresses RQ2.

• Step 4: Return on Investment Analysis. This step analyzes 1)
the investment—in terms of the number of engaged develop-
ers and the number of discussions, for addressing each per-
formance issue, as recorded in the JIRA bug tracking system,
and 2) the return—the extent of performance improvement
based on available profiling data. This step addresses RQ3.

Step 1: Data Collection. As shown in Table 1, we initially col-
lected a total of 16439 issues (Column 3) from the JIRA bug tracking
database[36], dated back to the creation of each project. Next, we
apply keyword matching to select issues relevant to performance,
similar to the practice in prior studies [9, 37, 38]. The keywords used
include: “fast, slow, perform, latency, throughput, optimize, speed,
heuristic, waste, efficient, unnecessary, redundant, too many times,
lot of time, too much time", which combine the keywords used in
previous studies. If the summary or description of an issue report
contains one or more keywords, it is potentially a performance is-
sue. As shown in the fourth column in Table 1, a total of 512 issues
were kept by matching relevant keywords. Over a six-week long
effort, we manually verify each issue to exclude false positives. For
example, “performance" sometimes refers to the productivity of the
developers. Two authors separately inspect the issues matched by
keywords. The authors drop uncertain issues to ensure the quality
of the data set. This further distills a total of 400 issues shown in
Column 5 of Table 1. Finally, we retrieve the code revisions that ad-
dress each performance issue. The code revisions can be extracted
from the version control system by locating issue IDs that appeared
in the commit messages [39]. Issues without linked solutions, either
because they were not solved or because the linkage was missing,

Table 2: Data Annotation Statistics
Subject Symptom Cause Solution Profiling Other
PDFBox 89% 96% 99% 41% 12%
Avro 63% 73% 100% 61% 7%
Ivy 89% 83% 94% 17% 17%
Commons-Collections 96% 91% 100% 57% 0%
Groovy 92% 97% 94% 22% 3%
Total 85% 90% 98% 41% 8%

are dropped. Thus, we finally identified 192 resolved performance
issues.

Step 2: Issue Annotation and Categorization. We manually
inspect and annotate five key aspects of information (if available)
in each issue report. They are: 1) the symptoms, 2) the root cause,
3) the proposed solution, 4) the profiling data, and 5) any other
aspects of concerns (e.g. maintainability issues). Figure 2 is an
example of an annotated issue report, PDFBOX-591[40]. Table 2
shows the statistics of the annotation: There are 85% of issues that
described the symptoms of the issues. 90% and 98% of the issues
contain discussions about the root causes and solutions. And 41%
of the issues contain profiling data. Only 8% performance issues
contain discussions regarding other aspects of concerns, such as
maintainability and design.

Figure 2: Issue Annotation-PDFBOX-591

Next, we manually review and summarize the code revisions that
fixed the issues. The code revisions reveal the most essential logic
of the root causes and solutions to performance issues. Based on the
annotation and summary of code revision, we apply open coding to
discover recurring types of performance issues in different projects,
following the grounded theory methodology introduced in [41].

We perform extensive literature review to evaluate how well
each root cause is addressed in existing literature. First, we used
“performance” as the keyword to search papers on Google Scholar,
following [42]. We screened the titles and abstract of the top 500
papers, and we found 47 papers that are relevant to detecting and



solving real-life performance issues. Next, we searched the ref-
erences in the Related Work and/or Discussion sections of the 47
papers, following the “Backward Snowballing” methodology [43].
We found another 45 related papers. We carefully reviewed the 92
(47+45) papers. Among these, 60 papers investigated one or more
root causes of performance issues. The other papers are empirical
studies, general performance modeling, profiling techniques, and
others work that is not directly related to addressing the identified
root causes.

Step 3: Design-level Optimization Modeling and Analysis.
This paper contributes a new modeling technique, called Diff DSM
(D-DSM), to capture the essential design structure change in a com-
plicated code revision.

The D-DSM is built upon Baldwin and Clark [44]’s Design Struc-
tureMatrix (DSM). The original DSM is a squarematrix with its rows
and columns labeled by the same set of design element names and/or
numbers, in the same order. A cell along the diagonal represents
self-dependency, and an non-empty off-diagonal cell captures the
dependency between the element on the row to the element on the
column. DSM is often used in modeling software systems [45, 46].
The elements can represent source files. Each cell captures the dif-
ferent types of structural dependencies from the file on the row to
the file on the column. In this work, we model two general types
of structural dependency: 1) “Ext", which indicates that the file on
the row extends the file on the column; and 2) “dp", which indicates
other general types of structural dependency, such as method call,
from the file on the row to the file on the column. Figure 4b is
an example showing the dependencies among 4 source files from
Apache project, PDFBox. The rows and columns represent source
files, arranged in the same order. The cells display the dependencies
among these files. Cell[3,1] says “dp", meaning PDFStreamEngine
(row 3) has a structural dependency to Matrix (row 1).

