
Stealing Your Data from Compressed Machine
Learning Models

Nuo Xu*, Qi Liu*, Tao Liu, Zihao Liu, Xiaochen Guo, Wujie Wen
Lehigh University

{nux219, qil219, tal519, zil719, xig515, wuw219}@lehigh.edu
*These authors contributed equally

Abstract—Machine learning models have been widely deployed
in many real-world tasks. When a non-expert data holder wants
to use a third-party machine learning service for model training,
it is critical to preserve the confidentiality of the training data.
In this paper, we for the first time explore the potential privacy
leakage in a scenario that a malicious ML provider offers data
holder customized training code including model compression
which is essential in practical deployment. The provider is unable
to access the training process hosted by the secured third party,
but could inquire models when they are released in public. As a
result, adversary can extract sensitive training data with high
quality even from these deeply compressed models that are
tailored for resource-limited devices. Our investigation shows
that existing compressions like quantization, can serve as a
defense against such an attack, by degrading the model accuracy
and memorized data quality simultaneously. To overcome this
defense, we take an initial attempt to design a simple but stealthy
quantized correlation encoding attack flow from an adversary
perspective. Three integrated components–data pre-processing,
layer-wise data-weight correlation regularization, data-aware
quantization, are developed accordingly. Extensive experimental
results show that our framework can preserve the evasiveness
and effectiveness of stealing data from compressed models.

I. INTRODUCTION

Machine learning (ML), especially deep neural network
(DNN), has nowadays become trustful and competent in appli-
cations such as image classification [1], speech recognition [2],
and natural language processing [3]. However, training state-
of-the-art DNN models requires not only expensive hardware
platforms with substantial memory and computing resources,
but also ML domain knowledge. To fulfill the ever-increasing
need of “Plug and Play” DNN services on resource-constraint
mobile, IoT and embedded devices for daily use, a common
practice is to have models trained and optimized in cloud
servers and then only execute the inference on local devices.

To develop customized ML applications, data holders can
usually update their training dataset to the trusted third-party
cloud servers, such as Google Cloud AI Platform [4], Amazon
AWS [5], and Microsoft Azure ML Studio [6], and then
select appropriate training algorithms, e.g. built-in-algorithms
in the cloud or customized algorithms obtained from the
open marketplace like Algorithmia [7], for model training.
Hardware-oriented model compression techniques, such as
quantization and pruning [8], for original model redundancy
removal, can also be incorporated into these algorithms, to
facilitate the fast and low-power inference on edge devices,
where resource constraints are often enforced. Finally, the
cloud provider will set up the training environment, assign
computation resource, perform model training, and release

different versions of trained models to fit various needs, e.g.
quantized models with different levels of bit precision.

Despite the popularity of such a service model, it also raises
confidentiality concern for data holders’ training datasets
which could contain clients’ identity images, personal med-
ical records, credit card numbers, etc., in privacy-sensitive
applications. Many studies have revealed that the model itself
can leak the private data during the training, such as model
overfitting to unintentionally memorize massive information
[9], model inversion attack to recover recognizable training
images [10], membership inference attack to determine if the
record belongs to the model’s training dataset [11] etc. A
recent study [12] further shows that a slight modification of the
training algorithm (seemingly “normal”) by a third-party ML
algorithm provider can lead to stealthy and precise training
data embedding into the model without harming the model
performance, even the training environment and process are
secured and isolated from such a malicious algorithm provider.

However, most of these studies are conducted based on
the assumption that there always exists abundant model re-
dundancy to memorize training information without accuracy
loss. The redundancy, on the other hand, can be largely
removed when applying hardware-oriented model compression
techniques, which are essential to ease intensive computation
and high memory overhead for inference on resource-limited
platforms. As such, several interesting questions that naturally
arise are: 1) Can existing compression techniques like
quantization, help to prevent the training data leakage
based on a trained model by removing the redundancy? If
so, to what extent? 2) Is it possible to steal training data
with high quality (effectiveness) from highly compressed
models without accuracy loss (evasiveness)? If so, how
will the adversary craft the seemingly normal training
algorithm including compression to achieve this purpose?

