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Abstract

Conventional approaches in prescribing controls for locomoting robots assume control over all input degrees of freedom
(DOFs). Many robots, such as those with non-holonomic constraints, may not require or even allow for direct command
over all DOFs. In particular, a snake robot with more than three links with non-holonomic constraints cannot achieve
arbitrary configurations in all of its joints while simultaneously locomoting. For such a system, we assume partial com-
mand over a subset of the joints, and allow the rest to evolve according to kinematic chained and dynamic models.
Different combinations of actuated and passive joints, as well as joints with dynamic elements such as torsional springs,
can drastically change the coupling interactions and stable oscillations of joints. We use tools from nonlinear analysis to
understand emergent oscillation modes of various robot configurations and connect them to overall locomotion using geo-
metric mechanics and feedback control for robots that may not fully utilize all available inputs. We also experimentally

verify observations and motion planning results on a physical non-holonomic snake robot.
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1. Introduction

Biologically inspired robots benefit from having a source
of inspiration for motion planning, specifically in gaits or
locomotion modes. In particular, biological imitation has
yielded effective results for snake robot locomotion, which
can be achieved by a repertoire of “natural”-looking slither-
ing motions, such as the serpenoid gait described by Hirose
(1993). In mechanical imitations of these organisms, we
find that variations in robot configuration can lead to a very
different set of locomotion “rules” or limitations compared
with their biological analogs, such as the amount of control
the system can have over its joints. In this article, we con-
sider a robot for which it is impossible to arbitrarily control
all of its joints without violating any inherent constraints.
We consider a multi-link snake robot with a configura-
tion shown in Figure 1, where non-holonomic constraints
visualized as wheels are placed on each of the links, ensur-
ing that resultant motion only occurs along the link’s longi-
tudinal direction. These constraints can be used to derive
relatively simple kinematic models that describe the cou-
pling behaviors among the joints and the overall locomo-
tion of the robot. Although one often assumes control via
motors in each individual joint, the kinematic models
restrict the combinations of inputs that can be applied, such

as the set of valid input trajectories. The robot is thus often
prescribed to follow shapes such as the serpenoid curve in
order to avoid singular configurations or those for which
the constraints cannot be satisfied exactly.

Unlike much of the previous work analyzing this and
related systems, in this article we primarily analyze and
control this system by actuating one or two joints while
leaving at least one joint unactuated. We show that the actu-
ated joints determine the passive dynamics of this system,
contributing to overall locomotion, and show how one may
consider gait design to achieve desired motion. This is done
in both a kinematic and dynamic context, where the kine-
matic context assumes two actuated joints and yields a
chained form of equations, while the dynamic context
allows for the addition of compliance to the joints and
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Fig. 1. An m-link non-holonomic snake robot. The coordinates
(x,y,6) denote the inertial configuration of the proximal link,
which also has body velocities (&, ., &) Relative joint angles
starting from the proximal link are denoted (¢, ..., p—1).

assumes only one actuated input. We are also able to model
the robot’s locomotion when passing through singular con-
figurations, which were previously difficult to handle with
traditional kinematic models and full actuation of the robot.

The work in this article directly extends that of Dear
et al. (2017). The prior work presented descriptions of the
described robot’s kinematic and dynamic models, as well
as preliminary results in analyzing its locomotion using dif-
ferent combinations of commanded joints for the former
and a simple feedback controller for the latter. The present
article provides further intuition that may help explain the
quantitative results that we found from our kinematic anal-
ysis, specifically regarding how gaits in different directions
may assist in “pulling” the robot to locomote effectively or
“pushing” the robot into singularity configurations. We
have also added a more rigorous analysis of the dynamic
model by using a “harmonic balance” method to describe
periodic solutions of passive joints. Finally, a significant
contribution of this article is the experimental validation of
our findings on a real multi-link robot.

2. Prior work

An early experimental implementation of the wheeled snake
robot shown in Figure 1 was the Active Cord Mechanism
Model 3 of Hirose (1993), for which the author presented a
heuristically derived position controller. Krishnaprasad and
Tsakiris (1994) introduced the notion of non-holonomic
kinematic chains, formalizing the snake robot’s configura-
tion as a principal bundle in which periodic “internal” joint
angle trajectories are lifted via a connection to a geometric
phase, or displacement, in the “external” position variables.
Ostrowski and Burdick (1996) considered specific gaits for
a three-link robot, including those that induce “serpentine”
and rotation motion.

The three-link robot is the simplest instance of this
mechanism that can locomote, and as such it has received
considerable attention from researchers such as Ostrowski
(1999) and Shammas et al. (2007) treating it as a kinematic
system, so named because its three constraints eliminate the
need to consider second-order dynamics when modeling its
locomotion. This allows for the treatment of the system’s

locomotion, and subsequent motion planning, as a result of
geometric phase (Bloch et al., 2003; Bullo and Lynch,
2001; Kelly and Murray, 1995; Mukherjee and Anderson,
1993; Murray and Sastry, 1993; Ostrowski and Burdick,
1998; Ostrowski et al., 2000; Shapere and Wilczek, 1989).
The mathematical structure of this system also lends itself
to visualization and design tools, detailed by Hatton and
Choset (2011).

A branch of later work focused on developing feedback
controllers for certain gaits and relaxed mechanism
designs. Prautsch and Mita (1999) and Prautsch et al.
(2000) proposed a position controller with all joints
required to be actuated and centered about zero, but the
gaits could not be applied to a three-link robot owing to
singularities. Matsuno and Mogi (2000), Matsuno and
Suenaga (2003), and Matsuno and Sato (2005) developed
the idea of a “redundancy controllable” system and associ-
ated position controllers using both kinematic and dynamic
models. This allowed for a greater variety of gaits and loco-
motion, but required the removal of non-holonomic con-
straints along the mechanism where control was to be
imposed. Their controllers were able to actively steer away
from singular configurations.

For a general m-link system, singular states may entail
the loss of a controlled degree of freedom (DOF), so motion
plans often actively avoid the straight or arc configurations
in snake robots, as done by Ye et al. (2004) and Matsuno
and Sato (2005). A full analysis of the conditions for singu-
lar configurations in a m-link robot was done by Tanaka
and Tanaka (2016) and recently by Yona and Or (2019), the
latter of which considered friction bounds and stick—slip
transitions of skidding in their models. In preceding work
on the three-link robot (Dear et al., 2016a,b, 2017), we
showed how to appropriately model the transitions between
normal and singular system operation under a hybrid
model, and we described how this may be achieved in a
physical system with external forcing, as well as its novel
locomotive capabilities. We also showed that attaching a
spring to the passive joint can replicate this behavior with-
out relying on external forces, allowing for dynamic
motions.

3. Kinematic model

We now consider a kinematic model for a general m-link
robot. Actuation will be limited to two joints at a time; any
more than that will lead to an overconstrained system, as
we show in the following. We describe how singularities
and stationary joint behaviors arise owing to relative phase
relationships among the joints, and then show how the
robot is able to execute more natural “slithering” gaits that
lead to overall locomotion.

The system shown in Figure 1 is a visual representation
of a five-link non-holonomic snake robot. An m-link robot
simply has the requisite number of links appended or
removed as necessary. Each link has an identical length R
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and a non-holonomic constraint at the link center. The
actuation of the joints and subsequent rotation of the links
induce locomotion of the overall system, governed by the
velocity constraints.

The robot’s configuration is denoted ¢ € O, where the
configuration space Q is a product of two distinct sub-
spaces, G x B. For this system, g = (x, y, 0)" € G=SE(2)
are Lie group variables specifying the position and orienta-
tion of the proximal link, and the joint angles
b=(ay, ...,an_1)" € B=T""" describe the links’ rela-
tive orientations to one another. In this article, links are
numbered 1 (proximal) through m (distal) and joints 1
through m — 1, with joint 7 connecting links i and i + 1.

