Presented at Virtual Research Day in Spelman College; April 16-17, 2020; Atlanta, Georgia

Title: Regulation of the Hippo-YAP Signaling by Cytokines in Prostate Cancer Cell Lines

Demaiya Seymour¹, Ava Boston², and Bekir Cinar²

¹Spellman College and ²Clark Atlanta University, Atlanta, Georgia

Abstract

The transcriptional co-activator YAP1 (yes-associated protein 1), a crucial effector of the Hippo pathway in mammals, regulates cell growth, cell motility, cell migration, and carcinogenesis. The STK4/Hippo kinase phosphorylates Ser127 and inactivate YAP1 activity in mammalian cells. Cytokines such as receptor activator of nuclear factor Kappa B (RANKL) regulate the immune system and bone remodeling. Similarly, stroma-cell derived factor 1 alpha (SDF1 α) produced by the bone marrow stromal cell, is directly linked to cell migration and metastasis. We hypothesize that RANKL/SDF1 α attenuates phospho-Ser127 and enhances YAP nuclear localization. We conducted immunological assays to evaluate the effects of SDF1 α or RANKL on YAP1 in the LNCaP prostate cancer cell line. We showed that SDF1 α and RANKL modulate phospho-Ser127 and total YAP1 protein in a time-dependent manner, as demonstrated by western blotting. We also showed that SDF1 α exposure promoted YAP1 nuclear localization, as revealed by immunofluorescence imaging with confocal microscopy. These findings suggest that cytokines positively regulate YAP1 activity, possibly by counteracting with the STK4/Hippo signaling. The results of this study imply that cytokines secreted by the tumor cell environment promote an invasive cancer cell phenotype by modulating the Hippo-YAP1 pathway.