The D-DSM is built upon the DSM but with the following unique-
ness: 1) it only contains the changed files and their structural de-
pendencies in a revision; 2) it highlights the added/removed files;
and 3) it highlights the added/removed structural dependencies
among involved source files. A D-DSM is automatically computed
by taking a revision ID and the project repository as the input.
The computation is accomplished in three main steps as shown in
Figure 3. First, we use a Git command to generate two versions
of the code base: one reverted to before the specified revision; the
other reverted to after the revision. Next, we use existing reverse
engineering tools to recover the structural dependencies among
source files and generate two DSM files to represent the dependen-
cies before and after the revision. Finally, we calculate a D-DSM by
comparing the two DSM and highlight the added/removed source
files and the changes to the dependencies among files.

Figure 3: D-DSM Modeling Overview

To reveal the patterns in design-level optimization, we sepa-
rate code revisions into two groups based on the scope of change:
1) localized optimization that revises a single source file; and 2)
potential design-level optimization that simultaneously revises a
group of source files. Admittedly, simultaneously revising a group

of source files does not always imply a design-level optimization.
Developers may combine multiple change requests, e.g. fixing a
bug, with performance optimization. We manually verify and ex-
clude issues where a group of source files are revised together for
non-performance related reasons. For example, in issue PDFBOX-
1924[47], the main purpose is fixing a functional bug. Developers
revised four source files—only one line of code is for fixing the
performance issue. The resolution to PDFBOX-1924 is considered
a localized optimization. For each complicated performance issue
resolution, we use D-DSM to formally and automatically capture
the essential design structure change in it. This helps us to reveal
typical patterns in the design-level optimization.

(a) Classic Design Pattern: Avro-753

(b) Type I Propagation:
PDFBox-893

(c) Type II Propagation:
PDFBox-3421

(d) Optimization Clone:
PDFBox-3224

(e) Parallel Optimization:
PDFBox-604

Note: “Ext": child class extends a parent class. “dp": a general dependency except
extend or implement. “-" means the following dependency is removed. “+" means the
following dependency is added. Files with shaded background are newly added.

Figure 4: Design-level Optimization Patterns

As an illustrative example, Figure 4a is the D-DSM of the resolu-
tion to issue AVRO-753 [48]. Due to space limitations, this figure
only shows the ten most important of the 25 revised source files.
The rows and columns represent the ten changed files, ranked in the
same order. The newly added files (row 3 to row 4) are highlighted
in shaded background. The cells represent the dependencies among
files. For example, entry[5,1] says “+dp", which indicates that En-
coderFactory (row 5) depends on BlockingBinaryEncoder (row 1). The
symbol “+" means that it is a newly added dependency. Similarly
“-" means the following dependency is removed in this revision.
In Figure 4a, we can observe the introduction of a factory design
pattern for addressing this issue. The three added files are the key
factory pattern elements, and the newly introduced dependencies



Table 3: Inefficient Data Structure and Replacement
Inefficient Data Structure Replacement # of Issues
Array, List Set, Map 14
String, StringBuffer StringBuilder 6
HashMap, WeakHashMap ConcurrentHashMap 3
Integer, Float, Double int, float, double 2
LinkedList ArrayList 1
HashMap TreeMap 1

Others 6

are all associated with reference to the EncoderFactory. In this case,
the newly added files implements a factory pattern, where each
concrete pattern provides a solution that optimizes performance in
a different situation. We will discuss this case in detail in Section 4.

Step 4: Return on Investment Analysis. In this step, we exam-
ine the ROI of resolving performance issues. As the proxy of the
invested effort, we measure two aspects:

• #Developers: The number of developers who participated in
the discussion of an issue report. Generally, more developers
involved, it is more difficult/expensive to address.

• #Discussions: The number of discussion comments associ-
ated with an issue report. More discussions are needed for
addressing an issue, it is more difficult/expensive to address.

