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Abstract

We study the problem of estimating the distribu-
tion of effect sizes (the mean of the test statistic
under the alternate hypothesis) in a multiple test-
ing setting. Knowing this distribution allows us
to calculate the power (type II error) of any ex-
perimental design. We show that it is possible
to estimate this distribution using an inexpensive
pilot experiment, which takes significantly fewer
samples than would be required by an experiment
that identified the discoveries. Our estimator can
be used to guarantee the number of discoveries
that will be made using a given experimental de-
sign in a future experiment. We prove that this
simple and computationally efficient estimator en-
joys a number of favorable theoretical properties,
and demonstrate its effectiveness on data from a
gene knockout experiment on influenza inhibition
in Drosophila.

1. Introduction

Designing scientific experiments is something of a chicken
and egg problem. In order to design an experiment with a
specified power (type II error), we need to know the effect
size (the mean of the test statistic under the alternate hy-
pothesis). The effect size determines the required accuracy
of each measurement, which increases with the number of
experimental replicates (samples). Unfortunately, this effect
size is typically unknown, and estimating the effect size for
a single hypothesis test is as sample intensive as performing
the original experiment. In the case of single hypothesis
testing, this presents a fundamental barrier to efficient ex-
perimental design. By contrast, in the setting of multiple
hypothesis testing, we show that it is possible to estimate
the distribution of effect sizes present in the data using an in-
expensive pilot experiment, which takes significantly fewer
samples than would be required for the full experiment.
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For example, suppose a scientist would like to test 10,000
genes using an experimental measurement that is distributed
N (4, %) when the effect size is 1; and ¢ replicates are per-
formed. Without knowledge of the likely effect sizes, it is
unclear how to choose an experimental design. An experi-
ment with too many replicates per hypothesis is wasteful;
one with too few will lack the statistical power to identify
alternate hypotheses. In this paper, we seek to facilitate
experimental design in the multiple testing setting by an-
swering the question “How many hypotheses have an effect
size of at least ~y?” using significantly fewer samples than
would be needed to identify all discoveries with that effect
size. These estimates suggest a trade-off between the cost
of an experiment (as measured by the number of experimen-
tal replicates required to achieve a certain power) and the
number and effect sizes of the discoveries that will be made.
Figure 1 illustrates the application of our estimator to an
inexpensive pilot study, allowing a scientist to evaluate pos-
sible experimental designs. The application to experimental
design motivates an important property of our estimator:
it must produce a conservative estimate of the number of
hypotheses above a given effect size. If the scientist designs
a costly experiment based on the results of this estimator, it
is important to ensure that this experiment will generate at a
minimum the estimated number of discoveries.

As a baseline, one approach to this estimation problem
is to use a plug-in estimator, which estimates the entire
distribution of effect sizes and then “plugs in” this estimate
as if it were the true distribution. The plug-in estimator
could start with the maximum likelihood estimate (MLE)
of the distribution of effect sizes given the observed test
statistics. The estimate for the fraction of hypotheses above
some effect size v would simply be the fraction of this
distribution that exceeded . Unfortunately, such a plug-in
estimator based on the MLE may vastly overestimate this
fraction, as two distributions can have similar likelihoods
but very different amounts of mass above some threshold.

In this work, we design an estimator for the fraction of
hypotheses with effect sizes above a given threshold, for
all thresholds simultaneously. Our estimator operates in
the spirit of the Kolmogorov-Smirnov test, first creating
an /., ball around the empirical CDF to define plausible

thor(s).
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Ask a scientific question
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Which of 10,000 Drosophila
genes inhibit virus growth?
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Pilot study with few replicates per gene

Choose an experimental design

\K\ Find all genes with effect size at least 1.5x

"~ Guaranteed yield: At least 70 genes
Replicates: FEHHH

Cost: $$888

Number of discoveries
at each effect size

10 15
O Option 1 Full Experiment
Find all genes that inhibit virus
replication by at least 2x, as measured
by a fluorescent reporter
Replicates: HVTY
Cost: $8$$

& Option 2 Pilot Experiment
Count the number of genes with each

Effect Size: Relative decrease in fluorescence

Our estimator indicates discoveries exist...

25 30 -

\B\ Find all genes with effect size at least 2x

"~ Guaranteed yield : At least 17 genes
Replicates: JHIY

effect size -6 -4 -2 0
Replicates: ¥
Cost: §

Z-score
...even though no discoveries can be made

Cost: 3888
—
Reject Hy _
\ C| Find all genes with effect size at least 2.5x
" Guaranteed yield : At least 17 genes
R R Replicates: TTH

Cost: $88

Figure 1. When applied to the results of a pilot experiment, our estimator can estimate the cost and number of discoveries guaranteed by
different experimental designs. In this example, the original experiment design (Option 1) is expensive, with no guarantee on the number
of discoveries that will be made. Our method suggests two alternatives to the original experimental design (B); the same guarantee on
discoveries could be made at lower cost (C), or additional discoveries could be made at higher cost (A).

distributions, and then finding the element of the ball with
the smallest amount of probability mass above . With high
probability, this amount of mass does not exceed the true
fraction of hypotheses with mean at least . We prove that
this simple and computationally efficient estimator enjoys a
number of favorable theoretical properties, including finite-
sample upper and lower bounds on the value of the estimate.

1.1. Problem Statement

Let v, be a distribution on R, and fori = 1,2,...n let

Hi ™~ Vs

be an unobserved latent variable drawn iid from v,. For
each p; drawn from v, we observe the test statistic

Xi ~ fﬂm

where f, is a known distribution parameterized by the ef-
fect size u. For example, suppose the test statistics were
Z-scores, which are distributed according to the standard
normal distribution under the null hypothesis and shifted
by the effect size under the alternate. Then, f, = N (u, 1).
While our estimator is well defined for any parametric f
(e.g., any single-parameter exponential family), we focus
on Gaussian test statistics for exposition. In the setting of
Figure 1, v, represents the distribution of effect sizes and
X; are the observations.

Our goal is to estimate the probability that the effect size of
an observation is greater than -,

G (7) =Py, (1> 1), (1)

simultaneously for all v € R.

The problem of counting the non-null hypotheses is most
interesting when ~y is small. For example, consider the case
when the test statistics X; are Z-scores. Under the hypoth-
esis that all effect sizes are zero, the expected maximum
Z-score is E[max; X;] ~ y/log n. Therefore, if we want to
avoid any false discoveries, we cannot reject any hypotheses
with test statistic less than ©(y/logn). If the effect sizes are
at least this large, then we will be able to identify the alter-
nate hypotheses through a standard Bonferroni correction
(Dunn, 1961). In this regime, counting is no more difficult
than identification. However, if the effect sizes are much
smaller than this threshold (say, if all p; < 1), identifica-
tion could be impossible. Our estimator, by contrast, detects
the existence of discoveries even in this low signal-to-noise
regime.

1.2. Contributions

Our contributions are as follows:

o Given a parameterization f,,, we propose an estimator
that provides a conservative estimate of the fraction of
effect sizes above a given threshold, simultaneously for
all thresholds (Section 2).

e We provide finite-sample bounds on the error of our esti-
mator (Theorem 2.1).

o In the low signal-to-noise regime and the setting of Gaus-
sian mixtures, we compare our estimator’s sample com-
plexity to a known lower bound for hypothesis testing
(detecting the presence of the alternate hypothesis), and
we give a novel lower bound for the sample complexity
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of estimation (estimating the fraction of means from the
alternate hypothesis). We show that our method matches
finite-sample rates for these problems, even though it is
designed for more general distributions than the ones in
these lower bounds (Section 2).

e We describe how to use this estimator to design pilot
studies for scientific experimentation (Section 3). When
testing n hypotheses in the low signal-to-noise regime,
our technique detects treatments with positive effect sizes
using a factor of n fewer replicates than it would take to
identify them. Additionally, the results of the pilot exper-
iment can be used to upper bound the cost of identifying
the discoveries at each effect size.

1.3. Related Work

The problem of estimating the number of null hypotheses
has been studied extensively in the statistics literature. Our
goal in this work is to provide a conservative estimate of the
number of hypotheses with effect size above some threshold
(Eqn (1)). There are several lines of work related to this
goal.

Simple Null Hypotheses A different but related problem is
to estimate the number of non-null hypotheses, regardless
of their effect sizes, i.e., P, (u # 0). In this setting -
also known as the simple null hypothesis - it is possible
to compute p-values that are uniformly distributed under
the null. For example, when observations are drawn X; ~
N(u;, 1), the p-value is p; = 1 — ®(X;), where P is the
standard normal CDF.

The graphical estimator of Schweder & Spjgtvoll (1982) was
the first technique to estimate the number of nulls, using the
principle that p-values are distributed uniformly under the
null hypothesis and skewed toward zero under the alternate.
Their technique estimates the density of the p-value distri-
bution at 1. This same idea was improved in the context of
estimating the number of nulls for adaptive control of the
false discovery rate (FDR) (Benjamini & Hochberg, 2000;
Storey, 2002). These later works provide finite-sample guar-
antees on overestimating the number of nulls in order to
make non-asymptotic guarantees on FDR control. However,
none of these results provide lower bounds on the estimated
number of non-nulls. Motivated by adaptive FDR control,
techniques for counting the number of non-null hypotheses
have been extended to incorporate prior knowledge about
the dependence structure of the hypotheses or the likelihood
that each test will result in a discovery. See Li & Barber
(2019) for a review of this area.

Bounds on the False Discovery Proportion - the high-
probability analogue of FDR - can also be employed to
report a guarantee on the number of significant effects.
The simultaneous FDP estimator of Katsevich and Ram-

das (2018) provides such bounds simultaneously for all sets
in a path. A guarantee on the FDP of a set corresponds to
a lower bound on the number of discoveries; maximizing
over the guarantees provided by each set in the path gives
an improved lower bound. With an assumption on the form
of the test statistic under the alternate hypothesis, this algo-
rithm can be modified to bound the number of discoveries
above an arbitrary threshold. We compare to this baseline
method in our experimental results.

