
 
               1                                                                 Copyright © 2020 by ASME  

Proceedings of the ASME 2020 
 International Design Engineering Technical Conferences  
& Computers and Information in Engineering Conference 

IDETC/CIE 2020 
August 16-19, 2020, St. Louis, MO, USA 

DETC2020-19932 
Multi-Context Generation in Virtual Reality Environments using Deep Reinforcement 

Learning 

James Cunningham1, Christian Lopez2, Omar Ashour3, Conrad S. Tucker1,4 

 

1Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 
2Computer Science & Mechanical Engineering, Lafayette College, Easton, PA 

3Industrial Engineering, The Pennsylvania State University, Erie, PA 
4Machine Learning, Carnegie Mellon University, Pittsburgh, PA 

ABSTRACT 
In this work, a Deep Reinforcement Learning (RL) 

approach is proposed for Procedural Content Generation 
(PCG) that seeks to automate the generation of multiple related 
virtual reality (VR) environments for enhanced personalized 
learning. This allows for the user to be exposed to multiple 
virtual scenarios that demonstrate a consistent theme, which is 
especially valuable in an educational context. RL approaches 
to PCG offer the advantage of not requiring training data, as 
opposed to other PCG approaches that employ supervised 
learning approaches. This work advances the state of the art in 
RL-based PCG by demonstrating the ability to generate a 
diversity of contexts in order to teach the same underlying 
concept. A case study is presented that demonstrates the 
feasibility of the proposed RL-based PCG method using 
examples of probability distributions in both manufacturing 
facility and grocery store virtual environments. The method 
demonstrated in this paper has the potential to enable the 
automatic generation of a variety of virtual environments that 
are connected by a common concept or theme. 

 
 
1. INTRODUCTION 

 
The National Academy of Engineering (NAE) Grand 

Challenges of (i) advance personalized learning and (ii) 
enhance virtual reality, have the potential to transform the 
manner in which STEM education is taught and STEM 
contexts are experienced [1], [2]. However, a fundamental 
bottleneck that needs to be overcome is the creation of content 
in order to personalize the learning experience. A common 
misconception in today’s society is that all VR experiences are 
created equal. However, in addition to the costs of the devices 
come the labor costs associated with actual content creation for 

the VR experiences. While the costs of VR headsets have seen 
a steady price decrease over the years, the cost of labor for VR 
content creation has not. For example, the consumer version of 
the Oculus Rift that was launched in mid-2016 had an original 
selling price of $599 [3]. Less than two years later, an updated 
version of the Oculus Rift with higher specs had a selling price 
of $399 [4]. Unfortunately, there is still a significant amount of 
manual labor needed to create VR experiences, especially as 
the complexity and fidelity of the VR experience increases. 

Procedural Content Generation (PCG) has been proposed 
as an approach to overcome the costs and scalability challenges 
of content creation in VR [5]–[9]. Using this approach, content 
is generated algorithmically, which has the potential to adapt 
to users’ needs. While PCG methods have shown promise, one 
of the fundamental challenges is the generation of diverse 
contexts that meet the needs of a diverse student base. This is 
of particular importance in the engineering education domain 
wherein a given concept (e.g., probability distributions), could 
be introduced in one course but have multiple causal 
implications in the knowledge learned in subsequent courses 
and ultimately, the workforce.  

The proposed method advances state of the art in PCG by 
enabling the generation of multiple contexts that have the same 
underlying STEM conceptual content being delivered. For 
example, given the STEM concept of probability distributions, 
the algorithm learns how to represent a VR experience that 
teaches probability distributions in one contextual domain 
(e.g., a manufacturing facility layout), and demonstrates the 
same concept of probability distributions in a different 
contextual domain (e.g., a grocery store) having different 
environmental variables and constraints. The fundamental 
challenge in solving this problem is the diversity of variables 
and constraints that exist across different contexts that an 
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automated system must learn in order to demonstrate the 
generalizability of context representations. 