Among the 192 issues, only 76 contain profiling data that provide
performance metrics of before and after the issue resolution. We
found that most issues used response time (where the time unit
used could be different), and only two issues used throughput.
To avoid confusion, we define a unified Improvement Factor to
measure the extent of improvement by 1) 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒_𝐵𝑒𝑓 𝑜𝑟𝑒𝐹𝑖𝑥

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒_𝐴𝑓 𝑡𝑒𝑟𝐹𝑖𝑥
;

or 2) 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝐴𝑓 𝑡𝑒𝑟𝐹𝑖𝑥

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝐵𝑒𝑓 𝑜𝑟𝑒𝐹𝑖𝑥 , depending on the used metric.

4 STUDY RESULTS
4.1 Common Root Causes
RQ-1.1What are the common root causes to real-life perfor-
mance issues? We observed eight types of root causes that recur
in the 192 performance issues. Each root cause has corresponding,
typical resolution. We will explain each in the following:

Inefficient Data Structure (IDS): The choice of an inefficient
data structure consumes a large amount of memory and/or takes
a long time. Typical resolution is replacing the inefficient data
structure by a more efficient data structure. Table 3 shows the
common replacement patterns. For example, the most common (14
out of 36) case is to replace Array or List by Set orMap. This makes
data searching faster. In 6 cases, developers replaced StringBuffer
by StringBuilder, since the latter creates new String more efficiently.
Such empirical experience helps practitioners prevent inefficient
data structure.

Repeated Computation (RC):A program repeatedly performs
the same computation and produces the same output because the
state from which the output is derived has not changed. Typical
resolution is to 1) store the output in a cache or a buffer for re-
use [10]; and 2) only perform the computation when the input
status changes.

Inefficiency under Special Cases (ISC): The program runs
well most of the time, but it becomes extremely slow or causes
memory bloat in special cases [37, 49–52]. Typical resolution is

to 1) add checking conditions for the special cases, and 2) employ
special algorithms to treat each special case efficiently.

Inefficient Iteration (II): The status of loop iterations remains
the same and the iterations become useless. Typical resolution is to
check whether the loop status becomes stable; and, if so, break and
exit the loop.

Inefficient API Usage (IAU): Many different APIs provide the
same or similar functionalities, but some APIs are more efficient
than the others in certain context. This type of problems are caused
by sub-optimal choice of APIs [53]. Typical resolution is to choose or
re-implement an efficient API [54–56]. For example, in addressing
GROOVY-7977 [57], the LRUCache was replaced by Caffeine, a high
performance caching library for Java 8. There is a diverse amount
of API replacements, and we did not observe prevalent patterns.

Redundant Data Processing (RDP): These performance is-
sues are caused by redundant or tedious data processing. It usually
involves copying or processing a large chunk of data in small units,
such as bit by bit or pixel by pixel. The typical reresolution is to copy
or process the data in one go. For example, in issue AVRO-556 [58],
the developers originally “read bytes into the result vector one-byte-
at-a-time”, which, according to the developers, “is horrendously
slow”. The fix is to copy all the bytes in a single call.

Multi-threaded Blocking (MTB): These performance prob-
lems are caused by the synchronization issues among multiple
threads. It usually happens because different threads have to access
the same resource, and thus have to wait for each other. In the worst
cases, different threads may even got blocked, resulting in lengthy
execution/waiting time. The resolution is usually to improve the
synchronization mechanism.

General Inefficient Computation (GIC): These performance
issues are caused by general inefficient computation. They are
usually addressed by algorithmic improvements. As an example,
in issue PDFBOX-600 [59], the order of two checking conditions
in a 𝑎𝑛𝑑 operator caused unnecessary computation since the first
checking condition is true and the second checking condition is
false most of the time. The developers switched the order to avoid
checking both conditions.

Prevalence of Root Causes: As shown in Figure 5, there are
four prevalent root causes, each accounts for about 20% of perfor-
mance issues in our dataset. They are: General Inefficient Compu-
tation, Inefficiency under Special Cases, and Repeated Computation,
and Inefficient Data Structure. In comparison, in Selakovic et al.’s
study, they found that API-related root cause is the most prevalent,
accounting for 52% of the studied issues [28]. It is only responsible
for 8% of the issues in our dataset. In Jin, et al.’s work, almost half
of the performance issues are related to Inefficiency under Special
Cases [37]. We believe that the difference is due to at least two
factors. First, the project domain. Selakovic et al. mostly studied
projects related to framework or library. While, our study subjects
are in a variety of problem domains. Thus the percentage reported
in this study is likely to be more representative of general perfor-
mance issues. Second, the programming languages. Selakovic et al.
studies exclusively JavaScript projects. The issues studied in this
paper are mostly Java. Particularly, Multi-threaded Blocking was
not discussed in Selakovic, et al.’s study, since JavaScript does not
support multi-threaded programming.



