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Abstract

In this paper we study the differentially private Empirical Risk Minimization (ERM)
problem in different settings. For smooth (strongly) convex loss function with
or without (non)-smooth regularization, we give algorithms that achieve either
optimal or near optimal utility bounds with less gradient complexity compared with
previous work. For ERM with smooth convex loss function in high-dimensional
(p ≫ n) setting, we give an algorithm which achieves the upper bound with less
gradient complexity than previous ones. At last, we generalize the expected excess
empirical risk from convex loss functions to non-convex ones satisfying the Polyak-
Lojasiewicz condition and give a tighter upper bound on the utility than the one in
[34].

1 Introduction

Privacy preserving is an important issue in learning. Nowadays, learning algorithms are often required
to deal with sensitive data. This means that the algorithm needs to not only learn effectively from the
data but also provide a certain level of guarantee on privacy preserving. Differential privacy [11] is a
rigorous privacy definition for data analysis which provides meaningful guarantees regardless of what
an adversary knows ahead of time about individual’s data. As a commonly used supervised learning
method, Empirical Risk Minimization (ERM) also faces the challenge of achieving simultaneously
privacy preserving and learning. Differentially Private (DP) ERM with convex loss function has been
extensively studied in the last decade, starting from [8]. In this paper, we revisit this problem and
present several improved results.

Problem Setting Given a dataset D = {z1, z2 · · · , zn} from a data universe X , and a closed
convex set C ⊆ Rp, DP-ERM is to find

x∗ ∈ argmin
x∈C

F r(x,D) = F (x,D) + r(x) =
1

n

n∑
i=1

f(x, zi) + r(x)

with the guarantee of being differentially private. We refer to f as loss function. r(·) is some simple
(non)-smooth convex function called regularizer. If the loss function is convex, the utility of the
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Method Utility Upper Bd Gradient Complexity Non smooth Regularizer?
[9][8] Objective Perturbation O( p

n2ϵ2 ) N/A No

[21] Objective Perturbation O( p
n2ϵ2 + λ||x∗||2

nϵ ) N/A Yes

[6] Gradient Perturbation O(p log2(n)
n2ϵ2 ) O(n2) Yes

[34] Output Perturbation O( p
n2ϵ2 ) O(nκ log(nϵκ )) No

This Paper Gradient Perturbation O(p log(n)
n2ϵ2 ) O((n+ κ) log(nϵµp )) Yes

Table 1: Comparison with previous (ϵ, δ)-DP algorithms. We assume that the loss function f is
convex, 1-smooth, differentiable (twice differentiable for objective perturbation), and 1-Lipschitz. F r

is µ-strongly convex. Bound and complexity ignore multiplicative dependence on log(1/δ). κ = L
µ

is the condition number. The lower bound is Ω(min{1, p
n2ϵ2 })[6].

algorithm is measured by the expected excess empirical risk, i.e. E[F r(xprivate, D)] − F r(x∗, D).
The expectation is over the coins of the algorithm.

A number of approaches exist for this problem with convex loss function, which can be roughly
classified into three categories. The first type of approaches is to perturb the output of a non-DP
algorithm. [8] first proposed output perturbation approach which is extended by [34]. The second
type of approaches is to perturb the objective function [8]. We referred to it as objective perturbation
approach. The third type of approaches is to perturb gradients in first order optimization algorithms.
[6] proposed gradient perturbation approach and gave the lower bound of the utility for both general
convex and strongly convex loss functions. Later, [28] showed that this bound can actually be broken
by adding more restrictions on the convex domain C of the problem.

As shown in the following tables2 , the output perturbation approach can achieve the optimal bound of
utility for strongly convex case. But it cannot be generalized to the case with non-smooth regularizer.
The objective perturbation approach needs to obtain the optimal solution to ensure both differential
privacy and utility, which is often intractable in practice, and cannot achieve the optimal bound. The
gradient perturbation approach can overcome all the issues and thus is preferred in practice. However,
its existing results are all based on Gradient Descent (GD) or Stochastic Gradient Descent (SGD).
For large datasets, they are slow in general. In the first part of this paper, we present algorithms
with tighter utility upper bound and less running time. Almost all the aforementioned results did
not consider the case where the loss function is non-convex. Recently, [34] studied this case and
measured the utility by gradient norm. In the second part of this paper, we generalize the expected
excess empirical risk from convex to Polyak-Lojasiewicz condition, and give a tighter upper bound of
the utility given in [34]. Due to space limit, we leave many details, proofs, and experimental studies
in the supplement.

