
Small Candidate Set for Translational Pattern2

Search3

Ziyun Huang4

Department of Computer Science and Software Engineering5

Penn State Erie, The Behrend College6

zxh201@psu.edu7

Qilong Feng8

School of Computer Science and Engineering9

Central South University, P.R. China10

csufeng@mail.csu.edu.cn11

Jianxin Wang12

School of Computer Science and Engineering13

Central South University, P.R. China14

jxwang@csu.edu.cn15

Jinhui Xu16

Department of Computer Science and Engineering17

State University of New York at Bu�alo18

jinhui@bu�alo.edu19

Abstract20

In this paper, we study the following pattern search problem: Given a pair of point sets A and B21

in fixed dimensional space Rd, with |B| = n, |A| = m and n Ø m, the pattern search problem is22

to find the translations T ’s of A such that each of the identified translations induces a matching23

between T (A) and a subset B
Õ of B with cost no more than some given threshold, where the cost24

is defined as the minimum bipartite matching cost of T (A) and B
Õ. We present a novel algorithm25

to produce a small set of candidate translations for the pattern search problem. For any B
Õ ™ B26

with |BÕ| = |A|, there exists at least one translation T in the candidate set such that the minimum27

bipartite matching cost between T (A) and B
Õ is no larger than (1 + ‘) times the minimum bipartite28

matching cost between A and B
Õ under any translation (i.e., the optimal translational matching29

cost). We also show that there exists an alternative solution to this problem, which constructs a30

candidate set of size O(n log2
n) in O(n log2

n) time with high probability of success. As a by-product31

of our construction, we obtain a weak ‘-net for hypercube ranges, which significantly improves the32

construction time and the size of the candidate set. Our technique can be applied to a number of33

applications, including the translational pattern matching problem.34

2012 ACM Subject Classification Theory of computation æ Pattern matching; Theory of compu-35

tation36

Keywords and phrases Bipartite matching, Alignment, Discretization, Approximate algorithm37

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.2938

Funding The research of the first and last authors was supported in part by NSF through grant39

CCF-1716400. The research of the last author was also supported by NSF through grant IIS-1910492.40

The research of the second and third authors was supported in part by NSFC through grants41

61872450, 61828205, and 61672536.42

© Ziyun Huang, Qilong Feng, Jianxin Wang and Jinhui Xu;

licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).

Editors: Pinyan Lu and Guochuan Zhang; Article No. 29; pp. 29:1–29:18

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zxh201@psu.edu
mailto:csufeng@mail.csu.edu.cn
mailto:jxwang@csu.edu.cn
mailto:jinhui@buffalo.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.29
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Small Candidate Set for Translational Pattern Search

1 Introduction43

Pattern search/matching is an important problem in computer science and finds applications44

in many di�erent domains such as computer vision, pattern recognition, robotics, autonomous45

driving, and surveillance. In this paper, we consider a special variant of the problem, where46

the objective is to find a small pattern (e.g., the image of a car) from a large environment47

(called background; e.g., the image of a road with tra�c) which may contain multiple copies48

of the pattern or its deformations. The problem is often encountered in our daily life. For49

example, most of the smart phones have the capability of identifying human faces (or other50

types of objects) in their camera softwares. The core problem for such a functionality is51

to e�ciently find all appearances of a given object from the pictures. The pattern search52

problem may also appear in higher (d > 2) dimensional space. One of such examples is the53

pattern extraction problem arising in biological image analysis, where the objective is to54

identify the 3D spatial positioning patterns of chromosomes [9, 10, 22].55

We approach this pattern search problem from a geometric perspective, using a formulation56

from [1] with some slight modifications. The pattern is represented by a point set A and the57

background by a point set B in Rd space for some fixed d. The sizes of A and B are m and58

n, respectively, with n Ø m (note that n could be significantly larger than m). If there is a59

translation T which moves A to a new location T (A) such that the di�erence between T (A)60

and some B
Õ ™ B with |BÕ| = |A| is minimized, we say that an instance B

Õ of pattern A is61

discovered by T , where the di�erence of two sets is measured by their bipartite matching62

cost (see Section Preliminaries).63

The pattern search problem is a natural extension of the pattern matching problem,64

whose aim is to find a rigid transformation that minimizes the di�erence of two given sets A65

and B. Extensive research has been done for the pattern matching problem using di�erent66

metrics as the measurement for the similarity/distance of two sets [13, 11, 14]. Commonly67

used metrics include Euclidean distance in 1-to-1 matching, Hausdor� distance in 1-to-many68

or many-to-1 matching, and Earth’s Mover Distance (EMD) in many-to-many matching. An69

early result on this problem is the paper [18] which provides an ÂO(mn
2)-time solution to70

the matching problem under translation and Hausdor� distance in R2. A more recent result71

is the one in [11] which approximates (with ratio (1 + ‘)) the pattern matching problem72

under rigid transformations and EMD metric in Rd. The running time of their algorithm is73

ÂO((mn)2d), which is near the lower bound (i.e., �(mn
�(d)) [5]) of the problem.74

For the pattern search problem under translations, there is a number of results [21, 4] that75

are closely related to the work in this paper. Most of them use the concept of partial-matching76

Voronoi diagram.77

For two given point sets A and B, their partial-matching Voronoi diagram (PMVD) is a78

partition of the translation space into regions so that each of them consists of translations79

T sharing the same locally optimal bipartite matching between T (A) and a subset of B.80

The PMVD uses the sum of squared distances as the measurement for the matching cost.81

Clearly, such a Voronoi diagram is capable of solving the pattern search/matching problem,82

as only one translation from every cell needs to be determined for finding the optimal83

translational alignment of A and B. The best known upper bound on the size of PMVD is84

O(m!md
n

2d) [17]. Ben-Avraham et al. [4] constructed a partial-matching Voronoi diagram in85

R2 of complexity O(n2
m

3.5 logm
m), and found locally min-cost translations in O(m6

n
3 log n)86

time.87

In this paper, we develop a novel method for finding a small set T of candidate translations88

so that for any instance B
Õ ™ B of A, there is at least one translation T in the candidate89

Z. Huang, Q. Feng, J. Wang and J. Xu 29:3

set that matches T (A) and B
Õ approximately. A subset B

Õ of B is called an instance of A if90

|BÕ| = |A|. Note that B
Õ can be any subset of B as long as it has the same size as A and91

may have a large di�erence with A; this is somewhat di�erent from the normal meaning of92

instance. We say that a translation T discovers an instance B
Õ if it minimizes the bipartite93

matching cost of T (A) and B
Õ. For any ‘ > 0, a translation T (1+ ‘)-approximately discovers94

B
Õ, if the bipartite matching cost between T (A) and B

Õ is no more than (1 + ‘) times the95

minimum di�erence between B
Õ and A under any translation. Clearly, with such a candidate96

set T, we are able to find all instances B
Õ which are similar to A, where the level of similarity97

is controlled by some threshold on the di�erence of B
Õ and the translations of A. Note that98

if a value of the threshold is given in advance, it is possible to further reduce the size of99

the candidate set by removing (during the execution of our algorithm) those translations100

which induce higher matching cost (see the remark in Section 6 for more details). Also, if101