 
2. LITERATURE REVIEW 

 
2.1 Virtual Reality in Education 

Virtual Reality (VR) is a technology that has been used in 
a wide range of applications outside entertainment, such as 
education, training, and manufacturing [10], [11]. VR 
technology has shown positive impacts on the education and 
learning process [12], [13]. There are many advantages to using 
VR in education [13], [14]. The ability of users to interact with 
virtual objects in real-time, and the feeling of presence that 
creates a “first-person” experience offered by VR [15], [16], 
make it a better learning tool in some dimensions, when 
compared to traditional learning environments [17], [18]. 
Researchers define presence as “the subjective experience of 
being in one place or environment, even when one is physically 
situated in another” [19, p. 225]. Thus, VR provides the 
opportunity to implement experiential learning, which has the 
potential to improve students’ motivation and engagement 
[20]. In addition to improving students’ engagement, studies 
have reported that VR use has resulted in a better learning 
performance on a variety of learning activities [21], [22].  

The recent advancements in VR hardware technology and 
the steady decrease in the cost of the VR devices, has made the 
equipment more economically accessible to users. However, 
creating meaningful VR experiences is still a major barrier due 
to the manual labor needed to create virtual environments. The 
problem becomes more pronounced as the complexity and 
fidelity requirements increase. While VR systems offer many 
advantages, including the potential of improving users’ 
engagement, there are many factors that impact their user 
experience (UX) [23]. UX can be influenced by the 
characteristics of the virtual environment [21], [24]. In 
addition, studies have shown that novelty effects exist with VR 
applications and is one of the reasons why many VR 
applications initially have positive effects that are not sustained 
over time [25], [26].  

Given the value of VR and the current state of how VR 
content is created, there is a need for an approach that is 
capable of generating multiple contexts of a VR environment 
that have the same underlying pedagogical content. This work 
extends the previous work of the authors [7], [9] by 
generalizing a Deep RL-based PCG method for multiple-
contextual immersive VR learning environments. Each 
environment is built to deliver the same underlying 
pedagogical concept. The method has the potential to reduce 
the barriers of creating VR content and could potentially help 
solve the issues associated with novelty effects, which may 

lead to better user engagement over time. Motivation and 
engagement can directly impact the overall learning process 
[27]–[29]. Hence, this approach will also facilitate the 
development of personalized and adaptive learning 
applications to improve the learning process.  

 
2.2 Procedural Content Generation 
 For decades, Procedural Content Generation (PCG) has 
been used by the gaming industry to automatically create 
content [30]–[32]. PCG employs different algorithms and 
methods to generate digital content and has taken advantage of 
recent advancements in Artificial Intelligence (AI) and 
Machine Learning (ML) [33], [34]. For example, Mario AI 
(marioai.org) is a framework that integrates AI algorithms into 
PCG methods to generate new environments for Super Mario 
Bros [35]. Algorithms such as Deep Convolutional Generative 
Adversarial Networks [36], Deep Reinforcement Learning 
[37], and recently, Generative Playing Networks [38] have 
been used to automatically generate game content. 

Despite the fact that PCG methods are extensively used for 
gaming purposes [33], the use of PCG methods is rarely used 
in the education and training fields [39], [40]. For example, 
researchers developed a firefighting training application that 
takes advantage of PCG methods [41]. The application is able 
to generate new firefighting scenarios such as different 
buildings that are partly collapsed to provide training for the 
required skill level. Another example involves a learning 
application to teach fractional arithmetic [42]. The application 
utilizes a PCG method that implements a constrained-focused 
generator design to create multiple levels within the 
application. Similar to this application, a PCG method and 
gamification were used to improve students’ engagement in 
learning math [43].  

Player Modeling and a metaheuristic-search PCG approach 
were combined in a serious game application [44]. The PCG 
method was based on a Neural Network (NN) and used to 
predict the distribution fairness of the players. This application 
clearly shows the value of using PCG methods in guiding 
learners in achieving specific learning objectives. A recent 
study suggested a PCG framework based on a genetic 
algorithm approach [45]. The approach can be used for 
educational game applications in which the generation process 
can be controlled based on the desired learning objectives and 
preferences. Another study used a data-driven PCG method 
based on Genetic and Support Vector Machine algorithms in a 
language learning application [39]. The approach was more 
effective in generating content that matches the individual’s 
performance target, compared to a heuristic-based approach.  