To answer these questions, in this paper, we for the first
time investigate the potential privacy breach of training dataset
when training compressed ML models that have limited or
almost zero parameter redundancy. Specifically, we select a
recent proposed strong attack which could well steal informa-
tion by only correlating data with weight parameters under
the guise of “regularization” during the training [12], and
a representative quantization method [13], as a vehicle for
this study. As we shall show in Table I, the quantization
can serve as a defense mechanism to prevent such privacy
leakage because of significantly degraded attack evasiveness
(high model accuracy drop) and effectiveness (low quality of

1

embedded data) as the quantization bit width decreases. Based
on this fact, we further explore whether there is any possibility
to make such an attack still viable in deeply compressed
ML models from an adversary perspective. Accordingly, three
techniques which include fine-grained data pre-processing,
layer-wise input-weight correlation regularization, and input-
distribution aware weight quantization, can be easily devel-
oped and then seamlessly integrated into the original training
pipeline to achieve both attack evasiveness and effectiveness
simultaneously. Finally, our experiments on CIFAR-10 [14]
and FaceScrub [15] datasets demonstrate the feasibility of
training data stealing in deeply compressed ML models. We
hope our study will enable the community to examine such an
emerging privacy concern which could widely exist in training
compressed models for many resource-limited devices.

II. BACKGROUND AND MOTIVATION

A. DNN Model Compression
Model compression could squeeze out the redundancy of a

DNN model by pruning unimportant connections (pruning) or
reducing the bit precision of weight parameters (quantization)
with marginal accuracy loss, so as to fit large models into
resource-limited platforms. Particularly, weight quantization is
usually a “must-have” step before deploying the model into
any hardware [8], [13]. For example, deep compression [8]
can linearly space the centroids in the range of original
weights to initialize the shared weights and then quantize them
into discrete values. The recent weighted entropy quantiza-
tion [13] performs a non-linear quantization by considering
each weight’s contribution to final result and assigns more
clusters for values that are neither too large nor too small.
This process will involve light fine-tuning to boost accuracy.
The method achieves adaptive quantization with flexible bit
precision and can be easily deployed in pre-trained models.
Without loss of generality, we select weighted entropy quan-
tization as an example compression technique in this study.

B. Privacy Leakage
Machine learning model can exhibit incredible capability to

memorize training data when data holders apply a malicious
training algorithm which could stealthily encode the data into
model parameters during the training with marginal accuracy
loss [12]. The adversary can then extract such secret data from
the parameters in the trained model once it is released.

LSB encoding attack directly replaces the least significant
bits (LSBs) of trained model parameters with target bit string
by leveraging model’s inherent redundancy. Apparently, this
attack can be easily defeated by the model compression (quan-
tization) because of significantly increased accuracy sensitivity
and decreased capacity for bit replacement.

Sign encoding attack relies on the sign bit of each pa-
rameter for bit embedding and is realized by adding a simple
penalty term to the loss function, so as to force most sign bits
of the parameters to follow the target secret bit string during
the training. However, its attack efficiency is very low, as each
parameter can only remember one bit.

Correlated value encoding attack is the strongest attack
among three methods. This attack adds a malicious regular-
ization term C(θ, s) in loss function to explicitly establish the
correlation between training data s and model parameter θ:

C(θ, s) = −λc ·
|
∑`

i=1(θi − θ)(si − s)|√∑`
i=1(θi − θ)2 ·

√∑`
i=1(si − s)2

(1)

Here λc is the correlation rate to balance the encoded data
quality and model accuracy. Enlarging λc can improve the
former but decrease the latter. θ and s are the mean of θ and
s, respectively. ` represents the number of parameters.

