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Abstract19

Clustering is a fundamental problem in unsupervised learning. In many real-world applications,20

the to-be-clustered data often contains various types of noises and thus needs to be removed from21

the learning process. To address this issue, we consider in this paper two variants of such clustering22

problems, called k-median with m outliers and k-means with m outliers. Existing techniques for23

both problems either incur relatively large approximation ratios or can only e�ciently deal with a24

small number of outliers. In this paper, we present improved solution to each of them for the case25

where k is a fixed number and m could be quite large. Particularly, we gave the first PTAS for the26

k-median problem with outliers in Euclidean space R
d for possibly high m and d. Our algorithm27

runs in O(nd( 1
‘
(k + m))( k

‘
)O(1)

) time, which considerably improves the previous result (with running28

time O(nd(m + k)O(m+k) + ( 1
‘
k log n)O(1))) given by [Feldman and Schulman, SODA 2012]. For the29

k-means with outliers problem, we introduce a (6 + ‘)-approximation algorithm for general metric30

space with running time O(n(— 1
‘
(k + m))k) for some constant — > 1. Our algorithm first uses the31

k-means++ technique to sample O( 1
‘
(k + m)) points from input and then select the k centers from32

them. Compared to the more involving existing techniques, our algorithms are much simpler, i.e.,33

using only random sampling, and achieving better performance ratios.34
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1 Introduction41

Clustering is a fundamental problem in computer science and finds applications in a wide42

range of domains. Depending on the objective function, it has many di�erent variants. Among43

them, k-median and k-means are perhaps the two most commonly considered versions. For44

a given set P of n points in some metric space, the k-median problem aims to identify a45

set of centers C = {c1 · · · ck} that minimizes the objective function
q

xœP
minciœC d(x, ci),46
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where d(x, ci) denotes the distance from x to ci. The k-means problem is very similar to the47

k-median problem, except that the clustering cost is measured by the squared distance from48

each point to its corresponding center.49

Both the k-median and the k-means problems have shown to be NP-hard [6, 21]. Thus,50

most of the previous e�orts have concentrated on obtaining approximation solutions. In51

the metric space settings, Charikar, Guha, and Shmoys [9] gave the first constant factor52

approximation solution to the k-median problem. Arya et al. [8] later showed that a simple53

local search heuristic yields a (3 + ‘)-approximation. Li and Svensson [26] gave a (1 +
Ô

3 + ‘)-54

approximation based on a pseudo-approximation. Byrka et al. [23] further improved the55

approximation ratio to (2.671 + ‘). This is the current best known result for the k-median56

problem. For the k-means problem, Gupta and Tangwongsan [18] demonstrated that local57

search can achieve a (25 + ‘)-approximation in metric spaces. The approximation ratio has58

been recently improved to (9 + ‘) by Ahmadian et al. [3] using a primal-dual algorithm.59

All the above results allow the number k of clusters to be any integer between 1 and60

n. A common way to relax the problem is to assume that k is a fixed number and the61

space is Euclidean (instead of general metric). For this type of clustering problem, better62

results have already been achieved. Kumar, Sabharwal, and Sen [25] gave a linear time63

(i.e., O(2(k/‘)
O(1)

nd)) (1 + ‘)-approximation algorithms for either problem in any dimensions.64

Chen [11] later improved the running time to O(ndk + 2(k/‘)
O(1)

d
2
n

‡) by using coresets,65

where ‡ is an arbitrary positive number. Feldman, Monemzadeh, and Sohler [15] further66

demonstrated that one can construct a coreset for the k-means problem with size independent67

of n and d. With this, they showed that a (1 + ‘)-approximation can be obtained in68

O(ndk + d · poly(k, ‘) + (k

‘
)O(k/‘)) time. Moreover, both the k-median and the k-means69

problems admit (1 + ‘)-approximations for the case where the dimensionality of the space is70

a constant [17, 13].71

The clustering problem has an implicit assumption that all input points can be clustered72

into k distinct groups, which may not always hold in real-world applications. Data from73

such applications are often contaminated with various types of noises, which need to be74

excluded from the solution. To deal with such noisy data, Charikar et al. [10] introduced the75

clustering with outliers problem. The problem is the same as the ordinary clustering problem,76

except that a small portion of the input data is allowed to be removed. The removed outlier77

points are ignored in the objective function. By discarding the set of outliers, one could78

significantly reduce the clustering cost and thus improve the quality of solution.79

