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Abstract
The recent revealed Bit-Flip Attack (BFA) against deep neural net-
works (DNNs) is highly concerning, as it can completely mislead
the inference of quantized DNNs by only flipping a few weight bits
in hardware memories through manners like DRAM rowhammer.
A key question before applying any BFA mitigation solutions, such
as retraining or model reloading, is how to quickly and accurately
detect such an attack without impacting the normal inference. In
this paper, we propose a weight encoding-based framework to con-
currently detect BFA by leveraging the spatial locality of bit flipping
in BFA and a fast encoding of sensitive weights only. Extensive
experimental results show that our method can accurately differ-
entiate the malicious fault models under BFA and the random bit
flipping that could also occur in weight memories but does not
impact accuracy as that of BFA, with very low overhead across var-
ious DNNs on both CIFAR-10 and ImageNet datasets. To the best
of our knowledge, this is the first real-time detection framework
for BFA attack against quantized DNNs that are widely deployed
in hardware accelerators.
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1 Introduction
Deep neural networks (DNNs) have been widely applied in many
real-world applications such as speech recognition, robotics, and
self-driving vehicles. However, it also raises the ever-increasing
security concerns. Aside from existing adversarial, poisoning and
trojan attacks against DNNs [1, 3, 15], studies have also revealed
that DNNs deployed on hardware engines are also highly vulnera-
ble to various types of fault injection attacks by distorting weight
parameters or bits stored in memories [5, 9, 16]. For example, sim-
ply flipping the exponential bits of the 32-bit floating-point weights
through DRAM Row-hammer Attack (RHA) can completely mal-
function DNNs [5, 8]. Hardware-favorable quantized DNNs can be
immune to aforementioned bit attack [8], unfortunately, the most

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415726

recent Bit-Flip Attack (BFA) shows that the accuracy of quantized
models can be degraded to the level close to a random guess by
only flipping a few most vulnerable weight bits stored in DRAM
RHA [4, 12], e.g. only 13 bit-flips out of 93 million bits through a
progressive bit search (PBS) algorithm [17]. This prompts an imme-
diate need for countermeasures against such a strong attack which
could happen to any quantized DNNs and distort the inference
running on hardware accelerators immediately.

There exist a few proposals to address the emerging BFA. The
first is to eliminate the hardware exploits of BFA, that is, over-
coming DRAM Rowhammer vulnerability through probabilistic
adjacent row activation (PARA) [12] and error correction code
(ECC) memory [4, 18]. However, these solutions either incur com-
plicated memory controller changes or can be easily bypassed by
new attack methods like ECCploit [2]. The second is to enhance
the model’s resistance against BFA through attack-specific train-
ing from scratch or retraining-based model reconstruction, so as
to increase the number of needed bit-flips to achieve an effective
attack [7, 11]. However, these methods cannot eliminate BFA after
model deployment and their achievable effectiveness on large and
complicated networks and datasets (e.g. ImageNet) is limited due
to the difficulty of balancing toleration improvement and accuracy
drop. Note the costly training or retraining will usually need to be
conducted in cloud while edge devices holding quantized models
focus on inference only due to the resource constraint.

Given that none of existing preventive solutions could well de-
fend BFA after model deployment, we believe that developing a
low-cost framework to detect malicious BFA in real-time with a
minimized impact on the normal inference task, has become a ne-
cessity. We identify the following challenges to achieve this goal
in this paper: First, directly detecting BFA based on the reported
accuracy would bring high overhead. This is because statistically
characterizing DNN’s accuracy status would normally call for a
large number of test patterns, e.g. at least 1000 image inferences for
ImageNet with 1000 classes, leading to prominent time overhead
and service interruption for just confirming BFA. Second, while
BFA only targets flipping a few bits, there exist many different such
bit combinations across various bit positions, weights and layers of
an DNN model for achieving a successful attack. Moreover, not all
bit-flips are as malicious as that of BFA to the models, e.g. the weight
bits stored in a memory cell could suffer from random soft errors
that may not degrade the accuracy during the run time. These two
factors make many naive detection solutions, such as store a part
of weights copy in memory and check the hamming distance (or
the number of flipped bits) between current weights and the copy
to correctly detect BFA in real-time, almost infeasible.
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To overcome these challenges, we propose the following key
components in our framework: First, to make the problem amend-
able, we narrow the detection scope of weights to a subset–sensitive
weights only, by performing a layer-wise weight sensitivity analy-
sis based on the gradient information. The key insight is that while
bit-flips in BFA could span many different bit positions, weights
and layers of an DNN, statistically there exists spatial locality of
such bit-flips. For example, the weight bits in certain layers may
receive a higher chance of BFA than the others, though the number
and position of allocated bit flips in such layers could vary. Second,
to differentiate “malicious" bit-flips (BFA with desired high accuracy
loss) from “benign" bit-flips (aka “random" bit-flips with marginal
accuracy reduction in the paper), we propose to generate a detec-
tion secret-key via a light-weighted single-layer neural network,
to encode those sensitive weight changes into low-dimensional bi-
nary detection code. While bit-flips in sensitive weights, regardless
of benign (random) or malicious (BFA), could incur many differ-
ent cases and thus are difficult to tell out (BFA or not), a proper
hamming distance measurement between expected and actual low
dimensional binary detection code could be a good indicator. This
can be achieved by training the secret-key towards different codes
with carefully produced bit-flipping variants of sensitive weights.
Finally, BFA detection can be routinely conducted by performing
secret-key based sensitive weights computation in edge devices.
Once BFA is detected, repair solutions like model retraining or
(reloading if a golden copy is available) will be conducted in the
cloud and then an updated model will be redeployed to edge de-
vices. Note that the cloud will handle the first two steps, while edge
devices only invoke the detection routinely with the result available
immediately. A detailed framework consisting of cloud and edge
for BFA detection and model recovery is presented in Fig. 1.