The abovementioned studies demonstrate the applicability 
and benefits of using PCG in educational and training 
applications. Researchers have started integrating ML and 

http://www.marioai.org/
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data-driven approaches into PCG methods. However, current 
Supervised ML PCG methods need some datasets to train their 
models [39], [44], [45]. These training datasets need to be 
generated a priori. Nonetheless, the generation process of this 
content could involve significant time and resources [45]–[47].  

In light of these limitations, the authors of this work 
introduced an RL-based PCG method to generate new 3D 
virtual environments [7], [9]. The results of the case study 
indicate that the method was capable of generating new virtual 
manufacturing environments with different locations and 
orientations of several virtual objects. While the previous work 
supports the capability of using RL algorithms to generate new 
virtual environments, it was not shown that the PCG method 
was capable of generating a diversity of contexts. Hence, this 
paper extends the authors’ previous work by demonstrating the 
ability of the proposed Deep RL-based PCG method to 
generate a diversity of contexts in order to teach the same 
underlying pedagogical concept. The case study presents 
examples of statistical distributions being generated by the 
proposed method in both manufacturing facility and grocery 
store virtual environments. 
 
2.3 Reinforcement Learning 

Reinforcement Learning (RL) can be defined as a Markov 
Decision Processes in which the RL agent is connected to a 
simulation environment through multiple sensory inputs. Since 
it is connected to a simulation environment, RL methods do not 
require a training dataset, compared to traditional supervised 
ML algorithms [48]. The simulation environments offer a way 
to generate and test complex situations and tasks. The RL agent 
aims to choose the actions that maximize the long-run reward. 
In the process, the RL agents “learn” the preferred action 
policy using a process that resembles trial and error through 
simulation [49]. RL methods reduce the challenges of solving 
learning control problems when compared to traditional 
supervised ML algorithms and dynamic programming 
optimization methods [50]. RL methods do not require 
additional training when there are changes in the environments. 
This is because RL methods focus on generating an action 
policy that can adapt to changes in the problem space, which is 
not the case for most optimization methods. Recently,  
researchers have also trained agents using Deep RL methods to 
perform tasks as complex as tasks performed by humans (e.g., 
puzzles, Atari games, the Chinese game of Go) [51]–[53].  

In the context of educational systems, RL has been used to 
personalized narrative-centered applications [54]. Similarly, 
multi-armed bandit computational formalism, resembling the 
Deep RL framework, as well as Long-Short Term Memory 
Networks approaches, were proposed as a method to generate 
new training scenarios for the Army [55]. In the context of 

video games, Deep RL has also been used for automatically 
generating new game levels and digital content [37], [56], [57]. 

TABLE 1: SUMMARY OF EXISTING WORKS 

Reference Meta-
Heuristics 

Supervised 
ML RL Learning 

Context VR 

[30]–[32], 
[34], [36]–

[38], [57], [58] 
 X  

 
 

[41] [42] [43] 
[44] [45] X   

 
 

single 
 

[39]  X  single  
 

[7], [9]*   X  
single 

X 

This work   X multiple X 
* Author’s previous work 

 
The trend of integrating ML algorithms into PCG methods 

is on the rise. Table 1 shows a summary of related studies 
focusing on the use of PCG methods. Many studies have started 
to apply PCG methods in learning applications, while many 
existing studies have focused on using PCG methods in the 
gaming field. Nonetheless, studies related to learning 
applications have focused on using meta-heuristics. Moreover, 
the focus was not on automatically generating content for VR 
learning applications.  