For numerical data like image, this method can precisely
encode the raw data into parameters by minimizing C(θ, s)
(or rather the total training loss), and each pixel density can
be decoded by simply remapping these parameters to values in
the range of [0, 255]. Since the entire parameter can be used
for data embedding during the training, this attack achieves the
highest attack efficiency (more encoded data). Furthermore, it
is possible that the established correlation can still survive after
model compression.

C. Motivation
To explore whether quantization can mitigate the correlated

value encoding attack, we apply weighted entropy quantization
to ResNet-34 [16] trained with CIFAR-10 dataset under such
an attack. Typical quantization bit widths (e.g. 8, 6, 4) are se-
lected, in order to guarantee their corresponding benign models
(without correlated value encoding attack) can maintain the
similar accuracy acceptable by users, i.e., ∼ 90%. TABLE I
reports the correlation attack model accuracy and the number
of recognizable images by the model itself out of a total of
151 RGB images encoded in the model under three different
correlation rates and quantization bits. For the same correlation
rate, the attack model accuracy can be dramatically dropped as
the quantization bit width decreases. This is because the redun-
dancy carried by the correlation attack model is not sufficient
when facing a very low quantization bit (e.g. 4), resulting in an
unacceptable accuracy loss. Also, the number of recognizable
images shows a similar trend because of encoded data quality
drop caused by the distorted data-parameter correlation in a
low quantization bit (visualized comparison can be observed
from Fig. 5 using face images). The accuracy loss becomes
more prominent for a same quantization bit width when the
correlation rate becomes larger despite the increased number
of recognizable images, e.g. 83.04%, 58 images at 4-bit and
λc = 3 v.s. 75.46%, 75 images at 4-bit and λc = 10. Therefore,
the quantized attack model neither maintains the accuracy
(attack evasiveness) nor keeps the same amount of high-quality
recognizable data (attack effectiveness). This means existing
model compression (e.g. weighted entropy quantization) can
defeat such an attack at low bit precision.

TABLE I: Model accuracy and recognizable image numbers
of correlated value encoding attack after quantization.

Correlation Rate (λc) 3.0 5.0 10.0
Quantization Bit Width 8 6 4 4 4

Recognizable Images 88 82 58 59 75
Model Accuracy 88.79% 88.16% 83.04% 80.35% 75.46%

2

Training
Algorithm

(1). Pre-process (2). Training

Compressed
DNN Model

Quantized
Module

(3). Quantization

Loss
Algorithm

Loss
AlgorithmDataset

Data
Processing

Training
Data

Fig. 1: Quantized correlation encoding attack flow

However, this does not mean that adversary is unable to con-
duct such an attack on compressed models if he or she slightly
changes the quantization algorithm. Our key observation is
that if the quantization process can be guided by the statistical
information (e.g. distribution) of target encoding data in a
proper manner, then the quantized correlated model may not
experience such significant parameter reshaping. As a result,
both attack evasiveness and effectiveness can be guaranteed,
making such an attack possible on highly compressed models.

III. OVERVIEW
A. Threat Model

Our threat model is similar to, and extended from [12].
We assume that non-expert data holder will consume third-
party training algorithms to generate customized ML models
using his/her own dataset, which is sensitive and private. The
data holder will conduct the training by using the provided
malicious algorithm and confidential data in a trusted and
secured platform with sufficient hardware resources like GPU
clusters. Once the training is done, the data holder will validate
the model with a test subset to measure the model accuracy,
and only accept it if it passes the test with satisfying accuracy.
Then data holder will publish the model for the user.

We assume the malicious ML training algorithm with the
quantization process, is designed by the adversary. The training
flow is the same as the benign routine except for very minor
changes in the regularization and quantization that are neces-
sary in normal training. The algorithm is executed on a secured
third party platform that the adversary has no way to control,
communicate with the training environment, or observe the
training data during the whole training process.

