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Abstract

Conventional approaches in prescribing controls for locomoting robots assume control over all input degrees of freedom

(DOFs). Many robots, such as those with non-holonomic constraints, may not require or even allow for direct command

over all DOFs. In particular, a snake robot with more than three links with non-holonomic constraints cannot achieve

arbitrary configurations in all of its joints while simultaneously locomoting. For such a system, we assume partial com-

mand over a subset of the joints, and allow the rest to evolve according to kinematic chained and dynamic models.

Different combinations of actuated and passive joints, as well as joints with dynamic elements such as torsional springs,

can drastically change the coupling interactions and stable oscillations of joints. We use tools from nonlinear analysis to

understand emergent oscillation modes of various robot configurations and connect them to overall locomotion using geo-

metric mechanics and feedback control for robots that may not fully utilize all available inputs. We also experimentally

verify observations and motion planning results on a physical non-holonomic snake robot.
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1. Introduction

Biologically inspired robots benefit from having a source

of inspiration for motion planning, specifically in gaits or

locomotion modes. In particular, biological imitation has

yielded effective results for snake robot locomotion, which

can be achieved by a repertoire of ‘‘natural’’-looking slither-

ing motions, such as the serpenoid gait described by Hirose

(1993). In mechanical imitations of these organisms, we

find that variations in robot configuration can lead to a very

different set of locomotion ‘‘rules’’ or limitations compared

with their biological analogs, such as the amount of control

the system can have over its joints. In this article, we con-

sider a robot for which it is impossible to arbitrarily control

all of its joints without violating any inherent constraints.

We consider a multi-link snake robot with a configura-

tion shown in Figure 1, where non-holonomic constraints

visualized as wheels are placed on each of the links, ensur-

ing that resultant motion only occurs along the link’s longi-

tudinal direction. These constraints can be used to derive

relatively simple kinematic models that describe the cou-

pling behaviors among the joints and the overall locomo-

tion of the robot. Although one often assumes control via

motors in each individual joint, the kinematic models

restrict the combinations of inputs that can be applied, such

as the set of valid input trajectories. The robot is thus often

prescribed to follow shapes such as the serpenoid curve in

order to avoid singular configurations or those for which

the constraints cannot be satisfied exactly.

Unlike much of the previous work analyzing this and

related systems, in this article we primarily analyze and

control this system by actuating one or two joints while

leaving at least one joint unactuated. We show that the actu-

ated joints determine the passive dynamics of this system,

contributing to overall locomotion, and show how one may

consider gait design to achieve desired motion. This is done

in both a kinematic and dynamic context, where the kine-

matic context assumes two actuated joints and yields a

chained form of equations, while the dynamic context

allows for the addition of compliance to the joints and
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assumes only one actuated input. We are also able to model

the robot’s locomotion when passing through singular con-

figurations, which were previously difficult to handle with

traditional kinematic models and full actuation of the robot.

The work in this article directly extends that of Dear

et al. (2017). The prior work presented descriptions of the

described robot’s kinematic and dynamic models, as well

as preliminary results in analyzing its locomotion using dif-

ferent combinations of commanded joints for the former

and a simple feedback controller for the latter. The present

article provides further intuition that may help explain the

quantitative results that we found from our kinematic anal-

ysis, specifically regarding how gaits in different directions

may assist in ‘‘pulling’’ the robot to locomote effectively or

‘‘pushing’’ the robot into singularity configurations. We

have also added a more rigorous analysis of the dynamic

model by using a ‘‘harmonic balance’’ method to describe

periodic solutions of passive joints. Finally, a significant

contribution of this article is the experimental validation of

our findings on a real multi-link robot.

2. Prior work

An early experimental implementation of the wheeled snake

robot shown in Figure 1 was the Active Cord Mechanism

Model 3 of Hirose (1993), for which the author presented a

heuristically derived position controller. Krishnaprasad and

Tsakiris (1994) introduced the notion of non-holonomic

kinematic chains, formalizing the snake robot’s configura-

tion as a principal bundle in which periodic ‘‘internal’’ joint

angle trajectories are lifted via a connection to a geometric

phase, or displacement, in the ‘‘external’’ position variables.

Ostrowski and Burdick (1996) considered specific gaits for

a three-link robot, including those that induce ‘‘serpentine’’

and rotation motion.

The three-link robot is the simplest instance of this

mechanism that can locomote, and as such it has received

considerable attention from researchers such as Ostrowski

(1999) and Shammas et al. (2007) treating it as a kinematic

system, so named because its three constraints eliminate the

need to consider second-order dynamics when modeling its

locomotion. This allows for the treatment of the system’s

locomotion, and subsequent motion planning, as a result of

geometric phase (Bloch et al., 2003; Bullo and Lynch,

2001; Kelly and Murray, 1995; Mukherjee and Anderson,

1993; Murray and Sastry, 1993; Ostrowski and Burdick,

1998; Ostrowski et al., 2000; Shapere and Wilczek, 1989).

The mathematical structure of this system also lends itself

to visualization and design tools, detailed by Hatton and

Choset (2011).

A branch of later work focused on developing feedback

controllers for certain gaits and relaxed mechanism

designs. Prautsch and Mita (1999) and Prautsch et al.

(2000) proposed a position controller with all joints

required to be actuated and centered about zero, but the

gaits could not be applied to a three-link robot owing to

singularities. Matsuno and Mogi (2000), Matsuno and

Suenaga (2003), and Matsuno and Sato (2005) developed

the idea of a ‘‘redundancy controllable’’ system and associ-

ated position controllers using both kinematic and dynamic

models. This allowed for a greater variety of gaits and loco-

motion, but required the removal of non-holonomic con-

straints along the mechanism where control was to be

imposed. Their controllers were able to actively steer away

from singular configurations.

For a general m-link system, singular states may entail

the loss of a controlled degree of freedom (DOF), so motion

plans often actively avoid the straight or arc configurations

in snake robots, as done by Ye et al. (2004) and Matsuno

and Sato (2005). A full analysis of the conditions for singu-

lar configurations in a m-link robot was done by Tanaka

and Tanaka (2016) and recently by Yona and Or (2019), the

latter of which considered friction bounds and stick–slip

transitions of skidding in their models. In preceding work

on the three-link robot (Dear et al., 2016a,b, 2017), we

showed how to appropriately model the transitions between

normal and singular system operation under a hybrid

model, and we described how this may be achieved in a

physical system with external forcing, as well as its novel

locomotive capabilities. We also showed that attaching a

spring to the passive joint can replicate this behavior with-

out relying on external forces, allowing for dynamic

motions.

3. Kinematic model

We now consider a kinematic model for a general m-link

robot. Actuation will be limited to two joints at a time; any

more than that will lead to an overconstrained system, as

we show in the following. We describe how singularities

and stationary joint behaviors arise owing to relative phase

relationships among the joints, and then show how the

robot is able to execute more natural ‘‘slithering’’ gaits that

lead to overall locomotion.

The system shown in Figure 1 is a visual representation

of a five-link non-holonomic snake robot. An m-link robot

simply has the requisite number of links appended or

removed as necessary. Each link has an identical length R

Fig. 1. An m-link non-holonomic snake robot. The coordinates

(x, y, u) denote the inertial configuration of the proximal link,

which also has body velocities (jx, jy, ju). Relative joint angles

starting from the proximal link are denoted (a1, . . . ,am�1).
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and a non-holonomic constraint at the link center. The

actuation of the joints and subsequent rotation of the links

induce locomotion of the overall system, governed by the

velocity constraints.

The robot’s configuration is denoted q 2 Q, where the

configuration space Q is a product of two distinct sub-

spaces, G ×B. For this system, g = (x, y, u)T 2 G = SE(2)
are Lie group variables specifying the position and orienta-

tion of the proximal link, and the joint angles

b = (a1, . . . ,am�1)
T 2 B =T

m�1 describe the links’ rela-

tive orientations to one another. In this article, links are

numbered 1 (proximal) through m (distal) and joints 1

through m� 1, with joint i connecting links i and i + 1.