Table 4: Available Tools
Root Cause Tool Language Year(A.)
Inefficient Data Structure [D,F]:Perflint [16]

[D,F] CoCo [17]
[D,F]: CHAMELEON [25]
[F]: Brainy [26]
[D,F]: CollectionSwitch [60]

C++
Java
Java
C++
Java

2009(A)
2013
2009
2011
2018

Repeated Computation [D]: Cachetor [21]
[D,F]: MemoizeIt [10]

Java
Java

2013(A)
2015(A)
2015

Inefficiency under
Special Cases

[D]: PerfFuzz [50]
[D]: GA-Prof [49]

C
Java

2018
2015

Inefficient Iteration [D,F]: Caramel [23]
[D]: Toddler [12]
[D]: GLIDER [11]
[D]: LDoctor [61]
[F]: Clarity [13]

Java/C/C++
Java
Java
Java/C/C++
Java

2015
2013(A)
2016(A)
2017
2015

Inefficient API Usage [D,F]: BIKER [54] Java 2018
Redundant Data Processing [F]: RowClone [62]

[F]: LazyClone [63]
assembly
Java

2013
2015

Multi-threaded Blocking [D]: SpeedGun [9]
[D,F]: SyncProf [18]
[D]: LIME [64]
[D,F]: SHERIFF [65]
[D]: PRADATOR [66]

Java
C/C++
C/C++
C/C++
C/C++

2014
2016
2011
2011(A)
2014(A)

General Inefficient
Computation

[D]: Trend Profiler [67]
[D]: Spectroscope [68]
[D]: PerfPlotter [69]

C
Perl/C++
Java

2007
2011(A)
2016(A)

Note: “D" means the tool can automatically detect.
“F" means the tool can automatically provide fixing resolutions.

RQ-1.1 Implication: Practitioners should be aware of the
common root causes that recur in different projects when
they fix performance issues. This awareness also helps prac-
titioners to prevent performance issues in software design
and development, instead of treating performance as an after-
thought.

Figure 5: Prevalence and Literature of Different Root Causes

RQ-1.2: How well is each root cause addressed in litera-
ture? We found that 60 relevant papers published between 2000 to
2019 from ICSE (20%), PLDI (13%), OOPSLA (10%), FSE (8%), ICPE
(8%), ISSTA (7%), ECOOP (5%), and other conferences or journals
(28%). Section 6 discusses the details in existing literature. The dis-
tribution of focuses is shown in Figure 5. The three most frequently
studied root causes are:Multi-threaded Blocking (30%), and Repeated
Computation (23%), Inefficient Data Structure (20%), and General In-
efficient Computation (20%). Table 4 lists the 24 tools to detect and/or
fix performance issues in the related literature. Most of them can
detect the issues, but only 50% can automatically fix the issues. The
majority of the tools can be applied to Java (60%) or C/C++ (50%)
projects. Only one is applicable to Perl projects. Only 9 of them
provided public accessible links, dated back to 2009.

RQ-1.2 Implication: Practitioners may benefit from existing
tools when facing similar issues. However, there are several po-
tential concerns: 1) The proposed tools have not been tested
and compared to each other on any benchmark dataset; 2)
Tools are limited to Java/C/C++ projects; and 3) The avail-
ability and usability of these tools are potential obstacles for
practitioners to using them.

4.2 Design-level Optimization
RQ-2.1 Are performance issues usually addressed by local-
ized optimization or complicated design-level optimization?
In general, the majority (67%) of performance issues are fixed by lo-
calized code revisions. The remaining 33% are addressed by design-
level optimization. Figure 6a shows the distribution of localized
and design-level optimization in each project. The performance
issues in Apache Commons-Collections are exclusive addressed
by localized optimization. In the other four projects, from 28% (in
Groovy) to 67% (in Ivy) of performance issues require design-level
optimization. Figure 6b shows the distribution in each type of root
cause. Inefficient Iterations are exclusively addressed by localized
optimization. The other types all require non-trivial amounts of
design-level optimization: from 22% to 67%.

RQ-2.1 Implication: Practitioners should be aware of the
need for design-level optimization. This need can be impacted
by the nature of projects, as well as the nature of the root
causes. For example, Collections is a simple JDK collection
library and does not deal with complicated interactions among
domain elements. Thus, its issues are exclusively resolved by
localized optimization. In comparison, the other projects are
from more complicated domain, such as document processing.
As such, they require non-trivial design-level optimization.
In addition, Inefficient Iterations, by their nature, are local to
“for loops", as such, they are resolved exclusively by localized
optimization.