The kinematics of the system are described by the set of
non-holonomic constraints on the wheels, which prohibit
motion perpendicular to each of the links’ longitudinal
directions. They can be written as m equations of the form

—X;sinf; +y;cos0; =0 (1)

where (X;, ;) is the velocity and 6; is the inertial orientation
of the ith link. These quantities can be computed recur-
sively in order to express them as functions of ¢g. Starting
with the proximal link, we have that (x,y1,60;) = (x,y, 6);
fori=2,...,m,

0;=0,_1+a,_
R

Xi=xj_1+ E(COS 0;_1 + cos6;) (2)
R . .

Yi=yi1+ E(Sm 0;_1 + sin6;)

The constraint equations are symmetric (Kelly and
Murray, 1995) with respect to the group part G of the con-
figuration, because the kinematics do not explicitly depend
on the system’s position or orientation in space. The space
Q can thus be described formally as a principal fiber bun-
dle (Abraham et al., 1978; Marsden et al., 1990) with the
fibers G over the base manifold B. In such a structure, tra-
jectories specified only in the base (or otherwise known as
shape) space B can be mapped to trajectories in the posi-
tion space G.

In order to find such a mapping, we can rewrite the con-
straints in a reduced Pfaffian form as

we(D)E + wp(b)b =0 (3)

where wg € R™™ 3w, € R"X 0D and ¢ = (§X,§y,§0)T S
se(2) are the fiber velocities of the system expressed in a
frame attached to the proximal link, as shown in Figure 1.
These “body velocities” can be viewed as the inertial
group velocities ¢ = (x, 7, §) transformed to the tangent
space at the identity element ¢ of G. Note while ¢ and &
are fundamentally different quantities living in different
spaces, they play a similar role in describing the velocity
of the system, but relative to different frames. There is a
one-to-one mapping between them given the system’s
orientation @, and we assume in this work that one can

B. Controls

Fig. 2. A principal fiber bundle with a separate space of base
variables that evolve according to a set of kinematics given by J. The
original connection —A lifts complete base trajectories to the fibers.

freely transform back and forth as needed. This mapping
is formally expressed as £ = (TeLg)flg, where T,L, is the
lifted left action given by

cosf —sinf 0
TeLg=| sin® cosf 0
0 0 1

Typically, one assumes that input commands are sent
to the joint variables b. For a three-link robot (m — 1 =2),
the number of constraints coincides exactly with the
dimension of the fiber. By specifying trajectories in both
joint (shape) variables, fiber trajectories are then deter-
mined exactly by the constraint equations. For a robot
with greater than three links, or m > 3, each additional
joint DOF is added along with a new constraint on the
overall system’s motion, preventing the system from gain-
ing an additional free controlled input. We can therefore
arbitrarily control at most two joint DOFs if all the con-
straints are to hold.

In this section, we consider systems with exactly two
input DOFs at any given time, denoted as b, :(ai,aj)T.
The rest of the joint variables are denoted b, and evolve
kinematically according to the constraints. Equation (3) can
then be rewritten as

£= — A®b)b.

b, =J(b)b )
P c
Here we explicitly separate the mappings from b, to &
and b, to b,; -A(b) € R*>*? is the local connection form, a
mapping that lifts trajectories in the base to the fiber,
whereas J(b) € R” 32 is a Jacobian-like relationship
(though not a connection) between the commanded joint
velocities b. and the passive ones bp. This dual structure
can be visualized as shown in Figure 2. Equation (4) can
be further simplified into a chained form, which will aid us
in analysis of the special cases of two adjacent commanded
and two non-adjacent commanded joints in the following
sections.

Proposition 1. Suppose that bC:(ai,aj)T where i<j.
Then
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fk(ak,ak+1, ...,aj,l,aj)l?c, k<i
k= filai, i1, s -1, ap)be, k>j (5)
Silai, aivt, .. 01, ap)be, i<k<j

Furthermore, the kinematics of the proximal link can be
written as

fz —A(Oll,az, ...,aj_l,q,)bc (6)

In other words, the kinematics of any joint only depend

on the joint configurations between itself and the most dis-
tal controlled joint in both directions.

Proof. Owing to the recursive nature of how the constraint
equations are defined, one can algebraically show that the
constraint matrices in Equation (3) have the forms

0 1 0
—sina; cos ] Sf(ay)
—sin(a; +ay) cos(a;+az) fiz
(1)52 . . .
m—1 m—1 '
—sin<z a,) cos(Z az) Sim—1
=1 =1
0 0 0 0
R/2 0 0 0
fl) R2 0 0
=l hs o flas) R)2
: S g 0
f2,m71 .fé,mfl .f(amfl) R/2

Wherefw- :f(a,—, (6 7 PN 0[1)

The kth row of each matrix, which corresponds to the
kth constraint equation, only has dependencies on the joint
angles ay, ..., a;_. Furthermore, since all m constraints
are independent, the first j + 1 rows of both matrices yield
j+ 1 independent equations. These equations are linear in
the body velocities (¢, &, &y) as well as the joint velocities
(@1, ...,q;). Given that we have command over the two
joints «; and «, this leaves us with j 4 1 unknown velocity
quantities (three fibers plus j — 2 joints), which can be line-
arly solved.

We now have a solution for the joint velocities &; with
k <j. The kinematic maps for these solutions have depen-
dencies from «; to ; only, because no equations past the
first j+ 1 rows of the constraint matrices are used. This
thus proves Equation (6). We can now solve for the joint
velocities k>>j by successively using each of the constraint
equations in order starting from row j + 2 of the constraint
matrices. Each equation has dependencies up to «; and
introduces one unknown joint velocity ¢y, which can be
solved since the previous velocities are already known.

We now know that the kinematics must be of the form

i) aj)bca

k<j
. 7
')ak)b(f? ( )

. {ﬁ{(al, ..
k>j

ap =
Silay, ..

A symmetry argument can be applied. Our choices of the
proximal link and the joint «; are arbitrarily defined, with
the physical kinematics of the system being unchanged if
we had instead chosen to start «; from the most distal link.
Therefore, by defining the constraints relative to that link
and going through the same procedure as above, we would
obtain (in the original coordinates)

ak — {.}(k(akb ..
ACT

In order for both Equations (7) and (8) to hold simulta-
neously, the dependencies must only occur in their intersec-
tion. In other words, the function f; has a dependency on
an arbitrary joint ; only if this is true in both equations.
Equation (5) can then be proved by applying this observa-
tion to each joint velocity in turn. O

':amfl)_bca k<l 8
-aamfl)bca k>i ( )

3.1. Adjacent commanded joints

3.1.1. Three-link robot. In considering the overall locomo-
tion of the multi-link snake robot, we first take the case in
which the two commanded joints are adjacent to each other,
ie., b, =(a;, iy 1)T. As each successive joint’s kinematics
depend only on that of the joints before it, the evolution of
the passive joint variables increases in complexity as they
get farther away from «; or «;; ;. We first review previous
work regarding the simplest relevant configuration for this
case, the three-link robot. For this system, one assumes
command of both joint variables «; and «;; there are no
remaining passive joints. Then the kinematic mapping for &
can be written as

cosay + cos(a; — ay)

| 1+ cosay .
5 : o))

2(sina; + sin(a; —ay))  Zsiney

where D= 2( —sina; — sin(a; — a;) + sina;). The sec-
ond row, corresponding to £, is zero since this corresponds
to the direction prohibited by the wheel of the proximal
link.

We can also consider the general m-link robot. Note that
Equation (9) describes the fiber motion of an m-link robot
and is a special form of Equation (6). If either o; or «; is
unactuated when m>3, we can use Equation (5) to first
solve for the passive joint trajectories in terms of the con-
trolled ones, and then apply Equation (9) to find the overall
fiber motion.