The kinematics of the system are described by the set of

non-holonomic constraints on the wheels, which prohibit

motion perpendicular to each of the links’ longitudinal

directions. They can be written as m equations of the form

� _xi sin ui + _yi cos ui = 0 ð1Þ

where ( _xi, _yi) is the velocity and ui is the inertial orientation

of the ith link. These quantities can be computed recur-

sively in order to express them as functions of q. Starting

with the proximal link, we have that (x1, y1, u1)= (x, y, u);
for i = 2, . . . ,m,

ui = ui�1 + ai�1

xi = xi�1 +
R

2
( cos ui�1 + cos ui)

yi = yi�1 +
R

2
( sin ui�1 + sin ui)

ð2Þ

The constraint equations are symmetric (Kelly and

Murray, 1995) with respect to the group part G of the con-

figuration, because the kinematics do not explicitly depend

on the system’s position or orientation in space. The space

Q can thus be described formally as a principal fiber bun-

dle (Abraham et al., 1978; Marsden et al., 1990) with the

fibers G over the base manifold B. In such a structure, tra-

jectories specified only in the base (or otherwise known as

shape) space B can be mapped to trajectories in the posi-

tion space G.

In order to find such a mapping, we can rewrite the con-

straints in a reduced Pfaffian form as

vj(b)j + vb(b) _b = 0 ð3Þ

where vj 2 R
m× 3, vb 2 R

m× (m�1), and j = (jx, jy, ju)
T 2

se(2) are the fiber velocities of the system expressed in a

frame attached to the proximal link, as shown in Figure 1.

These ‘‘body velocities’’ can be viewed as the inertial

group velocities _g = ( _x, _y, _u) transformed to the tangent

space at the identity element e of G. Note while _g and j

are fundamentally different quantities living in different

spaces, they play a similar role in describing the velocity

of the system, but relative to different frames. There is a

one-to-one mapping between them given the system’s

orientation u, and we assume in this work that one can

freely transform back and forth as needed. This mapping

is formally expressed as j = (TeLg)
�1 _g, where TeLg is the

lifted left action given by

TeLg =
cos u � sin u 0

sin u cos u 0

0 0 1

0
@

1
A

Typically, one assumes that input commands are sent

to the joint variables b. For a three-link robot (m� 1 = 2),

the number of constraints coincides exactly with the

dimension of the fiber. By specifying trajectories in both

joint (shape) variables, fiber trajectories are then deter-

mined exactly by the constraint equations. For a robot

with greater than three links, or m . 3, each additional

joint DOF is added along with a new constraint on the

overall system’s motion, preventing the system from gain-

ing an additional free controlled input. We can therefore

arbitrarily control at most two joint DOFs if all the con-

straints are to hold.

In this section, we consider systems with exactly two

input DOFs at any given time, denoted as bc = (ai,aj)
T.

The rest of the joint variables are denoted bp and evolve

kinematically according to the constraints. Equation (3) can

then be rewritten as

j = � A(b) _bc

_bp = J (b) _bc

ð4Þ

Here we explicitly separate the mappings from _bc to j

and _bc to _bp; -A(b) 2 R
3× 2 is the local connection form, a

mapping that lifts trajectories in the base to the fiber,

whereas J (b) 2 R
(m�3)× 2 is a Jacobian-like relationship

(though not a connection) between the commanded joint

velocities _bc and the passive ones _bp. This dual structure

can be visualized as shown in Figure 2. Equation (4) can

be further simplified into a chained form, which will aid us

in analysis of the special cases of two adjacent commanded

and two non-adjacent commanded joints in the following

sections.

Proposition 1. Suppose that bc = (ai,aj)
T where i\j.

Then

J

Controls

Fig. 2. A principal fiber bundle with a separate space of base

variables that evolve according to a set of kinematics given by J. The

original connection �A lifts complete base trajectories to the fibers.
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_ak =
fk(ak ,ak + 1, . . . ,aj�1,aj) _bc, k\i

fk(ai,ai + 1, . . . ,ak�1,ak) _bc, k.j

fk(ai,ai + 1, . . . ,aj�1,aj) _bc, i\k\j

8<
: ð5Þ

Furthermore, the kinematics of the proximal link can be

written as

j = � A(a1,a2, . . . ,aj�1,aj) _bc ð6Þ

In other words, the kinematics of any joint only depend

on the joint configurations between itself and the most dis-

tal controlled joint in both directions.

Proof. Owing to the recursive nature of how the constraint

equations are defined, one can algebraically show that the

constraint matrices in Equation (3) have the forms

vj =

0 1 0

� sina1 cosa1 f (a1)
� sin (a1 + a2) cos (a1 + a2) f1, 2

..

. ..
. ..

.

� sin
Pm�1

l = 1

al

� �
cos

Pm�1

l = 1

al

� �
f1,m�1

0
BBBBBBB@

1
CCCCCCCA

vb =

0 0 0 � � � 0

R=2 0 0 � � � 0

f (a2) R=2 0 � � � 0

f2, 3 f (a3) R=2 . .
. ..

.

..

. ..
. . .

. . .
.

0

f2,m�1 f3,m�1 f (am�1) R=2

0
BBBBBBBB@

1
CCCCCCCCA

where fi, j = f (ai,ai + 1, . . . ,aj).
The kth row of each matrix, which corresponds to the

kth constraint equation, only has dependencies on the joint

angles a1, . . . ,ak�1. Furthermore, since all m constraints

are independent, the first j + 1 rows of both matrices yield

j + 1 independent equations. These equations are linear in

the body velocities (jx, jy, ju) as well as the joint velocities

( _a1, . . . , _aj). Given that we have command over the two

joints ai and aj, this leaves us with j + 1 unknown velocity

quantities (three fibers plus j� 2 joints), which can be line-

arly solved.

We now have a solution for the joint velocities _ak with

k\j. The kinematic maps for these solutions have depen-

dencies from a1 to aj only, because no equations past the

first j + 1 rows of the constraint matrices are used. This

thus proves Equation (6). We can now solve for the joint

velocities k.j by successively using each of the constraint

equations in order starting from row j + 2 of the constraint

matrices. Each equation has dependencies up to ak and

introduces one unknown joint velocity _ak, which can be

solved since the previous velocities are already known.

We now know that the kinematics must be of the form

_ak =
fk(a1, . . . ,aj) _bc, k\j

fk(a1, . . . ,ak) _bc, k.j

�
ð7Þ

A symmetry argument can be applied. Our choices of the

proximal link and the joint a1 are arbitrarily defined, with

the physical kinematics of the system being unchanged if

we had instead chosen to start a1 from the most distal link.

Therefore, by defining the constraints relative to that link

and going through the same procedure as above, we would

obtain (in the original coordinates)

_ak =
fk(ak , . . . ,am�1) _bc, k\i

fk(ai, . . . ,am�1) _bc, k.i

�
ð8Þ

In order for both Equations (7) and (8) to hold simulta-

neously, the dependencies must only occur in their intersec-

tion. In other words, the function fk has a dependency on

an arbitrary joint al only if this is true in both equations.

Equation (5) can then be proved by applying this observa-

tion to each joint velocity in turn. h

3.1. Adjacent commanded joints

3.1.1. Three-link robot. In considering the overall locomo-

tion of the multi-link snake robot, we first take the case in

which the two commanded joints are adjacent to each other,

i.e., bc = (ai,ai + 1)
T. As each successive joint’s kinematics

depend only on that of the joints before it, the evolution of

the passive joint variables increases in complexity as they

get farther away from ai or ai + 1. We first review previous

work regarding the simplest relevant configuration for this

case, the three-link robot. For this system, one assumes

command of both joint variables a1 and a2; there are no

remaining passive joints. Then the kinematic mapping for j

can be written as

j =
1

D

cosa1 + cos (a1 � a2) 1 + cosa1

0 0
2
R
( sina1 + sin (a1 � a2))

2
R
sina1

0
@

1
A _a1

_a2

� �

ð9Þ

where D = 2
R
(� sina1 � sin (a1 � a2)+ sina2). The sec-

ond row, corresponding to jy, is zero since this corresponds

to the direction prohibited by the wheel of the proximal

link.