Another technique for the simple null setting, again moti-
vated by the uniform distribution of p-values under the null,
is to test the extent to which the distribution of p-values devi-
ates from the uniform distribution. Several estimators have
taken this approach (Genovese et al., 2004; Meinshausen &
Rice, 2006; Patra & Sen, 2016; Jin, 2008). Most similar to
our work are the techniques that build one-sided confidence
intervals around the empirical CDF of p-values (Genovese
et al., 2004; Meinshausen & Rice, 2006), which provide
finite-sample error bounds and a conservative estimator. Fi-
nally, there are estimators specific to the Gaussian setting,
which estimate the zero-mean component in a mixture of
Gaussians (Cai et al., 2007; Carpentier et al., 2019).

Extensions to one-sided null hypotheses (Hy : ¢ < 0)
further assume that p-values are subuniformly distributed
when i < 0 (Meinshausen & Biihlmann, 2005; Li & Barber,
2019) or assume a gap between 0 and the smallest alternate
effect size (Lee & Valiant, 2019). These works estimate
the quantity P, (¢ > 0). This problem is a special case of
ours, because subuniformity holds only for the threshold of
v =0.

Composite Null Hypotheses We seck to estimate the num-
ber of hypotheses with an effect size above some threshold.
Here, p-values are neither subuniform nor necessarily well
defined, so much of the previous work is not applicable. The
Fourier transform technique (Jin, 2008) can be extended to
address composite null hypotheses (Chen, 2019). However,
this extension only provides asymptotic results, which are
insufficient since we seek a conservative estimator.

Adapting the Generalized Likelihood Ratio Test Jiang
& Zhang (2016) develop asymptotic power statements for
the generalized likelihood ratio test for Gaussian observa-
tions. We discuss in Section 5 how this work could be used
to create an estimator for our problem, and highlight the
limitations that make this approach impractical.

Plug-in Estimation As discussed in Section 1, another ap-
proach to this problem is plug-in estimation, where an es-
tAimate v of the distribution v, is used to form an estimator
Cn(y) = Py(p > ). When f, is Gaussian, the task is to
learn a mixture of Gaussians. In this setting, much effort has
been devoted to recovering the mixture parameters (Pear-
son, 1894; Belkin & Sinha, 2010; Kalai et al., 2010; Hardt
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& Price, 2015) or learning a mixture that is close to the
original distribution in some metric, such as total variation
(TV) distance (Moitra & Valiant, 2010; Daskalakis & Ka-
math, 2014). Outside of the Gaussian setting, recent works
have provided guarantees for learning mixtures of binomial
distributions in terms of the Wasserstein-1 distance (Tian
et al., 2017; Vinayak et al., 2019). These types of theoretical
guarantees do not lend themselves easily to guarantees on
our problem, since two distributions can be close in TV
or Wasserstein distance but have very different amounts of
mass above some threshold .

Empirical Bayes Methods Our estimator takes advantage
of multiple hypothesis testing by using the empirical distri-
bution of the X; to learn something about the latent distri-
bution v,. The same idea can be seen in empirical Bayes
methods, where the empirical distribution of X; is used
as the prior over X. Several papers have taken an empir-
ical Bayes approach to multiple testing, but none address
our exact problem. Efron (2007) uses an empirical Bayes
method to estimate the distribution of X under the alternate
hypothesis, which is distinct from our goal of estimating
v, (note we cannot simply deconvolve Efron’s estimate to
get v, as it is not guaranteed to have any parametric form).
Stephens (2017) uses empirical Bayes methods and a strong
unimodality assumption on v, to produce estimates and
confidence intervals for each p,;. While these confidence
intervals could theoretically be used to estimate (1), the fact
that Stephens’ method produces a confidence interval for
individual p; suggests that they will be too loose to compete
with our method. Indeed, we see this looseness in the exper-
imental results, where our estimator outperforms Stephens’
in our regime of interest. Furthermore, this method only
works for Gaussian and t-distributed observations.

2. Estimating Effect Sizes

Recall our goal, to estimate (,, () from Eqn (1). Let
F,(t) = 23" 1{X; < t} be the empirical CDF of

the test statistics X; and
Fy(t) =Py, xop, (X <)

be the true CDF of test statistics under latent distribution v.
For any v € R, our estimator is given by

o0
C(o(y) = _ min / v(z)dzx 2)
l/:HFn_FI/HOCSTO,n o
where the estimator is conservative with probability at least

1 — «, and
log(2/a)
2n
The intuition for this estimator is as follows. To conserva-
tively estimate the amount of mass ¢ above threshold v, we

Tan =

look for the distribution with the smallest amount of mass
above + that could have plausibly generated the observa-
tions X;. Our measurement of plausibility is based on high
probability bounds on the deviation between the empirical
CDF and its expectation. If F;, was in fact drawn fr(lm F,,
then with high probability the /., distance between F}, and
F, will not exceed 7, . By restricting our search space to
the /. ball around ﬁn (seen in the constrained optimiza-
tion from Eqn (2)), we do not overestimate the true amount
of mass above ~y, with high probability. Moreover, using
different values of -y traces a curve for ¢, () (see the mid-
dle panel of Figure 1). We note that this estimator can be
implemented as an efficient convex program. We simply
discretize x over some range, and the estimator becomes a
convex program in the vector x. It can then be solved using
off-the-shelf software (see Appendix C for details).

2.1. Main Results

Our estimator underestimates the true mass ¢, (vy) for all v
simultaneously with high probability. Furthermore, we pro-
vide a finite sample bound on how much we underestimate
. (7) atevery .

Theorem 2.1. Fori=1,...,n, let j; ~ v, and X; ~ f,,,
where each draw is iid. Let our simultaneous estimator be
given by (2). Then, the probability of overestimating the
fraction of hypotheses with effect size above any threshold
v is bounded by «o:

P(37:6.() > 6. (3)) <o

Furthermore, with probability at least 1 — ¢, for all v € R
and € € (0, C,, (7)] we have ¢, () — Cu(y) < € whenever

log (55)

(ming.p, ((y,00) <. (1)—< [[Fy = Fo,

n >

3)

)’

Remark 2.1 (Pointwise consistency). Our estimator is
pointwise consistent. For any threshold vy and any € > 0,
there is some n large enough that the error in our estimate
satisfies C,, (7) — () < e. This follows from the fact that,
for any € > 0, the denominator of 3 is strictly positive.

Our estimator is guaranteed not to overestimate (,, (7y),
which is critical in the use of pilot studies to guide experi-
mental design. The key quantity in this sample complexity
result is the minimum /. distance between the true CDF
F,, and the set of CDFs corresponding to mixing distribu-
tions with less than ¢ mass above . We call this set of
mixing distributions S,

S(C”Y) = {V : PV((’Y ) < C} 4)

,00))
Specifically, consider S((,, () — €,7), which appears in
Eqn (3). If £ = 0, then we have v, € S((,,,7), so the min-
imum £, distance to F,,, min,cs(c, (1)) ||[Fy = Fu. |loos
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would be zero, implying that no finite sample can guarantee
€ = 0. This reflects the fact that Zn(’Y) is an underestimate
at every y; therefore, in order for ¢ to be zero, we must have
estimated (,, (7) exactly. As ¢ increases, S((,, (7) — €,7)
shrinks, and the distance to F),, increases, decreasing the
required number of samples 7.

To interpret the sample complexity in Theorem 2.1, we
consider a simple model where test statistics are drawn from
a mixture of two Gaussians. In this setting, which we denote
X; ~ P(C«,7+), we have

pi ~ (1= C)do + Cudy,

5
XiNN(Miao-z)a ( )

where ¢, is the Dirac delta function at z. There are two
natural questions we might ask: How many samples a re
necessary to determine the existence of the mixture com-
ponent at v, > 0, and how many samples are required to
estimate the weight of this component? We call these the
testing and estimation problems respectively. In the follow-
ing sections, we address our algorithm’s sample complexity
for these problems, and compare to lower bounds. For ease
of exposition, let & = 4, although the results hold for the
more general case.

2.2. Global Null Testing

In the global null testing problem, we observe X; according
to (5), and we want to determine whether {, > 0 (i.e.,
testing Hy : P,,(u>0)=0vs Hy : P, (x> 0) > 0).
Our test declares H; if Zn(O) > 0, and Hy if En(O) =0.
Clearly this test erroneously declares H; with probability
at most ¢ (it has type I error at most §), since Zn(O) < (.
with probability at least 1 — § (recall that we set & = ¢
in Theorem 2.1). The next corollary bounds the sample
complexity that guarantees a probability of detection of at
least 1 — ¢ (i.e., that bounds the type II error by ).

Corollary 2.1.1. Let {X;}? , be drawn according to (5).
Consider the simultaneous estimator Zn defined by (2). Then,
with probability at least 1 — 0, we have (,(0) < (. and
n(0) > 0 whenever

. 2log (%)
(20 (37) = D0 (—374))

where ®, is the CDF of the distribution N (0, 02). Further-
more, if v, < 0, then the above can be simplified to

27

n> 1602 log (%) .
Gz

Proof Sketch. To obtain this sample complexity result, we
must lower bound the distance term in the denominator of

Eqn (3). Recalling our definition of S in Eqn (4), we lower
bound the associated minimax quantity by its value at a
specific point, t = 1.,

min _|[F, — F), [|ec =

i F,(t)-F,,(t
min min  sup |F,(t) - Fy. (1)

v€S(0,0) teR

2 min Fu(%’)’*) -

F, (37,
,uin (57%)

The constraint v € S(0, 0) allows us to lower bound the first
quantity by @(%7*), and we compute the second quantity
exactly, giving the first conclusion of the corollary. The
second conclusion follows from a quadratic approximation
to the normal density. O

We compare Corollary 2.1.1 to the finite-sample lower
bound arising from the “most biased coin problem” (Chan-
drasekaran & Karp, 2014; Jamieson et al., 2016). In this
problem, the algorithm draws /N observations X; as per
(5), where N is potentially a random variable, according to
either Hy : X; ~ N(0,0%) or Hy : X; ~ P((s, 7). When
v, and (. are known and 7, < o, Theorem 2 of Jamieson
et al. (2016) states that any (potentially randomized) proce-
dure that decides between these hypotheses with probability
of error at most § requires at least

1-6 o2 log(l/é)}

G 20272

samples. To facilitate comparison with the sample com-
plexity of our estimator, we show in Lemma A.3 that the
small-v, sample complexity from Corollary 2.1.1 matches
the stated lower bound up to constants both when § is fixed
and as § — 0.