RQ-2.2What are the typical design-level optimization pat-
terns?With the help of the D-DSM, we revealed four patterns:

1) Classic Design Patterns: The developers employ classical
design patterns for addressing the performance issues and achiev-
ing good design at the same time. For example, issue AVRO-753[48]
is caused by Inefficiency under Special Cases. The BinaryEncoder is
really slow when processing data chunks smaller than 128 bytes.
The factory pattern provides an elegant design for treating different
input cases in separate. Figure 4a shows the D-DSM of this opti-
mization. The developers added three new source files (row 3 to 5),
which form a factory design pattern. They are: 1) EncoderFactory
(row 5), which is the factory pattern interface; 2) BufferedBinaryEn-
coder (row 3), a concrete encoder that efficiently deals with large
data chunk by using a buffer; and 3) DirectBinaryEncoder (row 4),
the other type of encoder that efficiently deals with small data
chunk without buffer. The EncoderFactory is in charge of picking
the right encoder with respect to the input size. Thus EncoderFac-
tory depends on a bunch of encoders (row 1 to row 4), including the
newly added two. Meanwhile, the clients of Encoder, such as the
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Figure 6: Localized vs. Design-Level Optimization

tool classes (row 6 to 10) are all changed to refer to EncoderFactory
to benefit from the proper encoder.

2) Change Propagation: The root cause of a performance issue
is addressed in one source file, namely the optimization core; and the
optimization core propagates changes to a group of source files that
structurally connect to it. There are two types of propagation: Type I:
The optimization core propagates changes to a group of source files
that structurally depend on and benefit from the core. For example,
Figure 4b is for issue PDFBOX-893[70]. The optimization core is class
Matrix (row 1), which contains Repeated Computation of matrix
production. It propagates changes to files on row 2 to row 4, which
call the core. Type II: The optimization core propagates changes to
a group of source files that the core depends on, to support the core.
For example, Figure 4c is a Type II propagation for issue PDFBOX-
3421[71]. The optimization core is PDAbstractContentStream, which
suffers from inefficient special case. The developers created a new
utility class, named NumberFormatUtil. When applicable, it is used
by the optimization core.

3) Optimization Clone: The developers fix multiple instances
of the same performance root cause that are cloned in multiple
locations in the code base. We noticed that the involved source
files are usually structurally independent from each other. Issue
PDFBOX-3224[72] is such an example, shown in Figure 4d. All the
classes in this change is a certain type of Font, such as PDType1Font.
A method, named getBoundingBox(), which suffers from repeated
computation, is cloned in 7 Font related classes. Therefore, the
optimization is also cloned in 7 locations.

4) Parallel Optimization: The developers made parallel op-
timizations in multiple locations that suffer from different root
causes for resolving an issue. In issue PDFBOX-604[73], the develop-
ers made five parallel optimization. For example, in PDFont (row 1),
developers added a cache to memorize font type to avoid repeated
computation. In PDSimpleFont (row 2), the developers eliminated
repeated computation. Each source file here contains a separate
optimization, but all belongs to the “text extraction" component.

RQ-2.2 Implication: According to Smith and Williams [2],
most performance issues have their roots in poor architec-
tural decisions made before coding is done. Our results on
these four patterns reinforce this argument. They represent
four design strategies to resolve performance issues. For ex-
ample, the issue in Figure 4a, if treated by a localized opti-
mization, will result in a god class that treats all different
input types. Meanwhile, practitioners should pay attention
to change propagation when implementing an optimization.
Code clone is a notorious code smell [74]. Optimization clone
indicates that practitioners should at least be aware of code
clones for thorough optimization, if not fixing the clone by
refactoring. Parallel Optimization suggests that practitioners
should seek architecturally related opportunities in perfor-
mance optimization.

RQ-2.3 How prevalent is each design structure pattern, es-
pecially for addressing different root causes? The majority of
design-level optimization are Change Propagation: 41% in Type I
and 27% for Type II. Each of the other three patterns accounts for
about 10%. Figure 7 show the application of the four patterns for
addressing different root causes in four radar charts. In a particu-
lar note, Inefficient Iterations are excluded in this discussion, since
they are exclusively addressed by localized optimization. Figure 7a
shows that Change Propagation applies for addressing all different
types of root causes. According to Figure 7b, Optimization Clone is
not applied for addressing Inefficiency under Special Cases. Figure 7c
shows that Classic Design Patterns are not applied for addressing
Inefficient Data Structure and General Inefficient Computation. But
almost half (43%) are applied for addressing Inefficiency under Spe-
cial Case. Figure 7d shows that the Parallel Optimization is not
applied for addressing Inefficiency under Special Cases or Inefficient
API Usage.