We can also consider the general m-link robot. Note that

Equation (9) describes the fiber motion of an m-link robot

and is a special form of Equation (6). If either a1 or a2 is

unactuated when m.3, we can use Equation (5) to first

solve for the passive joint trajectories in terms of the con-

trolled ones, and then apply Equation (9) to find the overall

fiber motion.

The quantity 1
D

is not defined when a1 = a2, which cor-

responds to a singular configuration for the system. Such a

configuration corresponds to the links of the robot

lying along the same arc, as shown in Figure 3. We no lon-

ger have three independent constraints in our kinematic

model, and having only two of them is insufficient to pre-

scribe the three fiber DOFs when moving the joint angles

into or from this configuration. For general operation of a

Dear et al. 601



multi-link robot with two commanded joint inputs, we will

also prefer gaits that avoid this and other singular

configurations.

The structure of the connection form in Equation (9) can

be visualized in order to understand the response of j to

input trajectories, according to Hatton and Choset (2011).

We can first integrate each row of Equation (9) over time to

obtain a measure of displacement corresponding to the

body frame directions. In the world frame, this measure

provides the exact rotational displacement, i.e., _u = ju for

the third row, and an approximation of the translational

component for the first two rows. This ‘‘body velocity inte-

gral’’ is expressed as

z(t)=�
Z t

0

A(b(t)) _b(t)dt ð10Þ

If our input trajectories are periodic, we can convert the

body velocity integral over time into one over the trajectory

c : ½0, T � ! B in the joint space, since the kinematics are

independent of input pacing. Stokes’ theorem can then be

applied to perform a second transformation into an area

integral over b, the region of the joint space enclosed by c:

zc = �
Z

c

A(b)db = �
Z

b

dA(b) ð11Þ

The integrand in the integral on the right-hand side is the

exterior derivative of A and is computed as the curl of A in

two dimensions. For example, the connection exterior deri-

vative of Equation (9) has three components, one for each

row i given by

dAi(b)=
∂Ai, 2

∂a1

� ∂Ai, 1

∂a2

where Ai, j is the element corresponding to the ith row and

jth column of A.

The magnitudes of the connection exterior derivative

over the joint space are depicted in Figure 4,
1

along with a

gait trajectory shown as a closed curve on the surfaces.

The area integral over the enclosed region is the geometric

phase, a measure of the expected displacement in the body

x and u directions (the body y plot is not shown because it

is zero everywhere). The x plot is positive everywhere,

meaning that any closed loop will lead to net displacement

along the jx direction. In particular, a trajectory that

advances in a counter-clockwise direction over time in joint

space will yield positive body-x displacement, because that

corresponds to a positive area integral; negative body-x dis-

placement is achieved with a clockwise trajectory. The u

plot is anti-symmetric about a1 = � a2, meaning that gaits

symmetric about this line will yield zero net reorientation

while simultaneously moving the robot forward. Note that

the magnitudes in both plots become unbounded closer to

the singular configurations a1 = a2.

3.1.2. Stationary passive joint. Our analysis for a three-

link robot helps us understand the types of gaits that would

emerge for a robot with more than three links, where the

commanded joints are ai and ai + 1 and those on either side

of them are passive. In general, the kinematics of a joint

ai + 2 (or ai�1 by symmetry) in response to two adjacent

joints ai and ai + 1 are given by

_ai + 2 =
cos 1

2
ai + 2

� �
sin 1

2
ai � ai + 1ð Þ

� �
sin 1

2
ai + 1 � ai + 2ð Þ

� �
cos 1

2
ai

� � _ai �
sin 1

2
ai � 2ai + 1 + ai + 2ð Þ

� �
cos 1

2
ai + 1

� � _ai + 1

 !

¼D Ai + 2

_ai

_ai + 1

� �

ð12Þ

Fig. 4. Visualizations of the x and u components of the

connection exterior derivative for the three-link snake robot.

Fig. 3. The three-link snake robot in a singular configuration. Its

links lie along the same arc, and the directions associated with

the non-holonomic constraints intersect at the same point.
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An immediate observation, other than the same singular-

ity of ai = ai + 1 of a three-link robot, is that ai + 2 = 6p

are equilibria, as _ai + 2 is zero at these configurations. This

corresponds to the passive joint rotating all the way around

such that link i + 2 coincides with link i + 1, normally an

undesirable behavior. We must therefore investigate the sta-

bility of the equilibrium at p; in order to not remain station-

ary, _ai + 2 should be negative if ai + 2 = p � e and positive

if ai + 2 = � p + e, where e is a small positive number. It

can be shown that Equation (12) is simply negated between

the two cases, so any solution that causes one equilibrium

to be unstable will also be sufficient for the other.

In the same way that we visualize the exterior derivative

of the connection form from Equation (9), we can also

visualize the exterior derivative of Ai + 2 of Equation (12).

By plotting the magnitude of the curl of Ai + 2, we can see

whether a given combination of ai and ai + 1 pushes ai + 2

toward or away from 6p. This is shown as the surface in

Figure 5 for ai + 2 = p � e, where e is a small positive num-

ber (again, this would be negated for ai + 2 = � p + e).

While the absolute magnitudes are not important, it is

positive everywhere, analogous to the x exterior derivative

plot. Any closed loop that is traversed in a counterclock-

wise direction on the surface will yield a positive net area,

pushing ai + 2 toward p. Physically, the robot is attempting

to move backward relative to the positions of its actuated

joints, forcing the robot’s tail to fold into the body. In order

to obtain the opposite result, we must have gaits corre-

sponding to clockwise loops, which integrate to negative

values and push ai + 2 away from p. In the ai-ai + 1 space,

clockwise loops are those in which ai + 1 leads ai; i.e., their

phase difference is between 0 and p. In contrast to the prior

scenario, here the robot’s tail is being dragged along while

it moves forward, so the tail will not fold into the body.

This is reminiscent of the truck and passive-trailer problem,

which is relatively easy to control if the truck ‘‘pulls’’ its

trailer forward but becomes unstable if the truck ‘‘pushes’’

its trailer backward, as shown by authors such as Altafini

et al. (2001).

Figure 6 shows two simulations for a four-link

robot verifying our conclusion. The commanded inputs

(dashed lines) are a1 = 0:3 cos (t)+ 0:4 and a2 = 0:3 cos
(t + f)� 0:4, where f = 4p

3
in the first simulation, causing

a2 to lag a1, and f = p
6

in the second, so that a2 leads a1.

In the former case, the passive response of a3 (solid line)

converges toward p and stays there throughout the trajec-

tory. The opposite is true in the second plot, even though

a3 starts out very close to p and is even initially drawn to

it before the end of the first gait cycle.

3.1.3. Oscillating passive joints. Assuming that ai and

ai + 1 are prescribed so that the adjacent passive joint ai + 2

does not remain stationary, ai + 2 will have a steady-state

oscillatory response. Our analysis in the previous section

strongly suggests that the relative phase difference between

the two actuated joints, assuming sinusoidal trajectories, is

a determining factor for the robot’s resultant behavior.

From the second plot of Figure 6, we see that a3 converges

toward a trajectory that is nearly completely out of phase

with a2. This observation holds exactly if a3 happens to

intersect a2 anywhere along its steady-state trajectory, i.e.,

a3(t)= a2(t) for some time t, as Equation (12) reduces to

_a3(t)= � _a2(t). This means that the two trajectories are

out of phase with each other.