Extensive experimental results show that our method can ac-
curately distinguish malicious fault models under BFA from those
with random bit-flips for various quantized DNN models on CIFAR-
10 and ImageNet datasets, with very limited storage overhead and
computation time. To the best of our knowledge, this is the first work
to address the concurrent detection problem of bit-flipping attacks
against quantized DNNs popular in edge devices.

2 Background

2.1 Quantized DNN and Notation
We consider that DNN parameters are quantized by a 𝑁𝑞-bits uni-
form quantizier, which means that the parameters with a floating-
point representation are uniformly quantized into 2𝑁𝑞 − 1 level.
In hardware systems, DNN weights are normally stored as signed
integer in two’s complement representation. In this work, we use
𝑤 and 𝐵 to denote the floating-point representation and its two’2
complement, respectively. For a group of weights, the notations are
w and B, respectively. The binary representation of 𝐵 is denoted as
b = [𝑏𝑁𝑞−1, . . . , 𝑏0]).

2.2 Bit-Flip Attack
Bit-Flip Attack (BFA) is a gradient-based attack method, by integrat-
ing the classical fast gradient sign method (FGSM) from adversarial
attack into the fault injection of quantized DNN model. FGSM adds
perturbations to input x along its ascending gradient direction w.r.t

the loss of DNN (i.e., +sign(▽xL)), while BFA flips the weight bits
along the ascending gradient direction (w.r.t the loss of DNN, i.e.,
+sign(▽bL)). For quantized DNN model with 𝑁𝑞 bit-width, ▽bL
can be represented as:

▽b L = [ 𝜕L
𝜕𝑏𝑁𝑞−1

, . . . ,
𝜕L
𝜕𝑏0
] (1)

Since 𝑏 ∈ {0, 1}𝑁𝑞 , flipping the bit using sign(▽bL) ∈ {−1, 1}𝑁𝑞

could incur data overflow. As a result, BFA can be represented as:

b∗ = b ⊕
(
b ⊕

(
𝑠𝑖𝑔𝑛(▽bL) + 1

2

))
(2)

where ⊕ is an xor operator. The attacker only performs BFA in
most vulnerable bits to achieve the minimum number of bit-flips.
Accordingly, a progressive bit search (PBS) is proposed to solve the
following optimization problem [17]:

max
B∗
𝑙

L
(
𝑓 (x,B∗), 𝑓 (x,B)

)
𝑠.𝑡 .

𝐿∑
𝑙=1
D(B∗

𝑙
,B𝑙 ) ∈ {0, 1, . . . , 𝑁𝐻 } (3)

where f(·, ·) is DNN function and B∗
𝑙
is a set of perturbed weight (2’

complement) in l-th layer (total number of layer is 𝐿). D(B∗
𝑙
,B𝑙 )

represents the hamming distance between the clean weight and bit-
flipped weight, and𝑁𝐻 is the maximumHamming distance allowed.
The goal of PBS algorithm is to identify the most vulnerable bits
fromB𝑙 through the gradient ranking, so as to conduct the BFAwith
Eq. 2. Then the algorithm identifies the 𝑗-th layer with maximum
loss (i.e., j=argmax𝑙 {L1, . . . ,L𝑙 , . . .L𝐿}) and re-performs BFA. In
each iteration, it will perform BFA in the most vulnerable bit of one
layer until BPA brings significant accuracy degradation or reaches
D(B∗

𝑙
,B𝑙 ) > 𝑁𝐻 .

2.3 Threat Model
We adopt a similar threat model from [17]. The parameters of a
DNN model, including the weights, bias and batch-normalization
parameters, are stored in DRAM and loaded in cache before per-
forming computation. We assume that the attacker is capable of
accessing model structure, model parameters and partial training
datasets. The attacker can utilize gradient-based BFA to search
vulnerable bits and perform the Row-hammer attack to achieve
bit-flipping in DRAM. The defender has access to the weights and
secret-key stored in edge devices for performing BFA detection.