To reap the advantages of both PCG and RL methods, this 
work extends the authors’ previous work on using a PCG 
method based on a Deep RL approach to automatically 
generate new environments for VR learning applications. The 
work presented in this paper seeks to add robustness to the prior 
work presented in [7], [9]. The previous work focused on 
generating multiple virtual environments for a simulated 
manufacturing system to teach the same underlying concepts. 
This work focuses on generating multiple contexts not only for 
a manufacturing system but also for a service system (i.e., 
grocery store). The different environments create a diverse set 
of variables and constraints. The authors hypothesize that the 
presented approach will be used to potentially improve and 
maintain students’ engagement and motivation over time by 
providing new immersive VR environments that offer 
experiential learning experiences and hence potentially 
reducing the novelty effect. Engaging experiential learning 
experiences through immerse environments have positive 
impacts on the learning process [20], [27]–[29]. 

 
3. METHOD 

 
This work introduces a Deep RL approach to PCG that is 

able to generate virtual environments of multiple contexts that 
are connected by an overarching theme. The method is able to 
dynamically accept input from the user that dictates what 
context the agent should generate and certain parameters of the 
environment for that context, and build an environment which 
has been validated via simulation to satisfy these parameters. 
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Figures 1 shows a user interacting with the virtual environment 
and Figure 2 outlines the proposed approach. 

 

 
Figure 1: USER INTERACTING WITH THE 

MAMUFACTURING VIRTUAL ENVIRONMENT 

The agent’s decision is framed as a one-step Markov 
Decision Process (MDP) because the parameters that influence 
the agent’s decisions (i.e., user provided parameters) are not 
dependent on any of the agent’s previous decisions. Another 
term for a one-step MDP in the RL literature is a Contextual 
Multi-Armed Bandit (CMAB). The Multi-Armed Bandit 
problem in RL is inspired by the problem of deciding the best 
slot machine (or one-armed bandit) to play, assuming that 
different machines or “arms” have different payoffs, but that 
the agent must learn to estimate these payoffs through trial and 
error. A CMAB adds the complexity that the payoffs change for 
each arm over time, and the agent observes some side 
information that is helpful for determining what the arm’s 
payoff at that time will be. Thus, the agent must learn the best 
arm to pull (or action to choose), conditioned on the 
information (or state) it observes at the time. Or equivalently, 
the agent must learn a policy, that maps its observed state to an 
action. This can be stated mathematically as: 

 
𝒂 = 𝝅(𝒔)                                                     ( 1) 

where  
• a is an action belonging to action space A 
•  s is the observed state belonging to state space S  
• π is the policy function. 

 

 
Figure 2: FLOW CHART OF PROPOSED METHOD 

In the PCG context, the action corresponds to content 
generation decisions and the state corresponds to user provided 
parameters. This work improves upon the authors’ previous 
PCG RL approach by adding robustness to multiple contexts 
by embedding context into the state space. Specifically, the 
state space in this work has the general form 

 
[𝒄, 𝜭𝟏, … , 𝜭𝑵]   ( 2) 

where 
• c is the context of the generated environment 
• ϴ are parameters that represent features of the 

generated environment that the user controls and are 
related to an overarching concept 

 
By continuously exposing the agent to multiple contexts 

and user-provided parameters during training, the agent is able 
to generate environments that take into account user-input to 
demonstrate a common concept in multiple contexts. 

An RL agent’s goal is to find an optimal policy, π*, that 
always chooses the action that maximizes the expected reward. 
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Let 𝜇𝒂|𝒔 denote the mean reward when action, a, is selected 
after observing state, s. The optimal policy is defined by: 
 

𝝅∗(𝒔) = 𝐦𝐚𝐱
𝒂

𝝁𝒂|𝒔   ( 3) 

Of the many RL algorithms that are able to solve for π*, 
the Proximal Policy Optimization (PPO) algorithm is chosen 
for this work. PPO is a Deep Learning policy gradient approach 
to solving for π*, which means that it represents the policy 
function as a Neural Network (NN) and takes advantage of the 
fact that NNs are fully differentiable to directly take the 
derivative of the policy function with respect to a loss function 
based on an estimate of the advantage function of the policy (a 
quantity which is closely tied to the expected value of the 
policy’s reward, readers are referred to [59] for more details). 
PPO is a Trust Region Policy Optimization method, which 
means that it limits the amount that a policy can deviate from 
the previous iteration’s policy. This leads to stable training 
updates which are critical to solving an RL problem. Moreover, 
PPO provides a favorable tradeoff between sample complexity, 
simplicity, and wall-time [59].   