For the k-median with outlier problem, Charikar et al. [10] gave a (4(1+ 1

‘
))-approximation80

for metric space, which removes a slightly more than m (i.e., O((1 + ‘)m)) outliers. Chen81

[12] later obtained an algorithm which does not violate either k or m, but has a much large82

constant approximation ratio. Recently, Krishnaswamy, Li, and Sandeep [24] improved the83

approximation ratio to 7.08 + ‘ [24] using an elegant iterative rounding algorithm. For84

Euclidean space, better results have also been achieved. Friggstad et al. [16] presented a85

(1 + ‘)-approximation algorithm that uses (1 + ‘)k centers and runs in O((nk)1/‘
O(d)) time.86

Their algorithm is e�cient only in fixed dimensional space. Feldman and Schulman [14]87

gave a (1 + ‘)-approximation algorithm without violating the number of the centers. Their88

algorithm runs in O(nd(m + k)O(m+k) + ( 1

‘
k log n)O(1)) time, but needs to assume that both89

k and m are small constants to ensure a polynomial time solution. There has also been work90

on obtaining coresets for the problem [20].91

For the k-means with outliers problem, Friggstad et al. [16] designed a bi-criteria algorithm92

that uses (1 + ‘)k centers and has an approximation ratio of (25 + ‘). Krishnaswamy, Li,93

and Sandeep [24] subsequently presented a (53 + ‘)-approximation algorithm. This is the94
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best existing approximation ratio for the problem.95

1.1 Our Contributions96

In this paper, we consider two variants of the clustering problem with outliers, k-median97

with outliers in Euclidean R
d space (where d could be very high) and k-means with outliers98

in metric space. For both problems, we assume that k is a fixed number and m is a variable99

less than n.100

For the k-median with m outliers problem, we give the first PTAS for non-constant m,101

based on a simple random sampling technique. Our algorithm runs in O(nd( 1

‘
(k +m))(

k

‘
)

O(1))102

time, which significantly improves upon the previously known (1+‘)-approximation algorithm103

for the problem [14, 16].104

I Theorem 1. Given an instance (P, k, m) of the k-median with m outliers problem, there105

is a (1 + ‘)-approximation algorithm that runs in O(nd( 1

‘
(k + m))(

k

‘
)

O(1)) time.106

For the k-means with m outliers problem, we give a (6 + ‘)-approximation. Our algorithm107

first uses k-means++ [7] to sample O( 1

‘
(k+m)) points from the input and then select k points108

from them as centers. k-means++ is an algorithm proposed for resolving the sensitivity issue109

of Lloyd’s k-means algorithm [27] to the locations of its initial centers. Since the k-means110

with outliers problem needs to discard m outliers, which may cause major changes in the111

topological structure and clustering cost of the solution, it could greatly deteriorate the112

performance of many classical clustering algorithms [19, 24]. However, several studies on113

k-means++ for noisy data seem to suggest that it is an exception and can actually yield114

quite good solutions [5, 19]. As far as we know, there is no known theoretical analysis that115

tries to explain the performance of k-means++ on noisy data. The following theorem takes116

the first step in this direction.117

I Theorem 2. Given a point set P in a metric space and a parameter 0 < ‘ Æ 1, let C be a118

set of O( 1

‘
(k + m)) points sampled from P using k-means++. Then, C contains a subset of119

k centers that induces a (6 + ‘)-approximation for k-means with m outliers with constant120

probability.121

As a corollary to Theorem 2, it is easy to see that O( 1

‘
(k + m))k sets of candidate centers122

for the problem can be generated in O(n(k + m) 1

‘
) time. A (6 + ‘)-approximation can then123

be obtained by an exhaustive search over the candidate sets.124

I Corollary 3. Given an instance of the k-means clustering problem with m outliers and a125

parameter 0 < ‘ Æ 1, there is an algorithm that outputs a set C of k centers and a set Z126

of m outliers, such that �(P \ Z, C) Æ (6 + ‘)OPT , where �(P \ Z, C) and OPT denote,127

respectively, the clustering cost induced by the set C and Z and the optimal solution. The128

algorithm runs in time O(n(— 1

‘
(k + m))k) for some constant — > 1.129

1.2 Other Related Work130

Most of the aforementioned results are mainly for theoretical purpose. There are also more131

practical solutions available for clustering. The most popular one for k-means is probably132

the heuristic technique introduced by Lloyd [27], which iteratively assigns the points to their133

nearest centers and updates the centers as the means of their corresponding newly generated134

clusters. It is known that Lloyd’s algorithm is sensitive to the locations of the initial centers.135