E[N] > max {

2.3. The Estimation Problem

In the estimation problem, we observe X; according to

o~

(5), and we estimate (. using our estimator ¢(0).
Z (0) < ¢, with high probability, it remains to understand
the magnitude of this underapproximation — the dependence
of € from Theorem 2.1 on the number of samples n. The
following corollary describes the number of samples needed

to guarantee an error bound € < %C* with high probability.
Corollary 2.1.2. Let {X;} | be drawn according to (5).
Let ¢, > 0 and 7. € (0, 0]. Then, with probability at least
1 — 0, our estimate Zn from (2) satisfies Zn(O) € (%Q, Cx)
as long as

Since

4 2
nz Tl
* ’Y*
Proof Sketch. Again, we obtain this result by lower bounding
the denominator of Eqn (3). We note that this quantity is the

optimal value of a convex optimization problem, and show
that the associated optimal point is

vorr = (1 — 1¢.)00 + $(.02, .
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Figure 2. Our estimator applied to pilot experiments. (a) After observing X; ~ N (p;,1) fori = 1,...

,n with n = 10, only 0.3%

of null hypotheses are rejected via a Bonferroni corrected test (indicated by the FWER critical value). However, the Z-scores appear
skewed positive, suggesting additional discoveries exist. (b) Our estimator (x s indicates that there are many discoveries to be made;
for example, at least 9% of treatments have effect size at least 1, and at least 4% have /e\ffect size at least 2. Note that our estimator also
counts more discoveries at each threshold than are identified by Bonferroni correction ((rw rr), without exceeding the true value (.. (c)
The experimenter designs an experiment to identify the effects greater than 2, and allocates v~ 2 log(n) log(1/ ¢ (7)) = 8 replicates per

hypothesis. Now, 14% of the null hypotheses can be rejected.

Finally, we apply several Taylor series approximations to
bound the optimal value as a polynomial in (, and .. [

We present a novel lower bound for the estimation problem
which matches our result up to constants.

Lemma 2.2. Consider data {X;}!_, generated under the
model X; ~ P((,v), parameterized by ¢ € (0,%) and
~v € (0,0) according to our canonical two-spike model
(5). Fix a parameterization ((y,7.). For any € € (0, %C*)
define the set A. of nearby parameterizations as

A ={(¢) — (| <de, 1y <y <3}

Suppose En(X) is an estimator of ( satisfying ]P’(|6n(X) —
(| > €) < % forany ((,v) € A.. Then the estimator
requires at least n 2 % samples on the instance ((x,7s)-

Instantiating Lemma 2.2 with ¢ = (., we see that the
sample complexity in Corollary 2.1.2 matches the lower
bound.

Finally, we remark that estimating the fraction of observa-
tions with mean -, to constant multiplicative error requires
a factor of %z more samples than testing whether any obser-
vations have mean ..

2.4. Proof of Theorem 2.1

We begin with the first part of the theorem, which bounds
the probability of overestimating (.. Let A be the event that
F,, stays within its Dvoretzky-Kiefer-Wolfowitz (DKW)
confidence interval, i.e.,

A= {||FV* _F\nHOO < Ta,n}'

By the DKW inequality (Massart, 1990), we have P(A¢) <
o. If we assume that event A holds, then

Zn(’y):max{gzo min HF F |\Oo>7'an}

veS(¢y
© min{¢>0: 1E, = Fulloo < Tam}
< min > erg(l? oo = Ta,n
(b)
<M

where (a) holds because S({,7y) C S(¢’,v) forall ¢ < ',
and (b) is true because, by event A, (. () is a member of
the set. We note that on event A, this argument holds for
all v. We conclude that, with probability at least 1 — a, we
have Zn (7) < ¢* () for all .

To prove the power statement, let B be as follows
B:={||F,, — ﬁn||C>O < Tsm}

Suppose that B holds. Then,

Cal(7) = ma >0: min ||F, — Fylleo > an
Go(n) =max {C20: min I, ~ Fulloc > 7o)
2 tnax {¢ > 0 I, — B |
max mln Vi | |00
- - veS(¢,7)
_HFn_ ooZTa,n}

®
> max {(>0: mln ||F
veS(¢

0o = Ta,n + 7—5,71}

> /log(4/ad) },

where (a) is the triangle inequality and (b) applies event
B. We can rewrite the assumption on n in the theorem
statement as

ZmaX{CEO: min ||F, —

F
veS(¢,y) vlloo

min [|Fy — Fu,lloo =
)

log(4/ad)
veS(C.—e "
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which gives us Cn (7) > ¢« — ¢, simultaneously for all -,
whenever B holds. Since B holds with probability at least
1 — 4, this completes the proof. O

3. Applications to Pilot Experiments

In this section, we consider the task of analyzing a pilot
experiment to count the number of discoveries when the
effect sizes are small, say p© < 1 for the case of Gaussian
N (u, 1) observations. Figure 2 illustrates this process. First,
the scientist allocates a small number of replicates to a large
number of hypotheses in order to obtain many noisy esti-
mates of effect sizes (Fig. 2(a)). The scientist then uses our
estimator to obtain a guarantee on the number of discoveries
to be made at each effect size (Fig. 2(b)). Finally, the sci-
entist calculates the cost of identifying the discoveries that
have been detected using a choice of fixed and sequential
experimental designs. When the full experiment is run, it
results in at least as many discoveries as our estimator has
guaranteed (Fig. 2(c)).

The following proposition describes our estimator’s perfor-
mance on pilot data in the low signal-to-noise regime. In
particular, if the pilot study design allocates its replicates
equally across all n hypotheses, our estimator detects the al-
ternate hypotheses using a factor of n fewer total replicates
than it would take to identify these discoveries.
Proposition 3.1. Consider a pilot experiment for n hypothe-
ses, where an initial budget of B = mt will be used to
uniformly allocate t replicates to each of m < n randomly
chosen hypotheses. Suppose the true distribution of effect
sizes is v, = (1 — ()00 + (05, and f, = N(u, 1), as
when computing Z-scores from t replicates. Then,

P(C,(0) > 0)>1—6

i.e., we detect the presence of positive effects with high
probability, as long as

log(2)
(2B

410g(%)
- ¢

Remark 3.1. Consider the setting where the budget is con-
strained, say B < n, and let (, be constant (so that the
proportion of discoveries does not vanish with n). Propo-
sition 3.1 suggests maximizing m: either taking m = n if
B > nortakingt = 1if B < n. With this budget alloca-
tion, our estimator detects the existence of alternate effects
with just B ~ log(%)’y*_ 2 total replicates. Note that dis-
tinguishing observations from N (0,1) and N (7., 1) with
probability 1 — § requires log($)v; 2 samples, so identi-
fying all of the discoveries requires at least n log(%)'y;2
replicates total. We conclude that, in this instance, any iden-
tification procedure requires n times more total replicates
than our estimator requires for detection.

and m
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Figure 3. Median and 90% bootstrapped confidence intervals for
¢n(0), where v, = (1 — {4)d0 + (404, , for various .. Asn
increases, for a constant ¢, = 0.1, our estimator En (0) converges
to ¢, without overestimating. As expected, the estimates are lower
(have more error) when the alternate effect size . is small.
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Figure 4. Empirical ]P’(fn(O) > £(.), for various parameteriza-
tions (7«, ¢+) of the two-spike Gaussian model (5). For a fixed
value of n = 10%, the probability of detecting at least half of the
discoveries increases with both v, and (.. Empirical probabilities
were computed over ten trials.

Our estimator can also be used to choose between a fixed
experimental design (in which each hypothesis is tested
with a fixed number of replicates) and a sequential design
(in which the next replicate is allocated after observing all
previously drawn X;). A sequential design, as in Jamieson
& Jain (2018), can be more difficult to implement, but could
result in significant savings if the alternate effect sizes span
a large range. By providing information about the variety of
effect sizes, our estimator quantifies the advantage of using
a sequential experimental design.

4. Experiments

Details of our implementation can be found in Ap-
pendix C. A Python implementation is available at
https://github.com/jenniferbrennan/
CountingDiscoveries/.


https://github.com/jenniferbrennan/CountingDiscoveries/
https://github.com/jenniferbrennan/CountingDiscoveries/
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Figure 5. Our estimator outperforms the baselines in the mixture of two Gaussians setting, Eqn (5), returning ¢, () close to the truth

without overestimating, for a wide variety of n and .

4.1. Experimental Results on Simulated Data

We evaluate our estimator on both real and simulated data.
We begin with the mixture of two Gaussians described by
Eqn (5). Figure 3 shows the rate of convergence of our
estimator for different values of ~,, the alternate effect size.
Note that the estimate never exceeds the true value (., and
that it improves as n increases. The variance of our estima-
tor, shown with bootstrapped 90% confidence intervals, can
be large for small n but decreases as n increases.

For a fixed value of n, we are interested in the probability
that our estimator detects at least half of the discoveries,
Py, (¢n(0) > 3¢.), as a function of the fraction of discover-
ies (. and their effect size .. Our estimator exhibits a sharp
transition between detecting fewer than half and detecting
more than half, as shown in Figure 4.