RQ-2.3 Implication: Overall, the applications of four pat-
terns on addressing different root causes are quite different
from each other. Practitioners should be aware of the different
prevalence of patterns in both software design and develop-
ment.

4.3 Return on Investment
RQ-3.1 What is the overall ROI for addressing performance
issues? The analysis result is shown in Figure 8. According to
Figure 8a, the majority 58% of performance issues are addressed by
1 or 2 developers. According to Figure 8b, 64% of issues are addressed
with no more than 5 discussion comments. Figure 8c shows that
66% of the issues are fixed with less than 10 Improvement Factor.
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Figure 9: ROI for Localized vs. Design-Level Optimization

RQ-3.2 How is the ROI of design-level optimization com-
pared to localized optimization? The result is shown in Figure 9.
Figure 9a is the cumulative distribution function plot of the number
of discussions for localized (the line with the cross marker) and
design-level (the line with the triangle marker) optimization. The
x-axis are ranked from low to high in the number of discussions.
The plot of the localized optimization is constantly above the plot
of the design-level optimization. This means that a larger portion
of localized optimization requires less discussions compared to the
design-level optimization. For example, Figure 9a indicates that
42% of localized issues, while only 20% of design-level issues, re-
quire no more than 2 discussion comments. The average number
of discussions on localized optimization is 4.82 and the average on
design-level optimization is 15.23. We performed the same analysis
for the number of engaged developers, the details of which are not
included here due to space limit. However, we made consistent
observation: localized optimization usually require less number of
developers compared to design-level optimization. Thus, we con-
clude that the investment on localized optimization is obviously
less than the design-level optimization.

Figure 9b is the cumulative distribution function plot of Im-
provement Factor of the localized (the line with the cross marker)
and design-level (the line with the triangle marker) optimization.
The x-axis is ranked from large to small improvement factor. As
such, the plot on the top indicates higher improvement in general.
For example, Figure 9b indicates that 9% of localized optimization
achieved more than 50 times performance improvement; but none
of the design-level optimization were able to achieve this much im-
provement. The plot of the localized optimization is slightly higher
than that of the design-level optimization. The median of localized
and design-level optimization is 6.9 and 2.5 respectively. Therefore,
we conclude that localized optimization offers higher performance
improvement compared to the design-level optimization.

RQ-3.2 Implication: Design-level optimization is more dif-
ficult to develop compared to localized optimization; but it
does not warrant higher performance improvement. However,
design-level optimization may provide benefits other than
performance improvement. For example, we observed that
15 issues discussed other aspects of concerns, such as code
readability and maintainability—73% of these issues employed
design-level optimization. The tricky part is that these ben-
efits are not explicitly measurable or immediately visible to
practitioners. As such, practitioners tend to favor localized
optimization for convenience and immediate benefits.

RQ-3.3 How is the ROI of performance issues affected by
different root causes? Figure 10 shows the ROI for each root
cause. In each sub-figure, the three vertical bars show the distribu-
tion of the number of developers (#Dev), the number of discussions
(#Disc), and the Improvement Factor (Impr) for performance issues
caused by each root cause. As shown in the legend on the bottom
of Figure 10, each vertical bar is divided into three levels: 1) For
the number of developers, we separate [1,2], [3,4], or >=5 devel-
opers; 2) For the number of discussions, we separate [0,5], [6,20],
or >= 21 discussions; 3) For the Improvement Factor, we separate
[1,10),[10,50), >= 50.
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Figure 10: ROI for Different Root Causes

We can make the following key observations: 1) Inefficient It-
erations (Figure 10d) require the lowest cost to address: 95% of
these issues are addressed by 1 or 2 developers, and 100% of these
issues require at most 5 discussions. However, we didn’t find any
performance profiling data available for this type. 2) Inefficient Data
Structure (Figure 10a) and Redundant Data Processing (Figure 10f)
have very high ROI. For example, the majority (54% and 68%) of In-
efficient Data Structure issues require 1 or 2 developers, and within
5 discussions. However, 45% of them achieved more than 50 times
performance improvement. 3) Repeated Computation (Figure 10b)
tend to have the lowest ROI. All of these issues have improvement
factor of less than 10. However, none-trivial (14% and 19%) of these
issues require high—more than 5 developers and more than 20
discussions—to address.

RQ-3.3 Implication: Fixing issues caused by different root
causes can provide very different ROI. Practitioners should be
aware of this when prioritizing issues due to different causes.
However, we acknowledge that the ROI may be impacted by
many other factors. We plan to further pursue this in future
work.