2 Related Work

There is a long list of works on differentially private ERM in the last decade which attack the problem
from different perspectives. [17][30] and [2] investigated regret bound in online settings. [20] studied
regression in incremental settings. [32] and [31] explored the problem from the perspective of
learnability and stability. We will compare to the works that are most related to ours from the utility
and gradient complexity (i.e., the number (complexity) of first order oracle (f(x, zi),∇f(x, zi))
being called) points of view. Table 1 is the comparison for the case that loss function is strongly
convex and 1-smooth. Our algorithm achieves near optimal bound with less gradient complexity
compared with previous ones. It is also robust to non-smooth regularizers.

Tables 2 and 3 show that for non-strongly convex and high-dimension cases, our algorithms outper-
form other peer methods. Particularly, we improve the gradient complexity from O(n2) to O(n log n)
while preserving the optimal bound for non-strongly convex case. For high-dimension case, gradient
complexity is reduced from O(n3) to O(n1.5). Note that [19] also considered high-dimension case

2 Bound and complexity ignore multiplicative dependence on log(1/δ).
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Method Utility Upper Bd Gradient Complexity Non smooth Regularizer?
[21] Objective Perturbation O(

√
p

nϵ ) N/A Yes

[6] Gradient Perturbation O(
√
p log3/2(n)

nϵ ) O(n2) Yes

[34] Output Perturbation O([
√
p

nϵ ]
2
3 ) O(n[nϵd ]

2
3 ) No

This paper Gradient Perturbation O(
√
p

nϵ ) O( nϵ√
p + n log(nϵp )) Yes

Table 2: Comparison with previous (ϵ, δ)-DP algorithms, where F r is not necessarily strongly
convex. We assume that the loss function f is convex, 1-smooth, differentiable( twice differentiable
for objective perturbation), and 1-Lipschitz. Bound and complexity ignore multiplicative dependence
on log(1/δ). The lower bound in this case is Ω(min{1,

√
p

nϵ })[6].

via dimension reduction. But their method requires the optimal value in the dimension-reduced space,
in addition they considered loss functions under the condition rather than ℓ2- norm Lipschitz.

For non-convex problem under differential privacy, [15][10][13] studied private SVD. [14] investi-
gated k-median clustering. [34] studied ERM with non-convex smooth loss functions. In [34], the
authors defined the utility using gradient norm as E[||∇F (xprivate)||2]. They achieved a qualified
utility in O(n2) gradient complexity via DP-SGD. In this paper, we use DP-GD and show that it has
a tighter utility upper bound.

Method Utility Upper Bd Gradient Complexity Non smooth Regularizer?

[28] Gradient Perturbation O(

√
G2

C+||C||2 log(n)

nϵ ) O( n3ϵ2

(G2
C+||C||2) log2(n)

) Yes

[28] Objective Perturbation O(GC+λ||C||2
nϵ ) N/A No

[29] Gradient Perturbation O(
(G

2
3
C log2(n))

(nϵ)
2
3

) O( (nϵ)
2
3

G
2
3
C

) Yes

This paper Gradient Perturbation O(

√
G2

C+||C||2
nϵ ) O

(
n1.5√ϵ

(G2
C+||C||2)

1
4

)
No

Table 3: Comparison with previous (ϵ, δ)-DP algorithms. We assume that the loss function f is
convex, 1-smooth, differentiable( twice differentiable for objective perturbation), and 1-Lipschitz.
The utility bound depends on GC , which is the Gaussian width of C. Bound and complexity ignore
multiplicative dependence on log(1/δ).

3 Preliminaries

Notations: We let [n] denote {1, 2, . . . , n}. Vectors are in column form. For a vector v, we use
||v||2 to denote its ℓ2-norm. For the gradient complexity notation, G, δ, ϵ are omitted unless specified.
D = {z1, · · · , zn} is a dataset of n individuals.

Definition 3.1 (Lipschitz Function over θ). A loss function f : C × X → R is G-Lipschitz (under
ℓ2-norm) over θ, if for any z ∈ X and θ1, θ2 ∈ C, we have |f(θ1, z)− f(θ2, z)| ≤ G||θ1 − θ2||2.