The quantity % is not defined when «; = a», which cor-
responds to a singular configuration for the system. Such a
configuration corresponds to the links of the robot
lying along the same arc, as shown in Figure 3. We no lon-
ger have three independent constraints in our kinematic
model, and having only two of them is insufficient to pre-
scribe the three fiber DOFs when moving the joint angles
into or from this configuration. For general operation of a
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Fig. 3. The three-link snake robot in a singular configuration. Its
links lie along the same arc, and the directions associated with
the non-holonomic constraints intersect at the same point.

multi-link robot with two commanded joint inputs, we will
also prefer gaits that avoid this and other singular
configurations.

The structure of the connection form in Equation (9) can
be visualized in order to understand the response of & to
input trajectories, according to Hatton and Choset (2011).
We can first integrate each row of Equation (9) over time to
obtain a measure of displacement corresponding to the
body frame directions. In the world frame, this measure
provides the exact rotational displacement, i.e., =&, for
the third row, and an approximation of the translational
component for the first two rows. This “body velocity inte-
gral” is expressed as

£ = /0 A((r)b(r)dr (10)

If our input trajectories are periodic, we can convert the
body velocity integral over time into one over the trajectory
¢ : [0, T] — B in the joint space, since the kinematics are
independent of input pacing. Stokes’ theorem can then be
applied to perform a second transformation into an area
integral over B, the region of the joint space enclosed by :

@:_Aamwz—AMw

The integrand in the integral on the right-hand side is the
exterior derivative of 4 and is computed as the curl of 4 in
two dimensions. For example, the connection exterior deri-
vative of Equation (9) has three components, one for each
row i given by

(11)

04; >
aal

04; 1
aaz

ddi(b) =

where 4, ; is the element corresponding to the ith row and
Jjth column of 4.

The magnitudes of the connection exterior derivative
over the joint space are depicted in Figure 4, along with a
gait trajectory shown as a closed curve on the surfaces.
The area integral over the enclosed region is the geometric
phase, a measure of the expected displacement in the body
x and 6 directions (the body y plot is not shown because it

Fig. 4. Visualizations of the x and 6 components of the
connection exterior derivative for the three-link snake robot.

is zero everywhere). The x plot is positive everywhere,
meaning that any closed loop will lead to net displacement
along the &, direction. In particular, a trajectory that
advances in a counter-clockwise direction over time in joint
space will yield positive body-x displacement, because that
corresponds to a positive area integral; negative body-x dis-
placement is achieved with a clockwise trajectory. The 6
plot is anti-symmetric about a; = — a;, meaning that gaits
symmetric about this line will yield zero net reorientation
while simultaneously moving the robot forward. Note that
the magnitudes in both plots become unbounded closer to
the singular configurations o = ;.

3.1.2. Stationary passive joint. Our analysis for a three-
link robot helps us understand the types of gaits that would
emerge for a robot with more than three links, where the
commanded joints are «; and «; . | and those on either side
of them are passive. In general, the kinematics of a joint
a;1 (or a;_; by symmetry) in response to two adjacent
joints «; and «; 1 1 are given by

. cos(Fai2)
2 sin( (- i)

(sin(% (@ir1 — ai+2)) .

cos (o)

A Q;
:At+2[. l }

Qi1

P —

sin(% (0 — 2041+ Oli+2)) .
i [eTEm |
cos(Yais)

(12)
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Fig. 5. The Jacobian exterior derivative of 4;,, when «;, is
close to but less than 7.

An immediate observation, other than the same singular-
ity of a; =a;4 of a three-link robot, is that a; 1, = £
are equilibria, as ¢&; ;4 , is zero at these configurations. This
corresponds to the passive joint rotating all the way around
such that link i 4 2 coincides with link i 4+ 1, normally an
undesirable behavior. We must therefore investigate the sta-
bility of the equilibrium at 7; in order to not remain station-
ary, &; 4, should be negative if «; ;. , = 7 — € and positive
if @; 1, = — 7+ €, where € is a small positive number. It
can be shown that Equation (12) is simply negated between
the two cases, so any solution that causes one equilibrium
to be unstable will also be sufficient for the other.

In the same way that we visualize the exterior derivative
of the connection form from Equation (9), we can also
visualize the exterior derivative of 4;,, of Equation (12).
By plotting the magnitude of the curl of 4;, ,, we can see
whether a given combination of «; and «; | pushes «;
toward or away from *. This is shown as the surface in
Figure 5 for a; . » = 7 — €, where € is a small positive num-
ber (again, this would be negated for ;. , = — 7+ ¢€).

While the absolute magnitudes are not important, it is
positive everywhere, analogous to the x exterior derivative
plot. Any closed loop that is traversed in a counterclock-
wise direction on the surface will yield a positive net area,
pushing «; 1, toward 7r. Physically, the robot is attempting
to move backward relative to the positions of its actuated
joints, forcing the robot’s tail to fold into the body. In order
to obtain the opposite result, we must have gaits corre-
sponding to clockwise loops, which integrate to negative
values and push «; ., away from 7. In the @;-a; 1| space,
clockwise loops are those in which «; ;| leads a;; i.e., their
phase difference is between 0 and 7r. In contrast to the prior
scenario, here the robot’s tail is being dragged along while
it moves forward, so the tail will not fold into the body.
This is reminiscent of the truck and passive-trailer problem,
which is relatively easy to control if the truck “pulls” its
trailer forward but becomes unstable if the truck “pushes”
its trailer backward, as shown by authors such as Altafini
et al. (2001).
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Fig. 6. Trajectories of commanded inputs «; and aj, and the
passive response «3. The inputs’ relative phase determines the
convergent behavior of «3; a3 moves toward a stationary
configuration when «; leads «;, while a3 oscillates when the
opposite is true.

Figure 6 shows two simulations for a four-link
robot verifying our conclusion. The commanded inputs
(dashed lines) are a; =0.3cos(¢)+ 0.4 and a; =0.3cos
(t+ ¢) — 0.4, where ¢ = 47’7 in the first simulation, causing
@, to lag a, and ¢ = % in the second, so that @, leads «;.
In the former case, the passive response of a3 (solid line)
converges toward 7 and stays there throughout the trajec-
tory. The opposite is true in the second plot, even though
a3 starts out very close to 77 and is even initially drawn to
it before the end of the first gait cycle.

3.1.3. Oscillating passive joints. Assuming that «; and
a4 are prescribed so that the adjacent passive joint «; 4 »
does not remain stationary, «;, will have a steady-state
oscillatory response. Our analysis in the previous section
strongly suggests that the relative phase difference between
the two actuated joints, assuming sinusoidal trajectories, is
a determining factor for the robot’s resultant behavior.
From the second plot of Figure 6, we see that a3 converges
toward a trajectory that is nearly completely out of phase
with a;. This observation holds exactly if a3 happens to
intersect a; anywhere along its steady-state trajectory, i.e.,
a3(1) = ay(7) for some time 7, as Equation (12) reduces to
&3(7) = — ay(7). This means that the two trajectories are
out of phase with each other.

Based on simulations and a linearization analysis of
Equation (12), we make the following observations about
the oscillatory response of «;;, owing to sinusoidal inputs
with the same frequency but possibly different phase. We
assume that ¢ is chosen so that «;, does not end up sta-
tionary. We also assume that the magnitudes and offsets are
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a(t)

ANV =2
=AW \/\

—O.GV
Fig. 7. Trajectories of commanded inputs «; and a5, and the
passive response of joint angles a3, a4, and as.

such that the «; and «;; trajectories do not intersect,
ensuring that the robot avoids singular configurations.

1. The magnitude of @, , depends on ¢. When the com-
manded joints are in phase, «;,, has a magnitude
close to the sum of the magnitudes of «; and «;
(i.e., they are superimposed). Otherwise, it is about the
same magnitude as the smaller of «; and «; 4 ;.

2.  a;y, operates nearly out of phase to «; |, regardless
of the original phase ¢.