5 LIMITATIONS AND VALIDITIES
Limitations. First, we did not evaluate the actual effectiveness

and usability of the 24 tools for detecting and/or fixing performance
issues. In future work, we plan to collect and use these tools on

our dataset. Second, the performance improvement is evaluated
based on the available profiling data contained in the issue reports.
We did not execute the code and compare the performance metrics
before and after the issues were fix. Therefore, we only have the
performance improvement of 76 issues with available profiling
data. In future work, we will try to evaluate the improvement of
all the 192 issues by executing the code. Third, we evaluated the
ROI of performance issues only based on three measurements: the
number of engaged developers, the number of discussions, and the
performance improvement. We acknowledge that there are other
meaningful measurements of effort and benefits. For example, we
did not measure effort in terms of the amount of time needed. In
addition, we were not able to measure benefits in terms of design
improvement or maintenance quality. We also acknowledge that
the ROI is based on the investment on resolving the issues, without
considering the effort needed for discovering these issues. Lastly,
we acknowledge that different programming languages can impact
the presented results. The issues studied in this work are mostly in
Java. In future work, we will investigate the impact of language on
performance issues and their ROI.

Threats to Validity. First, this study is based on 192 real-life per-
formance issues. We cannot guarantee that we have captured all
possible types of performance issues. We acknowledge that the
choice of keywords for matching performance issues could have an
effect the results presented. And, we also cannot guarantee that the
same conclusions still hold for different performance issue dataset.
For example, we found that Apache Commons Collections does
not contain any design-level optimization. Therefore, the statistics
reported in this paper may vary based on project domains, pro-
gramming languages, and other factors. However, we argue that
any empirical study will suffer from this threat to validity. We plan
to extend our study and test these findings more extensively. Mean-
while, we have shared the data of this study for replicating studies.
Second, we acknowledge that the analysis of common root causes
and solutions to performance issues is potentially biased by the
authors’ understanding and experience. In many cases, the bound-
ary between different root causes could be blurry. For example, an
inefficient API may has its root cause in an inefficient data structure.
Such cases are considered as both types. This is an internal threat
to validity. To best avoid personal basis, we have different authors
work together, and we performed an extensive literature review.
We confirmed the different types of performance issues discovered
in this study are consistent with the findings of previous studies.

6 RELATEDWORK
Inefficient Data Structure has been well-studied in prior works [5, 8,
16, 17, 25, 26, 28, 60, 75–79]. Costa et al. found that data structures
have major impact on software performance [60, 79]. The detect-
ing and fixing approaches mostly rely on runtime profiling [78].
All the five tools, Perflint [16], Coco [17], Brainy [26], Collection-
Switch [60], and Chameleon [25], monitor dynamic execution to
recommend potential replacements. In addition, Xu el al. proposed
a static analysis to identify inefficient data structures [75]. Other
prior work focuses on a specific scenario of inefficient data struc-
ture [8, 76, 77]. For example, Hunt et al. studied the relationship
between speed and energy consumption of various lock-free data
structures [77].



Repeated Computation has been studied in [5, 6, 10, 28, 80, 81, 81–
87]. The general solution is to add cache or buffer to store calcu-
lated results [6]. The two tools, Cachetor [21] and MemoizeIt [10],
automatically detect opportunities to cache calculated results by
comparing the inputs and outputs of method calls, based on dy-
namic analysis. Memory consumption is a great concern for most
software systems. Infante proposed a technique to identify oppor-
tunities to reduce memory consumption by optimizing caches [86].
Other prior works studied various strategies of cache optimiza-
tions [80, 81, 81, 87]. For example, Li et al. attempted to determine
the optimal caching decisions across the network in order to mini-
mize average latency [87].

Inefficiency under Special Cases have been studied in [4, 28, 37, 49–
52, 82, 85]. Available approaches highly reply on available testing
inputs to reveal inefficiency [37, 52]. Coppa et al. focused on the size
of input [51]—they measure how the performance of routines scales
with the input size. Shen et al. proposed GA-Prof that uses highly
structured inputs [49] to accurately detect performance bottlenecks.
This approach encodes highly-structured inputs as genes by using
an genetic algorithm. In contrast, PerfFuzz requires no domain
knowledge since its inputs are represented as byte sequences [50].