Definition 3.2 (L-smooth Function over θ). A loss function f : C ×X → R is L-smooth over θ with
respect to the norm || · || if for any z ∈ X and θ1, θ2 ∈ C, we have

||∇f(θ1, z)−∇f(θ2, z)||∗ ≤ L||θ1 − θ2||,

where || · ||∗ is the dual norm of || · ||. If f is differentiable, this yields

f(θ1, z) ≤ f(θ2, z) + ⟨∇f(θ2, z), θ1 − θ2⟩+
L

2
||θ1 − θ2||2.

We say that two datasets D,D′ are neighbors if they differ by only one entry, denoted as D ∼ D′.
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Definition 3.3 (Differentially Private[11]). A randomized algorithm A is (ϵ, δ)-differentially private
if for all neighboring datasets D,D′ and for all events S in the output space of A, we have

Pr(A(D) ∈ S) ≤ eϵPr(A(D′) ∈ S) + δ,

when δ = 0 and A is ϵ-differentially private.

We will use Gaussian Mechanism [11] and moments accountant [1] to guarantee (ϵ, δ)-DP.
Definition 3.4 (Gaussian Mechanism). Given any function q : Xn → Rp, the Gaussian Mechanism
is defined as:

MG(D, q, ϵ) = q(D) + Y,

where Y is drawn from Gaussian Distribution N (0, σ2Ip) with σ ≥
√

2 ln(1.25/δ)∆2(q)

ϵ . Here ∆2(q)
is the ℓ2-sensitivity of the function q, i.e. ∆2(q) = supD∼D′ ||q(D)−q(D′)||2. Gaussian Mechanism
preservers (ϵ, δ)-differentially private.

The moments accountant proposed in [1] is a method to accumulate the privacy cost which has tighter
bound for ϵ and δ. Roughly speaking, when we use the Gaussian Mechanism on the (stochastic)
gradient descent, we can save a factor of

√
ln(T/δ) in the asymptotic bound of standard deviation of

noise compared with the advanced composition theorem in [12].
Theorem 3.1 ([1]). For G-Lipschitz loss function, there exist constants c1 and c2 so that given the
sampling probability q = l/n and the number of steps T, for any ϵ < c1q

2T , a DP stochastic gradient
algorithm with batch size l that injects Gaussian Noise with standard deviation Gσ to the gradients
(Algorithm 1 in [1]), is (ϵ, δ)-differentially private for any δ > 0 if

σ ≥ c2
q
√

T ln(1/δ)

ϵ
.

4 Differentially Private ERM with Convex Loss Function

In this section we will consider ERM with (non)-smooth regularizer3, i.e.

min
x∈Rp

F r(x,D) = F (x,D) + r(x) =
1

n

n∑
i=1

f(x, zi) + r(x). (1)

The loss function f is convex for every z. We define the proximal operator as

proxr(y) = arg min
x∈Rp

{1
2
||x− y||22 + r(x)},

and denote x∗ = argminx∈Rp F r(x,D).

4.1 Strongly convex case

We first consider the case that F r(x,D) is µ-strongly convex, Algorithm 1 is based on the Prox-
SVRG [33], which is much faster than SGD or GD. We will show that DP-SVRG is also faster than
DP-SGD or DP-GD in terms of the time needed to achieve the near optimal excess empirical risk
bound.
Definition 4.1 (Strongly Convex). The function f(x) is µ-strongly convex with respect to norm || · ||
if for any x, y ∈ dom(f), there exist µ > 0 such that

f(y) ≥ f(x) + ⟨∂f, y − x⟩+ µ

2
||y − x||2, (2)

where ∂f is any subgradient on x of f .
Theorem 4.1. In DP-SVRG(Algorithm 1), for ϵ ≤ c1

Tm
n2 with some constant c1 and δ > 0, it is

(ϵ, δ)-differentially private if

σ2 = c
G2Tm ln( 1δ )

n2ϵ2
(3)

for some constant c.
3 All of the algorithms and theorems in this section are applicable to closed convex set C rather than Rp.

4



Algorithm 1 DP-SVRG(F r, x̃0, T,m, η, σ)
Input: f(x, z) is G-Lipschitz and L-smooth. F r(x,D) is µ-strongly convex w.r.t ℓ2-norm. x̃0 is
the initial point, η is the step size, T,m are the iteration numbers.