An e�ective remedy for this undesirable issue is the use of an initialization algorithm called136
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k-means++, which generates an initial set of cluster centers close to the optimal solution.137

Arthur and Vassilvitskii [7] showed that the k centers generated by k-means++ induce an138

O(log k)-approximation in an expected sense. Ostrovsky et al. [29], Jaiswal and Garg [22],139

and Agarwal, Jaiswal, and Pal [1] further revealed that these k centers can lead to O(1)-140

approximations under some data separability conditions. Ailon, Jaiswal, and Monteleoni [4]141

demonstrated that a bi-criteria constant factor approximation can be obtained by sampling142

O(k log k) points using k-means++. Aggarwal, Deshpande, and Kannan [2] and Wei [30] later143

discovered that O(k) points are actually su�cient to ensure a constant factor approximation.144

2 Preliminaries145

The clustering with outliers problem can be formally defined as follows.146

I Definition 4 (k-median/k-means clustering with outliers). Let P be a set of n points in147

a metric space (X, d), and k Ø 1 and m Ø 0 be two non-negative integers. The k-median148

or k-means clustering problem with outliers is to identify a subset Z ™ P of size m and a149

set C ™ X of k centers, such that the clustering cost �(P \ Z, C) is minimized among all150

possible choices of Z and C, where �(P \ Z, C) =
q

xœP \Z
mincœC d(x, c) for k-median and151

�(P \ Z, C) =
q

xœP \Z
mincœC d2(x, c) for k-means.152

In Euclidean space, the clustering with outliers problem is identical, except that the153

points lie in R
d, and the centers can be k arbitrary points in R

d.154

We will use the following result to find the approximate centers, which is known as155

Cherno� bound.156

I Theorem 5 ([28]). Let A1 . . . Am be 0 ≠ 1 independent random variables with Pr(Ai =157

1) = pi. Let A =
q

m

i=1
Ai and u =

q
m

i=1
E(Ai). Let 0 < – < 1 be an arbitrary real number.158

Then, Pr[A Æ (1 ≠ –)u] Æ e
≠ –

2
u

2 .159

The following result says that given a cluster A ™ R
d, a good approximation to �(A) can160

be obtained using a small set of points randomly sampled from A.161

I Lemma 6 ([25]). Given a set R of size 1

⁄4 randomly sampled from a set A ™ R
d, where162

⁄ > 0, there exists a procedure Construct(R) that yields a set of 2(1/‘)
O(1) points core(R),163

and there exists at least one point r œ core(R), such that the inequality164

d(r, �(A)) Æ ⁄
�(A)
|A|165

holds with probability at least 1

2
. The procedure Construct(R) runs in O(2(1/‘)

O(1) · d) time.166

167

3 k-Median Clustering with Outliers in Euclidean Space168

In this section, we present a new algorithm for the k-median clustering problem with outliers169

in the geometric settings. Let �(x, C) = mincœC d(x, c) denote the cost of clustering a point170

x œ R
d using a set C ™ R

d of centers. The clustering cost of a point set P ™ R
d induced by171

C is denoted by �(P, C) =
q

pœP
�(p, C). For a singleton C = {c}, we also write �(P, C) as172

�(P, c). The minimum 1-median cost of a set S ™ R
d is denoted by �(S) =

q
xœS

d(x, �(S)),173

where �(S) denotes the optimal center of S.174
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Algorithm Find-k-centers

Input: a point set P , an integer k > 0, and an approximation factor 0 < ‘ Æ 1.
Output: a point set C = {c1, . . . , ck}.

1. let N = (20k
10 + 4mk

8)/‘
5, M = k

8
/‘

4, U = ÿ;
2. loop 2k times do

3. Random-sampling(P , k, k, ÿ, ‘, U);
4. return the set of centers C œ U with the smallest value of �(Pm(C), C).

Algorithm Random-sampling(Q, g, k, C, ‘, U)

1. S = ÿ;
2. if g = 0 then

3. U = U fi C;
4. return.
5. sample a set S of size N from Q independently and uniformly;
6. for each subset S

Õ ™ S of size M do

7. for each point c œ core(SÕ) do

8. Random-sampling(Q, g ≠ 1, k, C fi {c}, ‘, U);
9. find the median value — of all values in {�(x, C) | x œ Q};
10. Q

Õ = {x œ Q | �(x, C) Æ —};
11. Random-sampling(Q

Õ
, g, k, C, ‘, U).