We compare our estimator to several baselines found in the
literature. Figure 5 shows the performance of various esti-
mators in the mixture of two Gaussians setting. Each of the
six panels shows how the estimators perform as the alternate
mean 7, varies, for different numbers of hypotheses n and
tested thresholds . We see that the two plugin methods,
the MLE and the plugin ashr estimate (Stephens, 2017),
both fail to satisfy our constraint {(7) < (7). Among the
four remaining estimators, ours comes closest to the truth.
Notably, our estimator continues to improve as n increases,
whereas the baselines do not. We conclude that our estima-
tor outperforms existing methods in the regime of large n
and . ~ o. Appendix D includes a plot comparing only
the four estimators that satisfy our constraint.

We also demonstrate that our method works on distributions
other than Gaussians by applying it to synthetic Poisson and
binomial data (Figure 6). Details of the experiments can
be found in Appendix C; we note that our test detected the
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Figure 6. Performance of our estimator on binomial (left) and
Poisson (right) data. Top panels show the observed histogram of
Xi. Bottom panels show the true fraction of effects above each
threshold ({,., ), as well as estimates using our method ((A xs) and
identification via Bonferroni-corrected multiple testing ((rw e R)-
Our estimator gets closer to the truth, without overestimating.

presence of the alternate hypotheses even when no alternates
were identifiable via Bonferroni-corrected multiple testing.

4.2. Experimental Results on Real Data

We evaluated our estimator on Z-scores from an experiment
to identify which genes contribute to influenza replication in
Drosophila, described by Hao et al. (2008). The data, avail-
able in our supplementary material, consisted of Z-scores
from two replicates for each of 13,071 genes. Figure 7(a)
shows the empirical distribution of the 13,071 averaged Z-
scores, which are the observations X;. The theoretically
motivated distribution X; ~ N (u, %) is a poor fit to this
data, perhaps due to undocumented pre-processing steps
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Figure 7. Two Z-scores were averaged for each of 13,071
Drosophila genes. Even though (a) indicates that very few dis-
coveries could be made, (b) shows that the MLE suggests, and
our estimator confirms, many discoveries exist. We note that the
MLE provides no guarantee of a conservative estimate, and may
drastically overestimate the true fraction at any point.

not annotated in the dataset, so we began by estimating the
variance of these observations. We found that 02 = % pro-
vided a good fit to the data; we used this value for the rest of
our computations. Testing for significant effect sizes using
Bonferroni correction at the 0.05 level (critical value shown
in Figure 7(a)) resulted in 83 discoveries, representing 0.6%
of genes. Given the low number of replicates performed
in this experiment, we might suspect that there are more
discoveries with smaller effect sizes.

Figure 7(b) shows the results of the plug-in MLE estimator
E MLE, Our estimaAtor (E K s), and identification with Bonfer-
roni correction ((Fwgr). The fitted MLE suggests that
there are around 2600 discoveries to be made (20% of
genes), with most effect sizes around 1. As discussed pre-
viously, the MLE can overestimate the true number of dis-
coveries and their effect sizes. Our conservative estimator
guarantees that there are at least 1400 genes (11% of all
genes) with positive effects, including at least 190 genes
(1.5%) with effect size of at least 0.5. Our estimator gener-
ally detected more discoveries than ZFW ER, excluding the
influence of the 23 genes (0.2%) with X; > 3. These ob-
servations fall into the sparse regime (Donoho & Jin, 2004),
where our estimator has less power. These results could
facilitate the design of an experiment to identify genes with
effect sizes exceeding some threshold, or upper bound the
cost of a sequential experiment to identify the top 200 genes.

5. Discussion and Future Work

We have presented an algorithm that estimates the fraction
of a mixing distribution that lies above some threshold,
subject to the constraint that the estimate does not exceed
the true fraction with high probability. Our algorithm can
be generalized to the following template:

1. Choose some distance metric on CDFs.

2. Find the set A of “plausible” F,, giverl observation ﬁn,
which are the CDFs such that d(F),, F},) < Tan.

3. Choose Ty, such that P(d(F,, F,.) > Tan) < a.

Returning the minimum amount of mass above the threshold,
over the set of plausible distributions .4, guarantees with
high probability that we do not overestimate the true mass.
Our algorithm instantiates this template with the ¢, norm
as the distance metric.

Another natural choice of metric is the likelihood of ﬁn
given F,,. In order to use this in our templAate, we need
finite sample bounds on the likelihood of Fj, given F}, .
Asymptotic versions of these results are worked out by Jiang
& Zhang (2016) for the case of Gaussian X;, and it would
be easy to extend these to finite sample bounds. Extensions
of Jiang & Zhang’s results should show that the resulting
estimator is optimal throughout the so-called sparse and
dense regimes (Donoho & Jin, 2004). Unfortunately, their
value of 7, , depends on unknown constants, and therefore
it would require extensive simulations with thousands of
repetitions for each (¢, ) pair to obtain a reliable estimate
of the critical values for pilot study analysis. In addition,
using the likelihood-based approach for a new distribution
f,. requires an entirely new proof of the high-probability
bound on the likelihood ratio.

We believe it would be possible to modify our estimator
in order to improve its performance in the sparse regime,
where effects are large but rare. Our estimator uses the
DKW inequality (Massart, 1990) to measure the plausibility
of a latent distribution v, but the DKW inequality is not
tight where the empirical CDF has low variance. Such
points occur in the sparse regime, for example at ), (%7*)
Applying a bound that uses variance information, such as
an empirical Bernstein DKW (as surveyed in, e.g., (Howard
& Ramdas, 2019)), could address this lack of power.

Any algorithm for this problem necessarily makes some as-
sumptions about the data generating process, otherwise all
observations cogld come from the alternate, with X ~ P,
having density F,,. As discussed in Section 1.3, previous
works have used various assumptions, such as unimodality
of v, or “purity” of p-values around zero. Our key assump-
tion is the parametric form of X, under both the null and
the alternate. In practice, in order to decrease our reliance
on this assumption, we could learn some parameter of the
test statistic distribution from the observations themselves.
This was our approach with the Drosophila data, when we
fit the variance o2 of the Z-score. This approach is also
taken by Efron (2007). Even more ambitiously, we could
learn the conditional distribution f(X |u) by fitting it jointly
with the means y, and then use this conditional distribution
to generate I, from a candidate distribution v.
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A. Proofs of testing results for mixtures of two Gaussians
A.1. Useful Lemmas

In this section of the appendix, we will provide proofs of the results for hypothesis testing - i.e., determining whether there
is any mass above 0 - in the two-spike Gaussian setting. This is the simplest setting we consider.

In order to extend our lower bound in Theorem 2.1 to the case of two Gaussian spikes, we need to compute the quantity

min ||F, — F,, ||
r€S(0,0)

for this setting.
Lemma A.1. Let v, = (1 — (4)d0 + (.0, and let S be defined as in Eqn (4). Then,

i FV*FV oo>*q)nl*7q)ﬂ'7l*
i || oo = Go (Po(374) — Po(—374))

where ®,, is the CDF of the normal distribution N'(0, 02). Furthermore, if v. < o, then

23C Y«
min ||F, — Fy, ||oo > 2367
v€5(0,0) 240/ 21

Proof. First, we lower bound this minimax problem by a minimization at a specific point, t = %’y*,

min )HF, —F, |loo = min sup|F,(t)— F,, ()]

v€S(0,0 v€S5(0,0) teR
Z uerg(i(I)l,O) |F1/ (%7*) - FV* (%’Y*) |
> min F(37) = F. (37)

Next, we lower bound Fy(%’y*). By definition,

() = [ v)®a(y. — oo
> (I)(%'V*)

where the inequality follows by the constraint v € S(0, 0), so v can have no mass above 0. We use this bound, as well as the
exact value of F,,, (%’y*) to lower bound the minimum,

min ||F, = F,[loo > @o(5%) = (1= C)Po(57) = GPo(—57)

veS(0,0)
=G (@0(%7*) - ‘I’a(—%v*))

which proves the first claim. For the second claim, when ~, < o, we use the second order Taylor series approximation to
the Gaussian density. We have

Do(37.) = ®o(~47.) = 2P(0 < X < 13.) ©)

for X ~ N(0,0?). Taking a quadratic approximation to the normal density yields

1 1 2 2 62
- - - —c"/20 A 2
f(z) o (1 +5.2¢ (02 1) x )

for some ¢ € [0, 7,]. This is minimized for ¢ = 0, which gives us
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We can now lower bound (6) as follows,

P(0 < X < 1) ! /5% —*/20%
5Yx) = e X
=4 =27 oV 2T

2')’*
oV 2w / 202

2
Vi
(1 5i)
2021 240
Since 7. < o, this is always positive. We can also use that fact to bound this by
1 23
PO<X < 357
0= X<y 2 ( )
so that

23
‘I’a(%’Y*)*@a( 27*) 240_\/%

which completes the proof.

O

Next, we state and prove another lemma that will be useful later. This result bounds the probability that our estimator (? (0)

returns 0. This is related to the probability of detecting the existence of alternate hypotheses.
Lemma A.2. Let v, = (1 — ()d0 + (.0, and let E(O) be our estimator from Egn (2) evaluated at 0. Then

~

2
P(C(0) = 0) < 2exp (=20 (G (2(37) — $(~47)) 7))
Proof. We begin by substituting in the definition of our estimator. Recall the definition of S, from Eqn (4).

]P’((

max (> 0: HllIl HF —F)lloc >Tam | =0
vesS(o

v€S(0,0)

<P

]P’( min ||ﬁn—FV||oo§m,n>

min [, — F, ||cc — |[Fn — F, || < Ta,n)

rveS(0,0)

=P (| |F,, — F,.
Next, we apply the DKW inequality, along with Lemma A.1
P(E(O):O>S2€Xp (—2’/1( Iléllll ||F FI/ Hoo_ Ta,n )
€

s > min ||F
veS(0,0

= 2exp (—2n (C* (@(%7*) — q)(—%'y* — Tan 2)

This concludes the proof.