Based on simulations and a linearization analysis of

Equation (12), we make the following observations about

the oscillatory response of ai + 2 owing to sinusoidal inputs

with the same frequency but possibly different phase. We

assume that f is chosen so that ai + 2 does not end up sta-

tionary. We also assume that the magnitudes and offsets are

Fig. 5. The Jacobian exterior derivative of Ai + 2 when ai + 2 is

close to but less than p.

Fig. 6. Trajectories of commanded inputs a1 and a2, and the

passive response a3. The inputs’ relative phase determines the

convergent behavior of a3; a3 moves toward a stationary

configuration when a1 leads a2, while a3 oscillates when the

opposite is true.
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such that the ai and ai + 1 trajectories do not intersect,

ensuring that the robot avoids singular configurations.

1. The magnitude of ai + 2 depends on f. When the com-

manded joints are in phase, ai + 2 has a magnitude

close to the sum of the magnitudes of ai and ai + 1

(i.e., they are superimposed). Otherwise, it is about the

same magnitude as the smaller of ai and ai + 1.

2. ai + 2 operates nearly out of phase to ai + 1, regardless

of the original phase f.

3. The offset of ai + 2 is closer to that of ai than ai + 1, so

that the proximal robot configuration tends toward a

‘‘zig-zag’’ shape.

These observations can be carried over to passive joints

beyond ai + 2. Although the velocity description of an arbi-

trary joint aj becomes increasingly complex and depends

on all of the joints preceding it, the principal response of aj

is to move ‘‘opposite’’ to aj�1. Thus, a natural mode of

locomotion is that each successive joint trajectory alter-

nates between the two forms set by the commanded joints,

with slight decays in magnitude, phase, and offset going

down the links. Figure 7 depicts the trajectories of three

passive joints in response to arbitrary inputs to a1 and a2.

The first passive joint a3 follows a trajectory close to a1,

while leading a2 by about the same phase that a2 leads a1.

The same statements can be made for a4 and a5, each rela-

tive to the preceding joints. Note that the magnitudes and

sinusoidal form increasingly decay as we move down the

chain, because each passive joint does not perfectly repli-

cate the opposite gait of the preceding one. A snapshot of

the robot’s configuration during these joint trajectories is

shown in Figure 8. This dynamic zig-zag shape is main-

tained throughout the locomotion of the robot.

We can make several statements about the overall loco-

motion of the robot as a result of different joint interac-

tions. First, because the kinematics are of a chained form,

the presence of links and passive joints beyond the standard

three-link case does not change the locomotion of the prox-

imal link as long as a1 and a2 are the commanded joints.

Second, commanding successive joints in the interior of the

robot, i.e., joints that are neither a1 nor am�1, is to be

avoided in order to prevent an adjacent passive joint from

becoming stationary. If ai leads ai + 1, ai + 2 will lock, as

per our earlier conclusion; if the opposite is true, ai + 1

leads ai and so ai�1 will lock. Since it is inevitable that a

passive joint on either side of the two controlled ones will

become stuck, we can conclude that the two actuated joints

must be located at either the proximal or distal end of the

robot to avoid any of the joints becoming stationary.

3.2. Non-adjacent commanded joints

The analysis of the previous subsection can be extended to

situations in which the commanded subset of joints is not

located adjacently. Previously, we found that to avoid joint

convergence to stationary configurations, the two adjacent

commanded joints must be located at either the front end

(a1,a2) or the back end (am�1,am), making the robot’s

fiber locomotion equivalent to that of a three-link robot. In

other words, the kinematic model asserts that adding an

arbitrary number of passive joints and links to a three-link

robot with the original joints actuated does not change how

the robot moves. Here we show that non-adjacent com-

manded joints can potentially avoid becoming stationary

and allow for commanded joints away from the ends of the

robot. The kinematics of a passive joint ai between two

commanded ones ai�1 and ai + 1 are given by

_ai =
cos 1

2
ai

� �
sin 1

2
ai�1 � 2ai + ai + 1ð Þ

� �
sin 1

2
ai � ai + 1ð Þ

� �
cos 1

2
ai�1

� � _ai�1 +
sin 1

2
ai � ai�1ð Þ

� �
cos 1

2
ai + 1

� � _ai + 1

 !

¼D Ai

_ai�1

_ai + 1

� �
ð13Þ

The form of this equation shares some similarities with

Equation (12). However, in addition to again having unde-

sired equilibria at ai = 6p, it is now also possible for the

robot to passively find itself in a singular configuration if

the sine term in the denominator goes to zero. Note that the

singularities here are of a different nature from those of

Equation (12), which correspond to the two adjacent joints

having equal values. In that case, the inputs can directly be

Fig. 7. Trajectories of commanded inputs a1 and a2, and the

passive response of joint angles a3, a4, and a5.
Fig. 8. Depiction of the natural ‘‘zig-zag’’ configuration

achieved by the passive joints (a3 and a4) of a five-link robot.
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chosen to avoid those configurations. Here, in Equation

(13) a singular configuration is one in which

ai =
1
2
(ai�1 + ai + 1), where the critical difference from the

previous example is that the left-hand side is a quantity that

we do not control directly.

Valid gaits are those that would push ai away from the

average of ai�1 and ai + 1 when it is near the aforemen-

tioned value. As previously, we can visualize the exterior

derivative of the Jacobian Ai of Equation (13), shown in

Figure 9 for ai =
1
2
(ai�1 + ai + 1)� e, where e is again a

small positive number. As we would like ai to decrease, we

seek a loop that encloses a negative net area. From inspec-

tion, we have that a loop lying mostly above the

ai�1 = ai + 1 line (upper left-hand side of the plot) should

run counterclockwise, and vice versa for a gait below that

line. Unlike in Figure 5, the surface of Figure 9 is not sign-

definite; the phasing of the gait is no longer sufficient to

determine the sign of the enclosed area, and integration is

required to determine the net area for gaits in which the

averages of ai�1(t) and ai + 1(t) are close in value. A rule

of thumb is that the joint trajectory whose average value is

smaller (a lower offset) should lead the other.

Figure 10 shows the joint trajectories for a four-link

robot, in which a1 and a3 are controlled and a2 is passive.

In both simulations, a1(t)= 0:3 cos (t)+ 0:4 and

a3(t)= 0:3 cos (t + f)+ 0:5, with f = � p
3

in the first and

f = p
3

in the second. In the first case, the a1 trajectory,

which has a smaller average value, leads a3, so that a2 is

not attracted into the singular configuration and instead set-

tles into an oscillatory trajectory with an offset opposite the

trajectories on either side of it. This is consistent with what

we found in Figure 7, in which the roles of a2 and a3 are

switched but the trajectories remain similar. However, when

a3 is made to lead a1 in the second plot of Figure 10, we

have that a2 is attracted to the value of 1
2
(a1 + a3) at

t = 2:9, at which point the kinematic model produces a

singularity.

If we have a valid gait trajectory that can avoid singular

configurations, the general characterizations of oscillating

passive joint behaviors in the previous subsection can be

applied here to inform a rudimentary feedback controller

for locomotion. For example, suppose that we have a four-

link robot in which the two outer joints a1 and a3 are com-

manded and the inner joint a2 is passive. As we know that

locomotion of the proximal link can be found from a1 and

a2 only (Equation (9)), we can achieve desired a1 and a2

trajectories by prescribing a1 and then ‘‘shaping’’a2 using

a3. The qualitative aspects of a shaping controller are as

follows.

1. The phase of a2 is approximately the average of the

phases of a1 and a3, plus an additional p offset.

2. The offset of a2 depends on its initial value, but can be

changed by shifting the offset or magnitude of a3 rela-

tive to a1 in the opposite direction.

3. The magnitude of a2 is determined by its phase with

respect to the commanded joints. A larger magnitude

can be achieved by scaling a3 proportionally when the

trajectories are close to in phase.