3. The offset of «; 1 is closer to that of «; than «; 1 1, so
that the proximal robot configuration tends toward a
“zig-zag” shape.

These observations can be carried over to passive joints
beyond «; . 5. Although the velocity description of an arbi-
trary joint o; becomes increasingly complex and depends
on all of the joints preceding it, the principal response of «;
is to move “opposite” to a;_;. Thus, a natural mode of
locomotion is that each successive joint trajectory alter-
nates between the two forms set by the commanded joints,
with slight decays in magnitude, phase, and offset going
down the links. Figure 7 depicts the trajectories of three
passive joints in response to arbitrary inputs to «; and «;.
The first passive joint a3 follows a trajectory close to a,
while leading a; by about the same phase that a; leads «;.
The same statements can be made for a4 and a5, each rela-
tive to the preceding joints. Note that the magnitudes and
sinusoidal form increasingly decay as we move down the
chain, because each passive joint does not perfectly repli-
cate the opposite gait of the preceding one. A snapshot of
the robot’s configuration during these joint trajectories is
shown in Figure 8. This dynamic zig-zag shape is main-
tained throughout the locomotion of the robot.

We can make several statements about the overall loco-
motion of the robot as a result of different joint interac-
tions. First, because the kinematics are of a chained form,
the presence of links and passive joints beyond the standard
three-link case does not change the locomotion of the prox-
imal link as long as «; and «, are the commanded joints.
Second, commanding successive joints in the interior of the
robot, i.e., joints that are neither oy nor a,_j, is to be
avoided in order to prevent an adjacent passive joint from

Fig. 8. Depiction of the natural configuration

“zig-zag”
achieved by the passive joints (a3 and a4) of a five-link robot.

becoming stationary. If «; leads «; 1, a; 1> will lock, as
per our earlier conclusion; if the opposite is true, a;
leads «; and so «;_; will lock. Since it is inevitable that a
passive joint on either side of the two controlled ones will
become stuck, we can conclude that the two actuated joints
must be located at either the proximal or distal end of the
robot to avoid any of the joints becoming stationary.

3.2. Non-adjacent commanded joints

The analysis of the previous subsection can be extended to
situations in which the commanded subset of joints is not
located adjacently. Previously, we found that to avoid joint
convergence to stationary configurations, the two adjacent
commanded joints must be located at either the front end
(a1, ap) or the back end (a1, @,), making the robot’s
fiber locomotion equivalent to that of a three-link robot. In
other words, the kinematic model asserts that adding an
arbitrary number of passive joints and links to a three-link
robot with the original joints actuated does not change how
the robot moves. Here we show that non-adjacent com-
manded joints can potentially avoid becoming stationary
and allow for commanded joints away from the ends of the
robot. The kinematics of a passive joint «; between two
commanded ones «;_; and «; | are given by

cos(La)
sin(d (a1 — 204+ a4 1))

(sin(é (ai —ait1)) . n sin (3 (o — @i-1)) d»+1>

cos(ai1) cos(aii1)
5]
Qi1
(13)

The form of this equation shares some similarities with
Equation (12). However, in addition to again having unde-
sired equilibria at a; = =7, it is now also possible for the
robot to passively find itself in a singular configuration if
the sine term in the denominator goes to zero. Note that the
singularities here are of a different nature from those of
Equation (12), which correspond to the two adjacent joints
having equal values. In that case, the inputs can directly be

iy =

i—1



Dear et al. 605
a(t)
AR AN I"l l"| PN |'"| AW |"| AR
058 LB
U E ¥ Wyl s WAL v
WYL - a ()
[UZNNRY AR AR Y A VA A VA U VA VA V) vy
N - ! . . — ¢t a2(t)
2 4 60 80 st
-0.5¢
a(t)
0.65~_ T
0.4} T~ a(t)
0.2} el ()
Fig. 9. The exterior derivative of the Jacobian A4; close to a s ¢ as(f)
singularity, for a,-~%(a,;1 +aiiq). 0.k 05 10 5 20 25
chosen to avoid those configurations. Here, in Equation -04

(13) a singular configuration is one in which
o= %(ai,l + «; . 1), where the critical difference from the
previous example is that the left-hand side is a quantity that
we do not control directly.

Valid gaits are those that would push «; away from the
average of «;_; and «; | when it is near the aforemen-
tioned value. As previously, we can visualize the exterior
derivative of the Jacobian 4; of Equation (13), shown in
Figure 9 for a; = %(ai,l + ;1) — €, where € is again a
small positive number. As we would like «; to decrease, we
seek a loop that encloses a negative net area. From inspec-
tion, we have that a loop lying mostly above the
a;—1 =a; 4 line (upper left-hand side of the plot) should
run counterclockwise, and vice versa for a gait below that
line. Unlike in Figure 5, the surface of Figure 9 is not sign-
definite; the phasing of the gait is no longer sufficient to
determine the sign of the enclosed area, and integration is
required to determine the net area for gaits in which the
averages of a;_(¢f) and «; ((¢) are close in value. A rule
of thumb is that the joint trajectory whose average value is
smaller (a lower offset) should lead the other.

Figure 10 shows the joint trajectories for a four-link
robot, in which @ and a3 are controlled and «; is passive.
In both simulations, «(f)=0.3cos(f)+0.4 and
a3()=0.3cos (t+¢) + 0.5, with ¢ = — 7 in the first and
¢ =% in the second. In the first case, the a; trajectory,
which has a smaller average value, leads a3, so that a; is
not attracted into the singular configuration and instead set-
tles into an oscillatory trajectory with an offset opposite the
trajectories on either side of it. This is consistent with what
we found in Figure 7, in which the roles of a; and a3 are
switched but the trajectories remain similar. However, when
a3 is made to lead «; in the second plot of Figure 10, we
have that «, is attracted to the value of %(al +a3) at
t=2.9, at which point the kinematic model produces a
singularity.

If we have a valid gait trajectory that can avoid singular
configurations, the general characterizations of oscillating
passive joint behaviors in the previous subsection can be

Fig. 10. Trajectories of commanded inputs «; and a3, and the
passive response a,. The inputs’ relative phase determines the
convergent behavior of «,; the top simulation shows «;
oscillating in a stable manner, whereas the bottom one has «»,
converging toward a singularity, preventing the simulation from
running forward.

applied here to inform a rudimentary feedback controller
for locomotion. For example, suppose that we have a four-
link robot in which the two outer joints & and a3 are com-
manded and the inner joint «, is passive. As we know that
locomotion of the proximal link can be found from «; and
a, only (Equation (9)), we can achieve desired «; and a;
trajectories by prescribing «; and then “shaping”a, using
a3. The qualitative aspects of a shaping controller are as
follows.

1. The phase of a, is approximately the average of the
phases of @ and a3, plus an additional 7 offset.

2. The offset of ar, depends on its initial value, but can be
changed by shifting the offset or magnitude of a3 rela-
tive to a; in the opposite direction.

3. The magnitude of a, is determined by its phase with
respect to the commanded joints. A larger magnitude
can be achieved by scaling a3 proportionally when the
trajectories are close to in phase.

Given a fixed trajectory «; and a desired trajectory for
a, we can use the above guidelines to impose proportional
or more complex feedback controllers on the parameters of
a3. However, these controllers do not necessarily always
converge, because the ability to shape the passive joint is
rigidly limited by the possibility of hitting singular config-
urations. For example, the offset of @, may not be so close
to the other two trajectories that it intersects them, limiting
how much control we have over its magnitude. The robust-
ness and convergence of this or an improved controller will
be considered in future work.
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Fig. 11. Using a3 to shape a; over time (top left) and achieving
a desired trajectory in the a;—a; space (right). Bottom left: The
robot’s fiber motion.