B has some exact (or congruent) instances of A, T will contain all translations inducing102

zero-di�erence matchings of A.103

The problem of finding the translations that match pattern A to all its exact instances104

could be quite challenging, as suggested by the exponential size of PMVD in [21, 4]. However,105

we are able to show that if approximation and implicit representation are allowed, the106

problem can be solved much more e�ciently through identifying a small candidate set of107

translations with a (surprisingly) near linear size.108

Particularly, we show that it is possible to build a candidate set T with size Od,‘(n log n)109

for A and B in O(mn log mn) deterministic time. This bound is asymptotically near optimal,110

since it is easy to construct an example that needs O(n) di�erent translations to yield all111

perfect matches of a pattern (such an example will be given later). A trade-o� between the112

running time and the size of T can also be made, which provides a probabilistic algorithm to113

build a T with a slightly larger size (i.e., O(n log2
n)) but a better time complexity (i.e.,114

O(n log2
n)) which is independent of m. Our construction is based on a weak ‘-net technique115

and a space discretization technique from [7]. Our approach shows a non-obvious connection116

between weak ‘-net and the pattern search problem. A fast algorithm is also provided to117

build a small-size ‘-net for ranges of axis-aligned hypercubes.118

In some sense, candidate set T can be viewed as an implicit and approximate representation119

of the exponential-size PMVD. Thus, it has the potential to be used in various applications120

of PMVD, such as moving object tracking and autonomous driving. Note that in such121

applications, all translations in T (rather than those inducing better matchings) are needed.122

2 Preliminaries123

In this paper, we do not distinguish a point and its corresponding vector in Rd, i.e., a point124

is equivalent to a vector that points from the origin to it. In this way, a point in Rd naturally125

defines a translation (along the corresponding vector) in Rd. Following the basic vector126

arithmetics, operators + and ≠ can be applied to points in Rd.127

Given two point sets A1 and A2 of the same size, their bipartite matching is represented128

by a bijective mapping „ : A1 æ A2. That is, each point a œ A1 is matched to a distinct point129

„(a) œ A2 and the cost C„,A1,A2 of the matching is defined as C„,A1,A2 =
q

aœA1
Îa ≠ „(a)Î.130

The di�erence of A1 and A2, denoted by �(A1, A2), is then �(A1, A2) = min„ C„,A1,A2 .131

Let A, B µ Rd be the two point sets in the pattern search problem, with |B| = n, |A| = m132

and n Ø m. We label points in A and B, respectively, as A = {a1, a2, . . . , am} and133

B = {b1, b2, . . . , bn}. The reference set P of A and B is defined as follows.134

ISAAC 2019

29:4 Small Candidate Set for Translational Pattern Search

I Definition 1. Let pi,j = bj ≠ ai for any ai œ A and bj œ B. The reference set P of A and135

B is the muti-set that contains all pi,j for i = 1, 2, . . . , m and j = 1, 2, . . . , n.136

We use an injective mapping „ : {1, 2, . . . , m} æ {1, 2, . . . , n} to represent a perfect137

matching for A (under a certain translation) and a subset of B. „(i) = j means that ai is138

matched to bj . The matching cost C„ for a matching „ is defined as
q

m

i=1
Îai ≠ b„(i)Î.139

From the definition of P , it is clear that for any ai œ A, bj œ B and translation140

T œ Rd, ÎT (ai) ≠ bjÎ = ÎT ≠ pi,jÎ. The matching cost C„(T) between T (A) and B for141

matching „ is then
q

m

i=1
ÎT ≠ pi,„(i)Î. In other words, C„(T) is the sum of distances from142

T to m points in P . For convenience, we let P („) = {p1,„(1), p2,„(2), . . . , pm,„(m)}. Thus143

C„(T) =
q

pœP („)
ÎT ≠ pÎ.144

In the rest of the paper, we study all possible matchings between A and B based on the145

relationship of T œ Rd and P . This means that our algorithms work in the translational146

space of P , instead of the original space of A and B.147

For any pair of point sets X and Y with the same cardinality, we use �(X, Y) to denote148

the minimum bipartite matching cost of X and Y . A set B
Õ ™ B is called an instance of A if149

|BÕ| = |A|. For any instance B
Õ, let T be the translation that minimizes �(T (A), B

Õ). Then,150

we say that T discovers B
Õ, or B

Õ is discoverable at T . If there is another translation T Õ151

satisfying the following inequality, �(T Õ(A), B
Õ) Æ (1 + ‘)�(T (A), B

Õ), then, we say that B
Õ152

is (1 + ‘)-approximately discoverable at T Õ.153

3 Main Results154

The main results of this paper are the following theorems which show that for any given155

pair of point sets A and B, and any constant ‘ > 0, it is possible to e�ciently construct156

a small-size candidate set T of translations in Rd such that any instance B
Õ ™ B of A is157

approximately discoverable at some T œ T. In other words, T is a small-size candidate set of158

translations to find all instances of A approximately.159

I Theorem 2. For any pair of point sets A and B in fixed dimensional space Rd with160

size m and n (n Ø m), respectively, and any small constant 0 < ‘ < 1, it is possible to161

construct, deterministically, a candidate set T µ Rd of size O(n log n) in O(mn log mn)162

time such that for any given instance B
Õ ™ B of A, there exists a translation T œ T that163

(1 + ‘)-approximately discovers B
Õ.164

I Theorem 3. For any pair of point sets A and B in fixed dimensional space Rd with size165

m and n (n Ø m), respectively, and any small constant 0 < ‘ < 1, it is possible to construct166

a candidate set T µ Rd of size O(n log2
n) in O(n log2

n) time, with success probability at167

least 1 ≠ 1/n. For any given instance B
Õ ™ B of A, there exists a translation T œ T that168

(1 + ‘)-approximately discovers B
Õ.169

With the above theorems, we immediately have the following corollary as their application170

to the classical pattern matching problem. (See the appendix for the proof.)171

I Corollary 4. It is to possible to generate a set of O(n log n) candidate translations in Rd172

in O(mn log mn) time such that one of them induces a (1 + ‘)-approximation for the optimal173

translational matching between A and B.174

Another interesting conclusion from the above discussion is that if there exists an instance175

B
Õ ™ B which is identical to A under translation T (i.e., the bipartite matching cost between176

B
Õ and T (A) is 0), then T œ T.177

Z. Huang, Q. Feng, J. Wang and J. Xu 29:5

The above theorems and corollary suggest an e�cient way to identify a small number178

of translations that enable us to obtain approximate solutions to the translational pattern179

matching problem. The size of the candidate set is near optimal. This can be easily seen180

from the following simple example in 1-D: Consider A = {1, 2} and B = {1, 2, . . . , n}; then181

all the n translations that align 1 in A to any of the n ≠ 1 points {1, 2, . . . , n ≠ 1} in B are182

optimal translations.183

After obtaining all the candidate translations, the approximate optimal matching can184

then be computed by solving a min-cost partial matching problem for fixed point sets T (A)185

and B for every candidate T .186

3.1 Overview of Techniques187

Our main idea for constructing a small candidate set is via space discretization. We are able188

to prove a locality property for the pattern search problem: if the distance between two189

translations T1 and T2 (viewed as points in Rd) is close compared to their closest distance to190

any point in the reference set P , then for any instance B
Õ ™ B, �(T1(A), B

Õ) and �(T2(A), B
Õ)191

are also close. This suggests that we can decompose Rd into “small” regions, so that the192

every region has a small diameter, comparing to its distance to P . For any B
Õ ™ B, let TO be193

the translation that discovers B
Õ, and TO lies in some “small” region C. Then, any T Õ œ C194

approximately discovers B
Õ. This means that, if we choose one arbitrary point from each195