A.2. Proof of Corollary 2.1.1

(7

®)

©))

(10)

(1)

12)

13)

Proof. Corollary 2.1.1 This corollary follows immediately from Theorem 2.1 with « = 0, ¢ = (,,(0) = (. and

min,egs(o,0) [|Fv — Fl. ||oo bounded as in Lemma A.1.

O
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A.3. Comparison to finite-sample lower bounds
In this section, we prove the statements in Section 2.2.

To show that the sample complexity for our hypothesis test matches the lower bound of (Jamieson et al., 2016) up to
constants, it is helpful to write our sample complexity as a maximum of two quantities.

Lemma A.3. Let§ < 1, (, <1, and 0> > ~2. Then

2 2 2 2
160 iogz(a) ~ max l’ 160 iogQ(a)

Proof. We will prove this by showing that the first term of the max is always smaller than the second. We have
160%log (2) _ 161log (2)
Ze T @
S 161og (2)
=T a2

v
A M

v

which concludes the proof. O

We see that our test matches the lower bound given in (Jamieson et al., 2016) up to constants, as long as J is bounded away
from 1 (so that the first term in the lower bound cannot be arbitrarily small).
A.4. Proof of Proposition 3.1

Proof. Proposition 3.1 Recall that m denotes the number of genes we will test. By Corollary 2.1.1 with & = §, we have
that

implies
P(C — G > 0) < 6.
We consider two cases. First, if v, < o, then Corollary 2.1.1 states that the sample size must be at least
S 160;135(?)

to get the first requirement of the lemma.

to guarantee Z (0) > 0 with high probability. We can use the relationship 02 = %

161log(2)
Zmi

_ 1610g(%)
a (B

The second requirement comes from the case of large .. When v, > o, we can use a table of values of ® to find

(I)U(%'V*) - CI)U(_%'Y*) =1- 2(1)0(_%7*)
>1-28,(—30)
=1-2®;(—3)

3

> 2
— 10

Vi =
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We see that in this case, as long as

4log(%) _ 200log(3)

> 14

mETE T TR o

(from Corollary 2.1.1), then we have C (0) > 0 with high probability. If both of these requirements hold, then we have
¢n(0) > 0 with high probability, regardless of the value of .. O

Finally, we prove the statements in Remark 3.1: that identifying these alternate hypotheses requires at least n.B total
replicates (while our estimator only takes B total replicates to count them) as long as the budget satisfies B = O(n), and the
fraction of alternates is constant.

Proof. Remark 3.1 Identifying the alternates takes at least order n-y; 2 log(1/6), even without correcting for multiple
testing, because we require at least order ;2 log(1/8) samples to estimate the mean of a Gaussian within additive error .,
with probability 1 — 4.

Our test, by contrast, takes the larger of
B = O (max {log(1/0)¢; 7. %, 7. %}) -

If ¢, is constant, and if ¢ is constant (which occurs when B = O(n) and we allocate replicates equally across all n
hypotheses), then our estimator can count half of the alternates using

B=0 (log(1/5)7;2) )

which is n times fewer than the number of samples required to identify the discoveries. O

B. Proofs of Corollary 2.1.2 and Lemma 2.2 (Estimation results for mixtures of two Gaussians)

In this section, we provide proofs of the upper and lower bounds for estimating the amount of mass above the threshold 0
when the data is drawn from a mixture of two Gaussians.

B.1. Estimation upper bound (Corollary 2.1.2)

Corollary 2.1.2 is a consequence of Lemma B.1, which bounds the minimum ¢, distance between F),, and any CDF with
less than %C* mass above zero, and Theorem 2.1, which relates this quantity to the sample complexity of estimating the true
amount of mass with accuracy € = %(j*. We begin by stating this key lemma, and then we establish a series of technical
lemmas necessary for the proof.

The key proof idea is that the quantity bounded in Lemma B.1 is the solution to a convex optimization problem, and we can
identify the optimal point:

vopr = (1= 36) 0o + 5Cu02,.- (15)

In this section, we follow the conventions of Boyd & Vandenberghe (2004) (p 127) to describe the optimal value and optimal
point of an optimization problem. In particular, the optimal value of a minimization problem is the minimum value of the
objective function over the constraint set, while an optimal point is a point v pr in the constraint set that achieves the
optimal value. We depart from the notation of Boyd & Vandenberghe in one significant respect: we denote the optimal point
by vopr, and not v, (as we will be using the subscript * to denote the reference distribution in our optimization problem).

The first task is to establish the optimality of this solution. We proceed using the standard machinery of convex optimization,
as described by Boyd & Vandenberghe (2004): our problem satisfies strong duality, so we exhibit a dual feasible solution
with corresponding primal point given by (15). Once we have established optimality of this guess, we use several Taylor
series approximations to bound the optimal value by a polynomial in v, and (.. After establishing this series of technical
lemmas, we will prove Lemma B.1.

Lemma B.1. Let X; ~ N (u;,1) and p; ~ vy, withv, = (1 — ()0 + (<0, Let (. > 0 and v, € (0,1]. Then

min  ||F, — F,,||e > 0.0172¢. (16)
viP(p>0)<i¢.



Estimating the Number and Effect Sizes of Non-null Hypotheses

In order to show that our solution (15) to the optimization problem (16) is optimal, we need to demonstrate certain properties
of the subgradient of the objective function. In order to analyze the subgradient of an /., norm, it is first necessary to
characterize the value(s) of ¢ for which the supremum in this sup-norm is attained. Our first technical lemma computes these
maximizing values of ¢ when v is our conjectured optimal value, vopr.

Lemma B.2. Let v, € (0,1] and ¢, € (0,1]. Define
f(t) = ’1 t (1-1¢ )6—1‘2/2 + 1¢ e~ (x=27.)%/2 _ (1-¢ )e—x2/2 —¢ e~ (@=7:)?/2 4,
. /7277' o 56 3 6% * *
=)
Then
arg sup J&) =A{ts,t-}

where
ty =37 + o~ log (1 - m)
t_ = %'y* + %log (1 + m)
with sign(f(ty)) = 1 and sign(f(t_)) = —1.

Proof. We begin by arguing that we only need to consider the points at which f! (t) = 0. To find the argsup, we examine
the critical points of f(t). Note that the critical points of f(t) include all critical points of f(t), as well as points at which
f(t) = 0. Since we are interested in finding the supremum of f(¢), and since f(t) > 0 for some ¢ (because the argument to
the integral is not identically zero), we can discard any critical point at f(¢) = 0. We conclude that it suffices to examine the
critical points of f(t).

We begin by noting that lim;_, o, f (t) = limy—, oo f (t) =0, so thg supremum is not found at extreme values of ¢. This
means we only need to inspect the values of ¢ where the derivative f/(t) = 0. We compute this derivative,

~ d 1 ¢ g2 o 2 2 ()2
fl(t):%iﬂ - (1—1¢e /2+%C*6( )T (1= e 2 = e @) 2y

2
42 (4 2 _ 42 (4 2

(L= 36 e 2 4 1o et (1 - ) e/ (e

1 1 —t?/2 1 1 —(t—27.)%/2 1 —(t—v)?/2

Ec*ﬁe / +§C*ﬁ€ (t=27.)7/ *C*ﬁe (t=)"/

by the fundamental theorem of calculus. Next, we set the derivative to zero. Due to the specific coefficients in the definition

of f(t), the derivative is quadratic in ¢ and can be solved exactly,
_ 1 1 —t?/2 1 1 —(t—27.)%/2 1 —(t—+)2%/2
0*7§C*ﬁ6t/75*ﬁ6 ( v)/+c*ﬁe (t=yx)?/

- _%e*t2/2 _ %e*(t*%*)z/? 4 e~ (t=72)?/2

— 3t <_% _ Lem(atnidyz e—(—2tw*+vf)/2)

_(_ 2 _(_ 2

=-1-1le (—4t7+47)/2 | o= (=2t7475)/2

o2 1 2
= 1 _ 1.2ty=2v0 4 ot

27 2
1 o

— L L ()2 =290 o tve o — 5 E
=—3 5 (e ) e +e're 2

Solving with the quadratic equation gives

3.2 2
e =2 £ 2 y/emE — =272

t:%'y*—&-%log(li 1—e*vf)
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We have found the two extreme values of f (t), which we denote
to= 37+ Llog (14 V- %)
ty = %’y* + ,Y%log (1 —v1 76_73)
It remains to show that they are both suprema; that is, that they attain the same value.
We will show that f(t_) = — f(t). To do this, first define
g(z) == %6712/2 + %e*(fﬂ*%*)zﬂ — e (@=r)?/2
so that

_ 1 t
== [ g

The result will follow from three facts: (1) That g is symmetric about x = -, (2) That :(7*) = 0, and (3) That
£(t— +t4) = 7= We will prove each of these facts, and then use them to show that f(t_) = —f(t4).