In the simulation of Figure 11, a(¢) follows a prescribed
trajectory, but we desire to control a3 so as to move a;
farther away from the origin with an offset a; and a phase
¢,. We use a feedback controller of the form

a(t) = an(t = 26,) + (% (@10~ ax(0) - ad> (14)

where k, is the controller gain. As can be seen in the top
left plot, the effect of the controller is to shrink a3 (green)
in magnitude and shift it downward over time. In response,
a, (blue) decreases its offset away from «; and a3. The
right plot shows a sampling of the trajectories in a-a;
space, where they are mostly elliptical loops starting near
the ar; axis (orange) and then eventually moving downward
toward the & = — a; line (blue). Finally, from the robot’s
connection derivative plots of Figure 4, we know that these
gaits will increase the reorientation of the robot from nega-
tive to zero, which is verified by the bottom left plot of the
robot’s fiber trajectory showing the change in curvature
over time. If «; is further decreased, then the gaits become
closer to the negative regions of d4y (shown as red in
Figure 4), which will cause the robot’s trajectory to acquire
the opposite curvature.

4. Dynamic model

We have shown that the kinematic model of the m-link
robot is derived solely from the constraints, with each pas-
sive joint described by a first-order differential equation
depending only on the joint angles between it and the com-
manded ones. Such a model is useful if exactly two joints
are commanded. If only one joint is commanded, then a
more general dynamic model is required to determine the
interactions among all of the passive joints.

In addition, we have also seen that purely kinematic tra-
jectories can be susceptible to joint locking, as well as sin-
gular configurations, such that the robot cannot execute
arbitrary trajectories following the two prescribed inputs.
We will show in this section that a full dynamic model
(with only one commanded input) allows the robot to be

designed or controlled in a way as to avoid joint locking
and singularities.

We assume that each link i has mass M! and moment of
inertia J;, in addition to the identical lengths R. Each joint
a; is represented as a point mass M/, for example capturing
motor mass, as well as spring constant k;, which represents
torsional springs on the passive joints; we assume that the
resting configurations are all &; =0. Now the Lagrangian
of the whole system can be written as

L= ;Z; (MG + 6D+ 48
. (15)

m—1
23 (MU + 6 ke
i=1
where (x,1!) and 6; are the position and orientation of the
ith link defined by Equation (2), and (x,)’) is the position
of the ith joint. Following Shammas et al. (2007), if the
body velocities ¢ are substituted in for the inertial fiber
velocities, then the Lagrangian can be reduced to a form

m—1
O A Ol HEE) ST
i=1

where M(b) is a reduced mass matrix with dependencies on
the system parameters and joint angles only.

The second-order Euler—Lagrange equations of motion
can then be derived, giving us three equations

d al ol
— | =— | —ad; —— =A(Dwg (1. (17)
dt (85{%% 9}> ‘ O x..0) e
and m — 1 equations
d (dl ol
S =) o = = d 1
dt (aa,-) By i — i (18)

Here, wg (xy,9y and wp; are the indicated columns of
the constraint matrices in Equation (3), and
A(t) =(A1(2), ..., A,(2)) is a horizontal vector of Lagrange
multipliers corresponding to each of the constraints. The
adjoint term in Equation (17) corresponds to the collection
of terms that results when taking partial derivatives of the
reduced Lagrangian and applying the chain rule to account
for the change of coordinates from g to & (see Bloch et al.
(2003) for a full derivation). Simple viscous dissipation
terms d;¢; are appended to Equation (18) to ensure stabi-
lity, where d; are damping constants. Along with the con-
straint equations themselves, Equations (17) and (18) can
be integrated in order to find the dynamic solutions of the
robot.

The dynamical equations can be further reduced to the
space of the joint variables by solving Equations (17) and
(18) as a linear system in the Lagrange multipliers. Note
that we can replace all occurrences of the body velocities &
and their derivatives with the base variables, because the
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Fig. 12. A joint trajectory of a three-link robot overlaid on the &,
vector field component of the connection. Because the trajectory
satisfies &} = — &y, it is able to pass through the a;=a;
singular configuration without violating the constraints.

original kinematics of the robot (Equation (9)) still hold.
This results in a system of m 4- 2 equations in the base vari-
ables b and their first- and second-order time derivatives, in
addition to the Lagrange multipliers. The multiplier vari-
ables A(f) can be further eliminated when combining this
system with the time derivative of the three constraint equa-
tions (Equation (3)), giving us a system in only b as

My(b)b + C(b,b) + K(b) =0 (19)

These equations can then be analyzed for passive joint
behaviors in response to commanded ones, without having
to worry directly about the constraints or the fiber motion
of the robot. Note that the reduced shape mass matrix
My(b) is different from the reduced mass matrix of
Equation (16). The equation components for the single pas-
sive joint case are shown in Appendix A.

We note here that the dynamics also allow us to consider
additional noise such as wheel slip close to singular config-
urations. If the kinematics are indeed modeled by “soft”
rather than “hard” constraints to allow for wheel slip on
arbitrary links, then it would be possible to allow for more
than three commanded joints. The realization of soft con-
straints will be considered in future work; here we extend
our work on a three-link robot with one commanded joint
(Dear et al., 2016a,b) to a multi-link robot with the same.

4.1. Singular configuration

In our kinematic analysis of the multi-link robot, we have
seen that singular configurations, i.e., those for which the
constraints are angled such that at least one is rendered
redundant, can be problematic for locomotion since they
lead to large constraint forces. For the three-link case, a
closer look at the connection from Equation (9) shows that

the denominator D goes to zero when «(t)) = ax(ty) for
some time ¢ =1t;. In general, the robot will violate a non-
holonomic constraint when passing through singular con-
figurations; the exception to this implication is if we have
the velocity condition d&;(f)) = — d»(ty), as we showed in
Dear et al. (2016b). If this velocity condition is satisfied,
the robot exhibits a hybrid behavior in which it enters a
dynamic drifting state at ¢t =1#;, followed by a transition
back to a kinematic state after 1 = 1.

Figure 12 shows how the above condition appears on the
vector field representation of the &, component of the con-
nection (prior to conversion to a scalar function via the curl
of the field, as shown in Figure 4). As stated previously, the
singularity configurations occur along the line o; = ap. In
order for the robot to cross these configurations without
violating any constraints, its joint velocities must satisfy
& = — dy, an example of which is shown by the trajectory
overlaid on the vector plot. On a physical robot, this condi-
tion need not be satisfied exactly, since the robot’s wheels
can simply slip when passing through a singular configura-
tion with arbitrary joint velocities.

Away from singularities, the line integral of the vector
field along the trajectory provides us a measure of displace-
ment along the body frame direction corresponding to the
plotted field, as per Equation (11). For example, if the tra-
jectory in Figure 12 were traversed in a clockwise direction,
the line integral would increase nearly everywhere along
the path, and the robot would acquire a positive displace-
ment in the body’s forward direction. At the point where
the path crosses a; = a,, the corresponding vector has infi-
nite magnitude. However, because the trajectory is such that
&) = — dp, it passes exactly perpendicularly to the vector
field direction, allowing the line integral contribution and,
thus, displacement to be identically zero.

Although the line integral approximation of body dis-
placement is still valid with this configuration at the singu-
larities, we can no longer do the full Stokes conversion of
Equation (11) to an area integral if the trajectory passes
through & = a5, even if we ensure that &; = — ¢, at those
points. This is because any closed trajectory passing
through a singular configuration actually encloses two dis-
tinct areas, one on either side of the singularity line.
Because area integrals over these types of shape space
regions can be challenging to compute, we use the vector
field line integrals for displacement approximations, but
will continue to use the scalar curl functions for visual
representation.