Given a fixed trajectory a1 and a desired trajectory for

a2, we can use the above guidelines to impose proportional

or more complex feedback controllers on the parameters of

a3. However, these controllers do not necessarily always

converge, because the ability to shape the passive joint is

rigidly limited by the possibility of hitting singular config-

urations. For example, the offset of a2 may not be so close

to the other two trajectories that it intersects them, limiting

how much control we have over its magnitude. The robust-

ness and convergence of this or an improved controller will

be considered in future work.

Fig. 9. The exterior derivative of the Jacobian Ai close to a

singularity, for ai’
1
2
(ai�1 + ai + 1).

Fig. 10. Trajectories of commanded inputs a1 and a3, and the

passive response a2. The inputs’ relative phase determines the

convergent behavior of a2; the top simulation shows a2

oscillating in a stable manner, whereas the bottom one has a2

converging toward a singularity, preventing the simulation from

running forward.
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In the simulation of Figure 11, a1(t) follows a prescribed

trajectory, but we desire to control a3 so as to move a2

farther away from the origin with an offset ad and a phase

f2. We use a feedback controller of the form

a3(t)= a1(t � 2f2)+ kp

1

2
(a1(t)� a2(t))� ad

� �
ð14Þ

where kp is the controller gain. As can be seen in the top

left plot, the effect of the controller is to shrink a3 (green)

in magnitude and shift it downward over time. In response,

a2 (blue) decreases its offset away from a1 and a3. The

right plot shows a sampling of the trajectories in a1-a2

space, where they are mostly elliptical loops starting near

the a1 axis (orange) and then eventually moving downward

toward the a1 = � a2 line (blue). Finally, from the robot’s

connection derivative plots of Figure 4, we know that these

gaits will increase the reorientation of the robot from nega-

tive to zero, which is verified by the bottom left plot of the

robot’s fiber trajectory showing the change in curvature

over time. If a2 is further decreased, then the gaits become

closer to the negative regions of dAu (shown as red in

Figure 4), which will cause the robot’s trajectory to acquire

the opposite curvature.

4. Dynamic model

We have shown that the kinematic model of the m-link

robot is derived solely from the constraints, with each pas-

sive joint described by a first-order differential equation

depending only on the joint angles between it and the com-

manded ones. Such a model is useful if exactly two joints

are commanded. If only one joint is commanded, then a

more general dynamic model is required to determine the

interactions among all of the passive joints.

In addition, we have also seen that purely kinematic tra-

jectories can be susceptible to joint locking, as well as sin-

gular configurations, such that the robot cannot execute

arbitrary trajectories following the two prescribed inputs.

We will show in this section that a full dynamic model

(with only one commanded input) allows the robot to be

designed or controlled in a way as to avoid joint locking

and singularities.

We assume that each link i has mass Ml
i and moment of

inertia Ji, in addition to the identical lengths R. Each joint

ai is represented as a point mass M
j
i , for example capturing

motor mass, as well as spring constant ki, which represents

torsional springs on the passive joints; we assume that the

resting configurations are all ai = 0. Now the Lagrangian

of the whole system can be written as

L =
1

2

Xm

i = 1

Ml
i (( _x

l
i)

2 + ( _yl
i)

2
)+ Ji

_u2
i

	 


+
1

2

Xm�1

i = 1

M
j
i (( _x

j
i)

2 + ( _yj
i)

2
)� kia

2
i

	 
 ð15Þ

where (xl
i, y

l
i) and ui are the position and orientation of the

ith link defined by Equation (2), and (xj
i, y

j
i) is the position

of the ith joint. Following Shammas et al. (2007), if the

body velocities j are substituted in for the inertial fiber

velocities, then the Lagrangian can be reduced to a form

l(b, j, _b)=
1

2
jT _b

T
h i

~M(b)
j
_b

� �
� 1

2

Xm�1

i = 1

kia
2
i ð16Þ

where ~M(b) is a reduced mass matrix with dependencies on

the system parameters and joint angles only.

The second-order Euler–Lagrange equations of motion

can then be derived, giving us three equations

d

dt

∂l

∂jfx, y, ug

 !
� ad�j

∂l

∂jfx, y, ug
= l(t)vj, fx, y, ug ð17Þ

and m� 1 equations

d

dt

∂l

∂ _ai

� �
� ∂l

∂ai

= l(t)vb, i � di _ai ð18Þ

Here, vj, fx, y, ug and vb, i are the indicated columns of

the constraint matrices in Equation (3), and

l(t)= (l1(t), . . . , lm(t)) is a horizontal vector of Lagrange

multipliers corresponding to each of the constraints. The

adjoint term in Equation (17) corresponds to the collection

of terms that results when taking partial derivatives of the

reduced Lagrangian and applying the chain rule to account

for the change of coordinates from _g to j (see Bloch et al.

(2003) for a full derivation). Simple viscous dissipation

terms di _ai are appended to Equation (18) to ensure stabi-

lity, where di are damping constants. Along with the con-

straint equations themselves, Equations (17) and (18) can

be integrated in order to find the dynamic solutions of the

robot.

The dynamical equations can be further reduced to the

space of the joint variables by solving Equations (17) and

(18) as a linear system in the Lagrange multipliers. Note

that we can replace all occurrences of the body velocities j

and their derivatives with the base variables, because the

Fig. 11. Using a3 to shape a2 over time (top left) and achieving

a desired trajectory in the a1–a2 space (right). Bottom left: The

robot’s fiber motion.
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original kinematics of the robot (Equation (9)) still hold.

This results in a system of m + 2 equations in the base vari-

ables b and their first- and second-order time derivatives, in

addition to the Lagrange multipliers. The multiplier vari-

ables l(t) can be further eliminated when combining this

system with the time derivative of the three constraint equa-

tions (Equation (3)), giving us a system in only b as

~Mb(b)€b + ~C(b, _b)+ ~K(b)= 0 ð19Þ

These equations can then be analyzed for passive joint

behaviors in response to commanded ones, without having

to worry directly about the constraints or the fiber motion

of the robot. Note that the reduced shape mass matrix
~Mb(b) is different from the reduced mass matrix of

Equation (16). The equation components for the single pas-

sive joint case are shown in Appendix A.

We note here that the dynamics also allow us to consider

additional noise such as wheel slip close to singular config-

urations. If the kinematics are indeed modeled by ‘‘soft’’

rather than ‘‘hard’’ constraints to allow for wheel slip on

arbitrary links, then it would be possible to allow for more

than three commanded joints. The realization of soft con-

straints will be considered in future work; here we extend

our work on a three-link robot with one commanded joint

(Dear et al., 2016a,b) to a multi-link robot with the same.

4.1. Singular configuration

In our kinematic analysis of the multi-link robot, we have

seen that singular configurations, i.e., those for which the

constraints are angled such that at least one is rendered

redundant, can be problematic for locomotion since they

lead to large constraint forces. For the three-link case, a

closer look at the connection from Equation (9) shows that

the denominator D goes to zero when a1(t0)= a2(t0) for

some time t = t0. In general, the robot will violate a non-

holonomic constraint when passing through singular con-

figurations; the exception to this implication is if we have

the velocity condition _a1(t0)= � _a2(t0), as we showed in

Dear et al. (2016b). If this velocity condition is satisfied,

the robot exhibits a hybrid behavior in which it enters a

dynamic drifting state at t = t0, followed by a transition

back to a kinematic state after t = t0.

Figure 12 shows how the above condition appears on the

vector field representation of the jx component of the con-

nection (prior to conversion to a scalar function via the curl

of the field, as shown in Figure 4). As stated previously, the

singularity configurations occur along the line a1 = a2. In

order for the robot to cross these configurations without

violating any constraints, its joint velocities must satisfy

_a1 = � _a2, an example of which is shown by the trajectory

overlaid on the vector plot. On a physical robot, this condi-

tion need not be satisfied exactly, since the robot’s wheels

can simply slip when passing through a singular configura-

tion with arbitrary joint velocities.

