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Abstract. Deep learning has demonstrated superb performance and ef-
ficiency in medical image segmentation. However, recently the commu-
nity has also found the first practical adversarial example crafting al-
gorithm dedicated to misleading deep learning-based biomedical image
segmentation models. The generated segmentation-oriented adversarial
examples, while almost indistinguishable by human eyes, can always pro-
duce target incorrect segmentation prediction with high intersection-
over-union (IoU) rate, significantly concerning the safe use of such an
emerging technique in medical diagnosis tasks. On the other hand, re-
search on defending such an emerging attack in the context of medical im-
age segmentation is lacking. In this work, we make the very first attempt
to develop a low-cost and effective input-transformation based defense
technique. To maximize the defense efficiency (or recovered segmenta-
tion results) of adversarial samples while minimizing the segmentation
performance loss of benign samples after applying defense, we propose
a novel low-cost image compression-based defense approach guided by
fine-grained frequency refinement (FR). Extensive experimental results
on various deep learning segmentation models show that our defense can
offer very high defense efficiency against adversarial examples with very
marginal segmentation performance loss of benign images on both ISIC
skin lesion segmentation challenge and the problem of glaucoma optic
disc segmentation. To further validate our method’s effectiveness, we
also extend our evaluation to the image classification model. We show
the influence of our recovered segmentation prediction by our defense
on disease prediction in adversarial settings. The code is released at:
https://github.com/qiliu08/frequency-refinement-defense.

https://github.com/qiliu08/frequency-refinement-defense
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1 Introduction

Recently, deep learning has been widely applied to a variety of medical imag-
ing tasks to assist doctors in making a more precise medical diagnosis at sig-
nificantly reduced labor expenses. [13,4]. As the state-of-the-art deep learning
solution continues advancing the performance in medical field, a question that
naturally arises would be whether the adversarial examples could also compro-
mise deep learning medical diagnosis results. The so-called adversarial example
is a type of malicious inputs that possesses an indistinguishable visualization
with benign inputs for human beings [8,3,11]. It has proved to be a significant
security concern for deep learning-based image recognition and segmentation in
computer vision. As expected, the latest study discovered the very first practi-
cal adversarial example in the context of medical image segmentation, namely
Adaptive Segmentation Mask Attack (ASMA). It confirmed its high effective-
ness to mislead the segmentation prediction to any target adversarial mask with
a very high intersection-over-union (IoU) rate [14]. Distinct from existing seg-
mentation attack algorithms for computer vision tasks, which are nontarget thus
unrealistic in the medical field, ASMA is a targeted adversarial example gener-
ating algorithm that could lead to a convincing prediction shape of choice with
subtle input modifications that are invisible to the bare eye. As a result, there
is no doubt that such an emerging security flaw, if left unchecked, will cause
severe consequences in the near future, especially considering that the doctors
may ever-increasingly rely on deep learning predicted results for the treatment
to patients. From an economic aspect, many fraud insurance claims could hap-
pen just because of the false breast cancel classification result incurred by these
adversarial examples [7].

Rather than treating such an ever-increasing threat as an “after-thought”
factor in deep learning-based medical imaging, in this paper, we make the very
first attempt to mitigate such a new attack. Our approach is inspired by JPEG–
a popular low-cost image compression framework [18,12]. We found that JPEG
cannot balance the defense efficiency against adversarial examples and accu-
racy on benign images because of the human vision-centered quantization. To
overcome this limitation, we propose the frequency refinement (FR) approach
to redesign quantization based on the unique statistical pattern of adversarial
perturbations in frequency domain. Our FR can almost recover the low IoU of
segmentation prediction under adversarial settings to the original level without
scarifying the accuracy of benign images (see the example on Fig. 2 column 1
and 4). We also extend our elevation to classification-based disease diagnosis.
Experiments show that the false segmentation prediction incurred by adversar-
ial examples would hurt the accuracy of disease classification significantly, e.g.
increasing misdiagnosis risk (sensitivity: 50.6%). However, the recovered segmen-
tation prediction by our FR can improve the sensitivity to the level comparable
to the original model (68.2% vs. 71%). To the best of our knowledge, this is
the first study that targets the defense against the state-of-the-art adversarial
examples in the context of medical imaging.
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Fig. 1. Statistical information of adversarial perturbations in frequency domain