With regard to our dynamic model of locomotion, we
know that with only one commanded joint input, the solu-
tion of Equation (19) for the remaining passive joint also
satisfies & (t;) = — do(t;) if the solution contains singular-
ity configurations at times #;. As such gaits are symmetric
about the origin of the joint space in the steady state, this
allows for forward locomotion of the robot without net
rotation, as we have seen from Figure 4. Figure 13 shows
two simulated trajectories of a four-link robot, where
a1(t)=0.3cos (0.5¢). All parameters are assigned to a
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Fig. 13. Top: a; and a3 are completely passive joints, so that
they can drift away from the origin. Bottom: a; and a3 have
stabilizing springs.

value of 1 in both, except the spring constant on the passive
joints k, and k3, which are 0 in the first plot. Without stabi-
lizing springs, «; is able to drift away from the origin and
would, in fact, converge toward 7 if damping were also
non-existent (d, =0), a situation detrimental to overall
locomotion. In contrast, when k, =1 the passive joints
exhibit stable oscillatory motions with amplitude and offset
roughly equal to those of ;.

4.2. Passive joint trajectories

Here we look exclusively at the problem of generating par-
ticular passive joint trajectories for a single-input multi-link
robot, assuming stabilizing springs on the passive joints for
stable oscillatory motions. In particular, we are interested in
the response of the second joint a, (assuming the input is at
the first joint «;), because knowledge of the first two joint
trajectories is sufficient to determine overall system loco-
motion. Assuming periodic inputs, we would like to be able
to effect the shape and alignment of the closed gait in the
a—a; joint space, as we know from the connection exterior
derivative that the greatest area, and thus displacement, in
the body x direction occurs close to and along the o) = «;
axis.

Assuming that we only have sinusoidal inputs, and
therefore sinusoidal gaits, this allows us to narrow down
our trajectories to only elliptical ones in the joint space.
The alignment of such an ellipse, or whether it is wider or
narrower along the a; =a, direction, is therefore deter-
mined by the magnitude, phase, and offset parameters of
the input joint, just as with our observations for the kine-
matic case in Section 3.1.3.

4.2.1. Joint harmonics. The first assertion that we will
show is that the trajectory of a; tends to track that of «a;,
with the exception of a phase offset. In other words, sup-
pose that we command a finite sinusoidal trajectory
a; : RT — B for a single-input m-link robot governed by
Equation (19), where the remaining joints are all spring-
loaded. Then the trajectory of the proximal passive joint a,
will tend toward a phase-shifted version of «, i.e.,
as(t) — ai(t — ¢) for some finite ¢ over time. The solu-
tion of this robot’s nonlinear base dynamics thus produces
sinusoidal shape trajectories given that «; is also
sinusoidal.

For autonomous systems with a two-dimensional shape
space, such solutions exist as limit cycles and can be ana-
lyzed using the Poincaré—Bendixson theorem, as described
by Wiggins (2003), Guckenheimer and Holmes (2013),
and Strogatz (2018). Burton et al. (2010) were able to ana-
lytically find limit cycle expressions for the passive orienta-
tion response of a two-link robotic swimmer given an input
gait at its joint. However, our system cannot be simplified
in the same way. An algebraic method that is applicable
toward systems such as the multi-link snake robot is the
harmonic balance method, presented and extended for vari-
ous systems by authors such as Hayashi (2014), Mickens
(1986), and Luo and Huang (2012). This can also be seen
as an alternative to asymptotic analysis via perturbation
expansion, used by Passov and Or (2012) to describe the
dynamics of a three-link swimmer with a passive joint.

The general idea of harmonic balance, which we will
use to show our assertion, is as follows. Instead of analyz-
ing a nonlinear system of differential equations in the time
domain, we transform it into a nonlinear system of alge-
braic equations in the frequency domain. The solution to
the original differential equation, assumed to take a sinusoi-
dal form, can be written as a Fourier series, or linear combi-
nation of harmonics, and the coefficients of the harmonics
are algebraically solved by balancing the corresponding
frequency domain component at each harmonic. It may not
always be possible to find exact solutions for all the chosen
harmonics, particularly since in practice the series represen-
tation of the solution is truncated when an infinite series is
required. However, the error in the difference is an indica-
tive measure of the goodness of fit.

What we will do here is assume a general sinusoidal
input a1(¢f) = A4; + B} cos (wt). In the method of harmonic
balance, the passive joint a;(f) then follows a trajectory
described by the Fourier series

N
a(t)=Ay+ Y _ By ycos(kot) + Cyisin (kot) — (20)
k=1

Here, the order N of the series is often chosen to replicate
the system response as closely as possible. A general sys-
tem may have an infinite number of harmonics, but from
simulations of our robot we observe that only the first
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Fig. 14. An example of the phase of the passive a; joint over a
sweep of input amplitudes B; (where a;(f) =B cos(0.3¢)) and
frequencies @ (where «;(f)=0.3cos(w?)). We note that we
specifically chose to show the same numerical domains of the

two parameters. These functions are numerically computed using
the harmonic balance equations.

harmonic (the same frequency as that of the input) is preva-
lent. If we choose to expand the series to higher-order har-
monics we would find that the corresponding coefficients
are orders of magnitude smaller.

We thus choose N =1 and substitute both «;(#) and
a;(t) and their time derivatives into Equation (19). As the
dynamics contain trigonometric terms in «; and a,, which
are themselves trigonometric and contain the coefficients
to be solved (refer to Appendix A for the analytical forms),
we expand these functions using a Taylor approximation
up to third order. However, we leave the joint trajectories as
exact sinusoidal functions of ¢, giving us an equation that is
a linear combination of harmonics in cos(w?), sin(wt),
cos 2wt), sin(2wt), and so on; higher-order harmonics
appear from products of first-order ones. Each harmonic
term yields an individual algebraic equation for the coeffi-
cients in front of the harmonics, giving us a system of three
equations in the three unknowns A4,, B; 1, and C,, ;.

We find that our equations are too complex to solve analyti-
cally, so for this article we only present some numerical results
for various combinations of input parameters. In general, we
observe that the offset 4, generally tracks the input offset 4;.
The coefficients B, | and C,,; determine the magnitude and
phase of a;. Our numerical solutions show that the magnitude

v/ (Ba, D* + (G, 1)? is approximately equal to B .

For robots with more than three links, the observation that
the a, joint, and indeed each of the remaining passive joints,
is simply phase-shifted from the joint prior to it still holds
true. In applying the method of harmonic balance, we would
have equivalent Fourier series representations, analogous to
Equation (20), for each of the passive joints. The number of
unknowns, and correspondingly algebraic equations, then
increases linearly with the number of additional links.

4.2.2. Joint phase. In the harmonic balance equations
above, the unknown coefficients of the passive response a;
are solved via nonlinear equations in the known parameters

Fig. 15. Two gaits of a four-link snake robot with a commanded
a; joint and passive a;. The gait with a phase of 150° (blue)
acquires less displacement per cycle than the one with a phase of
80° (green).

Note: Please refer to the online version for colour figure.

of the input. Specifically, the values B, ; and C, | change
as functions of the input amplitude B; and frequency w,
and different value combinations of B, | and C, ; then
determine the resultant phase shift of the trajectory of a;
from «;.

While the harmonic balance equations are not very
insightful and too lengthy to write out, we can visually
show how the phase shift changes as functions of input
amplitude and frequency. Figure 14 shows the variation in
phase as functions of magnitude and frequency, where the
inputs are «)(f)=B;cos(0.37) in the former and
a1(f) = 0.3 cos (wt) in the latter. These results are also use-
ful for locomotion when viewed from a geometric perspec-
tive. We see that, in general, phase increases as input
magnitude increases or as input frequency decreases.
Significantly, certain ranges of the amplitude B; cause the
phase to tend to zero, which would lead to suboptimal or
no locomotion. Such parameter combinations must be
avoided.