3 Overview
Fig. 1 depicts an overview of the proposed defense framework con-
sisting of two key modules: malicious BFA detection and model re-
covery. We assume that during model deployment, a DNN provider
trained a quantized DNN model and deployed it into the DRAM of
the edge device. The Bit-Flip Attack can inject malicious bit-flips
to weights stored in DRAM, which will incur the extreme accuracy
degradation of the model. Then we can introduce our detection
mechanism, which includes the following key steps: 1)weight sensi-
tivity analysis; 2) detection secret-key generation; and 3) detection
code generation. First, weight sensitivity analysis is performed to
pick only sensitive weights as the weight detection candidates. Sec-
ond, the detection secret-key generation algorithm generates the
detection secret-key by encoding weight detection candidates into
binary detection code. Third, the detection mechanism routinely
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Figure 1: An overview of the defense framework with BFA detection and model recovery.

outputs detection code using detection secret-key and weight detec-
tion candidates and calculate the Hamming distance between the
current detection code and original detection code. By comparing
the Hamming distance with a defined threshold 𝑐 , we can detect ma-
licious BFA. If the model is under BFA, retraining the DNN model
for a few epochs can quickly recover the model accuracy. Note
the original retraining process, can easily fine-tune other weights
to adapt to the bit changes for accuracy recovery given that BFA
only flips a few weight bits. As we shall show later, with only one
epoch retraining, the top-1 accuracy of ResNet-34 under BFA can
be boosted from ∼ 1% to 73% on ImageNet dataset.

Our framework requires a collaborative effort between the edge
and cloud based on the needed resource for each step. As Fig. 1
shows, the expensive weight sensitivity analysis and the detection
secret-key generation will be operated in the cloud. The produced
index of sensitive weights and the detection secret-key will then
be stored in the edge device. Consider that the resource limitation
on edge, the storage and computation overhead should be very
low, e.g. storage overhead is much less than that of the quantized
DNN model itself. Then edge device, which focuses on on-device
inference, will utilize these information to quickly generate the
detection code for BFA detection in real-time. The detection can be
performed routinely with minimum impact on normal inference.
The repairing process like model retraining, should be done in
cloud once a BFA is detected. Finally, the retrained model will be
re-deployed to the edge device.

Since our work primarily focuses on BFA detection, we will
introduce the associated technique details in the next section.

4 Detection Procedure
To detect malicious BFA in real-time, we need to design a detection
flow to reduce the overhead while precisely detecting the malicious
bit-flip in a practical scenario from the random benign bit flipping.

0
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Figure 2: The normalized average bit-flip rates in actual BFA (50 trials) and those of
𝑡𝑜𝑝100 | ▽B L | in our weight sensitivity analysis in each layer of ResNet-20 on CIFAR10.

In this section, we propose a novel weight encoding-based detection
(WED) mechanism to solve the above problem.

4.1 Weight Sensitivity Analysis
Since state-of-the-art DNNmodels containmillion-to-billionweight
parameters, so our first step is to reduce detection scope by picking
those sensitive weights that are more likely to receive the malicious
bit-flips. If the malicious bit-flip occurs in those weight detection
candidates, the model has a high probability of BFA. We perform
the weight sensitivity analysis to select a fraction of weights from
all weights as the weight detection candidates. Considering that
BFA is a gradient-based attack method by flipping the bit with the
largest | 𝜕L

𝜕𝑏
|, we adopt the gradient information to measure the

weight sensitivity. Here we refer to the gradient of weight 𝐵 instead
of the gradient of bit (note, 𝜕L

𝜕𝑏
= 𝜕L

𝜕𝐵
𝜕𝐵
𝜕𝑏

). The weights whose
absolute values of the gradients | ▽BL| are top-n are selected as the
weight detection candidates. However, since those weights could
be located in any layer for an DNN model, it is too costly to cover
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Algorithm 1: Detection Secret-key Generation
Data:
B ∈ Z𝑁 ; // weight detection candidates

1 𝑇 ; // the batch size
2 t ∈ {0, 1}𝑇×𝑀 // the label of detection code, e.g. each t is [1, 1, . . . , 1]𝑀
3 𝑐 ; // the tolerance coefficient
4 𝑝 ; // the possibility for bit-flip randomly
5 𝛼, 𝑒𝑝𝑜𝑐ℎ; // learning rate and the maximal iterations

Result:
𝐾 ; // detection secret-key

6 𝐾 ← initialize K with random noise, i.e., 𝐾 ∈ N(0, 1)
// define the perceptron function and the loss function for batch

7 y(W,K) = 𝜙 (W × K)
8 L𝑑 (y, t) = − 1

𝑇

∑𝑇
𝑗=1 (t log y(W,K) + (1 − t)𝑙𝑜𝑔 (1 − y(W,K)))

9 while 𝑖 < 𝑒𝑝𝑜𝑐ℎ do
10 // fabricate training and testing data
11 while j < T do
12 B𝑡𝑟𝑎𝑖𝑛