Figure 1 The algorithm for k-median with outliers in Euclidean space

3.1 The Algorithm175

The general idea of our algorithm solving the k-median clustering problem with outliers is as176

follows. Assume that {P1, ..., Pk} is the optimal partition of the k-median clustering problem177

with outliers, where |P1| Ø |P2| Ø . . . Ø |Pk|. The objective of our algorithm is to find the178

approximate centers of Pi(i = 1, . . . , k). Assume that Pi(1 Ø i Ø k) is the largest cluster179

whose approximate center has not yet been found. In our algorithm, two strategies are180

applied to find the approximate center of Pi. It is possible that the points in Pi are far away181

from the approximate centers already found. For this case, by randomly sampling points in182

the remaining data set, with large probability, a large portion of Pi is in the sampled set.183

By enumerating all possible certain size of subsets of the sampled set, there must exist one184

subset that an approximate center of Pi can be obtained from this set by Lemma 6. On the185

other hand, if the points in Pi are close to the set of the approximate centers already found186

(denoted by C), then one center in C can be used to approximate the center of Pi, and the187

points close to the approximate centers in C can be deleted from the point set. The specific188

algorithm for the k-median clustering problem with outliers is described in Figure 1. The189

algorithm Random-sampling has eight parameters Q, g, k, C, ‘, U, N, and M , where Q is the190

input dataset, g is the number of centers not yet found, k is the total number of clusters, C191

is the multi-set of obtained approximate centers, ‘ is a real number (0 < ‘ Æ 1), U is the192

collection of candidate solutions, N = (20k
10 + 4mk

8)/‘
5, and M = k

8
/‘

4.193

3.2 Analysis194

In this section we show the correctness of Theorem 2. Given an instance of the k-median195

clustering problem with m outliers (P, k, m), let Z = {z1 . . . zm} be the set of outliers in the196

optimal solution, and P = {P1 . . . Pk} be the k-partition of the remaining (inliers) points197

in P that minimizes the k-median objective function. Without loss of generality, assume198

that |P1| Ø |P2| Ø . . . |Pk|. Denote by �k =
q

k

i=1
�(Pi) the clustering cost induced by the199

optimal solution.200
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We now give an outline of the proof. In order to prove the correctness of Algorithm201

Find-k-centers, we need to get that there exists a set of centers in U that achieves the desired202

approximation for the centers of clusters P1, . . . , Pk. Assume that a set C = {c1, . . . , ci≠1}203

of centers has been found. The key point is to prove that the ci obtained by Algorithm204

Random-sampling based on C can get a good approximation for Pi. The general idea of205

proving that ci is a good approximate center of Pi is as follows. A set B of points that are206

close to C by a fixed value r can be obtained, where the possible value of r can be enumerated207

e�ciently. The following two cases are discussed: (1) Pi fl B ”= ÿ, and (2) Pi fl B = ÿ. For208

the first case, we show that �(Pi) is close to a previously sampled point, and there exists a209

center in C that achieves the desired approximation for �(Pi). For the second case, we prove210

that P\B contains a substantial part of Pi. We show that by randomly sampling from P\B,211

a subset of points from Pi can be found, and a good approximate center for Pi is obtained212

by Lemma 6.213

I Lemma 7. With a constant probability, there exists a set of approximate centers C
ú in

the list U generated by the algorithm Find-k-centers, such that for any constant 1 Æ j Æ k,
we have

d(cj , �(Pj)) Æ ‘�(Pj) + 3(j ≠ 1)‘�k

k2|Pj | ,

where cj denotes the nearest point to �(Pj) in C
ú.214

Before proving Lemma 7, we first show its implication. Let C
ú denote the center set215

given in Lemma 7. Given a cluster Pj œ P, we have216

�(Pj , C
ú) Æ �(Pj , cj) =

ÿ

xœPj

d(x, cj) Æ
ÿ

xœPj

(d(x, �(Pj)) + d(�(Pj), cj)

= �(Pj) + |Pj |d(cj , �(Pj)) Æ �(Pj) + ‘�(Pj) + 3(j ≠ 1)‘�k

k2

Æ �(Pj) + ‘�(Pj)
k2

+ 3(k ≠ 1)‘�k

k2
, (1)217

where the third step is due to triangle inequality, and the fifth step follows from the assumption218

that Lemma 7 is true. Summing both sides of inequality (1) over all Pj œ P, we have219

kÿ

j=1

�(Pj , C
ú) Æ �k + ‘�k

k2
+ 3(k ≠ 1)‘�k

k
Æ (1 + 3‘)�k. (2)220

This implies that Lemma 7 is su�cient to ensure the approximation guarantee for our221