Despite the robot having more than three links and only
one commanded joint, the connection equation of Equation
(4) and the associated connection exterior plots of Figure 4
are still valid descriptions of the robot. In other words, peri-
odic gaits in the a;—a; space overlaid on those plots give
us a qualitative measure of the forward and turning displa-
cement that the robot experiences when executing the cor-
responding «; input and experiencing the passive a;
response. Figure 15 shows two such gaits for a four-link
robot, one with a phase of 150° (blue) and the other 80°
(green), overlaid on the x component of the connection
exterior derivative. For the same input magnitude, the latter
is able to acquire significantly more displacement per
cycle, as it is more aligned with the a;—a; axis.
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Fig. 16. Top: Feedback-controlled trajectory of «; and passive
responses of a; and a3. Bottom left: The trajectory in a;—a;
space. Bottom right: The robot’s fiber trajectory.

4.3. Stabilizing feedback controller

As the system can pass through singular configurations, a
stabilizing feedback controller can be more easily defined
than in the kinematic case. In the previous subsection we
showed how the phase shift between «; and «; can be var-
ied according to the parameters of the input gait. In addi-
tion, we reviewed how the resultant shape space
representation of the gait in a;—a; space gives us a geo-
metric interpretation of the robot’s locomotion.

In addition to changing the passive joints’ phase offset,
the balance equations also show that those joints’ magni-
tude and offset generally follow those of the commanded
joint. This is sufficient for achieving arbitrary fiber
motions on the plane, because we can use the kinematic
model of geometric phase to approximate gaits that will
mainly move the robot forward in the same body direction
(centered about the origin), or those that turn the robot in a
specific direction (offsetting the gait away from the origin).
Feedback controllers, as described for the kinematic model,
can then be imposed on the magnitude and offset of the
input 7 in order to achieve the same desired values for the
passive joints. The net effect is to shift and shape the trajec-
tory along the @y = a; line in the first two dimensions of
the joint space in order to achieve a desired displacement
and reorientation per cycle.

Figure 16 shows an example of this controller applied to
a four-link robot. The joint trajectories initially start cen-
tered around 0.2 radians, with a magnitude about the same.
These are the loops centered around the first quadrant of
the joint space plot (bottom left). The input frequency was
chosen such that the resulting phase is about a third of a
gait cycle. According to the exterior derivative plot for 6 in
Figure 4, the robot follows a trajectory of slightly negative
curvature and with a small forward displacement per gait
cycle (bottom right). It is then desired for the robot to start
turning more sharply in the opposite direction: this

Fig. 17. Left: Top view of an experimental four-link robot,
actuated by one joint with a servo motor and the rest passively
compliant. Right: Closeup of the first two links and servo joint.

corresponds to shifting the gait downward to the third
quadrant in a;—a; space and increasing its magnitude. As
shown in the top plot, this is achieved by increasing the
magnitude and decreasing the offset of a; over time, caus-
ing both a; and a3 to follow.

This controller design can be applied to robots with an
arbitrary number of links. The passive joint trajectories will
change because the presence of additional joints down the
line couple into their dynamics. However, the commanded
joint can still use feedback to shape the adjacent joint, fol-
lowed by the remaining ones down the chain, with each
successive one down the chain following its predecessor.

5. Experimental results

To verify some of our theoretical observations and analyses,
experimental apparatuses resembling the three- and four-
link non-holonomic snake robot models are used to qualita-
tively assess gait, joint-angle, and workspace trajectories.
To facilitate easy development of different and modular
configurations, we use prefabricated parts from Actobotics
as the primary source of components for the robot. A phys-
ical realization of a four-link robot with a single com-
manded input joint and passively compliant joints is shown
in Figure 17.

We use skate wheels made of polyurethane with stan-
dard ball bearings to realize the single wheel shown in the
model. Note that while each link contains two wheels
instead of one, the non-holonomic constraint on a single
wheel is identical to those acting on the two wheels on each
link in the experiments. Linear springs are used to model
passive compliance. By attaching one end of the spring to
a lever arm extended over a joint and the other end to the
neighboring link, the spring can undergo linear deflections.
The lever arm thus experiences a force similar to that of a
torsional spring. An example of the configuration of each
spring is shown in Figure 18.

The modular nature of our system easily allows for the
robot to contain an arbitrary number of links, from three to
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Fig. 18. Detail of the linear spring implementation between the
passive joints of the robot. The effective stiffness can vary in the
number of springs used.

four or more. Each link is about 6 inches long and connects
to neighboring links using identical parts for consistency
and symmetry. The total lengths of the three- and four-link
robots are about 24 inches and 33.5 inches, respectively. At
the proximal input joint, the robot is equipped with an
Adafruit Pro Trinket to control a servo motor.
Communications and power are handled via an XBee
Series 1 wireless communication module and a 6 V, 350
mAh NiMH battery.

Tracking of the robot is done via the position and orien-
tation of each individual robot link, atop which is affixed
two yellow markers equidistant from the center of the link.
These markers’ trajectories are tracked relative to the labora-
tory frame, which is defined also by four yellow markers
placed at the corners of the general workspace area.

We capture video using a Raspberry Pi and Pi camera
and postprocess these videos using MATLAB, in which the
positions of each marker are identified and recorded on a
frame-by-frame basis. These positions determine the cen-
troid and, thus, position of each link relative to the labora-
tory frame. Link orientations are determined using relative
measurements between neighboring links. In all experi-
ments, the orientation and trajectory of the robot relative to
the laboratory frame are computed using the second link.
The Raspberry Pi and Pi camera are mounted 10 feet above
the workspace providing an effective area approximately 6
feet wide and 10 feet long. Figure 19 shows a perspective
of the workspace and the previously described components,
along with the four-link robot in the space.

5.1. Parameter sweeps

In Section 4.2, we observed that the relative phase of the
robot’s first two joint trajectories generally varies with both
the amplitude and the frequency of the sinusoidal input. We
perform sweeps in both parameters to show that the experi-
mental robot exhibits qualitatively similar behavior. From
our geometric understanding of the system, we also know
that the relative phase directly affects locomotive efficiency,

A — Raspberry Pi & Camera
B — XBee connected to PC
C — Reference Markers

D — Four-link robot

w

adb o

Fig. 19. The experimental setup with camera and markers,
along with the four-link robot in the workspace.

measured by displacement per gait cycle per amplitude.
This relationship can be visually understood by the align-
ment of the closed loop in a;-a; space.

Figure 20 shows an amplitude sweep for a three-link
robot, where the amplitude of the input trajectory varies
from 20° to 70° while the frequency is kept constant at 0.3
Hz. As expected, the phase depiction of the gaits in the
shape space shows the ellipses moving from alignment with
the —a;-arp diagonal to alignment with the «-a; diagonal.
Such a transition in the gait phase, as well as the fact that
the subsequent experiments have a higher magnitude per
gait cycle, results in the robot obtaining a higher displace-
ment per cycle in the latter experiments. The workspace tra-
jectories are shown side by side in the second plot of Figure
20; they are placed at regular intervals along the y axis and
reoriented such that the second link is aligned with the
laboratory x axis. Note that at 70° the workspace trajectory
actually starts to turn away from its original heading. This
is not surprising as large swings of the robot’s links are
prone to incur unmodeled effects such as slipping and resis-
tance against neighboring links.

Similarly, Figure 21 depicts a frequency sweep, where
the frequency of the input varies from 0.2 to 1 Hz while the
amplitude is kept constant at 55°. As frequency increases,



612

The International Journal of Robotics Research 39(5)

100
50 |
s 0 —20°
—30°
40°
-50 so°
——60°
70°
-100 : : :
100 50 0 50 100
ay
O -
50 —20°
—30°
e — o
100 40
—50°
150 60°
70°
/g 200 ;\/\/\/
L
> 250
350
400 r
450 : '
0 100 200
x (cm)

Fig. 20. Shape space (top) and workspace (bottom) trajectories
of a three-link robot undergoing an amplitude sweep ranging
from 20° to 70" for the commanded « joint at frequency 0.3 Hz.

the shape space depiction of the gait becomes more anti-
aligned with the positive aj-a; diagonal. As amplitude
remains the same in each instance (i.e., the path length of
the shape space representation remains almost constant),
we can fairly compare the effect of the relative gait phase
on overall displacement, and we see that anti-alignment
produces markedly less displacement per cycle than align-
ment with the a;-a, diagonal. We also have simulation
sweep results as a point of comparison for the experiments
in Figure 22; although the values of the frequencies and
amplitudes are different owing to parameter tuning, we see
that qualitatively our model predicts the robot’s trajectories
very well. Finally, observed values for the mean forward
speed and net displacement, as well as phase shift between
the two joint trajectories, for both sets of experiments are
summarized in Table 1.