The attack goal is to steal as much private training data
as possible (e.g. embedding training images into the model
with high data quality). In order to achieve this objective, the
model needs to “memorize” the training data while passing
the accuracy validation. Then the adversary can gain white-
box access to the model after the data holder releases it, and
examine all model parameters for information extraction. Note
the adversary is unable to capture any temporary information
or hyperparameter used during the training.

B. Attack Flow
Fig. 1 depicts an overview of our proposed quantized

correlation encoding attack flow, which consists of three com-
mon steps often integrated in a training algorithm: data pre-
processing, training with regularization, and quantization. Note
the quantization will involve fine-tuning to compensate for the
accuracy loss. The data pre-processing aims to guarantee the
encoded data quality at the beginning by selecting a subset

of the training dataset whose statistical information (e.g. pixel
density distribution) can be similar to that of model parameter
under correlation attack. It occurs automatically when the
algorithm gets access to the training data. In the second
step, a customized regularization term, of which different
correlation rates λ are assigned to different layers based on
their importance to accuracy and data encoding in correlation
encoding attack, is proposed and included in the training loss.
The last step is model quantization, which takes the statistical
information of encoded training data into consideration during
quantization to produces a compressed model that could pre-
serve the secret data encoded in the training while maintaining
the accuracy level required by the validation.

IV. DESIGN

In this section, we present the proposed techniques in details
following the attack flow.
A. Data Pre-processing

Since the basic idea of the correlated value encoding attack
is to maximize the correlation between model weights and the
target data, we expect that the distribution of trained weights
under such an attack will be pushed towards a correlated
distribution of the target dataset. Therefore, at the data pre-
processing stage, the training algorithm should automatically
select a subset of training data that follows a similar distribu-
tion for data embedding.

In this procedure, the algorithm will first cluster images
based on the standard deviation (std) of the image pixel
values as it can roughly represent the overall characteristic
of an image. The mean of the standard deviation of the whole
training dataset (stdmean) will also be calculated. Then a
value range with length d around (stdmean) will be given:
stdmin = bstdmeanc, stdmax = bstdmeanc + d. Image i that
satisfies stdmin < stdi < stdmax will be included in the
candidate set S. The number of images that can be encoded (n)
will be estimated based on the parameter amount and image
size. Finally, the correlation target T will consist of n images
randomly selected from the candidate set S.

Fig. 2(a) compares the weight distribution of the benign
ResNet-34 model (without attack), and two malicious models
with different correlation rates, and Fig. 2(b) shows the pixel
value distributions of CIFAR-10 dataset with different std
ranges. Based on Fig. 2(a), we observe that once the attack
is launched, the distribution of the benign model (blue line in
Fig. 2(a)) is significantly reshaped, and it is forced to be similar
to the correlation targets’ distribution (yellow line of Fig. 2(b))
as the correlation rate increases from 1 to 10. If we choose the
candidate set range as [50, 55] (stdmean = 50.36), the selected

3

Fig. 2: (a) Parameter distributions of models with different
correlation rates. (b) Pixel value distributions of images with
different standard deviations.

target set exhibits a similar distribution as that of malicious
models, e.g. yellow line of Fig. 2(b) v.s. orange (gray) line of
Fig. 2(a). However, images with too large std (> 70) or too
small std (< 30) have very different distributions.

B. Layer-wise Correlation Training Regularization

Once suitable encoding candidates from the training dataset
are identified, the next step is to train the model with a fine-
grained regularization term which assigns layer-wise correla-
tion rate, to precisely embed these selected data into the model
parameter with minimized accuracy loss.