“small” region to form the candidate set T, it is guaranteed that any instance B
Õ will be196

approximately discoverable by some translation in T. The details will be shown in Section 4.197

However, making all regions of the entire space “small” seems to be challenging, if not198

impossible. Existing space discretization techniques, such as [7, 3, 15], are only able to ensure199

that regions distant from the points in P are “small”. For regions close to points in P (called200

“close” regions), new techniques are needed to select their candidate translations. In Section201

5, we discuss how to choose translations from “close” regions so that every instance B
Õ whose202

corresponding optimal translation falls in some “close” region can also be approximately203

discoverable.204

In Section 4.4, we also describe how to use weak ‘-net to “sketch” P (with size mn) using205

a much smaller set Q of size O(n). This will allow us to significantly reduce the size of206

discretization (and thus the size of the candidate set) from ÂO(mn) to ÂO(n), which is near207

optimal. We are able to show that such a sketching still preserves the locality property of208

the pattern search problem.209

4 Locality Based Discretization for Pattern Search210

In this section, we present a discretization approach for the pattern search problem, based211

on the locality property of the problem.212

4.1 Locality of Pattern Search213

In the context of pattern search, locality refers to the following observation: for any instance214

B
Õ ™ B and two translations T1 and T2, if T1 and T2 are close to each other, their induced215

minimum bipartite matching costs between the translations of A and B
Õ are also close. Let216

�(X, Y) denote the minimum bipartite matching cost between two point sets X and Y . The217

following lemma shows the locality property with respect to the distance between translations218

and a point in the reference set P . (See Appendix for the proof.)219

ISAAC 2019

29:6 Small Candidate Set for Translational Pattern Search

I Lemma 5. Let T1 and T2 be two translations in Rd, and p œ P be the nearest neighbor220

of T1 in the reference set P . If ÎT1 ≠ T2Î Æ ‘Îp ≠ T1Î for some constant 0 < ‘ < 1, then221

|�(T1(A), B
Õ) ≠ �(T2(A), B

Õ)| Æ ‘�(T1(A), B
Õ) for any instance B

Õ ™ B.222

The above locality property suggests the following discretization approach to find a223

candidate set for the pattern search problem. The idea is to decompose Rd into a number of224

“small” regions. Each region C is “small” enough in the sense that the minimum distance r225

between C and the points in P is large, comparing to the diameter D(C) of C, i.e., D(C) Æ ‘r226

for some constant 0 < ‘ < 1. With such a discretization, we may then simply choose one227

arbitrary translation from each region to form the candidate set T. To see that this is indeed228

the desired candidate set, consider any instance B
Õ ™ B. Let T be the translation that229

discovers B
Õ, C

Õ be the region containing T , and TC œ T be the translation chosen from C.230

Then, by Lemma 5, we know that B
Õ is (1 + ‘)-approximately discoverable at TC .231

4.2 Space Discretization and Close Regions232

Unfortunately, an exact implementation of the above space discretization is not possible.233

This is because the size of some regions can be infinitely small if the distance of the region to234

a point in P is small enough. This means that an infinite number of regions can be generated235

around every point in P (see Figure 1). To overcome this di�culty, a possible way is to236

utilize some of the known space discretization techniques, such as [7, 3, 15]. However, a237

common issue of such techniques is that only part of the resulting regions can be viewed as238

“small” (i.e., D Æ ‘r, where D is the diameter of the region and r is the minimum distance239

between the a point in P and the region). Such regions are distant from points in P . All240

other regions are in close proximity to points in P , and cannot be viewed as “small”, even241

though their diameters might be small. We call such regions as “close” regions.242

Figure 1 Illustrative figures for “small” and “close” re-
gions. Left Figure: If every region needs to be “small”, then
an infinite number of regions will be generated around each
point in P . Right Figure: Possible “close” regions to prevent
from yielding an infinite number of “small” regions.

Clearly, for “small” regions, it243

will be su�cient (by Lemma 5) to244

choose one point arbitrarily from245

each of them and include it into246

the candidate set T. The main247

issue is, thus, how to select can-248

didate translations from the “close”249

regions. We will discuss our ideas250

on close regions in next section.251

In this paper, we use the tech-252

nique in [7] for space discretization.253

The main reason is that using this254

technique, we have some good geo-255

metric properties on close regions.256

This will help us ensure the correct-257

ness of our proposed approach and258

simplify the analysis.259

For self completeness, below we summarize the space discretization technique in [7]. The260

main technique in [7] is an algorithm AIDecomposition(P, —, “) , where P is a point set in Rd261

and 0 < —, “ < 1 are two small constants (to be determined in later analysis). The following262

lemma is the main result of the algorithm.263

I Lemma 6. [7] AIDecomposition(P, —, “) generates a partition of Rd in Od,—,“(|P | log|P |)264

time, where each region C of the partition satisfies one of the following conditions.265

Z. Huang, Q. Feng, J. Wang and J. Xu 29:7

1. C is associated with a subset V of P and a point v œ V , such that266

a. The diameter D(V) of V is no larger than —r, where r is the closest distance between267

a point in C and a point in V .268

b. Îv ≠ uÎ Æ “Îv
Õ ≠ uÎ and D(C) Æ —Îv

Õ ≠ uÎ, for any point u œ C and any point269

v
Õ œ P \ V270

2. D(C) Æ —r, where r is the closest distance between a point in C and a point in P .271

The regions that satisfy condition 1 are the close regions in our previous discussion,272

and the regions that satisfy condition 2 correspond to the small regions. Note that for a273

close region C generated by AIDecomposition, it is close to the associated point set V µ P ,274

comparing to points in P \ V , where the closeness is controlled by the parameter “. There275

are also some other interesting properties of close regions generated by AIDecomposition276

shown in Lemma 6. These properties will prove to be useful in later analysis.277

4.3 Reducing the Number of Regions278

If we directly apply the above AIDecomposition technique or any other space discretization279

technique (such as [3, 15]) to the reference set P , at least �(mn) regions will be generated,280

since |P | = mn. This results in a candidate set of size �(mn), which could be significantly281

larger than O(n), i.e., the maximum number of possible translations that could yield a282

perfect matching for T (A) and B. Thus, it is tempting to ask whether it is possible to283

construct a discretization with size only near O(n).284

A natural approach for size reduction is to use a smaller set Q to “sketch” P , and build a285

discretization for Q, instead of P . Let › > 1 and µ > 0 be some given constants. We require286

that Q be (›, µ)-dense for P , defined as follows.287

I Definition 7. A point set Q µ Rd is called (›, µ)-dense for P , if for any point T œ Rd, it288

satisfies µÎp› ≠ T Î Ø Îq ≠ T Î, where p› is the m/›-th closest point in P to T , and q œ Q is289

the nearest neighbor of T in Q.290

In other words, points in Q are “dense” enough, so that for any T œ Rd, it is possible to291

find a point q œ Q that is closer to, or not much farther away from T than p›. Using such a292

formulation for “dense” allows us to use Îq ≠ T Î to e�ectively lower bound �(T (A), B
Õ) for293

any B
Õ. Let „ be the matching realizing the minimum cost bipartite matching between T (A)294

and B
Õ. Then, we have295

Îq ≠ T Î Æ µÎp› ≠ T Î Æ
ÿ

pœP („)