algorithm. We now prove the correctness of Lemma 7.222

Proof. (of Lemma 7) We prove the lemma by induction on j. We first consider the case223

of j = 1. Our algorithm initially samples a set of N points from P . Let S = {s1, . . . , sN }224

denote the set of N points sampled from P . Define N random variables A1, . . . , AN , such225

that if si œ P1, Ai = 1. Otherwise, Ai = 0. Since |P1| Ø |P2| Ø . . . Ø |Pk|, it is easy to know226

that for any constant 0 < i Æ N , we have227

Pr[Ai = 1] = |P1|
|P | Ø |P1|

|Z| + k|P1| Ø 1
m + k

.228

Let A =
q

N

i=1
Ai and u =

q
N

i=1
E(Ai). We have u Ø N

m+k
Ø 2k

8

‘4 . Using Lemma 5, we229

get230

Pr(A Ø k
8

‘4
) Ø Pr(A Ø 1

2u) = 1 ≠ Pr(A Æ 1
2u) Ø 1 ≠ e

≠ u

8 Ø 1 ≠ e
≠k

8
/4‘

4
>

1
2 .231
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This implies that with probability at least 1

2
, the set of N points sampled from P contains232

more than k
8

‘4 points from Pi. By feeding ⁄ = k
2

‘
into Lemma 6, we know that the inequality233

d(c1, �(P1)) Æ ‘�(P1)

k2|P1| holds with probability at least 1

2
, which implies that Lemma 7 holds234

for the case j = 1.235

We now assume that Lemma 7 holds for j Æ i ≠ 1 and consider the case of j = i. Define236

a multi-set C
ú
i≠1

= {c1, . . . ci≠1}, where ct is the nearest point to �(Pt) from C
ú
i≠1

for any237

1 Æ t Æ i ≠ 1. Define Bi = {x œ P | �(x, C
ú
i≠1

) Æ ri}, where ri = ‘�k

k2|Pi| . It is easy to see238

that Bi is a subset of P that consists of the points close to C
ú
i≠1

. We distinguish the analysis239

into the following two cases.240

Case (1): Pi fl Bi ”= ÿ. In this case, Pi contains some points close to C
ú
i≠1

. We prove that241

one center from C
ú
i≠1

can be used to approximate �(Pi).242

Case (2): Pi fl Bi = ÿ. In this case, all the points from Pi are far from the centers in243

C
ú
i≠1

. We prove that Pi contains a substantial part of P \ B. Thus, a subset of Pi can be244

randomly sampled from P \ B with high probability. By enumerating this subset, a center245

can be obtained to approximate �(Pi) .246

Case (1): Pi fl Bi ”= ÿ.247

Let p be an arbitrary point from Pi fl Bi and cf be the nearest point to p in C
ú
i≠1

.248

Let Pf denote the cluster in {P1, . . . , Pi≠1} such that d(cf , �(Pf )) is the smallest value in249

{d(cf , �(Pj)) | 1 Æ j Æ i ≠ 1}. We now prove that cf can be used to approximate �(Pi) by250

triangle inequality and induction assumption. Observe that251

d(�(Pi), cf ) Æ d(�(Pi), p) + d(p, cf ) Æ d(�(Pi), p) + ri Æ d(�(Pf ), p) + ri

Æ d(�(Pf ), cf ) + d(cf , p) + ri Æ d(�(Pf ), cf ) + 2ri

Æ ‘�(Pf ) + 3(f ≠ 1)‘�k

k2|Pf | + 2ri

= ‘�(Pf ) + 3(f ≠ 1)‘�k

k2|Pf | + 2‘�k

k2|Pi|
, (3)252

where the first step and the fourth step are due to triangle inequality, the second step follows253

from the fact that p œ Bj , the third step is derived from the fact that p œ Pj , the sixth step254

follows from the assumption that Lemma 7 holds for j Æ i ≠ 1, and the last step follows from255

the definition of ri. Since f < i, we have |Pf | > |Pi|. This implies that256

‘�(Pf ) + 3(f ≠ 1)‘�k

k2|Pf | = ‘�(Pf )
k2|Pf | + 3(f ≠ 1)‘�k

k2|Pf | Æ ‘�(Pf )
k2|Pi|

+ 3(f ≠ 1)‘�k

k2|Pi|

Æ ‘�k

k2|Pi|
+ 3(i ≠ 1)‘�k

k2|Pi|
= (3i ≠ 2)‘�k

k2|Pi|
. (4)257

Combining inequalities (3) and (4) together, we get258

d(�(Pi), cf ) Æ (3i ≠ 2)‘�k

k2|Pi|
+ 2‘�k

k2|Pi|
= 3i‘�k

k2|Pi|
Æ ‘�(Pi) + 3i‘�k

k2|Pi|
.259

This completes the proof of Lemma 7 in case (1).260

Case (2): Pi fl Bi = ÿ.261

For this case, we will show that Pi contains a large fraction of P\Bi. Furthermore,262