In the previous experiments, the offset of the sinusoidal
input is zero, resulting in a mostly straight workspace tra-
jectory aligned with the robot’s initial heading. As we recall

—02Hz
— 0.4 Hz
0.6 Hz
50 — 08 Hz
——1Hz
5 of {
-50

y (cm)

-100

A~
e e e
150 | | | |
0 50 100 150
x (cm)

Fig. 21. Shape space (top) and workspace (bottom) trajectories
of a three-link robot undergoing a frequency sweep ranging from
0.2 to 1 Hz for the commanded «; joint at amplitude 55°.

from the equation corresponding to the & component of the
robot’s body velocity, as well as the corresponding exterior
derivative plot in Figure 4, a non-zero offset will introduce
a non-zero curvature to the robot’s trajectory. Figure 23
shows that by introducing an offset into the input, the pas-
sive joint will track this offset as well. The offset of the
commanded joint «; is continuously increased from the
beginning of the experiment, resulting in the workspace tra-
jectory having an increasing curvature.

5.2. Navigation

As described in Section 4.3, it is possible to use our knowl-
edge about the dependence of workspace displacement and
trajectory curvature on the robot’s input parameters to con-
duct navigation of the environment. For greater displace-
ment per cycle, the robot commands the input joint to
either increase amplitude or decrease frequency until the
desired velocity is achieved. To turn around, the input must
acquire a non-zero offset, with the sign of the offset deter-
mining the turn direction. For this experiment, we intro-
duce an obstacle along the robot’s unmodified trajectory
and precompute suitable trajectory segments that would
allow the robot to navigate around it. These segments are
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Fig. 22. Amplitude (top) and frequency (bottom) shape space
trajectories obtained from simulation. They are qualitatively very
similar to the experimental results obtained in Figures 20 and 21.

Table 1. Observed mean forward speed, net displacement, and
phase shift for the amplitude and frequency sweep experiments.

Amplitude  Mean forward  Net displacement (cm)  Phase
(deg) speed (cm/s) shift (s)
20 0 0 0

30 4.80 85.4 1.43

40 9.84 160 0.976
50 13.7 212 0.857
60 21.8 215 0.762
70 21.7 220 0.740
Frequency = Mean forward  Net displacement (cm)  Phase
(Hz) speed (cm/s) shift (s)
0.2 134 227 1.10
0.4 14.3 220 0.666
0.6 16.8 182 0.523
0.8 16.2 132 0.405
1.0 8.54 59.7 0.452

then stitched together via smoothing functions to obtain a
continuous input command. The resulting shape space
depiction of a; and a;, as well as the trajectory taken by
the robot, are shown in Figure 24.
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Fig. 23. Shape space (top) and workspace (bottom) trajectories
of a four-link robot continuously varying its input offset
parameter. When the commanded joint «; acquires an offset, the
workspace trajectory has non-zero curvature.

6. Conclusions and future work

We have developed and studied kinematic and dynamic
models for a m-link fully non-holonomic snake robot. With
the kinematic model we showed that the joint kinematics
take on a chained form, allowing us to determine gaits with
two adjacent or non-adjacent joints that can avoid locked
and singular configurations. We also characterized oscil-
latory modes for the passive joints that qualitatively
inform a class of feedback controllers. The dynamic
model, though more complex, allows for elements such
as stabilizing torsional springs and locomotion of the
robot by actuating only one joint. The method of harmo-
nic balance provided an approximate solution to the
robot’s dynamics that allowed us to characterize the phase
response of the passive joints, which were then connected
to geometric phase analysis in order to describe the
robot’s motion. Finally, we were able to show some of
our analyses on a three- and four-link robot, as well as
primitive navigation results.

Further quantitative analysis is necessary for proving
that some of our observations presented here are, in fact,
general. For example, in the kinematic case of two con-
trolled joints, it may be possible to cleverly turn different
combinations of joints on and off to achieve different
desired configurations of the remaining joints. This would
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Fig. 24. Top: Three shape-space segments of a full trajectory of a four-link robot modulating the offset of its input joint «;. Starting
at the origin, the robot has a positive offset, leading to initial orientation to its left. The second segment is a transition to a negative
offset in order to zero out the workspace curvature. The last segment smoothly increases the offset back to zero. Bottom left: Value of
the input joint’s offset over time, colored into three different segments corresponding to the gait segments in the shape spaces above.
Bottom right: Resultant workspace trajectory of the four-link robot navigating around an obstacle.

involve a more thorough investigation of how the passive
joint responses change in the adjacent and non-adjacent
commanded cases, as well as how to provably avoid lock-
ing configurations.

Going forward we would like to derive more sophisti-
cated controllers and locomotion maneuvers. In our
dynamic analysis, the gaits that we considered are suffi-
cient to propel and orient the robot in arbitrary directions,
but they have all emerged to be symmetric about one of
the shape space diagonals (i.e., they cross singularities).
While offset gaits such as those of the kinematic model
may not necessarily provide new locomotion modes, it
may be interesting to see whether a greater variety of
gaits can indeed be induced. For example, one can pro-
pose a trajectory with a variety of turns and curves and
then quantify the effectiveness of a simple feedback con-
troller in enabling the robot to follow it. Finally, we
would like to explore additional dynamic elements added
to the robot, such as wheel slip or lateral friction, which
would likely be more faithful to a physical system. By
“softening” the constraints we can then extend our work
to analogous kinematic systems such as a low- or high-
Reynolds-number swimmer snake robot.
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Notes

1. We plot a scaled arctangent of these functions in order to
visualize the singular portions. Instead of d4; (b), we plot 1/k
arctan(k dd4; (b)), where k is positive.
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Appendix. Dynamics of base variables

We present here the analytical forms of the base dynamics
equation (Equation (19)) for a robot with two joints
b=(ay, ozz)T, link length R, identical link masses M ! and
identical joint masses M’. Only a, is passive, so we have
one equation

0= (My My )b+ C(b,b)+K(b)

where
My, = 4: ((M'R? — 4J) cos L (ay — 3a) +

(12J + 3M7 4+ 2M")R* + 2M'R* — 8J) cos a;)
X cosi(ay — a))
My, = — 4(4J — M'R*)(2 cosa; + cos (o] — 2a2))
+48J +4(3M! +2M7)R?
C = 128dyct, cos? %sin2 Hay — )
+ e (-M'R(sin 5 + sinj (a1 — 4e))

+2(8J + M/R*)sin% — 8J sind (o — 2a))
+ 2geoslan=20) (g 7 9ol 4 M)R?

cos2 sind(a —az)



616

The International Journal of Robotics Research 39(5)

+ (4 — M'R*)(cos (a) — az) — 2cosa; — cosay))
] cosjar (BM'R? — 8J) cos 3

o cos2 L sind(a; —arp)

—M'R? cos 22 4 M'R? cos 20t

+ M'R? cos39=2%2 4 D\ pIR? cos”“%MZ
+ M'R? cos 1222 — MIR? cos 201520

+ (12J + (TM" + 2M7)R*) cos &
+8Jsin%F (sinay — 3sin(a; — az))
—4J cos24-92),

K =128ka; cos? 2 sin? Hay — )