µÎp ≠ T Î/((1 ≠ 1/›)m) = µ�(T (A), B
Õ)/((1 ≠ 1/›)m). (1)296

Using an argument similar to the one in Lemma 5, we have the following improved version297

of locality property.298

I Lemma 8. Let T1 and T2 be two translations in Rd, and p œ Q be the nearest neighbor of T1299

in Q. If ÎT1 ≠T2Î Æ —Îp≠T1Î for constant 0 < — < 1, then |�(T1(A), B
Õ)≠�(T2(A), B

Õ)| Æ300

—µ(1 ≠ 1/›)≠1�(T1(A), B
Õ) for any instance B

Õ ™ B.301

The above lemma enables us to use Q for the space discretization. More specifically, we302

run AIDecomposition(Q, —, “) on an (›, µ)-dense Q (with —, ›, µ and “ to be determined303

later). This yields a near linear size (in terms of the size of Q) discretization. From previous304

discussion, we know that for any instance B
Õ ™ B, if the translation that discovers B

Õ lies305

in a small region (note that since the discretization is based on Q instead of P , “small306

ISAAC 2019

29:8 Small Candidate Set for Translational Pattern Search

region” now means that their diameters are small compared to the distances to their nearest307

neighbors in Q), then any translation in the small region will (1 + ‘)-approximately discover308

B
Õ, if parameters —, ›, µ and “ are properly chosen according to the desired approximate309

ratio ‘. A formal argument will be provided later when analyzing the correctness of our310

algorithm. The remaining main challenge is then to deal with the case that the translation311

discovering B
Õ lies in a close region. This will be covered in the next section.312

4.4 Finding (›, µ)-dense Q for P313

To conclude this section, we briefly describe how to find a (›, µ)-dense set Q for the discretiz-314

ation.315

A set Q that is (›, µ)-dense can actually be found by constructing a weak ‘-net of P316

[16]. ‘-net is an important concept in combinatorial and computational geometry, and has317

been extensively studied in the past. For our problem, we use weak ‘-net for axis-aligned318

hypercubes (i.e., hyper-boxes with equal edge length in every direction). Below is the319

definition.320

I Definition 9. Let P be any point set in Rd, and ‘ be any small constant between 0 and 1.321

A point set Q µ Rd is called a weak ‘-net of P for axis-aligned hypercubes, if any axis-aligned322

hypercube G containing ‘|P | or more points in P also contains at least one point in Q.323

Note that ‘-net is a much more general concept than the above definition. In this324

paper, we only consider weak ‘-net for axis-aligned hypercubes. For convenience, we will use325

thereafter the term “‘-net” without specifying “weak” and “axis-aligned hypercubes”. For326

any constant c > 1, it is easy to see that a 1/cn-net Q of P is (c,
Ô

d)-dense.327

A small-size ‘-net for the reference set P can be built e�ciently. (We leave the proofs of328

the following lemmas to the end of the paper.)329

I Lemma 10. For any point multi-set P µ Rd with size mn and any constant c > 0, a330

1/cn-net of P with size Od(n) can be generated in Od(nm log nm) time.331

I Lemma 11. A 1/cn-net of the reference set P with size Od(n log n) can be generated in332

Od(n log n) time for any constant c > 0 with probability at leat 1 ≠ 1/n.333

5 Handling Close Regions334

In last section, we discuss how to use (›, µ)-dense Q to obtain a space discretization and how335

to select translations from small regions. In this section, we show how to pick translations336

from close regions (i.e. regions that satisfy condition 1 in Lemma 6) so that they will be337

good approximations for all those translations that fall in close regions and discover some338

instances of B.339

Below, we assume that “, —, µ and › are chosen such that “ < (16
Ô

d + 1)≠1, 4
Ô

d— < 1340

and › = 12d. Let B
Õ ™ B be an instance of A and TO be the translation that discovers B

Õ341

and lies in some close region C. Denote by V µ Q and v œ V , respectively, the subset of342

points in Q and its representative associated with C, as indicated in condition 1 of Lemma343

6. Let „O be the matching between TO(A) and B
Õ that realizes the minimum bipartite344

matching cost. Let Gv be the smallest axis-aligned box containing V . We consider 2 cases:345

|Gv fl P („O)| Ø 2m/3 or |Gv fl P („O)| < 2m/3.346

I Lemma 12. If |Gv fl P („O)| Ø 2m/3, TO = v.347

Z. Huang, Q. Feng, J. Wang and J. Xu 29:9

Proof. Assume by contradiction that TO ”= v. For any matching „ and any translation T ,348

we use notation C„(T) to denote the matching cost between T (A) and B
Õ under „. In the349

following, we analyze how the value of C„O
(T) changes, where variable T is initially TO,350

and then changed to v. Note that C„O
(T) =

q
pœP („O)

Îp ≠ T Î =
q

pœGvflP („O)
Îp ≠ T Î +351 q

pœP („O)\Gv
Îp ≠ T Î.352

To estimate the change of
q

pœGvflP („O)
Îp ≠ T Î, we note that for any p œ Gv fl P („O),353

Îp ≠ vÎ Æ
Ô

dD(V) Æ
Ô

d—ÎTO ≠ vÎ, where the last inequality is from Condition 1 of354

Lemma 6 and the fact that TO is in C. From triangle inequality, we have Îp ≠ T0Î Ø355

Îv≠T0Î≠Îv≠pÎ Ø (1≠
Ô

d—)Îv≠T0Î. Thus, we get Îp≠T0Î≠Îp≠vÎ Ø (1≠2
Ô

d—)Îv≠T0Î.356

This means that moving T from TO to v reduces the value of
q

pœGvflP („O)
Îp ≠ T Î by at357

least (2m/3)(1 ≠ 2
Ô

d—)Îv ≠ TOÎ.358

For the term of
q

pœP („O)\Gv
Îp ≠ T Î, we know (from triangle inequality and the as-359

sumption that |P („O) \ Gv| Æ m/3) that its change is smaller than (m/3)Îv ≠ TOÎ. Since360

1 ≠ 2
Ô

d— > 1/2 (by the assumption that 4
Ô

d— < 1), we get (2m/3)(1 ≠ 2
Ô

d—)Îv ≠ TOÎ >361

(m/3)Îv ≠ TOÎ when TO ”= v. Therefore, we have C„O
(v) < C„O

(TO) (from previous discus-362

sion). However, this results in a contradiction, since from definition, TO discovers B
Õ and363

thus should have the minimum matching cost between A and B
Õ under any translation.364

Thus, the lemma follows. J365

Gv

G1

G2

G3

G4

Figure 2 Illustration of the arrangement of
{G1, G2, . . . , G2d} and Gv.