Away from singularities, the line integral of the vector

field along the trajectory provides us a measure of displace-

ment along the body frame direction corresponding to the

plotted field, as per Equation (11). For example, if the tra-

jectory in Figure 12 were traversed in a clockwise direction,

the line integral would increase nearly everywhere along

the path, and the robot would acquire a positive displace-

ment in the body’s forward direction. At the point where

the path crosses a1 = a2, the corresponding vector has infi-

nite magnitude. However, because the trajectory is such that

_a1 = � _a2, it passes exactly perpendicularly to the vector

field direction, allowing the line integral contribution and,

thus, displacement to be identically zero.

Although the line integral approximation of body dis-

placement is still valid with this configuration at the singu-

larities, we can no longer do the full Stokes conversion of

Equation (11) to an area integral if the trajectory passes

through a1 = a2, even if we ensure that _a1 = � _a2 at those

points. This is because any closed trajectory passing

through a singular configuration actually encloses two dis-

tinct areas, one on either side of the singularity line.

Because area integrals over these types of shape space

regions can be challenging to compute, we use the vector

field line integrals for displacement approximations, but

will continue to use the scalar curl functions for visual

representation.

With regard to our dynamic model of locomotion, we

know that with only one commanded joint input, the solu-

tion of Equation (19) for the remaining passive joint also

satisfies _a1(ti)= � _a2(ti) if the solution contains singular-

ity configurations at times ti. As such gaits are symmetric

about the origin of the joint space in the steady state, this

allows for forward locomotion of the robot without net

rotation, as we have seen from Figure 4. Figure 13 shows

two simulated trajectories of a four-link robot, where

a1(t)= 0:3 cos (0:5t). All parameters are assigned to a

Fig. 12. A joint trajectory of a three-link robot overlaid on the jx

vector field component of the connection. Because the trajectory

satisfies _a1 = � _a2, it is able to pass through the a1 = a2

singular configuration without violating the constraints.
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value of 1 in both, except the spring constant on the passive

joints k2 and k3, which are 0 in the first plot. Without stabi-

lizing springs, a2 is able to drift away from the origin and

would, in fact, converge toward p if damping were also

non-existent (d2 = 0), a situation detrimental to overall

locomotion. In contrast, when k2 = 1 the passive joints

exhibit stable oscillatory motions with amplitude and offset

roughly equal to those of a1.

4.2. Passive joint trajectories

Here we look exclusively at the problem of generating par-

ticular passive joint trajectories for a single-input multi-link

robot, assuming stabilizing springs on the passive joints for

stable oscillatory motions. In particular, we are interested in

the response of the second joint a2 (assuming the input is at

the first joint a1), because knowledge of the first two joint

trajectories is sufficient to determine overall system loco-

motion. Assuming periodic inputs, we would like to be able

to effect the shape and alignment of the closed gait in the

a1–a2 joint space, as we know from the connection exterior

derivative that the greatest area, and thus displacement, in

the body x direction occurs close to and along the a1 = a2

axis.

Assuming that we only have sinusoidal inputs, and

therefore sinusoidal gaits, this allows us to narrow down

our trajectories to only elliptical ones in the joint space.

The alignment of such an ellipse, or whether it is wider or

narrower along the a1 = a2 direction, is therefore deter-

mined by the magnitude, phase, and offset parameters of

the input joint, just as with our observations for the kine-

matic case in Section 3.1.3.

4.2.1. Joint harmonics. The first assertion that we will

show is that the trajectory of a2 tends to track that of a1,

with the exception of a phase offset. In other words, sup-

pose that we command a finite sinusoidal trajectory

a1 : R+ ! B for a single-input m-link robot governed by

Equation (19), where the remaining joints are all spring-

loaded. Then the trajectory of the proximal passive joint a2

will tend toward a phase-shifted version of a1, i.e.,

a2(t)! a1(t � f) for some finite f over time. The solu-

tion of this robot’s nonlinear base dynamics thus produces

sinusoidal shape trajectories given that a1 is also

sinusoidal.

For autonomous systems with a two-dimensional shape

space, such solutions exist as limit cycles and can be ana-

lyzed using the Poincaré–Bendixson theorem, as described

by Wiggins (2003), Guckenheimer and Holmes (2013),

and Strogatz (2018). Burton et al. (2010) were able to ana-

lytically find limit cycle expressions for the passive orienta-

tion response of a two-link robotic swimmer given an input

gait at its joint. However, our system cannot be simplified

in the same way. An algebraic method that is applicable

toward systems such as the multi-link snake robot is the

harmonic balance method, presented and extended for vari-

ous systems by authors such as Hayashi (2014), Mickens

(1986), and Luo and Huang (2012). This can also be seen

as an alternative to asymptotic analysis via perturbation

expansion, used by Passov and Or (2012) to describe the

dynamics of a three-link swimmer with a passive joint.

The general idea of harmonic balance, which we will

use to show our assertion, is as follows. Instead of analyz-

ing a nonlinear system of differential equations in the time

domain, we transform it into a nonlinear system of alge-

braic equations in the frequency domain. The solution to

the original differential equation, assumed to take a sinusoi-

dal form, can be written as a Fourier series, or linear combi-

nation of harmonics, and the coefficients of the harmonics

are algebraically solved by balancing the corresponding

frequency domain component at each harmonic. It may not

always be possible to find exact solutions for all the chosen

harmonics, particularly since in practice the series represen-

tation of the solution is truncated when an infinite series is

required. However, the error in the difference is an indica-

tive measure of the goodness of fit.

What we will do here is assume a general sinusoidal

input a1(t)= A1 + B1 cos (vt). In the method of harmonic

balance, the passive joint a2(t) then follows a trajectory

described by the Fourier series

a2(t)= A2 +
XN

k = 1

B2, k cos (kvt)+ C2, k sin (kvt) ð20Þ

Here, the order N of the series is often chosen to replicate

the system response as closely as possible. A general sys-

tem may have an infinite number of harmonics, but from

simulations of our robot we observe that only the first

Fig. 13. Top: a2 and a3 are completely passive joints, so that

they can drift away from the origin. Bottom: a2 and a3 have

stabilizing springs.
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harmonic (the same frequency as that of the input) is preva-

lent. If we choose to expand the series to higher-order har-

monics we would find that the corresponding coefficients

are orders of magnitude smaller.

We thus choose N = 1 and substitute both a1(t) and

a2(t) and their time derivatives into Equation (19). As the

dynamics contain trigonometric terms in a1 and a2, which

are themselves trigonometric and contain the coefficients

to be solved (refer to Appendix A for the analytical forms),

we expand these functions using a Taylor approximation

up to third order. However, we leave the joint trajectories as

exact sinusoidal functions of t, giving us an equation that is

a linear combination of harmonics in cos (vt), sin (vt),
cos (2vt), sin (2vt), and so on; higher-order harmonics

appear from products of first-order ones. Each harmonic

term yields an individual algebraic equation for the coeffi-

cients in front of the harmonics, giving us a system of three

equations in the three unknowns A2, B2, 1, and C2, 1.

We find that our equations are too complex to solve analyti-

cally, so for this article we only present some numerical results

for various combinations of input parameters. In general, we

observe that the offset A2 generally tracks the input offset A1.

The coefficients B2, 1 and C2, 1 determine the magnitude and

phase of a2. Our numerical solutions show that the magnitudeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(B2, 1)

2 + (C2, 1)
2

q
is approximately equal to B1.

For robots with more than three links, the observation that

the a2 joint, and indeed each of the remaining passive joints,

is simply phase-shifted from the joint prior to it still holds

true. In applying the method of harmonic balance, we would

have equivalent Fourier series representations, analogous to

Equation (20), for each of the passive joints. The number of

unknowns, and correspondingly algebraic equations, then

increases linearly with the number of additional links.