𝑏
,B𝑡𝑒𝑠𝑡

𝑏
← randomly flip 𝑏𝑁𝑞/2 − 𝑏0 with possibility 𝑝

13 B𝑡𝑒𝑠𝑡𝑚 ← randomly flip 𝑏𝑁𝑞 with possibility 𝑝
14 j = j + 1
15 // preprocessing of training data
16 W𝑡𝑟𝑎𝑖𝑛

𝑏
← convert two’s complement to floating-point and perform shuffle

17 𝑔 = ∇KL𝑑 (y(W𝑡𝑟𝑎𝑖𝑛
𝑏

,K), t)
18 K = K − 𝛼 ∗ 𝑔
19 if D(𝑟 (y(B𝑡𝑒𝑠𝑡

𝑏
,K)), t) == 0 and D(𝑟 (y(B𝑡𝑒𝑠𝑡𝑚 ,K)), t) ≥ 𝑐 then

20 break;

21 i = i + 1

22 return K

all the layer when extracting them from non-consecutive memories
by index for the detection code generation. Instead, we found that
the majority of the top-n gradients could be allocated in one or two
layers. And statistically the same layers should also have the most
number of bit flips in BFAs. Note that the bit-flip combination for a
successful attack could vary from one BFA to another against the
same model.

Fig 2 shows the normalized bit-flip distribution in each layer
when performing BFA for 50 trials in ResNet-20 on CIFAR10, as
well as the top-100 gradient distribution characterized by ourweight
sensitivity analysis. For actual BFAs, we perform the attack algo-
rithm 20 iterations to flip 20 bits. As Fig.2 shows, most bit-flips
occur in layers one and six (the top two blue bars), which is con-
sistent with the layers identified by our weight sensitivity analysis
(the top two red bars). This confirms that bit-flipping of BFA pre-
serves a layer-wise spatial locality property, i.e. the neighborhood
of the sensitive weights with bit-flipping of BFA is likely to have
the malicious bit-flips of BFA again. As a result, we calculate the
proportion of 𝑡𝑜𝑝𝑛 | ▽B L| in each layer and select the weights
in a few layers that have a large proportion (i.e., 𝑡𝑜𝑝1 or 𝑡𝑜𝑝2) as
weight detection candidates. This process will significantly reduce
the overhead caused by indexing weight detection candidates.

4.2 Weight Encoding Detection (WED)
The weight encoding attempts to transform weight detection candi-
dates into low-dimensional binary detection code d. Given weight
detection candidates B ∈ Z𝑁 and detection secret-key K ∈ R𝑁×𝑀
(M is the bit-width of detection code), the transformation process
can be formulated as:

𝑑 𝑗 = 𝑟 (𝑦 𝑗 ), 𝑦 𝑗 = 𝜙 (
𝑁−1∑
𝑖=0

𝐵𝑖 · 𝐾𝑖 𝑗 ) (4)

where r(·) is the the round function and 𝜙 (·) is the sigmoid function.
It can be viewed as a single-layer perceptron with the detection
secret-key as its parameters. The goal of the perceptron is to gener-
ate a transform matrixK (or secret-key) to encode weight detection
candidates to detection code by learning malicious and benign
pattern in weight. If weights have malicious fault injection, the gen-
erated detection code will be different from the original detection
code of clean model. We can utilize the Hamming distance to mea-
sure this difference. A larger Hamming distance indicates a high
probability of malicious BFA. For random or benign bit-flippings,
the generated detection code will be same as the original detection
code of clean model.

We use binary cross entropy as our loss function:

L𝑑 = −
𝑀∑
𝑗=1

(
𝑡 𝑗 log𝑦 𝑗 + (1 − 𝑡 𝑗 )𝑙𝑜𝑔(1 − 𝑦 𝑗 )

)
(5)

where 𝑡 is the label of detection code (t ∈ {0, 1}𝑀 ). For simplicity,
we set t as 𝑀 bits all one code in our experiment. In the training
stage, we generate the training data by weights with benign bit-
flippings. Considering that the malicious bit-flipping is more likely
to happen in higher bits, while benign bit-flipping is not, to simulate
benign bit-flip, we randomly flip [𝑏𝑁𝑞/2, . . . , 𝑏0] with a probability
𝑝 to produce the training data B𝑡𝑟𝑎𝑖𝑛

𝑏
. Generally 𝑝 is a very small

value (e.g. 1%) with almost no model accuracy reduction. Then we
utilize gradient descent method to solve this optimization problem–
minK L𝑑 . In the testing stage, we need to calculate the Hamming
distance between detection code d of benign testing data B𝑡𝑒𝑠𝑡