2 Background and Motivation

2.1 Adversarial Examples for Medical Image Segmentation

Ozbulak et al. [14] proposed a gradient descent-based targeted adversarial exam-
ple generating algorithm, namely Adaptive Segmentation Mask Attack (ASMA).
It is the first attack algorithm to accurately produce targeted adversarial masks
meaningful in the sense of medical image segmentation. The basic idea of ASMA
is to increase the prediction likelihood of the selected foreground pixels in the
target adversarial mask for a specific class c except for pixels that are already
predicted as class c by the segmentation model f(θ,X), while reducing the pre-
diction likelihood of all other pixels outside the target adversarial mask for other
classes except for those classified as other classes already. The input X can be
iteratively updated as follows:

Xi+1 = Xi + αi ·
m∑

c=1

∇x

(
1YAE=c � 1arg max(f(θ,Xi)) 6=c � fc(θ,Xi)

)
(1)

Where αi is an adaptive perturbation multiplier and controlled by αi = β ×
IoU(YAE , Yi)+ τ , by considering the IoU score at the i-th iteration. β and τ are
hyper-parameters to decide the final perturbation multiplier. � is the element-
wised matrix multiplication. YAE and X0 are the desired prediction mask for
adversarial example that contains class labels, and an input image, respectively.

2.2 JPEG Image Compression

JPEG [18] is a popular lossy image compression framework that mainly con-
sists of image partitioning, Discrete Cosine Transform (DCT), quantization and
lossless encoding etc. A 8×8 quantization table (Q-Table) with different quanti-
zation steps are used to scale DCT coefficients in frequency domain to achieve
image compression. Based on the fact that human visual system (HVS) cares
more about the low frequency features, larger (smaller) quantization steps are
assigned to higher (lower) frequency components in Q-table. The trade-off be-
tween image quality and compression rate can be realized by scaling Q-table
with a parameter–“Quantization Factor (QF)”. A higher QF indicates better
image quality but a lower compression rate.
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Fig. 2. The visualization of predicted segmentation for source and adversarial images
with/without our defense and JPEG compression on the glaucoma optic disc dataset.

Limitation of JPEG on Defense. We select JPEG for our initial explo-
ration of defense solutions against ASMA, considering its low-cost and popularity
for medical image compression. Fig. 1 illustrates the ASMA-based adversarial
perturbations of a representative image from glaucoma optic dis dataset [17], as
well as the statistical information (mean and standard deviations) of the per-
turbations’ DCT coefficients across 64 frequency bands. We observe that such
adversarial perturbations could appear at any frequency band, with maximized
distortions introduced in the lowest frequency band. However, JPEG compres-
sion always quantizes less on low frequency features (more on high frequency
features) to preserve the visual quality for human eyes. Thus, standard JPEG
can not effectively filter these perturbations in the whole spectral domain. As
Fig. 2 shows, ASMA-based adversarial example drops IoU from 71.1% (benign
image) to 16.4% on segmentation prediction (see the first two columns). How-
ever, JPEG-based defense only recovers IoU from 16.4% to 50.1% for adversarial
example to maintain a high IoU for the benign image after defense given that
such defense will be applied to any image in practice (see the third column). It
confirms that standard JPEG is not an effective defense method against such
adversarial examples and prompts the need to explore better low-cost defense
solutions in the context of medical image segmentation.

3 Our Approach

In this section, we propose a frequency refinement (FR) approach to redesign
the quantization table in JPEG compression, a.k.a. defensive quantization table
(DQ-Table), to achieve both competitive testing accuracy and defense efficiency.