1: for s = 1, 2, · · · , T do
2: x̃ = x̃s−1

3: ṽ = ∇F (x̃)
4: xs

0 = x̃
5: for t = 1, 2, · · · ,m do
6: Pick ist ∈ [n]
7: vst = ∇f(xs

t−1, zist )−∇f(x̃, zist ) + ṽ + us
t , where us

t ∼ N (0, σ2Ip)
8: xs

t = proxηr(x
s
t−1 − ηvst )

9: end for
10: x̃s =

1
m

∑m
k=1 x

s
k

11: end for
12: return x̃T

Remark 4.1. The constraint on ϵ in Theorems 4.1 and 4.3 comes from Theorem 3.1. This constraint
can be removed if the noise σ is amplified by a factor of O(ln(T/δ)) in (3) and (6). But accordingly
there will be a factor of Õ(log(Tm/δ)) in the utility bound in (5) and (7). In this case the guarantee
of differential privacy is by advanced composition theorem and privacy amplification via sampling[6].
Theorem 4.2 (Utility guarantee). Suppose that the loss function f(x, z) is convex, G-Lipschitz and
L-smooth over x. F r(x,D) is µ-strongly convex w.r.t ℓ2-norm. In DP-SVRG(Algorithm 1), let σ
be as in (3). If one chooses η = Θ( 1

L ) ≤
1

12L and sufficiently large m = Θ(Lµ ) so that they satisfy
inequality

1

η(1− 8ηL)µm
+

8Lη(m+ 1)

m(1− 8Lη)
<

1

2
, (4)

then the following holds for T = O
(
log( n2ϵ2µ

pG2 ln(1/δ) )
)

,

E[F r(x̃T , D)]− F r(x∗, D) ≤ Õ

(
p log(n)G2 log(1/δ)

n2ϵ2µ

)
, (5)

where some insignificant logarithm terms are hiding in the Õ-notation. The total gradient complexity
is O

(
(n+ L

µ ) log
nϵµ
p

)
.

Remark 4.2. We can further use some acceleration methods to reduce the gradient complexity, see
[25][3].

4.2 Non-strongly convex case

In some cases, F r(x,D) may not be strongly convex. For such cases, [5] has recently showed that
SVRG++ has less gradient complexity than Accelerated Gradient Descent. Following the idea of
DP-SVRG, we present the algorithm DP-SVRG++ for the non-strongly convex case. Unlike the
previous one, this algorithm can achieve the optimal utility bound.

Theorem 4.3. In DP-SVRG++(Algorithm 2), for ϵ ≤ c1
2Tm
n2 with some constant c1 and δ > 0, it is

(ϵ, δ)-differentially private if

σ2 = c
G22Tm ln( 2δ )

n2ϵ2
(6)

for some constant c.
Theorem 4.4 (Utility guarantee). Suppose that the loss function f(x, z) is convex, G-Lipschitz and
L-smooth. In DP-SVRG++(Algorithm 2), if σ is chosen as in (6), η = 1

13L , and m = Θ(L) is

sufficiently large, then the following holds for T = O

(
log( nϵ

G
√
p
√

log(1/δ)
)

)
,

E[F r(x̃T , D)]− F r(x∗, D) ≤ O

(
G
√

p ln(1/δ))

nϵ

)
. (7)
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Algorithm 2 DP-SVRG++(F r, x̃0, T,m, η, σ)
Input:f(x, z) is G-Lipschitz, and L-smooth over x ∈ C. x̃0 is the initial point, η is the step size,
and T,m are the iteration numbers.

x1
0 = x̃0

for s = 1, 2, · · · , T do
ṽ = ∇F (x̃s−1)
ms = 2sm
for t = 1, 2, · · · ,ms do

Pick ist ∈ [n]
vst = ∇f(xs

t−1, zist )−∇f(x̃s−1, zist ) + ṽ + ut
s, where ut

s ∼ N (0, σ2Ip)
xs
t = proxηr(x

s
t−1 − ηvst )

end for
x̃s =

1
ms

∑ms

k=1 x
s
k

xs+1
0 = xs

ms

end for
return x̃T

The gradient complexity is O
(

nLϵ√
p + n log(nϵp )

)
.