Our observation is that each layer should have different
contributions to final classification results, and the layers
that are closer to the input, especially convolution layers
for feature extraction, carry more importance than others
in terms of accuracy. The weight distribution of each layer
generally follows a Gaussian distribution, but each has a
different weight value range for accuracy purpose. On the
contrary, the correlated value encoding attack with a uniform
correlation rate attempts to reshape the weights the same as
the target data’s distribution with the same value range. This
leads to the conflict between model accuracy and encoding
data quality. The problem becomes more aggravated after the
model quantization. Therefore, we propose the following reg-
ularization term with customized correlation rates at different
layer groups:

C(θ, s) = −
m∑

k=1

(
λk · |

∑`k
i=1(θi−θk)(si−sk)|√∑`k

i=1(θi−θk)2·
√∑`k

i=1(si−sk)2
· Pk

)
(2)

For each layer group k ∈ m, we have λk as the correlation
rate, Pk = `k/` is the ratio of group k’s number of weights
`k to the total correlated weights amount ` . θk and sk are the
mean value of the vector of secret values s and the weights
θ at group k, respectively. In the extreme case, we can set
λk = 0 for layers that are more sensitive to the modification
of weights and not favorable for encoding. Consequently, both
model accuracy and encoding quality can be improved by
slightly reducing the total amount of encoded images.

We still use ResNet-34 and CIFAR-10 dataset for a case
study. The layers are clustered based on the range of the
weights. We choose the first 12 layers as group 1 and 13 to 16
layer as group 2, and the weights of these two groups encode
the first 12% of images. The rest layers are categorized as
group 3 to encode the remaining 88% of the images. TABLE

TABLE II: Number/Percentage of reconstructed images (bad,
MAPE > 20) for models with different correlation rates

Correlation
Rate (λc)

Total
(453)

Group 1
(27)

Group2
(28)

Group 3
(398)

3.0 158 (34.9%) 27 (100%) 21 (75%) 110 (27.6%)
5.0 111 (24.5%) 20 (74.1%) 10 (35.7%) 81 (20.4%)

10.0 82 (18.1%) 13 (48.1%) 9 (32.1%) 60 (15.1%)

II shows the percentage of badly encoded images distributed
among the three groups with different correlation rates λc–3,
5 and 10. Here a badly encoded image is counted if the mean
absolute pixel error (MAPE) between the decoded and original
images is larger than 20. 100% images in group 1 and 75%
images in group 2 are badly encoded at λc = 3. Increasing λc

from 3 to 10 cannot improve the encoding efficiency for group
1, e.g. the percentage of bad images only drops from 100%
to 48.1%, which is still much worse than that of group 3.
This indicates that the weights of group 1 and 2 are naturally
less correlated to the target data despite of a large correlation
rate, and are difficult to change because of their importance
to preserve the accuracy. In our final evaluation, we set the
correlation rate of group 1 and 2 to 0 and use a different
correlation rate for group 3, in order to achieve higher accuracy
and better encoding quality in compressed models.

C. Target Correlated Quantization
The first two steps provide a well-trained attack model by

establishing a strong correlation between the target data and
model parameters. However, the weight quantization may still
destroy the attack as discussed in Sec. II-C. Therefore, we
further propose a quantization algorithm that can correlate the
model parameters with target data’s distribution.

Algorithm 1 shows the details of the proposed target
correlation quantization. For a log2 l-bit precision (i.e., the
quantization level is l) quantized model, we use correlated
target information to decide the cluster boundary index of the
weights. We first divide the pixel values of the correlated target
image set into l clusters and count the histogram H (line3).
Then H is used to determine the relative quantity of each
cluster for the weights and the cluster boundary index b0 to bl
(line 4 to 7). After obtaining the boundary index, the weights
are sorted (line 8) and used to calculate the representative
weight value ri as well as the boundary weight value vi for

Algorithm 1: Image-based Weight Quantization
1: Input: Correlation targets set T , Quantization level l, Total number of weights `,

weight list [w0 : w`−1]
2: Output: Quantized weight list [q0 : q`−1]
3: H ← hist(T, l)
4: b0 = 0
5: for i = 1 to l do
6: bi ← bi−1 + H[i− 1]× `
7: end for
8: S ← sort([w0, ..., w`−1])
9: for i = 0 to l − 1 do