For the case |Gv fl P („O)| < 2m/3,366

we have the following lemma.367

I Lemma 13. If |Gv flP („O)| < 2m/3,368

then for any T Õ œ C, �(T Õ(A), B
Õ) Æ369

(1 + 48—
Ô

d)�(TO(A), B
Õ).370

Proof. For any matching „ and any371

translation T , we use notation C„(T)372

to denote the matching cost between373

T (A) and B
Õ under „. We prove this374

lemma by showing that C„O
(T Õ) Æ375

(1 + 48—
Ô

d)C„O
(TO); the lemma then376

follows, since C„O
(T Õ) Ø �(T Õ(A), B

Õ).377

Let P
Õ be the closest 5m/6 points378

to TO in P („O). Since |Gv fl P („O)| <379

2m/3, we have |P Õ \ Gv| Ø m/6.380

For analysis purpose, imagine that381

we “attach” 2d axis-aligned boxes382

{G1, G2, . . . , G2d} to each face of Gv, with centers aligned in Gv (see Figure 2 for an example383

in 2D), and each box has equal edge length r, where r is the smallest positive number such that384

P
Õ is contained in the union of {G1, G2, . . . , G2d} and Gv. Let F = Gv fi G1 fi G2 . . . fi G2d.385

By the fact that |P Õ \ Gv| Ø m/6, we know that one box of {G1, G2, . . . , G2d} contains386

more than m/12d points in P . Since › = 12d and Q is a 1/n›-net of P , we also know that387

the box contains a point qt from Q. Thus, F contains a point qt in Q \ V .388

From Lemma 6, we have ÎTO ≠ vÎ Æ “ÎTO ≠ qtÎ. Thus,389

Îv ≠ qtÎ Ø (1/“ ≠ 1)ÎTO ≠ vÎ. (2)390

Let Lv denote the edge length of Gv. Then, we have Lv Æ D(V) Æ —ÎTO ≠ vÎ. Since391

— < 1/4
Ô

d < (1/4
Ô

d)(1/“ ≠ 1), from (2) we get392

Lv Æ Îv ≠ qtÎ/4
Ô

d. (3)393

ISAAC 2019

29:10 Small Candidate Set for Translational Pattern Search

Let L denote the length of F : L = 2r + Lv. L is clearly no smaller than Îv ≠ qtÎ/
Ô

d in394

order to contain both v and qt. From (3), we have Lv Æ r and r Ø 3Îv ≠ qtÎ/8
Ô

d. By (2)395

and the assumption that 1/“ ≠ 1 Ø 16
Ô

d, we get396

r Ø 3(1/“ ≠ 1)ÎTO ≠ vÎ/8
Ô

d Ø 6ÎTO ≠ vÎ. (4)397

Let Ov denote the center of Gv. Then, ÎOv ≠ vÎ Æ
Ô

dLv Æ
Ô

dD(V) Æ
Ô

d—ÎTO ≠ vÎ Æ398

ÎTO ≠ vÎ/4. Thus, from triangle inequality we have399

ÎOv ≠ TOÎ Æ 5ÎTO ≠ vÎ/4. (5)400

Combining (4) and (5) gives us ÎOv ≠ TOÎ Æ 5r/24.401

From the definition of r, we know that there must exist a point p
Õ œ P

Õ on the boundary402

of F . From the arrangement of {G1, G2, . . . , G2d} and Gv, we have ÎOv ≠ p
ÕÎ Ø r/2. Thus,403

ÎTO ≠ p
ÕÎ Ø r/2 ≠ 5r/24 > r/4 (by triangle inequality).404

Also, from the fact that Lv Æ r, we know that F can be covered by a box centered at Ov405

and with edge length 3r. Since qt œ F , we have ÎOv ≠ qtÎ Æ 3
Ô

dr/2. Combining this with406

the fact that ÎOv ≠ TOÎ Æ 5r/24, we get ÎTO ≠ qtÎ Æ 3
Ô

dr/2 + 5r/24 Æ 2
Ô

dr. Thus, we407

have ÎTO ≠ qtÎ/ÎTO ≠ p
ÕÎ Æ 8

Ô
d.408

In summary, from the above discussion and Lemma 6, we have the following.409

1. There exists qt œ Q such that the following inequality holds ÎTO ≠ qtÎ/ÎTO ≠ p
ÕÎ Æ 8

Ô
d,410

where p
Õ œ P („O) satisfies the condition that less than 5m/6 points in P („O) are closer411

to TO than it.412

2. Inequality ÎTO ≠ T ÕÎ Æ —ÎTO ≠ qtÎ holds for any T Õ œ C.413

Following a similar argument given in Lemma 5, we can show that |C„O
(TO)≠C„O

(T Õ)| Æ414

48—
Ô

dC„O
(TO). This concludes the proof. J415

Now for any ‘ > 0, if we set 48—
Ô

d Æ ‘, then by Lemmas 12 and 13, we know that416

if TO lies in a close region C generated by AIDecomposition, either v discovers B
Õ (if417

|Gv fl P („O)| Ø 2m/3), or an arbitrary T Õ œ C (1 + ‘)-approximately discovers B
Õ (if418

|Gv fl P („O)| < m/3). Therefore, we may put v and an arbitrary point in C into the419

candidate set. This ensures that B
Õ is (1 + ‘)-approximately discoverable by at least one of420

these two points when TO lies in C.421

6 The Algorithm and Analysis422

In this section, we summarize the discussion so far and provide the algorithm to generate the423

candidate set of translations. The following Algorithm 1 shows in details how to generate424

the candidate set T.425

Depending on the method chosen to construct the ‘-net in Step 3 (Lemma 10 or Lemma426

11), the size of Q is O(n) or O(n log n), the size of the discretization (in terms of number of427

regions) generated in step 4 is O(n log n) or O(n log2
n), and the total running time of the428

algorithm is O(mn log mn) or O(n log2
n). No matter which algorithm is chosen to construct429

T, we have the following lemma.430

I Lemma 14. For any instance B
Õ œ B of A, there exists at least one translation T œ T,431

such that T (1 + ‘)-approximately discovers B
Õ.432

Z. Huang, Q. Feng, J. Wang and J. Xu 29:11

Algorithm 1 Generate-Candidate-Set
Input: Point sets A and B of Rd with |A| Æ |B|. Approximate factor 0 < ‘ < 1.
Output: A set T of translations in Rd, such that each instance B

Õ of A is (1+‘)-approximately
discoverable.

1: Initialize T to be ÿ.
2: Initialize constants —, “, ›, such that: › = 12d, 48—

Ô
d Æ ‘, “ < (16

Ô
d + 1)≠1, 4

Ô
d— < 1

and
Ô

d—(1 ≠ 1/›)≠1 Æ ‘.
3: Build a 1/›n-net Q for P , where P is the reference set.
4: Run AIDecomposition(Q, —, “) to generate a discretization which decomposes Rd into

close regions and small regions.
5: For each small region C, pick an arbitrary point from C and put it into T.
6: For each close region C, suppose it is associated with point set V and v œ V . Pick an

arbitrary point p in C. Put both v and p into T.
7: Output T as the result.