5 Differentially Private ERM for Convex Loss Function in High Dimensions

The utility bounds and gradient complexities in Section 4 depend on dimensionality p. In high-
dimensional (i.e., p ≫ n) case, such a dependence is not very desirable. To alleviate this issue, we
can usually get rid of the dependence on dimensionality by reformulating the problem so that the
goal is to find the parameter in some closed centrally symmetric convex set C ⊆ Rp (such as l1-norm
ball), i.e.,

min
x∈C

F (x,D) =
1

n

n∑
i=1

f(x, zi), (8)

where the loss function is convex.

[28],[29] showed that the
√
p term in (5),(7) can be replaced by the Gaussian Width of C, which is no

larger than O(
√
p) and can be significantly smaller in practice (for more detail and examples one

may refer to [28]). In this section, we propose a faster algorithm to achieve the upper utility bound.
We first give some definitions.

Algorithm 3 DP-AccMD(F, x0, T, σ, w)
Input:f(x, z) is G-Lipschitz , and L-smooth over x ∈ C . ||C||2 is the ℓ2 norm diameter of the
convex set C. w is a function that is 1-strongly convex w.r.t || · ||C . x0 is the initial point, and T is the
iteration number.

Define Bw(y, x) = w(y)− ⟨∇w(x), y − x⟩ − w(x)
y0, z0 = x0

for k = 0, · · · , T − 1 do
αk+1 = k+2

4L and rk = 1
2αk+1L

xk+1 = rkzk + (1− rk)yk

yk+1 = argminy∈C{L||C||22
2 ||y − xk+1||2C + ⟨∇F (xk+1), y − xk+1⟩}

zk+1 = argminz∈C{Bw(z, zk) + αk+1⟨∇F (xk+1) + bk+1, z − zk⟩}, where bk+1 ∼
N (0, σ2Ip)
end for
return yT

Definition 5.1 (Minkowski Norm). The Minkowski norm (denoted by || · ||C) with respect to a
centrally symmetric convex set C ⊆ Rp is defined as follows. For any vector v ∈ Rp,

|| · ||C = min{r ∈ R+ : v ∈ rC}.

6



The dual norm of || · ||C is denoted as || · ||C∗ , for any vector v ∈ Rp, ||v||C∗ = maxw∈C |⟨w, v⟩|.

The following lemma implies that for every smooth convex function f(x, z) which is L-smooth with
respect to ℓ2 norm, it is L||C||22-smooth with respect to || · ||C norm.
Lemma 5.1. For any vector v, we have ||v||2 ≤ ||C||2||v||C , where ||C||2 is the ℓ2-diameter and
||C||2 = supx,y∈C ||x− y||2.

Definition 5.2 (Gaussian Width). Let b ∼ N (0, Ip) be a Gaussian random vector in Rp. The
Gaussian width for a set C is defined as GC = Eb[supw∈C⟨b, w⟩].
Lemma 5.2 ([28]). For W = (maxw∈C⟨w, v⟩)2 where v ∼ N (0, Ip), we have Ev[W ] = O(G2

C +
||C||22).

Our algorithm DP-AccMD is based on the Accelerated Mirror Descent method, which was studied
in [4],[23].
Theorem 5.3. In DP-AccMD( Algorithm 3), for ϵ, δ > 0, it is (ϵ, δ)-differentially private if

σ2 = c
G2T ln(1/δ)

n2ϵ2
(9)

for some constant c.
Theorem 5.4 (Utility Guarantee). Suppose the loss function f(x, z) is G-Lipschitz , and L-smooth
over x ∈ C . In DP-AccMD, let σ be as in (9) and w be a function that is 1-strongly convex with
respect to || · ||C . Then if

T 2 = O

(
L||C||22

√
Bw(x∗, x0)nϵ

G
√
ln(1/δ)

√
G2

C + ||C||22

)
,

we have

E[F (yT , D)]− F (x∗, D) ≤ O

(√
Bw(x∗, x0)

√
G2

C + ||C||22G
√
ln(1/δ)

nϵ

)
.

The total gradient complexity is O
(

n1.5
√
ϵL

(G2
C+||C||22)

1
4

)
.