10: ri ←
∑bi+1−1

j=bi
S[j]

bi+1−bi

11: vi ← S[bi]
12: end for
13: vl ←∞
14: for i = 0 to `− 1 do
15: qi ← fq(wi, [r0 : rl−1], [v0 : vl])
16: end for

4

each cluster Ci (line 9 to 13), so that in each cluster Ci, weight
value w satisfies vi ≤ w < vi+1. Finally, we allocate all
weights [w0 : w`−1] to the corresponding cluster Ck based on
the boundary value [v0 : vl] and assign representative weight
value rk into the quantization list [q0 : q`−1] (line 14 to 16).

Fig. 3 compares the weight distributions of the quantized
attack model using the original weighted entropy quantiza-
tion and our target-correlated quantization method. The orig-
inal weighted entropy quantization significantly reshapes the
weight distribution w.r.t. malicious models (Fig. 2(a)), thereby
degrades the model accuracy to the degree that cannot be
compensated by a retraining process. On the other hand, our
method can well approximate the original distribution, which
results in a well-maintained model accuracy and encoded data
quality after the quantization.

V. EVALUATION

A. Experiment Setup

Dataset and DNN Model: We adopt CIFAR-10 [14] and
Facescrub [15] datasets in our experiment. CIFAR-10 consists
of 60K 32x32 color images in 10 classes for image classifica-
tion. For a comprehensive evaluation, its converted gray scale
version is also included. Facescrub has 450 classes and more
than 40K images for celebrity face recognition.

We use ResNet-34 [12] for CIFAR-10 image classification
by following a similar configuration from [16]. The Inception-
Resnet-v1 model [17] with modified softmax training algo-
rithm is adopted in Facescrub recognition [18].

Methodology and Measurement: We integrate all our de-
veloped methods, including quantization, to establish the com-
pressed correlation encoding attack flow. To create compressed
models, we apply the proposed target correlated quantization
and weighted entropy quantization with different bit precision.

We use the mean absolute pixel error (MAPE) to measure
the quality of reconstructed image x′ w.r.t. the original u-
pixel image x: MAPE = 1

u

∑u
i=1 |xi − x′i|. A lower MAPE

value means better data quality. In addition, the structural
similarity index (SSIM) [19] is used in our face recognition
task to measure the reconstructed human face texture. Both
model accuracy and recognized image amount are reported to
evaluate the attack evasiveness and effectiveness.
B. Results

CIFAR-10 Classification. We target the images with std
in [50, 55] and encode them into 17-34th layer (group 3)
with three different correlation rates λ3 = 3, 5, 10, and set
λ1, λ2 = 0 for the 1-12th layer (group 1) and 13-16th layer
(group 2) (see Sec. IV-B). TABLE III compares the model
accuracy, MAPE, and recognized image amount (color image

(a) (b)

Fig. 3: Weight distributions of the quantized correlated value
encoding attack model on 32 quantization levels: (a) Weighted
Entropy Quantization (b) Target Image correlated Quantization

only) among the original attack model and our quantized attack
model with different correlation rates and quantization bits.
In most cases, our method can always maintain the accuracy
of aggressively compressed models (even from 8 to 4 bits)
at a similar level as that of uncompressed attack models for
both gray and RGB versions. We also found that our method
sometimes offers better accuracy, e.g. from 88.05% (original
attack model with λc = 5.0) to 88.54% (8-bit quantized model
with λ3 = 10). This is because the improvement brought
by data-preprocessing and layer-wise regularization can easily
offset accuracy drop incurred by less aggressive quantization
(e.g. 8-bit), leaving some margin to further enhance encoded
data quality with a larger correlation rate.