3.1 Defensive Quantization Analysis

To better explore the defensive quantization, we first analyze why quantization
can mitigate adversarial examples but degrade the accuracy of benign images.
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The DCT transformation is a linear function which transforms adversarial per-
turbations from spatial domain to spectral domain. The process can be as follows:

DCT (X + P ) = DCT (X) + DCT (P ) = CX · B + CP · B (2)

Where P is the adversarial perturbation. CX (CP ) and B are the DCT coeffi-
cients of input X (P ) and DCT basis function, respectively. Here, CP � CX .
The quantization function can be represented as:

q(X,QS) =

{
0 if

|X|
QS < 0.5

1 otherwise
(3)

where QS is the quantization step. As a result, the quantization process in spec-
tral domain can be approximated as:

q(CX + CP , QS) ≈ q(CX , QS) + q(CP , QS) (4)

Ideally, if QS > 2 · |CP |, the malicious perturbation can be filtered. However,
in practice, it is impossible to know the actual magnitude of the adversarial
perturbation in different frequency bands. Instead, a possible solution is to use
a large quantization step as much as possible. However, this can easily lead
to prominent segmentation accuracy reduction due to introducing quantization
errors to many important benign features σ < QS

2 . Note a larger QS will increase
the upper bound of quantization error, resulting in a more significant accuracy
drop. To solve this issue, we propose to balance this by designing the defensive
quantization table (DQ-Table) through fine-grained frequency analysis.

3.2 Frequency Component Analysis

To design an effective DQ-Table, we need to identify which frequency components
are more critical for a deep learning-based segmentation model. For a single-pixel
x, the 8× 8 DCT can be expressed as:

x =

8∑
i=1

8∑
j=1

cij · bij (5)

Where cij and bij are the DCT coefficient and DCT transformation basis at 64
frequency bands, respectively. The contribution of a frequency component bij
to the segmentation model is associated with the gradient of the segmentation
model function f with respect to bij , which can be calculated as:

∂f

∂bij
=

∂f

∂x
×

∂x

∂bij
=

∂f

∂x
× cij (6)

Eq. 6 means that the output of the segmentation model f will be mainly decided
by the importance of pixel x–∂f

∂x and the magnitude of DCT coefficient (cij).

Since ∂f
∂x varies from one pixel to another, for each benign image, the importance

of a frequency component for segmentation should be characterized from the
statistics information of DCT coefficients. The study [15] has proved that the
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DCT coefficients approximately obey a Laplace distribution with zero mean and
various standard deviations (δij). A larger δij means a more critical contribution
to the segmentation model. A simple solution to design the DQ-Table is to apply
a larger (or smaller) QS at frequency bands with a larger (or smaller) δij , so
as to prevent the accuracy reduction induced by quantization errors. However,
in our exploration, we also observe that a few frequency bands carrying the
largest δij suffer from more significant adversarial perturbation than others.
This finding indicates that the frequency band with a larger δij , which makes
more essential contributions to the segmentation model, is also more prone to
adversarial attacks. Thus, we further propose the frequency refinement approach
(FR) for creating effective DQ-Table.

3.3 DQ-Table Design

Based on the above analysis, our proposed frequency refinement will guide the
DQ-Table design based on the following two strategies: defense priority strategy
and accuracy compensation strategy. According to two strategies, the 64 fre-
quency bands will be roughly divided into three groups: priority defense (PD)
band, accuracy compensation (AC) band and global defense (GD) band. Each
group of bands will be assigned with an optimized quantization step (QS) con-
straint. We first sort the standard deviations (δij). Then we set two thresholds
T1 and T2 to categorize the 64 frequency bands into three bands. To simplify our
design, we design a step function to assign QS constraint to the three divided
bands based on the following strategies:

Defense Priority Strategy – We observe that adversarial perturbations
are largely distributed in a few frequency bands with the first several largest δij .
For those frequency bands, we need to prioritize defense efficiency by setting a
moderate QS1, e.g. 20-50, to properly filter adversarial perturbations without
distorting benign features. We name those frequency bands as priority defense
(PD) band (δij < T1). Besides, we find that the PD band usually consists of
a few lowest frequency bands (see Fig. 1). This is because the test medical
image sample usually carries adequate low-frequency information (e.g., a large
number of similar pixels in the skin or blood image) compared with other types
of image samples (e.g., ImageNet dataset [6]). Note that, the traditional JPEG
compression will always set a smaller QS for lower frequency components, and
hence is incapable of eliminating adversarial perturbations in these components,
which is often the case for adversarial images targeting medical segmentation.