The function g is symmetric. To show that g is symmetric about 2z = +,, we will show that g(y. + ) = g(v« — ) for all

Z.
g(yx + ) = _%e—(%ﬂ)% _ le—(v*—&-x—%*)zﬂ 4 e~ (rta—7.)?/2
_ Lt _ L a2y 2 ()2
=9(7 — @)

The function f is zero at ~,. We compute f(~, ). Our first step is a u-substitution u = x — 7,

~ Tx 2 2 2
Jom = [ e ey ey

=—o00

0
_ / Lo et)?/2 | Lem(um)?/2 2y
u

=—00

= =5 (®(7:) + P(—x)) + ©(0)
Recall that ®(0) = 1, and that ®(—t) = 1 — ®(t) for any ¢. This gives us

For) = =2 (@) 41— @(1)) + 4
1

+

o
o=

The average of roots ¢ _ and ¢ is .. We will show this fact via direct computation,

Leowe) =2 (3t 2og (14 VIZe ) (1= VIZ o))
L+ 2o (1- (1= )
= % (3% + % log (e‘”f))
1
= 5 (37* _7*)

I
2
*
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Conclusion: the two critical points ¢ and ¢, are both suprema. We will now show that ft) = —f(ty).
We begin by relating both quantities to f(~.). Recall that t_ > v, > t;.. We have

F(ts) = Fon) — C*\/% / o(z)dz

1 Y
__C*\/ﬂ/t+ g(z)dz

t_
g(x)dz

ft) =f(%<)+<*\/% 7

1 t7
Vo

Since t_ — v« = 7%« — t+ and g is symmetric about ., we conclude that

(z)dx

flty) =—f(t-

~—

The last thing we need to show is that f(t4) is positive (and, consequently, that ft_)is negative). This is a direct
consequence of the facts that f(¢) only has two critical points, that lim;_,~ f(¢) = lim;—, o f(¢) = 0 (so we know the
function crosses zero at most once, at . ), and that

F(0) = ¢ (5(0) + 3(27) — ® (7))
>0

by the concavity of ® for z > 0. Since 0 < 7, this tells us that f is positive for all £ < -y, including ¢ . This completes
our proof. O

In order to show the optimality of our conjectured vo pr, we will write down the KKT conditions for the optimization
problem (16) and find points that satisfy them. The following lemmas establish certain properties of the dual points. The
statements of Lemmas B.3 and B.4 are motivated by computations in Lemma B.5. Readers may wish to skip these two
lemmas on their first reading, and review them after understanding how they are used in the argument of Lemma B.5.

Lemma B.3. Let v, > 0. Define

Pt —x) — D(t— — 274
hz) = 2= —2) = B —27.)
Oty — ) — (4 — 274)
ty =37+ Llog (1_m)
toi= 37+ Llog(1+vi—e )
Then,
< £ i 27,
h(z){ = T=¢ ffx< g
2 1ic lf.T > 294
for c defined by
-k
T Ivk
k:= lim h(z) = e~ 3 (t==27.)2+ 5 (b4 —27.)?
T2

We note that this implies ¢ € (0, 1).
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Proof. We will prove this result by first breaking the function h into its numerator and denominator,

g(z)
f(@) = Dt —a) - D(t_ —23,)
9(@) := Oty — ) — Dty — 274)
We begin by noting that, for both f and g,
> 0if o < 27,
(@), 9(x) { = 0if & = 27,
<0ifxz > 27,

which follows from the fact that the normal CDF @ is strictly increasing.

We will show that h(x) > k when & > 2-,, and that h(z) < k when 2 < 2+,. This is equivalent to showing that
a(x) = f(z) —k-g(x) <0 YV # 27, (17)

(to show the equivalence, recall that g(x) < 0 for z < 2,). In order to show Eqn (17), it suffices to show two things: That

a(2y.) =0 (18)
and that
<0 if 279,
d@ =Y e (19)
>0 ifx <2y,

Condition (18) is satisfied because f(2v.) = ¢g(27.) = 0. To show that constraint (19) is satisfied, we will take the
derivative of a(z),

(ke—%(t+—$)2 — e_%(t*_l‘)Z) (20)
(e—%uf—%nﬁ+%a+—?wf—%@+—wf——e_%wf_wﬁ)

e=3ti—2)? o F(t-—2) >

_ Cl(t —2y.)? _ 21
me 2 <€_§(t+—2%)2 e 3 (t-—27) ey

Our goal is to prove (19), which only requires information about the sign of a’(x). Since the leading factor in (21) is positive,
we can ignore it, and it suffices to show that

e~ 3(t+—2)? em3t-—2* (<0 ifx > 29,
e_%(t-*-_Q'V*)z e—%(t_—2'y*)2 >0 ifzx< 27,

Rearranging the terms of the expression, we see that this is equivalent to showing that

>0 ifx>2v,

. (22)
<0 ifx <2y,

b(x) = (b — )2+ (- — 23.)2 — (1 —)? — (t— — 27.) {

We have b(2,) = 0, so it suffices to show that its derivative is nonnegative. We take the derivative with respect to x,

V(z) = —2(ty —x)+2(t_x)
=2(t- —1y)



Estimating the Number and Effect Sizes of Non-null Hypotheses

Since t— >t for v > 0, we see that b’(z) > 0. We conclude that b(x) satisfies (22), which implies (17). This shows the
desired result, with ¢ such that

€ e 32 (i —27)?
1-c
=k
Solving for ¢ yields ¢ = %7, as claimed. Finally, we see that & > 0, so ¢ € (0, 1), which completes the proof. 0O
Lemma B.4. Let v, > 0 and define
~ Pt —x)— Pt
o =) = 0(E)
Dty — ) — D(ty)

e = d+ L log (1— V=)
t_ = %7* + 'y% log (1 +v1- 6*7*)

where P is the standard normal CDF. Then

c
<7
h(m)_licVaz<O

for c defined by
k
ci= ——
1+k
k= lim h(z)=e 2(t-=20)" 3t —27.)°
T2

Proof. This proof proceeds similarly to the proof of Lemma B.3. We begin by rewriting the function h,

W
"= 5w
Fla) = Bt —2) — B(t_)
) i= (e, — )~ B(t)

We begin by noting that
g(x) > 0Vx <0

which follows because the CDF is an increasing function. Consequently, showing that il(x) < k for x < 0 is equivalent to
showing that

a(z) = f(z) —k-gz) <0  Vz <0
In order to prove this inequality, it suffices to show two things: that
a(0) =0
and that
a'(z) >0 Vx<0

Clearly a(0) = 0, since f(0) = 0 and §(0) = 0. To show that the derivative is positive for negative values of x, we begin by
taking the derivative,

1 ) .
W) = — (e~ t+—2)%/2 _ ~(t——2) /2)
@ =75 (

Now, we realize that the previous equation is the same as Equation (20), the derivative of a(x) in Lemma B.3. We showed
in that proof that a’(x) > 0 for all 2 < 2., so we conclude that a’(2) > 0 for all < 0. The proof is complete. O
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The next lemma is the crux of the proof of Lemma B.1. In this lemma, we find the optimal point for the optimization
problem (16).

Lemma B.5. Let (. € (0,1], v, € (0, 1], and
Ve = (1= C)0o + (b
Define
Fy(t) = Pyrw, xron(u,1) (X < 1),

where v is a probability distribution over R. Then the optimal point for the optimization problem (16) is given by

VopT = arg min ||F, — F,,

VZP(”>0)<%<* o0 ( 2< ) 0 QC 274

Proof. We will prove this statement for the case where v is a vector in the simplex A?; the continuous case can be recovered
by taking the limit as d — oo.

Let v € A% be a distribution over a discrete set of points x;, with x € R4, and 0, V«, 27« € . We will prove the conclusion
of the lemma using the tools of convex optimization: We will write down the Lagrange dual of problem (16), and present a
solution that optimizes the dual.

We begin by writing this problem in standard form,
minimize f(v)

subjectto >, v; =1
v>=0

1
Zi:xi>0 v < §C*

where v € R? and

f(v) =sup
t

1 ¢ d 2 2 2
o~ (@—wi)7/2 _ (1—C)e™® 12 _ e @172
vie )€ <€ x
V 2 /’:—ooZ ’

i=1

Since we will be relying on strong duality, we note that our problem satisfies Slater’s condition. For example, one interior
feasible point for this problem distributes iC* mass equally across entries where x; > 0, and the remaining 1 — iC* mass
on the remaining entries. Since (, > 0, this is an interior point of the feasible region.

To apply strong duality, we begin by writing the Lagrangian:

L(v, A1, A¢; Ao) = f(v) + M (Z Vi — 1) + A < > v %C*) —Agv
7 x>0
Next, we differentiate with respect to v,

VVL(Va )‘17 >‘Ca )‘O) = vl/f(’/) + >\11 + )\gli:zq‘,>0 - >‘0 (23)

We begin by noting that the gradient V,, f(v) is not always defined, but that the subgradient is.! In this case, the KKT

"We will abuse notation slightly, and use V when referring to subgradients.
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conditions say that an optimal point v pr must satisfy the following conditions:

vopr > 0

Z vopr|i] < %C*

1:x; >0
Z VOPTM =1

Ac,opr 2> 0
Xo,opr >0

A¢,OPT ( Z vopr[i] — ;Q) =0
i:x; >0
Xo;,oprvopr[i] =0 Vi

Vo L(v, A\0pT, Ac,orT; Mo.opT)|

V=VopPT

(24)
(25)
(26)

27)
(28)

(29)

(30)
€2y

To show that vo pr is indeed an optimal primal point, we will present a feasible set of dual variables that, along with vo pr,
satisfy conditions (24)-(31). By strong duality, this corresponds to an optimal primal point. We use the following v pr and

dual variables.

1—4i¢, ifz; =0

vopr(i] = 4 3¢ if o; = 2,
0 otherwise
)\I,OPT = (1 — C)q)(t,) — C(I)(tJr)
Neopr = c[B(ty) — B(ts —29.)] — (1— ) [B(t_) — Bt — 27.)]
@ty —x;) —PtL)] — (1 =) [P(t- — z;) — P(t-)] ifz; <0
Xo,opr[i]l = c[®(ty —x;) — Pt — 2v)] — (1 —¢) [®(t_ —x;) — (- — 2v,)] ifx; >0
0 ifz; =0

where we define constants depending only on 7.,

k-
1+ k
ke o3 (t+—27:)° =5 (t-—27.)?

4 = %’y*—l—%log (1—\/1—6—7*)
_3 1 —
t_ .—57*+V—*log(1+\/1—e V)

It remains to show that these variables satisfy the KKT conditions. We address each category of KKT condition below.