Proof. Let TO be the translation that discovers B
Õ.433

If TO lies in a small region C, let TC œ T be the point chosen from C in step 5 of434

Algorithm 1. Let q be the nearest neighbor of TO in Q. By Lemma 6, we know that435

ÎTC ≠ TOÎ Æ —Îq ≠ TOÎ. By Lemma 8 and the fact that Q is (›,
Ô

d)-dense, we have436

�(TC(A), B
Õ) Æ (1 +

Ô
d—(1 ≠ ›)≠1)�(TO(A), B

Õ) Æ (1 + ‘)�(TO(A), B
Õ) (The last inequality437

comes from choice of parameters in Algorithm 1). Thus, we know that B
Õ is (1 + ‘)-438

approximately discoverable at TC œ T.439

If TO lies in a close region C, let v œ V µ Q be the representative point associated with440

C as stated in Lemma 6. Let TC œ T be the point chosen from C in step 6 of Algorithm441

1. Then, by Lemmas 12 and 13, we know that either v discovers B
Õ, or �(TC(A), B

Õ) Æ442

(1 + 48—
Ô

d)�(TO(A), B
Õ) Æ (1 + ‘)�(TO(A), B

Õ). This means that either v or TC (1 + ‘)-443

approximately discovers B
Õ.444

This completes the proof. J445

From the above analysis, we immediately have our main results, Theorems 2 and 3.446

447

7 Constructing ‘-net for Hypercubes for P448

To conclude this paper, we introduce e�cient algorithms to construct a weak ‘-net for the449

reference set P with axis-aligned hypercubic ranges. From the well known ‘-net theorem,450

we know that a random sample of size O((dÕ
/‘) log(dÕ

/‘) + log n/‘) from P , where d
Õ is the451

VC-dimension of the range space defined by hypercubes in Rd (it is known that d
Õ Æ 2d), is an452

‘-net with probability at least 1 ≠ 1/n. There are several previous results on ‘-net for simple453

shapes like axis aligned rectangles, halfspace and disks in 2 or 3 dimension [20, 8, 2], which454

provide methods to build smaller size ‘-nets. [19] provides a mathematical construction of455

‘-nets for axis-aligned hypercubes of size O(1/‘), which is optimal in size, although its e�cient456

(i.e. in near O(|P |) time) algorithmic implementation is unknown. [12] introduces a method457

to construct ‘-nets for axis-aligned rectangles in any fixed dimension, which can be applied458

to generate the (›, µ)-dense subset Q. The running time of this method is O(|P | logd|P |).459

We show that if we further restrict the shapes to hypercubes, we are able to obtain an460

optimal size (i.e. O(1/‘)) weak ‘-net more e�ciently. In the following we show how to461

deterministically construct a linear size 1/n-net Q for any multi-set P of size O(mn), i.e.,462

ISAAC 2019

29:12 Small Candidate Set for Translational Pattern Search

a point set Q of size O(n) such that if an axis-aligned hypercube G contains m points in463

P , it then contains at least one point in Q. The time of the construction is O(nm log nm)464

(Recall that the size of P is mn). Clearly, the same space and time complexity bounds for a465

1/cn-net Q for any constant c are also achievable, thus proving Lemma 10. We also note that466

by applying the ‘-net theorem, it is possible to construct such a Q of larger size (O(n log n)),467

but in shorter (O(n log n)) time, with high probability. This allows us to make a trade-o�468

between the size of Q and the time complexity of the construction. We leave the discussion469

of the alternative construction to the end of section, and focus on the deterministic linear470

size ‘-net construction in the following.471

The construction is based on the quad-tree decomposition technique, which recursively472

partitions the regions inside the quad-tree boxes, and uses a 2d-way tree structure to represent473

the partition. To build a quad-tree for P , we first start with a bounding box G which contains474

all points in P and is the root of the quad-tree. We then decompose G into 2d smaller boxes475

with equal size, with each of them being a child of G. For each child box, we recursively476

perform the same decomposition. The recursion stops when a box contains no more than 1477

point in P . The quad tree decomposition for P can be performed within O(|P | log|P |) time478

by maintaining a sorted list of P for each of the d axes [6], and compressing the tree properly479

to handle empty boxes during the decomposition.480

Figure 3 below shows and example of quad-tree decomposition.481

Figure 3 Example of quad-tree decomposition.

A quad-tree decomposition may produce a large number of empty boxes, when a large482

number of points are aggregated in some region (see left of Figure 4 for an example). To483

resolve this issue, when decomposing a box G in the quad-tree decomposition, we first484

perform a quad-tree compression, which directly computes the smallest quad-tree box GC485

that contains all the points in P fl G (see the right side of Figure 4). Then the quad-tree486

decomposition can continue on GC . This will avoid generating many unnecessary empty487

boxes. Note that this compression step is not required if points are not concentrated, i.e., if488

decomposing G yields at least 2 nonempty boxes (i.e., containing points in P). In this case,489

we decompose G in the standard fashion.490

With this compression step, the running time of the quad-tree decomposition is still491

O(|P | log|P |) [6].492

Algorithm 2 and Algorithm 3 describe our quad-tree decomposition-based method for493

producing a weak ‘-net Q. The decomposition scheme is a modification of the standard494

quad-tree decomposition. The main routine Algorithm 2 outputs the ‘-net Q, together with495

a set U of boxes which is for analysis purpose. Algorithm 3 is the body for the recursion.496

The Algorithm 2 and 3 are essentially trimmed versions of the standard quad-tree497

decomposition (by not decomposing some of the boxes in the process). Given a box G498

that contains multiple points in P , instead of simply decomposing it into 2d sub-boxes and499

recursively building the quad-tree on them (which could generate boxes with few points in500

it and thus results in a quad-tree with high complexity), Algorithm 3 iteratively performs501

the quad-tree decomposition on only one sub-box which contains the maximum number of502

Z. Huang, Q. Feng, J. Wang and J. Xu 29:13

G G

Gc

Figure 4 Example of quad-tree compression. It is possible that points in a box are aggregated at
some location. Directly applying the quad-tree decomposition will generate many empty boxes. We
can directly compute a box to contain all these points without really performing the decomposition.

Algorithm 2 Construct-‘-Net
Input: A set P µ Rd

Output: An ‘-net Q. A set U of Rd boxes.
1: Initialize Q,U as empty sets. Initialize G as a box that contains P .
2: Start recursion by running Decompose-Single-Box subroutine on G

points in P , and tries to identify a box G
Õ with the following properties. When the iteration503

(from step 4 to step 8) stops (at step 4 or 7), G
Õ satisfies the following 2 conditions504

1. There are less than m/2d+1 points in P fl G \ G
Õ.505

2. (a) All points in P fl G
Õ have the same location, OR (b) There are at least m/2d+1 points506

in P fl G \ G
ÕÕ, where G

ÕÕ is the child box of G
Õ with the most number of points in P .507

Only in case 2(b) we perform the recursion on the boxes generated by the decomposition of508

G
Õ. See Figure 5 for illustration. In addition, we do not decompose G when there are only a509

small number (Æ m/2d+1) of points in it. Since the algorithm is a trimmed version of the510

standard quad-tree decomposition, the running time is thus O(|P | log|P |) = O(mn log mn).511

G0

G00

Figure 5 To achieve better performance, Algorithm 3 uses an iteration to find out G
Õ with the

desired properties. Recursion continues only (on sub-boxes of G
Õ) if P fl G \ G

ÕÕ contains an enough
number of points, where G

ÕÕ is the quad-tree child box of G
Õ with the most number of points in P .