Although our method sacrifices some layers’ capacity for
data encoding due to introducing a zero correlation rate (e.g.,
131 RGB images v.s. the original 151 RGB images), the
encoding quality improvement guarantees that our encoded
data can be as informative as that of the original attack
models in almost all cases. For example, the recognizable
image amount is similar to the uncompressed model, and
sometimes even greater when the correlation rate is small, e.g.
111 vs. 98 with λ3, λc = 3. Moreover, the significant MAPE
reduction on reconstructed images can also be observed on our
quantized DNN model for both gray and RGB images across
all correlation rates. These results indicate that our method can
not only secure the evasiveness of the attack with a guaranteed
accuracy, but also improve the encoding efficiency with more
informative data, while producing highly compressed models.

Fig. 4 compares the MAPE, accuracy and recognizable
image amount among the original correlation attack model
without quantization, with default 4-bit weighted entropy
quantization, and our integrated attack flow with 4-bit quan-
tization. We observe that the original correlation attack is
not compression oriented. It suffers from significant accuracy
degradation with weighted entropy quantization (red line with
middle bar in all columns). The problem becomes even worse
at a high correlation rate, as evidenced by the obvious accuracy

TABLE III: Results for original uncompressed attack models and our attack models under different configurations.

Model λc: 3.0 λ1, λ2=0, λ3=3; std in [50, 55] λc:5.0 λ1, λ2=0, λ3=5; std in [50, 55] λc: 10.0 λ1, λ2=0, λ3=10; std in [50, 55]
Bit Width Ori 8 6 4 Ori 8 6 4 Ori 8 6 4

MAPE (GRAY) 20.22 12.42 12.68 13.24 17.10 10.56 10.89 11.93 14.98 8.62 8.96 10.26
Accuracy (GRAY) 89.75% 89.72% 89.56% 88.31% 88.05% 88.73% 88.15% 87.81% 85.91% 88.54% 88.15% 87.31%

MAPE (RGB) 22.56 11.36 11.55 18.78 14.83 11.22 11.405 14.85 13.56 8.96 9.19 13.47
Accuracy (RGB) 89.82% 89.63% 89.52% 87.94% 88.16% 88.47% 88.19% 88.02% 86.69% 87.56% 87.50% 85.80%

Recognized Image
Amount / Percent

98
(64.90%)

111
(84.73%)

111
(84.73%)

102
(77.86%)

112
(74.17%)

116
(88.55%)

115
(87.79%)

105
(80.15%)

127
(84.11%)

119
(90.84%)

115
(87.79%)

110
(83.97%)

5

98 58 102 112 59 105 127 75 110

53 93

29

39 92

26

24 76

21

Recongized Image Amount Unrecongized Image Amount

70%

75%

80%

85%

90%

6

12

18

24

30

Cor Cor+WQ Comb Cor Cor+WQ Comb Cor Cor+WQ Comb

Ac
cu

ra
cy

M
AP

E

MAPE Model Accuracy
λc = 3 λc = 10λc = 5

Fig. 4: The MAPE, accuracy and recognized image number
of original correlation attack on uncompressed models (Cor),
original correlation attack with weighted entropy quantization
(Cor + WQ) and our method (Comb).

drop: from ∼ 90% to ∼ 83%, ∼ 80% and ∼ 75% with λc = 3,
5, 10, respectively. In contrast, our method can better address
this issue, by restoring the testing accuracy and significantly
increasing the number of recognizable images (right orange
bar v.s. middle orange bar in each group), even comparable
with the uncompressed attack model (left orange bar in each
group). These results show that the slight change of training
pipeline with our method could make the training data stealing
from highly compressed models possible.

Facescrub Recognition. Fig. 5 compares the reconstructed
human face images with our quantized attack method and the
original attack using default weighted entropy quantization.
The visualized results clearly show that our method can well
preserve the textures of the human face even on the 3-bit
quantized model with only eight grayscale levels, significantly
surpassing the original quantization (top row v.s. bottom row).
Our method can reduce MAPE from 28.6 to 22.7 and increase
the accuracy by 1.1% simultaneously, as TABLE IV shows.
We also observe that more high-quality images (MAPE<20)
can be reconstructed using our method. Besides, SSIM is used
to better explain the visual texture difference in Fig. 5. As
TABLE IV reports, with our method, more than 1/3 of the
reconstructed images (310 out of 924) can achieve SSIM>0.5,
while there are only 12 such images with the original method.