Primal feasibility The primal feasibility conditions (24), (25) and (26) are all clearly satisfied by our choice of

YopT-

Dual variable nonnegativity Conditions (27) and (28) require that the dual variables corresponding to inequality

constraints are nonnegative. Both conditions follow from Lemma B.3.

For condition (27), nonnegativity of A¢ o pr, note that A¢ o pr > 0 is equivalent to

¢ o 0(-) - @t —27)
L—c ™ ®(ty) = (L4 — 27)

(note the equivalence holds because the denominator of the right hand side is positive). By Lemma B.3, with x = 0, this

condition is satisfied.
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For condition (28), the constraint is clearly satisfied when z; = 0, so it remains to consider the two cases x; < 0 and z; > 0.
When z; < 0, the constraint A\g o pr[¢] > 0 is equivalent to

>
1—c ™ q)(t+ — ZL’»L) — (D(t_;,_)
By Lemma B.4, this constraint is satisfied for our chosen value of c.

When z; > 0, the constraint is clearly satisfied for x; = 2, (since A\g,opr = 0 in that case). Otherwise, the constraint is
equivalent to

c[@(ts — i) = @(t4 —27)] 2 (1 — o) [P(E- — @) — D(t— — 274)]

c

which implies the following system of inequalities for the value of =

c o Dt — ;) — P(t— — 27v4)
1—c ™ Pty —x;) — Pt — 2794)

and

¢ . Dt — ;) — P(t— — 274)
1—c ™ Pty —x;) — Pt — 2794)

if x; > 27,
By Lemma B.3, these inequalities are satisfied.

Complementary slackness The complementary slackness conditions (29) and (30) are both satisfied because of
the structure of vo pr and Ao, o p7. Condition (29) is satisfied because

1
Z vopT = §C*
i:x; >0

Condition (30) is satisfied because vo pr[i] = 0 at all but two values of 4; at those values (when z;; = 0 and x; = 27,), we
have )\07OPT M =0.

Zero is in the subgradient of the Lagrangian The KKT conditions require that zero must be in the subgradient
of the Lagrangian, evaluated at the optimal set of variables. Recall that the gradient of the Lagrangian is given by

VVL(V, /\1, )\(, /\0) = vyf(l/) + )\11 + )‘(li:mi>0 — )\0

We therefore start by computing the subgradient of the objective function f. Recall that, if f(v) = sup, f:(v) for functions
ft(v) indexed by ¢, and if Z(v) = {t € R | fi(v) = f(v)} is the set of indices for which the sup is attained, then the
subgradient of f contains the convex combination of the subgradients of the “active” functions whose indices are in Z(v),

conv U Oft(v) C Isup fi(v)
teR

teZ(v)

In our case, we have

1 ¢ d 2 2 2
fi(v) = | g v (@Bmw)7/2 _ (1—-2¢u)e ™ 12— Coem @) 2y
V271 Jom—oo

i=1

Let ¢, be a value of ¢ where the supremum is attained. We have

vuft* (V) = Vl/

1 & d 2 2 2
_— E o~ (@—zi)7/2 _ (1—C)e ™ 12 _ (e =7)7/2g
v;e e «€ T
\/277 /:700

=1

=:V,9(v, ts)
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Now, we can compute a subset of the subgradient,

1 b d 2 2 2
V. f(v) D conv sign(g(v,t4))V,—— vie~ (@i 12 (1 —¢)e /2 — e @) 2y
f0) 2eomy | sienl(nt)Veoee [ 3 (1= )12 =g

t.€T(v) i=1
= conv U sign(g(v, t4))®(t. — x)dx

t.€I(v)

Next, we evaluate this derivative at v = v pp. For our choice of vp pr, Lemma B.2 tells us the values of .,
by = %’y* + %log (1 +v1-— 6*73>

where there are two roots: ¢ sets sign(g(vopr,t+)) = 1, and t_ sets sign(g(vopr,t—)) = —1. This implies that the
subgradient evaluated at ¥ p contains the convex combination

S pB(Lts — %) + (1 p)B(1t )
2p®(ty —xi) + (1 —p)P(t- — )

Vo f(v)|
Vo fw)li]]

V=VoPT

V=VOoPT

for some p € [0, 1].

Recall that our goal is to satisfy the KKT condition (31), that zero is in the subgradient of the Lagrangian. Having found the
subgradient of the objective function, we see this corresponds to showing that

p®(ty —zi) + (1 = p)@(t- — ;) + Mopr + Acorr — Xooprli] ifzi >0

V., L(v, A A A _ i] 2 , '
( 1,0PT ¢,OPT O,OPT)’V_UOPT[ ] {p@(t+ _ xl) 4 (1 7p)@(t7 _ xl) 4 )\LOPT _ )\0,0PT[Z] lfxi S 0

=0

Choosing p = ¢ (which we know is in [0, 1] from Lemma B.3), and using the values of A\; o pr, Ac,opr and X\g o pr We
have chosen, we see that this element of the subgradient is in fact zero. This proves that our solution satisfies the final KKT
condition.

Conclusion We have proposed a set of primal and dual variables that satisfy the KKT conditions. Since our
problem satisfies the conditions of strong duality, we conclude that our choice of primal variables is optimal. O

Now, we are ready to prove Lemma B.1.

Proof. (Proof of Lemma B.1). We begin by nothing that it suffices to prove this lemma for o = 1, since o is the scale of ~,.

Lemma B.5 gives us the form of vo pr, which lets us write

min ||FV—FV*||OO:||FVOPT_FV*HOO
viP(u>0)< 3 Cx

= Sl;lp |FIJ0PT (t) - FV* (t)|

The supremum over all ¢ is lower bounded by the value at some ¢. We choose ¢t = %7* — 1, which is the first-order Taylor
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series approximation to £, from Lemma B.2. This choice lets us bound the quantity below by

3 3
o (e-1) =R (5re-1))
3 3
1 3 1 3
3 3
—1-¢)e (2% - 1) — (D (2% ~1 —%)
3 1 1
1 3 1 1
= §C* ((I) (2’}/* - 1) +& <_2’V* - 1) - 29 (2’7* - 1)> (32)

Next, we apply a Taylor series expansion to the normal CDF ®. We will take this expansion around —1, since we are
interested in the behavior for small .. Let ¢(x) be the normal PDF. We have, via a Taylor series,

>

oo

min [|F, — Fy.
viP(u>0)<1¢.

B(r) = @(~1) + 6(~1)(x +1) + 36(-1)(z + 17 + £ (e + 1P6(e)( ~ 1)

for some ¢ € [—1,z]. We are interested in approximating the CDF at = %’y* — 1, so we consider the interval
cel-1,-1+ %’y*] Since v, < 1, we have
— <)@ 1) <0
- (e —
Vo ~ -
Taylor’s remainder theorem lets us compute upper and lower bounds for the CDF on this interval. The upper bound is given
by

®(z) > min  &(-1) +¢(-1)(z +1) + %qb(—l)(a: +1)% + %(x +1)%¢(c)(c* = 1)
c€[~1,~1+3.]

(z+1)°

> B(—1) + 6(-1)(o + 1)+ oD+ 1) -
=: 0, (z)

and the lower bound is

Ba) < max @1 +0(-Dla+ 1)+ go(-D)r+ 1+ 5o+ 1% 1)

< B(-1) + G- +1) + 5o(-1)(z +1)?
= q)l(l‘)

Applying these bounds to Eqn (32), we have

1 3 1 1
min_~ ||F,—Fylleo> =G (®(Sqe—1)+® (=2 —1) =20 (27, — 1
V:P<u>0><%<*l| 2<( (27 ) ( 2" ) (27 ))
1 3 1

IV
DO |

Y

*
7 N

=
7N
O |

5

*

\
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N———
+
&
/‘\
DN | =
2
*

\
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We can further simplify this,

. 1 13
min F,—F, |l > f « | =o(—1) —
V:P(#>O)<%Cx || * || =7 C <2¢( ) 48\/ 27’(')

> 0.0172¢,

which proves the desired result. O

B.2. Estimation lower bound (Lemma 2.2)

In this section, we prove our finite sample estimation lower bound, Lemma 2.2. We begin by stating and proving the main
technical lemma we need for this lower bound, a KL divergence calculation for two e-separated hypotheses. Then, we will
prove the lower bound itself, using elements of the standard reduction from estimation to hypothesis testing.

Lemma B.6. Let distributions Py and Py be mixtures of standard Gaussians defined as
Py o (1= GIN(0,1) + GN (74, 1)
Pl : (1 7C)N(O71)+<N(’771)
where the parameters for Py satisfy v. € (0,1), « € (0, %) and the parameters for Py are given by
(=G —¢
¢

V=V
¢

so that the free parameters are 7y, . and €. Let € < %C* Then the KL divergence between Py and Py is bounded above by

KL(Py, Py) S v

Proof. We begin by bounding the KL divergence by the x2 divergence,
KL(Py, Ry) < x*(P1, By)

dP, —dPy\?
= [ (=0 4p
/ ( dPy > 0

We proceed to bound both the numerator and the denominator of the fraction. If ¢(t) = ﬁe‘tz/ 2 is the standard normal
PDF, then the denominator is bounded by

dPO - ( - C*)¢(t) + C*¢(t - 7*)
> (1= Co)e(t)
> o)

where we have used the fact that ¢, € (0, %) The numerator is bounded by
APy — dPy = (¢ — C)p(t) + Cudp(t — ) — (ot — )
= ¢(t) ((C - C*) + C*et'Y*_%'Y* — Cet’y—%ry ) )

The factor of ¢(t) is now common to both the numerator and the denominator, so they cancel. The KL divergence is now
bounded by

KL(P1, Ry) < /4 ((g — G+ Guet 3 cef%%f)? .
= [awirar,

= 4Eo[¥(X)?]
= 4((1 = G)Exono.0) [P(X)?] + GEx an(r. 1) [P(X)?]) (33)
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The next step is to bound both of these expectations. To do this, we first expand ¥(X)?. We have