This can greatly reduce the number of boxes generated.

It is quite clear that the size of Q is O(n). The Decompose-Single-Box procedure stops512

immediately once the condition |GflP | Æ m/2d+1 is satisfied. The procedure also makes sure513

that for any G
ÕÕ of the 2d child boxes generated for G (if the decomposition and recursion514

occur), inequality |G \ G
ÕÕ| Ø m/2d+1 holds. This implies that the size of the recursion tree,515

and thus the size of U and Q, is O(mn/(m/2d+1)) = O(n).516

ISAAC 2019

29:14 Small Candidate Set for Translational Pattern Search

Algorithm 3 Decompose-Single-Box
Input: A box G

Output: A sub-quad tree with G as the root.
1: Add G into U . Add all the vertices of G to Q.
2: If G contains Æ m/2d+1 points in P , return.
3: Initialize variable G

Õ to be the box G.
4: If all points in P that lie in G

Õ coincide at point p. Put p and all vertices of G
Õ into Q.

Put G
Õ into U . Return.

5: Update variable G
Õ to be the resulting box from the quad-tree compression of the current

G
Õ, if necessary (See Appendix A.3).

6: Decompose G
Õ equally into 2d sub-boxes. Let G

ÕÕ be the one that contains the most
number of points in P .

7: If G \ G
ÕÕ contains Ø m/2d+1 points in P , recursively call Decompose-Single-Box on the

2d sub-boxes generated in the above step. Then return.
8: Otherwise, update variable G

Õ to be G
ÕÕ. Go to step 4.

I Lemma 15. Set Q generated by the above algorithm is a weak 1/n-net for P , i.e., if any517

axis-aligned hypercube Gm contains at least m points in P , then Gm contains at least 1 point518

in Q.519

Proof. Let Um denote the subset Um ™ U of hyperboxes G
Õ in U such that the interior of520

Gm intersects G
Õ.521

For each coordinate axis e of R, let F (e) be the set of faces f of boxes in Um, such that f522

is perpendicular to e and intersects the interior of Gm. Let the cutting number x(e) of e be523

the possible number of distinct coordinate values of faces in F (e) in the e axis.(See Figure 6524

for an example.) We consider two cases.525

X

Y
Gm

x1 x2 x3 x4

Figure 6 Example of cutting number for X axis in an configuration of interior Gm. In this
example there are 3 boxes of Um intersecting Gm. There are 4 di�erent x values for faces of these
boxes that lies in Gm and are perpendicular to the X axis. Thus the cutting number for X axis in
this example is 4.

Case 1. x(e) Æ 1 for any axis e. Then boxes in U partitions Gm into no more than526

2d regions, since in every direction Gm is “cut” by boxes in U at most once. Since Gm527

contains at least m points in P , one of the regions will contain strictly more than m/2d528

points. However, from Algorithm 3, we know that all of the regions formed by U can only529

have no more than m/2d+1 points, with the exception that for some regions, all its contained530

Z. Huang, Q. Feng, J. Wang and J. Xu 29:15

points in P have the same location p. Thus, Gm intersects such a region and contains p.531

Since p œ Q from Algorithm 3 (see Step 4), this case is proved.532

Case 2. x(e) Ø 2 for some axis e. Since the quad-tree decomposition always divides533

boxes equally, the following fact is clear.534

Fact. Let f1, f2 be the faces of boxes G1 and G2 in U , respectively, such that they are535

facing the same direction e. If the distance between f1 and f2 in the direction of e is l > 0,536

one of G1 and G2 has edge length Æ l.537

If x(e) Ø 2, then there exist faces f1 and f2 facing the direction of e and intersect the538

interior of Gm. If these 2 faces belongs to the same box Gf œ U , then Gf is smaller than539

Gm in size. Thus, one of the vertices pf of Gf must lie in Gm. From Algorithm 3, we know540

that pf œ Q. Therefore, Gm fl Q ”= ÿ. If f1 and f2 belong to di�erent boxes, say G1 and541

G2 in U , from the above fact, we know that the edge length of one of the boxes will be no542

larger than the distance between f1 and f2 in the direction of e. Since the box size is smaller543

than Gm, one of its vertices is in Gm. This again leads to the fact that Gm fl Q ”= ÿ. This544

completes the proof. J545

Alternative Construction Using ‘-net Theorem: Recall that the ‘-net Theorem allows546

us to build a 1/cn-net of P with size O(n log n) by using O(n log n) samples, where c > 0 is547

a constant. Also note that, it is not necessary to explicitly compute P (whose size is mn)548

before conducting the sampling. From the definition of P (in Section 2, Definition 1), a549

random sample from P can be obtained by first sampling a from A, b from B, and then550

computing b ≠ a as the sample. This allows us to build a 1/cn-net of P in O(n log n) time.551

References552

1 Helmut Alt and Leonidas J Guibas. Discrete geometric shapes: Matching, interpolation, and553

approximation. In Handbook of computational geometry, pages 121–153. Elsevier, 2000.554

2 Boris Aronov, Esther Ezra, and Micha Sharir. Small-size \eps-nets for axis-parallel rectangles555

and boxes. SIAM Journal on Computing, 39(7):3248–3282, 2010.556

3 Sunil Arya, Theocharis Malamatos, and David M Mount. Space-time tradeo�s for approximate557

nearest neighbor searching. Journal of the ACM (JACM), 57(1):1, 2009.558

4 Rinat Ben-Avraham, Matthias Henze, Rafel Jaume, Balázs Keszegh, Orit E Raz, Micha Sharir,559

and Igor Tubis. Minimum partial-matching and hausdor� rms-distance under translation:560

combinatorics and algorithms. In European Symposium on Algorithms, pages 100–111. Springer,561

2014.562

5 Sergio Cabello, Panos Giannopoulos, and Christian Knauer. On the parameterized complexity563

of d-dimensional point set pattern matching. In International Workshop on Parameterized564

and Exact Computation, pages 175–183. Springer, 2006.565

6 Paul B Callahan and S Rao Kosaraju. A decomposition of multidimensional point sets566

with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM,567

42(1):67–90, 1995.568

7 Danny Z Chen, Ziyun Huang, Yangwei Liu, and Jinhui Xu. On clustering induced voronoi569

diagrams. SIAM Journal on Computing, 46(6):1679–1711, 2017.570

8 Kenneth L Clarkson and Kasturi Varadarajan. Improved approximation algorithms for571

geometric set cover. Discrete & Computational Geometry, 37(1):43–58, 2007.572

9 Hu Ding, Ronald Berezney, and Jinhui Xu. k-prototype learning for 3d rigid structures. In573

Advances in Neural Information Processing Systems, pages 2589–2597, 2013.574

10 Hu Ding, Branislav Stojkovic, Ronald Berezney, and Jinhui Xu. Gauging association patterns575

of chromosome territories via chromatic median. In Proceedings of the IEEE Conference on576