4.2.2. Joint phase. In the harmonic balance equations

above, the unknown coefficients of the passive response a2

are solved via nonlinear equations in the known parameters

of the input. Specifically, the values B2, 1 and C2, 1 change

as functions of the input amplitude B1 and frequency v,

and different value combinations of B2, 1 and C2, 1 then

determine the resultant phase shift of the trajectory of a2

from a1.

While the harmonic balance equations are not very

insightful and too lengthy to write out, we can visually

show how the phase shift changes as functions of input

amplitude and frequency. Figure 14 shows the variation in

phase as functions of magnitude and frequency, where the

inputs are a1(t)= B1 cos (0:3t) in the former and

a1(t)= 0:3 cos (vt) in the latter. These results are also use-

ful for locomotion when viewed from a geometric perspec-

tive. We see that, in general, phase increases as input

magnitude increases or as input frequency decreases.

Significantly, certain ranges of the amplitude B1 cause the

phase to tend to zero, which would lead to suboptimal or

no locomotion. Such parameter combinations must be

avoided.

Despite the robot having more than three links and only

one commanded joint, the connection equation of Equation

(4) and the associated connection exterior plots of Figure 4

are still valid descriptions of the robot. In other words, peri-

odic gaits in the a1–a2 space overlaid on those plots give

us a qualitative measure of the forward and turning displa-

cement that the robot experiences when executing the cor-

responding a1 input and experiencing the passive a2

response. Figure 15 shows two such gaits for a four-link

robot, one with a phase of 1508 (blue) and the other 808

(green), overlaid on the x component of the connection

exterior derivative. For the same input magnitude, the latter

is able to acquire significantly more displacement per

cycle, as it is more aligned with the a1–a2 axis.

Fig. 14. An example of the phase of the passive a2 joint over a

sweep of input amplitudes B1 (where a1(t)= B1 cos (0:3t)) and

frequencies v (where a1(t)= 0:3 cos (vt)). We note that we

specifically chose to show the same numerical domains of the

two parameters. These functions are numerically computed using

the harmonic balance equations.

Fig. 15. Two gaits of a four-link snake robot with a commanded

a1 joint and passive a2. The gait with a phase of 1508 (blue)

acquires less displacement per cycle than the one with a phase of

808 (green).

Note: Please refer to the online version for colour figure.
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4.3. Stabilizing feedback controller

As the system can pass through singular configurations, a

stabilizing feedback controller can be more easily defined

than in the kinematic case. In the previous subsection we

showed how the phase shift between a1 and a2 can be var-

ied according to the parameters of the input gait. In addi-

tion, we reviewed how the resultant shape space

representation of the gait in a1–a2 space gives us a geo-

metric interpretation of the robot’s locomotion.

In addition to changing the passive joints’ phase offset,

the balance equations also show that those joints’ magni-

tude and offset generally follow those of the commanded

joint. This is sufficient for achieving arbitrary fiber

motions on the plane, because we can use the kinematic

model of geometric phase to approximate gaits that will

mainly move the robot forward in the same body direction

(centered about the origin), or those that turn the robot in a

specific direction (offsetting the gait away from the origin).

Feedback controllers, as described for the kinematic model,

can then be imposed on the magnitude and offset of the

input a1 in order to achieve the same desired values for the

passive joints. The net effect is to shift and shape the trajec-

tory along the a1 = a2 line in the first two dimensions of

the joint space in order to achieve a desired displacement

and reorientation per cycle.

Figure 16 shows an example of this controller applied to

a four-link robot. The joint trajectories initially start cen-

tered around 0.2 radians, with a magnitude about the same.

These are the loops centered around the first quadrant of

the joint space plot (bottom left). The input frequency was

chosen such that the resulting phase is about a third of a

gait cycle. According to the exterior derivative plot for u in

Figure 4, the robot follows a trajectory of slightly negative

curvature and with a small forward displacement per gait

cycle (bottom right). It is then desired for the robot to start

turning more sharply in the opposite direction: this

corresponds to shifting the gait downward to the third

quadrant in a1–a2 space and increasing its magnitude. As

shown in the top plot, this is achieved by increasing the

magnitude and decreasing the offset of a1 over time, caus-

ing both a2 and a3 to follow.

This controller design can be applied to robots with an

arbitrary number of links. The passive joint trajectories will

change because the presence of additional joints down the

line couple into their dynamics. However, the commanded

joint can still use feedback to shape the adjacent joint, fol-

lowed by the remaining ones down the chain, with each

successive one down the chain following its predecessor.

5. Experimental results

To verify some of our theoretical observations and analyses,

experimental apparatuses resembling the three- and four-

link non-holonomic snake robot models are used to qualita-

tively assess gait, joint-angle, and workspace trajectories.

To facilitate easy development of different and modular

configurations, we use prefabricated parts from Actobotics

as the primary source of components for the robot. A phys-

ical realization of a four-link robot with a single com-

manded input joint and passively compliant joints is shown

in Figure 17.

We use skate wheels made of polyurethane with stan-

dard ball bearings to realize the single wheel shown in the

model. Note that while each link contains two wheels

instead of one, the non-holonomic constraint on a single

wheel is identical to those acting on the two wheels on each

link in the experiments. Linear springs are used to model

passive compliance. By attaching one end of the spring to

a lever arm extended over a joint and the other end to the

neighboring link, the spring can undergo linear deflections.

The lever arm thus experiences a force similar to that of a

torsional spring. An example of the configuration of each

spring is shown in Figure 18.

The modular nature of our system easily allows for the

robot to contain an arbitrary number of links, from three to

Fig. 16. Top: Feedback-controlled trajectory of a1 and passive

responses of a2 and a3. Bottom left: The trajectory in a1–a2

space. Bottom right: The robot’s fiber trajectory.

Fig. 17. Left: Top view of an experimental four-link robot,

actuated by one joint with a servo motor and the rest passively

compliant. Right: Closeup of the first two links and servo joint.
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four or more. Each link is about 6 inches long and connects

to neighboring links using identical parts for consistency

and symmetry. The total lengths of the three- and four-link

robots are about 24 inches and 33.5 inches, respectively. At

the proximal input joint, the robot is equipped with an

Adafruit Pro Trinket to control a servo motor.

Communications and power are handled via an XBee

Series 1 wireless communication module and a 6 V, 350

mAh NiMH battery.

Tracking of the robot is done via the position and orien-

tation of each individual robot link, atop which is affixed

two yellow markers equidistant from the center of the link.

These markers’ trajectories are tracked relative to the labora-

tory frame, which is defined also by four yellow markers

placed at the corners of the general workspace area.

We capture video using a Raspberry Pi and Pi camera

and postprocess these videos using MATLAB, in which the

positions of each marker are identified and recorded on a

frame-by-frame basis. These positions determine the cen-

troid and, thus, position of each link relative to the labora-

tory frame. Link orientations are determined using relative

measurements between neighboring links. In all experi-

ments, the orientation and trajectory of the robot relative to

the laboratory frame are computed using the second link.

The Raspberry Pi and Pi camera are mounted 10 feet above

the workspace providing an effective area approximately 6

feet wide and 10 feet long. Figure 19 shows a perspective

of the workspace and the previously described components,

along with the four-link robot in the space.

5.1. Parameter sweeps

In Section 4.2, we observed that the relative phase of the

robot’s first two joint trajectories generally varies with both

the amplitude and the frequency of the sinusoidal input. We

perform sweeps in both parameters to show that the experi-

mental robot exhibits qualitatively similar behavior. From

our geometric understanding of the system, we also know

that the relative phase directly affects locomotive efficiency,

measured by displacement per gait cycle per amplitude.

This relationship can be visually understood by the align-

ment of the closed loop in a1-a2 space.