Inefficient Iterations have detecting/fixing tools based on both
static and dynamic analysis [11, 12, 23, 28, 37, 61, 85]. Caramel is
a static analysis tool that detects inefficient iterations by adding
conditional-breaks [23]. Clarity is also a static analysis tool, focus-
ing on detecting nested loop traversals [13]. Toddler, in contrast,
dynamically detects inefficient iterations by finding repetitive mem-
ory accesses [12]. However, the effectiveness of Toddler depends
on the quality of input tests. Another dynamic tool, Glider, au-
tomatically generates tests for exposing unnecessary traversal of
iterations [11]. The limitation of static analysis tools are that they
can only find a subset of inefficient iterations; while the limitation
of dynamic analysis tools is that they will slowdown the program.
Song et al. [61] proposed a static-dynamic hybrid analysis tool,
LDoctor, which is faster than than Toddler and more effective than
Caramel.

Inefficient API Usage has been studied in [28, 37, 53–56, 88, 89].
Selecting which third-party libraries to use is highly dependent
on programmers knowledge and experience [55]. Kawrykow et al.
found that inefficient API Usage is quite common [53, 56]. They
proposed a static analysis approach to replace code by available
APIs that provides similar functions. Well-accepted APIs are usually
more efficient [56]. The limitation is that the APIs have to be already
used in the targeted software application. Huang et al. proposed
BIKER, an API recommendation approach, that leverages Stack
Overflow posts to recommend and prioritize candidate APIs for a
program task.

Redundant Data Processing has been studied in [28, 62, 63, 90–92].
Research found that processing data in large chunks is much faster
than processing them unit by unit is loops [62]. Chen et al. proposed
an automated approach to detect redundant data processing specific
to database [90]. Two well-known approaches to process data in
chunks are the shallow clone and the deep clone [91]. Shallow clone
only clones the main object without their dependencies, which
compromises the information. The deep clone copies the entire
dependency graph, which is time and memory consuming. Cartaxo

et al. proposed an intelligent cloning approach, Lazy Clone [63].
Seshadri et al. improve data cloning at the hardware level [62].

Multi-threaded Blocking has been studied in [5, 9, 18–20, 37, 64–
66, 82, 84, 88, 92–98]. SpeedGun generates multi-threaded perfor-
mance test cases to expose performance difference between two
program versions [9]. SyncProf can use these performance test
cases to detect and optimize sychronization bottlenecks [18]. LIME
and PRADATOR also rely on the availability of test cases [64, 66].
LIME focuses on load imbalance between threads. PRADATOR and
SHERIFF focus on false sharing problem of objects, and SHERIFF
has higher accuracy compared to PRADATOR [65].

General Inefficient Computation has been studied in [5, 28, 37, 67–
69, 82, 84, 85, 90]. The algorithms in a program have the most basic
influence on software performance [67]. The challenge to address
this type of issue is that the complexity derived from mathematical
analysis cannot precisely reflect the runtime complexity [69]. Thus,
Goldsmith et al. proposed Trend Profiler to measure the run-time
complexity by executing a program on workloads spanning several
orders of magnitude [67]. Spectroscope [68] also uses dynamic
profiling to detect hot-spots in running programs. The problem is
that the accuracy of profiling relies on the given set of test inputs.
Chen et al. proposed PerfPlotter, which can accurately capture the
best and worst cases and the distribution of program execution
times [90].

There are also other empirical studies that investigated the cat-
egorization of performance issues [28, 37, 84]. Jin et al. catego-
rized the root cause of 109 real-world performance bugs into four
types, which are all included in this study. Liu et al. focused on
performance issues from Android smart-phone applications [84].
They observed three types of performance issues: 1) GUI lagging,
2) energy leak, and 3) memory bloat [84]. Selakovic et al. sum-
marized seven types of root causes from JavaScript projects [28].
Multi-threaded blocking, identified in this paper, does not apply to
JavaScript projects.

7 CONCLUSION
This paper investigated 192 real-life performance issues, and iden-
tified eight recurring root causes and typical resolutions. There are
existing techniques and tools for detecting and fixing these root
causes. However, the actual effectiveness and usability of these
tools have not been evaluated and compared to each other using
the same benchmark dataset. This calls for more research in the
future. We found that developers resolved 33% of the 192 issues
through design-level optimization, manifested in four different pat-
terns. This finding reinforces the view that performance issues can
be rooted in bad software design decisions. In the ROI analysis,
we found that localized optimization provides higher ROI than
design-level optimization, based on measurable efforts and benefits.
We argue that design-level optimization is necessary for achieving
the long-term benefits, such as design and maintenance quality.
However, they are often not explicitly measurable or immediately
visible to practitioners. Therefore, more research is urgently needed
to provide design guidance in resolving performance issues.
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