6 ERM for General Functions

In this section, we consider non-convex functions with similar objective function as before,

min
x∈Rp

F (x,D) =
1

n

n∑
i=1

f(x, zi). (10)

Algorithm 4 DP-GD(x0, F, η, T, σ,D)
Input:f(x, z) is G-Lipschitz , and L-smooth over x ∈ C . F is under the assumptions. 0 < η ≤ 1

L
is the step size. T is the iteration number.

for t = 1, 2, · · · , T do
xt = xt−1 − η (∇F (xt−1, D) + zt−1), where zt−1 ∼ N (0, σ2Ip)

end for
return xT (For section 6.1)
return xm where m is uniform sampled from {0, 1, · · · ,m− 1}(For section 6.2)

Theorem 6.1. In DP-GD( Algorithm 4), for ϵ, δ > 0, it is (ϵ, δ)-differentially private if

σ2 = c
G2T ln(1/δ)

n2ϵ2
(11)

for some constant c.

7



6.1 Excess empirical risk for functions under Polyak-Lojasiewicz condition

In this section, we consider excess empirical risk in the case where the objective function F (x,D)
satisfies Polyak-Lojasiewicz condition. This topic has been studied in [18][27][26][24][22].

Definition 6.1 ( Polyak-Lojasiewicz condition). For function F (·), denote X ∗ = argminx∈Rp F (x)
and F ∗ = minx∈Rp F (x). Then there exists µ > 0 and for every x,

||∇F (x)||2 ≥ 2µ(F (x)− F ∗). (12)

(12) guarantees that every critical point (i.e., the point where the gradient vanish) is the global
minimum. [18] shows that if F is differentiable and L-smooth w.r.t ℓ2 norm, then we have the
following chain of implications:

Strong Convex ⇒ Essential Strong Convexity⇒ Weak Strongly Convexity ⇒ Restricted Secant
Inequality ⇒ Polyak-Lojasiewicz Inequality ⇔ Error Bound

Theorem 6.2. Suppose that f(x, z) is G-Lipschitz, and L-smooth over xC, and F (x,D) satisfies the
Polyak-Lojasiewicz condition. In DP-GD( Algorithm 4), let σ be as in (11) with η = 1

L . Then if

T = Õ
(
log( n2ϵ2

pG2 log(1/δ) )
)
, the following holds

E[F (xT , D)]− F (x∗, D) ≤ O(
G2p log2(n) log(1/δ)

n2ϵ2
), (13)

where Õ hides other log, L, µ terms.

DP-GD achieves near optimal bound since strongly convex functions can be seen as a special case in
the class of functions satisfying Polyak-Lojasiewicz condition. The lower bound for strongly convex
functions is Ω(min{1, p

n2ϵ2 })[6]. Our result has only a logarithmic multiplicative term comparing to
that. Thus we achieve near optimal bound in this sense.

6.2 Tight upper bound for (non)-convex case

In [34], the authors considered (non)-convex smooth loss functions and measured the utility as
||F (xprivate, D)||2. They proposed an algorithm with gradient complexity O(n2). For this algorithm,

they showed that E[||F (xprivate, D)||2] ≤ O(
log(n)

√
p log(1/δ)

nϵ ). By using DP-GD( Algorithm 4), we
can eliminate the log(n) term.

Theorem 6.3. Suppose that f(x, z) is G-Lipschitz, and L-smooth. In DP-GD( Algorithm 4), let σ
be as in (11) with η = 1

L . Then when T = O(
√
Lnϵ√

p log(1/δ)G
), we have

E[||∇F (xm, D)||2] ≤ O(

√
LG
√

p log(1/δ)

nϵ
). (14)

Remark 6.1. Although we can obtain the optimal bound by Theorem 3.1 using DP-SGD, there will
be a constraint on ϵ. Also, we still do not know the lower bound of the utility using this measure. We
leave it as an open problem.

7 Discussions

From the discussion in previous sections, we know that when gradient perturbation is combined
with linearly converge first order methods, near optimal bound with less gradient complexity can
be achieved. The remaining issue is whether the optimal bound can be obtained in this way. In
Section 6.1, we considered functions satisfying the Polyak-Lojasiewicz condition, and achieved near
optimal bound on the utility. It will be interesting to know the bound for functions satisfying other
conditions (such as general Gradient-dominated functions [24], quasi-convex and locally-Lipschitz in
[16]) under the differential privacy model. For general non-smooth convex loss function (such as
SVM ), we do not know whether the optimal bound is achievable with less time complexity. Finally,
for non-convex loss function, proposing an easier interpretable measure for the utility is another
direction for future work.
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