Accuracy Compensation Strategy – To compensate the accuracy reduc-
tion induced by quantization errors on PD band, we need to set a tiny QS2,
e.g. QS2 ≤ 20, in some of the sub-important frequency bands, namely accuracy
compensation (AC) band (T1 < δij < T2). For other frequency bands, we adopt
a large QS3, e.g. 50-100, to eliminate perturbation as much as possible, namely
global defense (GD) band ( δij > T2). As a result, the step function can be
represented as:

fs(δij) =


QS1 if δij < T1

QS2 if T1 < δij < T2

QS3 if δij > T2

(7)
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Table 1. Testing accuracy (IoU (%) on benign images) of JPEG v.s. our FRs.

original model JPEG(85) JPEG(50) FR(20,10,60) FR(30,5,80)
ISIC skin lesion [5] 87.1±4.5 86.5±7.5 86±8.1 86.3±7.3 86.5±7.2
Glaucoma [17] 70.5±7.1 69.2±10.1 67.3±10 69.1±9.8 69.3±9.6

Table 2. Defense efficiency (IoU (%) on adversarial examples) of JPEG v.s. our FRs.
no defense JPEG(85) JPEG(50) FR(20,10,60) FR(30,5,80)

ISIC skin lesion [5] 46.6±9.2 84.3±8.4 85.3±8.9 84.9±8.5 85.5±8.3
Glaucoma [17] 28.6±16.8 63.4±11.8 65.9±11 67.3±10.9 68±10.1

where QS1 ≥ QS2 and QS2 ≤ QS3. To simplify our design, we fix the number
of frequency bands in each group band. Specifically, for the PD band, it includes
three frequency bands with top-3 of sorted δij . The AC band has 12 frequency
bands (rank 4th - 15th of sorted δij). The remaining frequency bands (rank 16th
- 64th of sorted δij) will be allocated to the GD band.

4 Evaluation

In this section, we comprehensively evaluate the defense efficiency (or accuracy
recovery) against ASMA-based adversarial examples, as well as the segmentation
accuracy of benign medical images for our proposed frequency refinement (FR)
method. The advantage of segmentation prediction recovery on disease diagnosis
(classification) using our defense is also discussed.

Datasets and Models – We used the two datasets in [14] to reproduce
ASMA-based adversarial examples for a fair evaluation of our defense, which in-
cludes ISIC skin lesion segmentation dataset [5] and glaucoma optic disc dataset
[17]. For segmentation task, two state-of-the-art segmentation models are se-
lected, including Resnet-50 [2,9] for ISIC skin lesion dataset and U-Net [1,16] for
glaucoma optic disc dataset. For disease diagnosis on glaucoma dataset, an en-
semble of deep learning models [1], which consist of DenseNet [10] and ResNet[9],
is adopted for disease classification purpose.

Evaluation Metrics – We characterize the intersection over union (IoU) of
the label mask and the predicted segmentation mask on the given 100 benign
and adversarial images. For the classification task, we evaluate the sensitivity of
disease diagnosis. In our experiment, the disease diagnosis is a simple two-class
classification problem: with or without the disease.