Computer Vision and Pattern Recognition, pages 1296–1303, 2013.577

ISAAC 2019

29:16 Small Candidate Set for Translational Pattern Search

11 Hu Ding and Jinhui Xu. Fptas for minimizing earth mover’s distance under rigid transforma-578

tions. In European Symposium on Algorithms, pages 397–408. Springer, 2013.579

12 Esther Ezra. A note about weak ‘-nets for axis-parallel boxes in d-space. Information580

Processing Letters, 110(18-19):835–840, 2010.581

13 Martin Gavrilov, Piotr Indyk, Rajeev Motwani, and Suresh Venkatasubramanian. Combin-582

atorial and experimental methods for approximate point pattern matching. Algorithmica,583

38(1):59–90, 2004.584

14 Michael T Goodrich, Joseph SB Mitchell, and Mark W Orletsky. Practical methods for approx-585

imate geometric pattern matching under rigid motions:(preliminary version). In Proceedings586

of the tenth annual symposium on Computational geometry, pages 103–112. ACM, 1994.587

15 Sariel Har-Peled. A replacement for voronoi diagrams of near linear size. In Proceedings 42nd588

IEEE Symposium on Foundations of Computer Science, pages 94–103. IEEE, 2001.589

16 David Haussler and Emo Welzl. ‘-nets and simplex range queries. Discrete & Computational590

Geometry, 2(2):127–151, 1987.591

17 Matthias Henze, Rafel Jaume, and Balázs Keszegh. On the complexity of the partial least-592

squares matching voronoi diagram. In Proc. 29th European Workshop on Computational593

Geometry, pages 193–196, 2013.594

18 Daniel P Huttenlocher, Klara Kedem, and Micha Sharir. The upper envelope of voronoi595

surfaces and its applications. Discrete & Computational Geometry, 9(3):267–291, 1993.596

19 Janardhan Kulkarni and Sathish Govindarajan. New ‘-net constructions. In Proceedings of597

the 22nd Annual Canadian Conference on Computational Geometry, Winnipeg, Manitoba,598

Canada, pages 159–162. Citeseer, 2010.599

20 Ji�í Matouöek, Raimund Seidel, and Emo Welzl. How to net a lot with little: Small Á-nets600

for disks and halfspaces. In Proceedings of the sixth annual symposium on Computational601

geometry, pages 16–22. ACM, 1990.602

21 Günter Rote. Partial least-squares point matching under translations. In Proc. 26th European603

Workshop on Computational Geometry, pages 249–251. Citeseer, 2010.604

22 Nitasha Sehgal, Andrew J Fritz, Jaromira Vecerova, Hu Ding, Zihe Chen, Branislav Sto-605

jkovic, Sambit Bhattacharya, Jinhui Xu, and Ronald Berezney. Large-scale probabilistic 3d606

organization of human chromosome territories. Human molecular genetics, 25(3):419–436,607

2015.608

Z. Huang, Q. Feng, J. Wang and J. Xu 29:17

A Appendix609

A.1 Proof of Corollary 4610

Proof. Suppose that translation T and B
Õ ™ B realize the minimum cost bipartite matching611

with A. Let COP T be the minimum bipartite matching cost of B
Õ and T (A). COP T is then612

the optimal minimum bipartite matching cost between A and B under translations. Since613

B
Õ is a COP T -instance of A, there exists T Õ œ T such that the matching cost between B

Õ614

and T Õ(A) is no larger than (1 + ‘)COP T . Thus, T Õ induces a (1 + ‘)-approximation for the615

optimal translational matching between A and B. J616

A.2 Proof of Lemma 5617

Proof. Let „1 (or „2) be the corresponding bipartite matching which gives rise to the618

minimum cost between B
Õ and T1(A) (or T2(A)). Then, �(T1(A), B

Õ) =
q

qœP („1)
Îq ≠ T1Î,619

and �(T2(A), B
Õ) =

q
qœP („2)

Îq ≠ T2Î. Note that620

ÿ

qœP („1)

Îq ≠ T2Î =
ÿ

qœP („1)

Îq ≠ T1 ≠ T2 + T1Î621

Æ
ÿ

qœP („1)

ÎT2 ≠ T1Î +
ÿ

qœP („1)

Îq ≠ T1Î622

= mÎT2 ≠ T1Î + �(T1(A), B
Õ)623

Æ m‘Îp ≠ T1Î + �(T1(A), B
Õ)624

Æ ‘�(T1(A), B
Õ) + �(T1(A), B

Õ)625

= (1 + ‘)�(T1(A), B
Õ),626

627

where the first inquality comes from the triangle inequality, and the third inequality comes628

from the fact that p is the nearest neighbor of T1 in P , which implies that mÎp ≠ T1Î Æ629 q
qœP („1)

Îq ≠ T1Î = �(T1(A), B
Õ). From the assumption that „2 is the minimum cost630

bipartite matching between T2(A) and B
Õ, we know that the value

q
qœP („1)

Îq ≠ T2Î, which631

is the matching cost between T2(A) and B
Õ under „1, must be no smaller than �(T2(A), B

Õ).632

Therefore, from the above inequality, we have �(T2(A), B
Õ) Æ (1 + ‘)�(T1(A), B

Õ).633

Following a similar argument, we also have634

�(T1(A), B
Õ) Æ

ÿ

qœP („2)

Îq ≠ T1Î635

=
ÿ

qœP („2)

Îq ≠ T2 ≠ T1 + T2Î636

Æ
ÿ

qœP („2)

ÎT2 ≠ T1Î +
ÿ

qœP („2)

Îq ≠ T2Î637

= mÎT2 ≠ T1Î + �(T2(A), B
Õ)638

Æ m‘Îp ≠ T1Î + �(T2(A), B
Õ)639

Æ ‘

1 ≠ ‘
�(T2(A), B

Õ) + �(T2(A), B
Õ)640

= (1 ≠ ‘)≠1�(T2(A), B
Õ),641

642

where the fourth inequality comes from the following argument. The closest distance from643

a point in P to T1 is Îp ≠ T1Î. Since ÎT1 ≠ T2Î Æ ‘Îp ≠ T1Î, we know that the closest644

ISAAC 2019

29:18 Small Candidate Set for Translational Pattern Search

distance from a point in P to T2 is at least (1 ≠ ‘)Îp ≠ T1Î. Therefore, �(T2(A), B
Õ) =645 q

qœP („2)
Îq ≠ T2Î Ø m(1 ≠ ‘)Îp ≠ T1Î.646

Putting everything together, we have that (1 ≠ ‘)�(T1(A), B
Õ) Æ �(T2(A), B

Õ) Æ (1 +647

‘)�(T1(A), B
Õ). Thus, the lemma follows. J648

	Introduction
	Preliminaries
	Main Results
	Overview of Techniques

	Locality Based Discretization for Pattern Search
	Locality of Pattern Search
	Space Discretization and Close Regions
	Reducing the Number of Regions
	Finding (ξ,)-dense Q for P

	Handling Close Regions
	The Algorithm and Analysis
	Constructing ε-net for Hypercubes for P
	Appendix
	Proof of Corollary 4
	Proof of Lemma 5