algorithm Find-k-centers can find a set Q such that P\Bi ™ Q and |Q| Æ 2|P\Bi|. Thus, a263

set S randomly sampled from Q contains a certain number of points from Pi. By enumerating264

all subsets of S, a subset S
Õ ™ Pi of size M , which can be used to find the approximate265

center for Pi by Lemma 6.266
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We now show that the proportion of the points of Pi in P\Bi is large. We achieve this by267

dividing P\Bi into three portions: Z\Bi,
q

i≠1

j=1
Pj \ Bj , and

q
k

j=i
Pj\Bi, and comparing268

their sizes with |Pi| respectively.269

B Claim 8. |Pi|
|P \Bi| Ø ‘

5k2+m‘
.270

Proof. It is easy to show that |Z\Bj | Æ m. By the definitions of Bi and ri, we know that271

�(Pj , C
ú
i≠1

) Ø ri|Pj\Bi| for any 1 Æ j Æ i ≠ 1, which implies that272

i≠1ÿ

j=1

|Pj\Bi| Æ 1
ri

i≠1ÿ

j=1

�(Pj , C
ú
i≠1

) Æ (1 + 3‘)�k

rj

= k
2|Pi|(1 + 3‘)|

‘
,273

where the second step is due to our induction assumption and a similar argument in obtaining274

(2), and he last step is due to the definition of ri.275

By the fact that |P1| Ø . . . Ø |Pk|, we have
q

k

j=i
|Pj\Bi| Æ (k ≠ i)|Pi|. Thus,276

|Pi|
|P\Bi|

= |Pi|
|Z\Bi| +

q
i≠1

j=1
|Pj\Bj | +

q
k

j=i
|Pj\Bi|

Ø |Pi|
m + k2|Pi|(1+3‘)|

‘
+ (k ≠ i)|Pi|

Ø 1
m + k2(1+3‘)

‘
+ (k ≠ i)

Ø ‘

5k2 + m‘
, (5)277

where the last inequality is due to the fact that 0 < ‘ Æ 1. C278

Claim 8 implies that Pi contains a large fraction of P\Bi. The algorithm finds the set
P\Bi by guessing the number of points from P\Bi. Given an integer 1 Æ j Æ log n, let
—j denote the n

2j≠1 -th largest value in {�(x, C
ú
i≠1

) | x œ P}, and let Qj denote the set of
points x œ P with �(x, C

ú
i≠1

) Æ —j . We know that there exists a constant l, such that
P\Bi ™ Ql and P\Bi * Ql≠1. It is easy to know that |P\Bi| Ø 1

2
|Ql|. By Claim 8, we have

|Pi|
|Ql| Ø ‘

10k2+2m‘
. Using Lemma 5, we know that with probability at least 1

2
, the set of N

points randomly sampled from Ql contains more than k
8

‘4 points from Pj . Using Lemma 6,
we can find an approximate center ci such that d(ci, �(Pi)) Æ ‘�(Pi)

k2|Pi| with probability at least
1

2
. This implies that with probability more than 1

2k , Algorithm Random-sampling identifies
a set C

ú of k centers, such that for any constant 1 Æ j Æ k, we have

d(cj , �(Pj)) Æ ‘�(Pj) + 3(j ≠ 1)‘�k

k2|Pj | .

The probability can boosted to a constant by repeatedly running Random-sampling for 2k279

times. This completes the proof of Lemma 7. J280

We are now ready to prove the correctness of Theorem 1.281

Theorem 1. Given an instance (P, k, m) of the k-median with m outliers problem, there is282

a (1 + ‘)-approximation algorithm that runs in O(nd( 1

‘
(k + m))(

k

‘
)

O(1)) time.283

Proof. Lemma 7 implies that our algorithm gives a (1 + ‘)-approximation for the problem.284

We focus on the running time of the algorithm. Let T (n, g) be the running time of algorithm285

Random-sampling on input (P , g, k, C, ‘, U). It is easy to show that T (n, 0) = O(1) and286