Evaluated Designs and Settings – To optimize DQ-Table of our FR ap-
proach, we designed multiple sets of (QS1,QS2,QS3) to search for optimized
results. Specifically, we set the following QS constraints (see Sec.3.3) in our opti-
mization process:QS1 ∈ {20, 30, 40, 50},QS2 ∈ {5, 10, 15, 20},QS3 ∈ {50, 60, 80,
100}. Among them, we selected two representative solutions – FR(20, 10, 60) and
FR(30, 5, 80) as our defense candidates. We compare these two candidates with
the JPEG compression approach with two representative QF configurations: 85
and 50, i.e., JPEG(85) and JPEG(50). JPEG(85) is a high quality baseline as it
incurs a very marginal accuracy reduction for benign images, which is similar to
our approach. JPEG(50) is a low quality baseline, which provides better defense
efficiency at the cost of a more severe accuracy reduction.
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Table 3. Defense efficiency (sensitivity (%)) of JPEG v.s. our FR for disease diagnosis.
no defense JPEG(85) JPEG(50) FR(20,10,60) FR(30,5,80) baseline

Glaucoma [17] 50.6% 54.6% 59.1% 65.5% 68.2% 71%

4.1 Evaluation Results

Testing Accuracy – As Table 1 shows, our two FR candidates show only
marginal accuracy (IoU) degradation (i.e., ∼ 1%) on benign images for both
ISIC and Glaucoma datasets. Due to the simplicity of ISIC dataset (i.e., a high
IoU 87.1% on the original model), we also found that the low quality JPEG(50)
compression can still achieve a competitive IoU, i.e., 86%. However, for a more
complex Glaucoma dataset, JPEG(50) exhibits a prominent IoU degradation
(∼ 3%). Considering that defense will be applied to any benign or adversarial
image in practice and the achievable defense efficiency makes more sense if the
defense does not degrade the IoU of benign images, we focus on the JPEG(85)
baseline for defense efficiency comparison.

Defense Efficiency – As listed in Table 2, our two FR candidates offer the
most significant IoU improvement (or recover) on adversarial examples for both
ISIC and Glaucoma datasets. In particular, FR(30,5,80) delivers better defense
efficiency comparing with FR(20,10,60). This is because larger quantization steps
(QS) used in the PD band and GD band can eliminate adversarial perturbations
more effectively while smaller QS in the AC band can still compensate for the
incurred accuracy reduction. Compared with JPEG baselines, our FRs achieve
a slight improvement of defense efficiency for the simple ISIC dataset. However,
for the more complex Glaucoma dataset, our two FRs significantly outperform
the JPEG compression for the similar high IoU on benign images, e.g. 63.4%
(JPEG(85)) vs. 67.3% (FR(20,10,60)) and 68% (FR(30,5,80)). Moreover, we
also observe that even the more defensive JPEG(50) is still worse than any of
the two FRs. These results indicate that our defense can better mitigate such
adversarial examples with almost no accuracy loss, which is practically useful.

Further Evaluation on Disease Diagnosis – While ASMA-based seg-
mentation adversarial examples do not directly target classification models, the
generated false segmentation predictions can also impact the disease diagno-
sis accordingly. As Table 3 reports, the original disease classification sensitivity
drops from 71% (basline) to 50.6% for images under adversarial settings on the
segmentation task. We also observe that the IoU difference between our FR and
JPEG on the segmentation task is further enlarged in disease diagnosis for de-
fending against adversarial examples. For example, our FR(30,5,80) candidate
surpasses JPEG(85) by 4.5% on segmentation adversarial examples, while such
difference is increased to 13.6% (sensitivity) in classification. A possible expla-
nation is that our defense, compared with JPEG, provides a more precise focus
on extracting important features for classification. Therefore, our higher defense
efficiency on segmentation can translate into better sensitivity on classification.

5 Conclusion

Deep learning has demonstrated tremendous performance improvement in fields
like medical image segmentation. However, a recent study revealed that deep
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learning-based segmentation models could be misled by the very first practical
adversarial examples in the context of medical image segmentation. Our work
is the first to explore and design defense solutions to mitigate such an emerging
threat. According to the unique property of adversarial examples of medical
images in spectral domain, we develop a frequency refinement (FR) approach
to effectively eliminate malicious perturbations of adversarial examples without
distorting benign features essential for segmentation. Experiments show that
our FR can achieve high testing accuracy and defense efficiency simultaneously,
serving as a reference design for future defense development in medical domain.
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