U(X)? = ((—¢)* —2¢(¢ — ¢ )e'YX_E"Y + (22X v?
+20,(C = G)em X2 _occ, XA X3 mavl | (2020 Xl
Note that the random variable X only appears in the form e“X . We will evaluate the two expectations in (33) by applying

linearity of expectation, and using the moment generating function for a Gaussian random variable. As a reminder, we have

1.2

Ex~n01) [6F] = €2°
and for the shifted Gaussian,

Exon(.,1) [BCX} =Ex-N(y..1) [ec(x_'y*)ec'y*]

= QCW*EXNN(%J) [ec(X—'y*)}

— GCW*EX’NN(O,I) |:€CX,:|
— V3’
— EC’Y*+%62
Now, we are ready to evaluate the expectations in (33),
2 2
Ex~no,1) [T(X)?]] = (¢ = ¢)? = 2C(¢C = ¢) + Ce™ +20(C = G) — 20¢e™ + (Ze-
= (" —1) 2 (@ — D+ ¢ (¢ - 1) (34)
and
2 2 2 2
Exn(r..1) [(X)?] = (€= G)? = 2¢(C — G)e™ + PV 277 420, (¢ — C)e — 2(Ce® 7% 4 (2™

Our next goal is to upper bound both of these expectations, which will allow us to upper bound the KL divergence in (33).
To bound these expectations, we will use a second order Taylor series approximation to each exponential term, with a third
order remainder term. Recall the expansion of e*,

1 1
e’ = 1+m+§x2+6x366
for some ¢ between 0 and z. Applying this approximation to the exponential terms in (34) gives

1 1. .
Ex~no.1) [W(X)?]] = ¢* (72 + 574 - 67%“) — 2¢¢. (W* + 27 V2 + 6v3 v2 Cz) +¢2 (7* + 27* + 676 Cd)

for c; € [0,72], c2 € [0,77.] and c3 € [0,~2]. Given our choice of v, we have (v = (,7.. Repeated application of this
identity lets us simplify the expression above,

1 1
Ex a1 [¥(X)?]] = 3 (¢7* = &?) + 6C2 ylect — CCWS Je + Cfvf e
1 1
<5 (- 72 + +5¢ emax(e1,e2,s) (3 _ ¢ ~3)°
1 1
=5 (P =6+ g (P - 6d)’

where in the last line we have used the fact that v > ... Our next goal is to show that the second term, which comes from
Taylor’s remainder theorem, is negligible compared to the first term. To start, note that we can bound 2 above by an
absolute constant,

gl —732’;
e
<&
<9
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because we required (, — ¢ < %C*, which implies that % < 3. Next, we argue that the second term is of a smaller order
than the first,

(C'YS - <*73)2 = (§*727* - C*’YE)Q
=2 (v -12)”
=2 (v + 1) (y = 1)?

2
= (2 ((%Cg + %)y — %«))

= 292 (4va(y — 1))
< 16292 (u(y — 1))
= 160272 (v —)*
=16 (G — G2’
=16 (¢7* ~ ¢22)°

We conclude that the expectation can be bounded above in order by just the first term,

Exno1) [T(X)?])] < e (¢ - C*WE)Z

2
= ()

< eyl

Next, we argue that the second expectation in (33), Ex.r(,,,1)[¥(X)?], is of the same order. Once we show this, then
we can conclude that a linear combination of the two terms is also of that order. We begin, as before, with a Taylor series
expansion.

Exn(r.1) [W(X)?] = (€= ¢)? = 2¢(¢ = ¢ (1 + 77 + %7273 + év?’vfeCl)

1 1 .
+¢? (1 V2% + 5 (P 297)° + 2 (0 + 27’7*)3e°2>

[=p}

1 1
+2¢ (¢ — ¢ (1 +92+ 5%‘5 - 6%?6*’)

1 1 .
—2(Cs (1 + 297 92+ 5@ + D) + 5217+ v2)3e 4)
9, 27
+¢ (1 +3 o+ 6%‘2’665)

The first and second terms from each Taylor series expansion cancel, as a consequence of our choice of . The third order
terms combine, again through repeated application of the identity (v = (.4, to give the following expression,

1 s 1 L1 .
Exonrn [B(X)7] =5 (¢r* =€) - 34— G ydes + 54“2(72 + 297.)%e™

1 ) 1 27 B
+ gC*(C - C*)'Yfecd - gCC*(ZY'Y* + 73)3604 + 6 f,yfeco

Just like when we bounded the earlier expectation, we note that each of these constants c¢; is in fact an absolute constant.
Once again, this lets us bound the remainder terms by ¢(¢v3 — (,72)?2, which we know is smaller in order than the first term
above. We conclude that

EXNN('V*J) [\D(X)z} < (C’Y2 - C*Vf)z

2
:gﬁ<@%s>

< 9e24}
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Finally, we substitute these bounds on the expectations into our bound for the KL divergence, (33),

KL(P,Py) <4((1— C*)]EX~N(O 1)[‘1’(X)2] + GEx N (., [ (X)?])
5 ( )E P)/* + C*E 7*
<¢g?

7

which completes the proof.

Now, we state and prove the lower bound, Lemma 2.2.

Proof. Proof of Lemma 2.2. We begin by noting that it suffices to prove the lemma for o = 1, since o is the scale of the
variable 7.

We will prove a minimax lower bound on the number of samples taken by any estimator that estimates ¢ within accuracy &
over the set A., with constant probability. We will use a portion of the standard reduction from estimation to hypothesis
testing, as can be found in (Tsybakov, 2009). Specifically, we will prove the statement

inf sup P(
Cn (C7)EAL

)~ 2e) et
Applying the argument found in Section 2.2 of Tsybakov (2009), along with Theorem 2.2 of the same, we have the bound

inf sup IE”(

Zn(X) _ C‘ > 5) > 16—”KL(P17P0)
&n (Cy)EAL 2

where Py and P; are any two parameterizations in A.. Choose parameterizations

Co € (C* —2¢,( + 25)
Yo € (%%a %%)
Py = P(¢o,70)

=P (Co — &% Coci 6)

We note that both Py and P are in A, due to the constraint € € (0, %C*) Furthermore, by Lemma B.6, we have a bound on
the KL divergence between Py and P;. We substitute this into our minimax bound,

inf sup ]P’(
Cn (C,V)EAE

Ga(X) = ¢| 2 ) Zeeme

This bound holds for any choice of (g, o) in the ranges described above. But note that, for every (g, o) in this range, the
bound is of the same order, specifically

inf sup ]P’(
Cn (Ca"/)eAs

Ga(X) = ¢| 2 e) Zee .

We conclude that any estimator claiming, with constant probability, to estimate ¢ with accuracy better than € over A, and in
particular on the instance ((,, 7. ), must take at least

™
N

2

*

samples. O
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Algorithm 1 Binary search to return Zn

Input: Confidence level o, n samples {X;}?_;, and threshold ~y
Result: ¢, a lower bound estimate on the number of discoveries above threshold ~y

e . log (2
Initialize i,min = 0, Gmaz = M Tamn = \/ %

while i, — Umin > 1do
iavg — LGmﬂgzme
C = Z’avg/n N
Compute test statistic 7'(X; (,) = min,eg(c ) [|[Fn — Folloo
if T(X;(,7y) > Ta.n then
// Reject the null hypothesis, conclude there is at least ( mass above
Lmin = iavg
else
Umax = Z.owg
end if
end while
return (,,

C. Experimental Details and Algorithm Implementation
C.1. Implementation

We implemented our estimator in Python. Instead of directly optimizing Eqn (2), which we found lacked robustness, we
determined the value of al () via binary search on the unit interval. The algorithm is shown below. At each stage of binary
search, the algorithm performs a hypothesis test to decide whether there is ( mass above 7. The hypothesis test is identical
to the constraint in Eqn (2) and the set S({,vy) € S({’,v) for ¢ < ¢/, so this method yields the same results as direct
optimization. The optimization was solved using CVXPY (Diamond & Boyd, 2016; Agrawal et al., 2018), with the ECOS
solver and default parameters.

C.2. Code availability and computing infrastructure

Code implementing our estimator in Python is available at https://github.com/jenniferbrennan/
CountingDiscoveries/. We also provide the data from Hao et. al (2008) as a tab-delimited file, to facilitate
experiments on their data. Please see the associated README file for an explanation of the data, and an example of loading
the data into Python. Experiments were run on an Ubuntu server with 56 cores and 64 GB of RAM.

C.3. Experimental details for Poisson and Binomial experiments

In the Poisson experiment, we took p = 1 as the null hypothesis and drew n = 100, 000 examples with mean parameters
Ai ~0.801 +0.2(8(a = 2,b = 5) x5+2) (i.e., the alternates means were from a scaled and shifted Beta distribution). In the
binomial experiment, we took n = 100, 000 examples with means drawn from 0.909.5 + 0.1(8(a = 2,b = 5) * 0.5 + 0.5)
and generated test statistics with ¢ = 20 trials per binomial random variable. Given that P(X; = 20) = 9 - 107, while the
Bonferroni-adjusted critical value for a test at the 0.05 level is 5 - 10~7, none of the alternate hypotheses in the binomial
could be rejected under a FWER guarantee.

D. Additional Figures Comparing our Estimator to Baselines

Figure 8 compares our estimator to three other estimators for this problem (including only baselines which are guaranteed
not to overestimate). The observations are drawn X; ~ N (;, 1), with p; ~ 0.95¢ + 0.19,, . We plot the performance of
each estimator as a function of the alternate mean +y,., for three values of n (the number of X; drawn), and two different
thresholds. In the settings tested, our estimator gets closest to the true , while never overestimating it. Furthermore, our
estimator improves as n increases, while the other estimators do not.
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Figure 8. Our estimator compares favorably against the three other methods that satisfy our constraint (¢(y) < (., (v) with high
probability).