T (0, g) = 0. In the algorithm, step 5 takes ( k+m

‘
)O(1) time, step 8 takes ( k+m

‘
)(

k

‘
)

O(1) · d time287
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and yield (k+m

‘
)(

k

‘
)

O(1) candidate centers, and step 9 takes O(ndk) time. Thus we get the288

following recurrence.289

T (n, g) = (k + m

‘
)O(

k

‘
) ·T (n, g ≠1)+T (n

2 , g)+(k + m

‘
)O(1) +(k + m

‘
)(

k

‘
)

O(1)
·d+O(ndk).290

Choose ⁄ = ( k+m

‘
)(

k

‘
)

O(1) to be large enough such that291

T (n, g) Æ ⁄T (n, g ≠ 1) + T (n

2 , g) + ⁄(nd).292

We claim that T (n, g) Æ nd⁄
g · 22g

2 . This claim holds in the base case. We suppose that the293

claim holds for T (nÕ
, g

Õ) ’n
Õ
< n, ’g

Õ
< k. It is easy to verify that294

nd⁄
g · 22g

2
Æ nd⁄ · ⁄

g≠1 · 22(g≠1)
2

+ n

2 d⁄
g · 22g

2
+ ⁄nd,295

which implies that the claim T (n, g) Æ nd⁄
g · 22g

2 holds. Thus our algorithm runs in296

nd( 1

‘
(k + m))(

k

‘
)

O(1) time. J297

4 k-Means Clustering with Outliers in Metric Space298

Our approach for the k-means clustering with m outliers problem first samples a set of299

O( 1

‘
(k + m)) points with k-means++, enumerates all the subset of size k of the sampled set,300

and finds the one with the minimal clustering cost. We prove that the subset with minimal301

clustering cost can achieve (6 + ‘)-approximation to the k-means clustering with m outliers302

problem. The k-means++ algorithm samples a point with probability proportional to its303

squared distance to the nearest previously sampled point, as detailed in Figure 2. For t304

sampled points, the algorithm runs in O(nt) time.305

The notations for k-means follows from that of k-median except for a few modifications.306

We use the squared distances from the points to their corresponding centers to measure the307

clustering cost. Let (X, d) be a metric space, where d is the distance function defined over308

all points in X. Given a point x œ X and a set C ™ X of cluster centers, let �(x, C) =309

mincœC d(x, c)2. Given an instance (P, k, m) of the k-means clustering problem with outliers,310

let Z = {z1 . . . zm} be the set of outliers in the optimal solution, and P = {P1 . . . Pk} be311

the k-partition of the remaining points in P that minimizes the k-means objective function.312

Given a cluster Pi œ P and a point c, let �(Pi) denote its optimal center. The definitions of313

�(Pi, C), �(Pi, c), and �(Pi) stay no change. Let b(Pi, –) = {x œ Pi | d(x, �(Pi))2 Æ –ri}314

be the closed ball centered at �(Pi) of radius –ri, where ri = �(Pi)

|Pi| .315

We first give an outline of the proof of Theorem 3. Given a cluster Pj œ P, it is easy316

to see that if the value of – is small enough, then any point from b(Pj , –) can be used to317

approximate the centroid of Pj . This implies that we can achieve the desired approximation318

ratio through finding a point from b(Pj , –) for each cluster Pj œ P. For the the points in319

Pj , outliers and the set of previously sampled points, there are only two possible relations:320

either the points in Pj and outliers are far away from the set of previously sampled points,321

or the points in Pj and outliers are close to the previously sampled points. For the case322

when the points in Pj and outliers are far away from the set of previously sampled points,323

by applying k-means++, the points in Pj and outliers can be sampled with high probability,324

and we prove that b(Pj , –) contains a substantial portion of the sampled points from Pj .325

For the case when the points in Pj and outliers are close to the previously sampled points,326

we prove that the probability of sampling a point from b(Pj , –) and outliers is small, and a327

previously sampled point can be used to approximate the centroid of Pj .328
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The k-means++ algorithm

Input: a point set P and an integer k > 0.
Output: a point set C = {c1, . . . , ck}.

1. Sample a point x œ P uniformly at random, initialize C1 to {x};
2. for i = 2 to k do:
3. Sample a point x œ P with probability �(x,Ci)

�(P,Ci) ;
4. Ci Ω Ci≠1 fi {x};
5. i Ω i + 1;
6. return C Ω Ci.