𝑏
and

label to verify if it is zero. On the other hand, we also need to test
the malicious BFA. Note the training process does not involve any
malicious bit-flipping injection because it is a two-class problem,
that is, if the result satisfies the minimum Hamming distance, the
model is benign; otherwise, the model could have the malicious
fault. Similar to simulating benign bit-flip, we consider flipping
higher bits as the malicious bit-flipping because it has a higher
possibility to cause lager weight shift to degrade accuracy. Thus
in our algorithm, we randomly flip "most malicious" 𝑏𝑁𝑞

with the
possibility 𝑝 to mimic the malicious testing data B𝑡𝑒𝑠𝑡𝑚 to test our
detection secret-key. We calculate the Hamming distance between
detection code of weights with malicious bit-flip and label t to ver-
ify if it is larger than a certain positive constant. We name this
constant as tolerance coefficient 𝑐 (𝑐 is a positive integer, e.g., 3).
If the Hamming distance is larger than the tolerance coefficient,
it means that model has malicious fault injection. The details of
detection secret-key generation in cloud is showed in algorithm 1.
To accelerate the model convergence, our algorithm trains percep-
tron with batch processing. Eq. 4 will be used to generate actual
detection code for quantized models deployed on edge.

5 Evaluation

5.1 Experimental Setup
Datasets.We evaluate our detection framework on two datasets:
CIFAR-10 [13] and ImageNet [14]. CIFAR-10 is a 32×32 RGB dataset
with 10 classes and consists of 60k RGB images (50k for training and
10k for testing). ImageNet is a more complex image classification
dataset with 1000 classes and 1.2M images.
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DNN Model and Quantization Setting. We adopt ResNet-
20[6]with 8-bit weight quantization to classify the CIFAR-10 dataset,
and its quantized accuracy is 89.17%. For ImageNet, the two 8-bit
quantized deep models–ResNet-34 and MobileNet [10] are used.
The original top-1 accuracies of the well-trained quantized ResNet-
34 and MobileNet are 73.13% and 68.51%, respectively.

Fault Models. Two kinds of bit-flipping fault models are consid-
ered in our experiments. The first one is the malicious fault model
under BFA, which flips a few of the most vulnerable bits to achieve
a destructive accuracy degradation for quantized DNN. We conduct
BFA with 20 iterations to flip 20 bits in each quantized network
candidate. Under BFA, their top-1 accuracies are dropped to 10.33%
(ResNet-20), 0.1% (ResNet-34) and 0.1% (MobileNet), respectively,
which are close to a random guess. We perform this configuration
with 50 different random seeds to construct 50 malicious fault mod-
els for each network candidate. The second one is the benign fault
model with random soft error (i.e., random bit-flips) in run-time. We
inject random bit-flip fault to ResNet-20, ResNet-34 and MobileNet
with the 𝑝 as 0.25%, 0.1% and 0.1%, respectively (i.e., flipping 670,
2177 and 347 bits) to achieve slight accuracy degradation (i.e., less
than 2%). We repeat this process 50 times to construct 50 benign
fault models for each model candidate. In total we have 100 fault
models for each network candidate.

Detection Configuration. For weight sensitivity analysis, we
randomly draw a batch of images (128 for CIFAR-10 and 256 for Ima-
geNet) from the test data to calculate the proportion of 𝑡𝑜𝑝100 |▽BL|
in each layer and select the weights in sensitive layers with the
𝑡𝑜𝑝1 or 𝑡𝑜𝑝2 percent as the weight detection candidates. We rep-
resent those two detection settings as WED(1) or WED(2) in our
evaluation. Table 1 shows the sensitive layer index (which layer)
and the number of weights in the corresponding layer. For example,
for ResNet-20, 𝑡𝑜𝑝1 sensitive layer is the first layer, so we select 432
weights in the first layer as weight detection candidate of WED(1).
While the 𝑡𝑜𝑝2 sensitive layers include both the first and 6th layer,
leading to a total of 2736 weights (432+2304) in WED(2). Note that
the total number of weights are 267696 in ResNet-20, so those in
WED(1) and WED(2) only represent a small portion of that. For the
detection secret-key generation, we adopt the following settings:
a learning rate 𝛼 = 0.1, 𝑒𝑝𝑜𝑐ℎ = 500, batch size 𝑇 = 64 and the
tolerance coefficient 𝑐 = 3 in algorithm 1. We select 32 and 64 bit
widths for detection code in CIFAR-10 and ImageNet, respectively.
All “1" binary code is selected as the original detection code To
further reduce overhead, we quantize detection secret-key to 4 bits.

Metrics.We use 6 metrics in our evaluation. We first define how
to decide whether the model is under BFA or not in our detection
mechanism: if the Hamming distance of detection codes between

the fault model and the clean model is larger than a threshold 𝑐 ,
the target model is under BFA (malicious fault model); otherwise,
it is under non-BFA (or benign fault model). Our first metric is the
True Positive Rate (TPR):

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 =
𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑓 𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑙𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑 𝑎𝑠 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑓 𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑙𝑠
(6)

Since we select two thresholds 𝑐 = 1 and 3, the corresponding
metrics are denoted as TPR-1 and TPR-3, respectively. The second
metric is the True Negative Rate (TNR):

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 =
𝑏𝑒𝑛𝑖𝑔𝑛 𝑓 𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑙𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑 𝑎𝑠 𝑏𝑒𝑛𝑖𝑔𝑛

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑓 𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑙𝑠
(7)

Similarly we have TNR-1 and TNR-3 for 𝑐 = 1 and 3. The third
metric is Detection Rate (DR), which can be expressed as:

𝐷𝑅 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑁 +𝑇𝑁 + 𝐹𝑃 (8)

We then also have DR-1 and DR-3 for 𝑐 = 1 and 3. As a result, TPR-1,
TPR-3, TNR-1, TNR-3, DR-1 and DR-3 will be used to comprehen-
sively evaluate our detection approach.