Figure 20 shows an amplitude sweep for a three-link

robot, where the amplitude of the input trajectory varies

from 208 to 708 while the frequency is kept constant at 0.3

Hz. As expected, the phase depiction of the gaits in the

shape space shows the ellipses moving from alignment with

the �a1-a2 diagonal to alignment with the a1-a2 diagonal.

Such a transition in the gait phase, as well as the fact that

the subsequent experiments have a higher magnitude per

gait cycle, results in the robot obtaining a higher displace-

ment per cycle in the latter experiments. The workspace tra-

jectories are shown side by side in the second plot of Figure

20; they are placed at regular intervals along the y axis and

reoriented such that the second link is aligned with the

laboratory x axis. Note that at 708 the workspace trajectory

actually starts to turn away from its original heading. This

is not surprising as large swings of the robot’s links are

prone to incur unmodeled effects such as slipping and resis-

tance against neighboring links.

Similarly, Figure 21 depicts a frequency sweep, where

the frequency of the input varies from 0.2 to 1 Hz while the

amplitude is kept constant at 558. As frequency increases,

Fig. 18. Detail of the linear spring implementation between the

passive joints of the robot. The effective stiffness can vary in the

number of springs used.

Fig. 19. The experimental setup with camera and markers,

along with the four-link robot in the workspace.
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the shape space depiction of the gait becomes more anti-

aligned with the positive a1-a2 diagonal. As amplitude

remains the same in each instance (i.e., the path length of

the shape space representation remains almost constant),

we can fairly compare the effect of the relative gait phase

on overall displacement, and we see that anti-alignment

produces markedly less displacement per cycle than align-

ment with the a1-a2 diagonal. We also have simulation

sweep results as a point of comparison for the experiments

in Figure 22; although the values of the frequencies and

amplitudes are different owing to parameter tuning, we see

that qualitatively our model predicts the robot’s trajectories

very well. Finally, observed values for the mean forward

speed and net displacement, as well as phase shift between

the two joint trajectories, for both sets of experiments are

summarized in Table 1.

In the previous experiments, the offset of the sinusoidal

input is zero, resulting in a mostly straight workspace tra-

jectory aligned with the robot’s initial heading. As we recall

from the equation corresponding to the u component of the

robot’s body velocity, as well as the corresponding exterior

derivative plot in Figure 4, a non-zero offset will introduce

a non-zero curvature to the robot’s trajectory. Figure 23

shows that by introducing an offset into the input, the pas-

sive joint will track this offset as well. The offset of the

commanded joint a1 is continuously increased from the

beginning of the experiment, resulting in the workspace tra-

jectory having an increasing curvature.

5.2. Navigation

As described in Section 4.3, it is possible to use our knowl-

edge about the dependence of workspace displacement and

trajectory curvature on the robot’s input parameters to con-

duct navigation of the environment. For greater displace-

ment per cycle, the robot commands the input joint to

either increase amplitude or decrease frequency until the

desired velocity is achieved. To turn around, the input must

acquire a non-zero offset, with the sign of the offset deter-

mining the turn direction. For this experiment, we intro-

duce an obstacle along the robot’s unmodified trajectory

and precompute suitable trajectory segments that would

allow the robot to navigate around it. These segments are

Fig. 20. Shape space (top) and workspace (bottom) trajectories

of a three-link robot undergoing an amplitude sweep ranging

from 208 to 708 for the commanded a1 joint at frequency 0.3 Hz.

Fig. 21. Shape space (top) and workspace (bottom) trajectories

of a three-link robot undergoing a frequency sweep ranging from

0.2 to 1 Hz for the commanded a1 joint at amplitude 558.
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then stitched together via smoothing functions to obtain a

continuous input command. The resulting shape space

depiction of a1 and a2, as well as the trajectory taken by

the robot, are shown in Figure 24.

6. Conclusions and future work

We have developed and studied kinematic and dynamic

models for a m-link fully non-holonomic snake robot. With

the kinematic model we showed that the joint kinematics

take on a chained form, allowing us to determine gaits with

two adjacent or non-adjacent joints that can avoid locked

and singular configurations. We also characterized oscil-

latory modes for the passive joints that qualitatively

inform a class of feedback controllers. The dynamic

model, though more complex, allows for elements such

as stabilizing torsional springs and locomotion of the

robot by actuating only one joint. The method of harmo-

nic balance provided an approximate solution to the

robot’s dynamics that allowed us to characterize the phase

response of the passive joints, which were then connected

to geometric phase analysis in order to describe the

robot’s motion. Finally, we were able to show some of

our analyses on a three- and four-link robot, as well as

primitive navigation results.

Further quantitative analysis is necessary for proving

that some of our observations presented here are, in fact,

general. For example, in the kinematic case of two con-

trolled joints, it may be possible to cleverly turn different

combinations of joints on and off to achieve different

desired configurations of the remaining joints. This would

Fig. 22. Amplitude (top) and frequency (bottom) shape space

trajectories obtained from simulation. They are qualitatively very

similar to the experimental results obtained in Figures 20 and 21.

Table 1. Observed mean forward speed, net displacement, and

phase shift for the amplitude and frequency sweep experiments.

Amplitude
(deg)

Mean forward
speed (cm/s)

Net displacement (cm) Phase
shift (s)

20 0 0 0
30 4.80 85.4 1.43
40 9.84 160 0.976
50 13.7 212 0.857
60 21.8 215 0.762
70 21.7 220 0.740

Frequency
(Hz)

Mean forward
speed (cm/s)

Net displacement (cm) Phase
shift (s)

0.2 13.4 227 1.10
0.4 14.3 220 0.666
0.6 16.8 182 0.523
0.8 16.2 132 0.405
1.0 8.54 59.7 0.452

Fig. 23. Shape space (top) and workspace (bottom) trajectories

of a four-link robot continuously varying its input offset

parameter. When the commanded joint a1 acquires an offset, the

workspace trajectory has non-zero curvature.
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involve a more thorough investigation of how the passive

joint responses change in the adjacent and non-adjacent

commanded cases, as well as how to provably avoid lock-

ing configurations.

Going forward we would like to derive more sophisti-

cated controllers and locomotion maneuvers. In our

dynamic analysis, the gaits that we considered are suffi-

cient to propel and orient the robot in arbitrary directions,

but they have all emerged to be symmetric about one of

the shape space diagonals (i.e., they cross singularities).

While offset gaits such as those of the kinematic model

may not necessarily provide new locomotion modes, it

may be interesting to see whether a greater variety of

gaits can indeed be induced. For example, one can pro-

pose a trajectory with a variety of turns and curves and

then quantify the effectiveness of a simple feedback con-

troller in enabling the robot to follow it. Finally, we

would like to explore additional dynamic elements added

to the robot, such as wheel slip or lateral friction, which

would likely be more faithful to a physical system. By

‘‘softening’’ the constraints we can then extend our work

to analogous kinematic systems such as a low- or high-

Reynolds-number swimmer snake robot.
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Appendix. Dynamics of base variables

We present here the analytical forms of the base dynamics

equation (Equation (19)) for a robot with two joints

b = (a1,a2)
T, link length R, identical link masses Ml, and

identical joint masses Mj. Only a2 is passive, so we have

one equation

0 = ~Mb1
~Mb2

� �
€b + ~C(b, _b)+ ~K(b)

where

~Mb1 =
4 cos

a2
2

cos
a1
2

(MlR2 � 4J ) cos 1
2
(a1 � 3a2)+

�
(12J + (3Mj + 2Ml)R2 + (2MlR2 � 8J ) cosa1)

× cos 1
2
(a1 � a2)

�
~Mb2 = � 4(4J �MlR2)(2 cosa1 + cos (a1 � 2a2))

+ 48J + 4(3Ml + 2Mj)R2

~C = 128d2 _a2 cos
2 a2

2
sin2 1

2
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2
+ sin 1

2
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+
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