Figure 2 The k-means++ algorithm

Let Ci denote the set of points sampled with k-means++ in the first i iterations. Define329

Oi = {Pj œ P | cost(Pj , Ci) Æ (6 + ‘

2
)�(Pj)}, where cost(Pj , Ci) = mincœCi

�(Pj , c). Let330

T be union of the set of points outside Oi and Z. The following lemma shows that if the331

proportion of the cost from the points in T to Ci in �(P, Ci) is small enough, then the points332

in Ci give the desired approximation for the problem.333

I Lemma 9. If
q

PjœP\Oi
�(Pj , Ci) + �(Z, Ci) Æ ‘

53
�(P, Ci), then

q
k

j=1
cost(Pj , Ci) Æ334

(6 + ‘)�k.335

We now give two useful properties of the closed ball b(Pj , –). The first property says336

that any point in such ball is close to �(Pj), which can be derived from triangle inequality337

easily. The second property says that the points in the closed ball b(Pj , –) are quite far from338

the centers in Ci.339

I Lemma 10. For any cluster Pj œ P \ Oi, we have340

(i) For any point c œ b(Pj , –), �(Pj , c) Æ (2 + 2–)�(Pj).341

(ii) Let dj denote the squared distance between �(Pj) and its nearest point in Ci. Let — =342

dj

rj

and 1 < – < —. Then — > 2+ ‘

2
and �(b(Pj ,–),Ci)

�(Pj ,Ci)
Ø 1

2(—+1)
(4

Ô
—jÔ
–

+—j +ln –≠4


—j ≠ —j

–
).343

344

By feeding – = 2 + ‘

4
into Lemma 10, we get that any point from b(Pj , 2 + ‘

4
) can give a345

(6 + ‘

2
)-approximation for the optimal centroid of Pj . Now we show that �(b(Pj ,2+

‘

4 ),Ci)

�(Pj ,Ci)
is346

bounded by a constant.347

I Lemma 11. For any cluster Pj œ P\Oi, �(b(Pj ,2+
‘

4 ),Ci)

�(Pj ,Ci)
Ø 3

500
.348

Proof. Define Q(–, —) = 1

2(—+1)
(4

Ô
—Ô
–

+ — + ln – ≠ 4
Ô

— ≠ —

–
). It is easy to verify that Q(2, —)349

increases monotonously with increasing value of — for — Ø 2. Therefore,350

�(Ci, b(Pj , 2 + ‘

4
))

�(Ci, Pj) Ø �(Ci, b(Pj , 2))
�(Ci, Pj) Ø Q(2, —) > Q(2, 2) >

3
500 ,351

where the first step is derived from the fact that b(Pj , 2 + ‘

4
) ™ b(Pj , 2), the second step352

is due to Lemma 10, and the third step follows from the fact that —j > 2, which is derived353

from Lemma 10. J354

We now prove the correctness of Theorem 2.355

Theorem 2. Given a point set P in a metric space and a parameter 0 < ‘ Æ 1, let C be a356

set of O( 1

‘
(k + m)) points sampled from P using k-means++. Then, C contains a subset of357

k centers that induces a (6 + ‘)-approximation for k-means with m outliers with constant358

probability.359
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Proof. By Lemma 9, we know that if the current set of the points (sampled with k-means++)360

does not give the desired approximation ratio, the set of outliers Z or a cluster outside Oi361

will be sampled with high probability. In the worst case scenario, we have to pick out k362

approximate centers for the clusters in P and all the m outliers.363

At each iteration of k-means++, we define a variable Ai. Let Pl œ P \ Oi be the cluster364

that maximizes �(Pl, Ci). If �(Pl,Ci)

�(P,Ci)
>

�(Z,Ci)

�(P,Ci)
and the algorithm samples a point from365

b(Pl, 2 + ‘

4
), or �(Pl,Ci)

�(P,Ci)
Æ �(Z,Ci)

�(P,Ci)
and the algorithm samples a point from Z, then Ai = 1;366

otherwise, Ai = 0. Lemma 10 implies that E[Ai] Ø 3

500
· ‘

53
= 3‘

26500
. Let N = 53000(k+m)

3‘
,367

A =
q

N

i=1
Ai, u =

q
N

i=1
E(Ai). Using Lemma 5, we have Pr(A Ø k + m) Ø 1 ≠ Pr(A Æ368

1

2
u) Ø 1 ≠ e

≠k/4 Ø 1 ≠ e
≠1/4

. This implies that the set of O( 1

‘
(k + m)) points sampled with369

D
2-sampling contains a subset of k points that induces a (6 + ‘)-approximation with a high370

constant probability, which completes the proof of Theorem 2. J371
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