VI. CONCLUSION

This work is the first to show it is feasible to steal high-
quality information from securely trained compressed ML
models for resource-limited devices. Our exploration shows
that users’ training data can be encoded into the model param-
eters with high quality, even on the extremely quantized DNN
models, without compromising model accuracy. We propose

Fig. 5: Top row: Face images extracted from quantized model
by our method; Bottom row: Face images extracted from
quantized model by original weighted entropy method.

TABLE IV: Face recognition model with λc = 10.0 and
quantization to 3-bits.

Model Accuracy MAPE MAPE <20
Image Amount

Mean
SSIM

SSIM >0.5
Image Amount

Uncompressed 95.30% 15.8 644 0.7088 718
Proposed

Quantization 94.80% 22.7 468 0.4115 310

Original
Quantization 93.70% 28.6 216 0.2976 12

the quantized correlation encoding attack flow and develop
a set of quantization oriented techniques to demonstrate its
feasibility through an end-to-end attack scenario. Our results
show that the proposed method can maintain model accuracy,
steal massive informative data from compressed models, and
sometimes outperform the existing uncompressed attack rou-
tine. We hope our work can attract more follow up work to
examine this emerging threat.

ACKNOWLEDGMENT

This work was partially supported by NSF Grants CNS-
2011260 and CCF-1750826, and 2019 FC2 seed award.

REFERENCES

[1] M. Rastegari et al., “Xnor-net: Imagenet classification using binary
convolutional neural networks,” in European Conference on Computer
Vision. Springer, 2016, pp. 525–542.

[2] D. Amodei et al., “Deep speech 2: End-to-end speech recognition in
english and mandarin,” in International conference on machine learning,
2016, pp. 173–182.

[3] Y. LeCun et al., “Deep learning,” nature, vol. 521, no. 7553, p. 436,
2015.

[4] Google Cloud AI Platform, 2019, https://cloud.google.com/ai-platform/.
[5] Amazon SageMaker on AWS, 2019, https://aws.amazon.com/sagemaker/.
[6] Microsoft AzureML Studio, 2019, https://azure.microsoft.com/en-us/

services/machine-learning-studio/.
[7] Algorithmia, 2019, https://algorithmia.com/.
[8] S. Han et al., “Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[9] C. Zhang et al., “Understanding deep learning requires rethinking
generalization,” arXiv preprint arXiv:1611.03530, 2016.

[10] M. Fredrikson et al., “Model inversion attacks that exploit confidence
information and basic countermeasures,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 1322–1333.

[11] R. Shokri et al., “Membership inference attacks against machine learning
models,” in 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
2017, pp. 3–18.

[12] C. Song et al., “Machine learning models that remember too much,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 587–601.

[13] E. Park et al., “Weighted-entropy-based quantization for deep neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 5456–5464.

[14] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Citeseer, Tech. Rep., 2009.

[15] H.W. Ng et al., “A data-driven approach to cleaning large face datasets,”
in 2014 IEEE International Conference on Image Processing (ICIP).
IEEE, 2014, pp. 343–347.

[16] K. He et al., “Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[17] D. Sandberg, Classifier training of inception resnet
v1, 2018, https://github.com/davidsandberg/facenet/wiki/
Classifier-training-of-inception-resnet-v1.

[18] F. Schroff et al., “Facenet: A unified embedding for face recognition and
clustering,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 815–823.

[19] Z. Wang et al., “Image quality assessment: from error visibility to
structural similarity,” IEEE transactions on image processing, vol. 13,
no. 4, pp. 600–612, 2004.

6