5.2 Results and Analysis
Figure 3 reports the Hamming distance of detection codes and the
number of bit-flips in our weight detection candidate–WED(1) for
various malicious fault models under BFAs (ResNet-20 on CIFAR-10,
ResNet-34/MobileNet on ImageNet). For simplicity, we show the
first 10 samples of 50 malicious fault models of each network candi-
date as an example in Fig. 3. First, we observe that many malicious
bit-flips occur in our weight detection candidates. As Figure 3(a)
shows, each malicious fault model exhibits a considerable number
of malicious bit-flips (the average number is 5/20) in weight detec-
tion candidate of ResNet-20. Note our weight detection candidates
only represent a small portion of all weights in ResNet-20 (432
v.s. 267696). This result demonstrates that our weight sensitivity
analysis can correctly pick sensitive weights that are more likely to
be injected with malicious bit-flips by BFA. We observe the similar
result in ResNet-34 on ImageNet (see Figure 3(b)). However, as
Figure 3(c) reports, the number of malicious bit-flips in MobileNet
can be significantly less than that in ResNet-20 and ResNet-34. This
is because selecting only one sensitive layer from the deeper Mo-
bileNet (53 layers v.s. 20/34 in ReseNet) to cover many malicious
bit-flips is difficult. Second, we observe that the hamming distance
between the detection code in malicious fault models and its origi-
nal version is quite large. For example, in Figure 3(a) and 3(b), the
Hamming distance is more than 1 or 3 (the threshold 𝑐) in most
fault models, which means that most of the malicious fault models
could correctly be identified as BFA by our WED(1) in ResNet-20
and ResNet-34. For MobileNet, the Hamming distance in many fault

Table 1: The detailed configurations of Weight detection candidates in weight sensitivity analysis

Dataset Structure 𝑡𝑜𝑝2 sensitive layers #weights in each sensitive layer total number of weights

CIFAR-10 ResNet-20 [1,6] [432,2304] 267696

ImageNet
ResNet-34 [10,1] [8192,9408] 21779648

MobileNet [2.3] [288,512] 3469760
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(a)(a) (b)(b) (c)(c)

Figure 3: The Hamming distance between original and tampered detection codes, and the number of bit-flips in our weight detection candidates–WED(1) in malicious fault models under
BFA in ResNet-20, ResNet-34, MobileNet for CIFAR-10 and ImageNet.

(a)(a) (b)(b) (c)(c)

Figure 4: The Hamming distance of between original and tampered detection codes, and the number of bit-flips in our weight detection candidates–WED(1) in benign fault models with
random bit-flipping in ResNet-20, ResNet-34, MobileNet for CIFAR-10 and ImageNet.

models is smaller than that in ResNet-20 and ResNet-34 (see Figure
3(a)). The Hamming distance could become even as low as 0 in fault
model 9, because there are no malicious bit-flips in weight detection
candidates. Third, a larger number of malicious bit-flips could lead
to more considerable Hamming distance. This indicates that if more
malicious bit-flips occur in our weight detection candidates, the ac-
curacy of detection could be higher. Therefore, we choose WED(2)
which includes more weight detection candidates, to improve the
detection accuracy for deeper networks like MobileNet.

For benign fault models with random bit-flipping, as shown in
Figure 4, the Hamming distances between detection codes in clean-
and most benign fault models are 0 across various network can-
didates for both CIFAR-10 and ImageNet. For a comprehensive
comparison with malicious fault model under BFA, we add an ad-
ditional benign fault model as a ’fair’ case here by injecting more
bit-flips, e.g. the number equals to the average of that in the mali-
cious model (5 bit-flips for ResNet-20), into our weight detection
candidates (see the green bar and orange line in Fig. 4).

For the normal case (the configuration in 5.1), the limited benign
bit-flips seem to rarely occur in our weight detection candidates
when compared with malicious bit-flips. The reason is because our
weight detection candidates are only a small portion of all weights,
therefore the benign bit-flippings which could occur across the
entire model randomly will have a lower probability to flip bits
in our weight detection candidates. Even for the ’fair’ case which
could have much more random bit-flippings appear in our weight
detection candidates, we still observe that the Hamming distance in
most benign fault models is 0. This means that our detectionmethod

correctly distinguishes BFA and random bit-flippings even under
such a setting. Note although the random bit-flipping does not
have the spatial locality property, the numerous random bit-flips in
our weight detection candidates mean that the model could have
suffered from a significant accuracy degradation. Considering this
kind of random bit-flipping is already not benign, we do not consider
such case in our evaluation. Beside, we also found that there exists
non-zero Hamming distance in a few benign fault models, as shown
in Fig. 4. To address this issue, we can set a threshold 𝑐 > 1 (e.g.
3) instead of 0 in practical detection. The reason is because our
detection secret-key generation algorithm 1 assumes that benign
bit-flips and malicious bit-flips occur in the [𝑏𝑁𝑞/2, . . . , 𝑏0] and 𝑏𝑁𝑞

,
respectively, while that of random bit-flips could appear in any bit
of a weight in practice.

Bit-width Selection for Detection Code. The length of the
detection code is a critical factor that impacts the detection effec-
tiveness in our detection approach. Table 2 reports the average
Hamming distance between original detection codes (no bit-flips)
and fault models (malicious/ random bit-flips) with different code
length selections for WED (1). We select 50 benign and 50 mal-
cious fault models in this evaluation. For malicious bit-flips, as the
code length increases, the average Hamming distances will increase
significantly. For example, if the code length increases from 16 to
128 bits, the Hamming distance could increase from 3.86 to 11.94
in ResNet-20. A larger average Hamming distance in malicious
fault models indicates a better detection effectiveness, e.g. better
TPR, because of a higher possibility of exceeding a preset threshold.
However, for the benign fault model with random bit-flips, a larger
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Table 2: The average Hamming distance between original (clean models) and tampered (fault models) detection codes with different bit-widths for WED(1).

Dataset Structure Fault Model Bit-width of detection code
16-bits 32-bits 64-bits 128-bits

CIFAR-10 ResNet-20 Malicious Bit-flips (BFA) 3.86 4.32 6.64 11.94
Random Bit-flip 0.42 0.44 0.56 0.84

ImageNet
ResNet-34 Malicious Bit-flips (BFA) 3 3.34 4.92 9.22

Random Bit-flip 0.16 0.21 0.42 0.82

MobileNet Malicious Bit-flips (BFA) 1.02 2.36 3.08 9.87
Random Bit-flip 0.14 0.19 0.49 1.14

Table 3: The detection effectiveness of our WED(1) and WED(2) in various detection metrics in ResNet-20, ResNet-34, MobileNet for CIFAR-10 and ImageNet

CIFAR-10
Structure Detection Setting TPR-1 TPR-3 TNR-1 TNR-3 DR-1 DR-3

ResNet-20 WED(1) 90% 80% 88% 100% 89% 90%
WED(2) 96% 90% 88% 100% 92% 95%

ImageNet

ResNet-34 WED(1) 100% 82% 96% 100% 98% 91%
WED(2) 100% 94% 96% 100% 98% 97%

MobileNet WED(1) 80% 58% 88% 100% 84% 79%
WED(2) 100% 98% 94% 100% 97% 99%
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Figure 5: TheHamming distance between original (cleanmodel) and tampered (fault mod-
els) detection codes, and the number of bit-flips in 10 malicious fault models under BFA
in MobileNet on ImageNet for our WED(2).

code length only leads to a slight increase of Hamming distance.
For example, in ResNet-20, the Hamming distance increases from
0.42 to 0.84, when increasing the code length from 16 to 128 bits.
On the other hand, a too large Hamming distance can also hurt the
detection effectiveness, e.g. a lower TNR. To correctly identify a
benign fault model as benign, the Hamming distance should be less
than the threshold. In MobileNet, the average Hamming distance
of detection code with 128 bits can even reach up to 1.14, which
exceeds the threshold 1. Besides, a large code length would bring
high overhead in detection. Therefore, the length of the detection
code should be moderate, in order to achieve better detection effec-
tiveness and low overhead. We select 32 for ResNet-20/ResNet-34
and 64 for MobileNet in our evaluation.

Detection Effectiveness. Table 3 shows the detection effective-
ness of our WED(1) and WED(2) in various detection metrics in
three network candidates on CIFAR-10 and ImageNet. Our WED(1)
achieves competitive detection effectiveness in various detection
metrics in ResNet-20 and ResNet-34 (both CIFAR-10 and ImageNet).

A high TPR or TNR means that our detection approach can cor-
rectly detect malicious or benign fault models. For MobileNet, we
observe our WED(1) achieves a lower TPR-3, i.e., 58%, which is
consistent with our analysis in Figure 3(c). For a deeper neural
network structure (e.g., > 50), more layers should be selected as the
weight detection candidates. As Fig. 5 shows, more malicious bit-
flips are observed in WED(2) and could bring a more considerable
Hamming distance. As a result, WED(2) achieves 100% and 98% in
TPR-1 and TPR-3 in MobileNet, respectively (see Table 3). Similarly,
WED(2) can also improve detection effectiveness for ResNet-20 and
ResNet-34. For example, our WED(2) achieves 92% (98%) and 95%
(97%) in ResNet-20 (ResNet-34) on CIFAR-10 (ImageNet) in DR-1
and DR-3, respectively.

Detection Overhead. For the detection code generation, we
extract weight detection candidates by index and calculate its detec-
tion code using Eq.4. Therefore, the overhead mainly comes from
the matrix multiplication and weight extraction. Since our weight
detection candidates with a layer-wise design could incur continu-
ous memory accesses, the weight extraction cost is expected to be
low. The overhead of matrix multiplication depends on the number
of weights in the detection candidates, which could be low as well
given that only a small portion of model weights selected in our
detection. Table 4 reports both the timing and storage overhead of
our detection approach in ResNet-20, ResNet-34 and MobileNet on
CIFAR-10 and ImageNet. First, our detection approach achieves a
very low time overhead in various network candidates, despite that
more weights could increase overhead. For example, the average
time cost of our WED(1) in 100 fault ResNet-20 models is 0.00059s,
while that of our WED(2) is 0.00092s. Second, the storage cost in
our detection approach is related to the number of selected weights,
bit width of detection secret-key, and the length of detection code.
For example, in ResNet-20, the storage cost of our WED(1) can be
estimated as 432×4×32 + 432×16 bits (here we assume that storing
the index uses 16 bits integer). As Table 4 shows, all WED(1) and
most WED(2) require very low storage cost across various network



ICCAD ’20, November 2–5, 2020, Virtual Event, USA Qi Liu, Wujie Wen, and Yanzhi Wang

Table 4: The timie and storage overhead of our detection approach inResNet-20, ResNet-34
and MobileNet for CIFAR-10 and ImageNet.

Structure Detection Time Cost (s) Storage Cost (MB)

ResNet-20 WED(1) 0.00059 0.007 (2.7%)
WED(2) 0.00092 0.047 (18.4%)

ResNet-34 WED(1) 0.0013 0.141 (0.68%)
WED(2) 0.0022 0.302 (1.45%)

MobileNet WED(1) 0.0009 0.009 (0.27%)
WED(2) 0.0012 0.026 (0.78%)

Table 5: The accuracies of original model, fault model under BFA and recovered model in
ResNet-20, ResNet-34 and MobileNet for CIFAR-10 and ImageNet.

Structure Original Model Model under BFA Recovered Model
ResNet-20 89.17% 10.88% 88.58%
ResNet-34 73.13% 0.1% 72.41%
MobileNet 68.51% 0.1% 67.68%

candidates. For example, the storage cost of our WED(1) in ResNet-
34 is only 0.141 MB (0.68% of the entire model). Only WED(2) in
ResNet-20 incurs a relatively high storage cost, because of selecting
2-layer weights out of the 20 layers. However, since the detection
accuracy of WED(2) with much increased overhead in ResNet-20 is
only < 5% higher than WED(1), while WED(1) can deliver ∼ 90% in
DR-1 and DR-3, we may use WED(1) for a good balance between
detection effectiveness and overhead. However, in general, WED(1)
is more suitable for a simple model (e.g., the number of layers ≤
20), while WED(2) can achieve outstanding detection effectiveness
and low overhead in the complicated (deeper) model.

Model Recovery. Table 5 shows the accuracies of the original
model, the fault model under BFA and the recovered model. Com-
pared with the original accuracy, the recovered accuracy only has a
slight degradation (i.e., < 1%) in various network candidates on both
CIFAR-10 and ImageNet. Specifically, for CIFAR-10 (ResNet-20), we
retrain fault model under BFA for just 1 epoch using the original
training algorithm, the accuracy can be recovered from 10.88% to
88.58%. For ImageNet (ResNet-34 and MobileNet), to accelerate
our retraining process, we randomly draw 10% images from the
training dataset, and retrain the fault model in one epoch. Again,
we can quickly recover the fault model’s accuracy to the original
level, although BFA leads to extreme accuracy degradation. The
underlying reason is because BFA only flips a few of bits of a few
weights, a simple retraining process could easily fine-tune other
weights to adapt such bit change.

6 Conclusion
In this work, we propose a low-cost detection approach to correctly
and quickly detect the emerging Bit-Flip Attack (BFA) against quan-
tized DNNs popular in edge devices. To achieve a low overhead, we
first perform a layer-wise weight sensitivity analysis to select only
a small portion–most sensitive weights as weight detection candi-
dates. To distinguish the malicious bit-flips under BFA and benign
bit-flips brought by the common soft errors, we design a gradient
descent algorithm to optimize loss function to embed the knowl-
edge about two kinds of bit-flips into the detection secret-key. The
sensitive weight changes will be encoded into the binary detection
codes through the detection secret-key based transformation that

responses to malicious and benign bit-flips differently. By comput-
ing the Hamming distance between the detection code generated by
the current weight and original detection code, we can detect BFA
in a real-time manner with minimized impact on normal inference
on edge devices. As a result, our detection approach achieves high
BFA detection effectiveness with limited overhead across various
quantized DNN models.
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