Given that the goal of the agent is to generate an 
environment for a given context that dynamically takes into 
account user-defined parameters, the agent should be rewarded 
for how well it reflects these parameters in the environment. 
Through interactions with a simulated user input that randomly 
requests environments of different contexts and constraints, the 
agent is able to learn to generate environments across each of 
the simulated contexts that accommodate the user parameters 
to demonstrate an overarching concept. 

 

4. EXPERIMENTS 
 
The goal of the experiments in this work is to demonstrate 

the ability of the proposed method to procedurally generate 
virtual environments in multiple contexts that demonstrate a 
particular STEM concept. In this work, the concept of 
probability distributions was chosen to demonstrate the 
approach. The model is trained to generate environment 
layouts in two contexts: a manufacturing facility and a grocery 
store. The two contexts are different in many aspects such as 
the relationships between the objects in each context. The 
differences between these contexts will help demonstrate the 
robustness of the proposed approach. Sections 4.1 and 4.2 
detail the specifics of each virtual environment context, and the 
ways in which the agent is capable of manipulating these 
environments.  

The agent receives a total of 4-state space parameters from 
the user in the form [𝑐, 𝛳1, 𝛳2, 𝛳3], where c is the context 
parameter, and 𝛳1, 𝛳2, and 𝛳3 are context-dependent 
probability parameters. In this work, the context parameter is 
binary and represents the manufacturing facility when 0 and 
the grocery store when 1. In both contexts, the agent must 
generate an action vector of length 3, where each element 
contains integers on the interval [0, 2], which also have 

context-specific meanings that are described in the following 
subsections. 

All experiments were conducted on an Intel® Core™ i7-
4770K 3.50 GHz CPU and 16 GB RAM. A total of 75,000 
training iterations were performed on 32 parallel agents, for a 
total of 2.4 million virtual environment generations. The total 
training time was 20.3 minutes. Table 2 shows the mean and 
standard deviation of the reward of the virtual environments 
generated for each context of both the untrained (t=0) agent and 
trained (t=100,000) agent for 3200 generations with 
randomized user parameters. 

 

 
Figure 3: SOFTWARE ARCHITECTURE FOR 

PROPOSED METHOD 

Figure 3 shows the software architecture used to implement the 
proposed method in these experiments. The Unity real-time 
engine was chosen to implement the 3D environments, in 
conjunction with the Unity ML-Agents SDK to implement the 
Deep RL-based PCG approach using PPO [60]. The user 
interacts directly with the application hosted in Unity, which 
passes this data to the ML-Agents PPO implementation. ML-
Agents determines the environment to be generated and passes 
this information back to Unity, which it uses to realize the 
appropriate final 3D environment.  

4.1 Manufacturing Facility 
 

Figure 4 shows a virtual manufacturing line that produces 
power drills, where an injection molding press produces the 
plastic housing components. The housing components then 
cool down on a conveyor belt and are picked up by a robotic 
arm and placed in a tote. As shown in Figure 4, there are three 
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discrete positions that the agent must make decisions about 
what to place. The elements of the action vector for this context 
represent: 
 

0. Nothing 
1. A conveyor belt and a robotic arm 
2. A conveyor belt and two robotic arms 

 
Figure 4 shows two possible configurations that the agent 

could generate for this environment. Note that in the rightmost 
configuration, the robotic arm that is located at the bottom does 
not contribute towards picking up drill housings, because it is 
not connected by a conveyor belt. 
 

 
Figure 4: ILLUSTRATION OF MANUFACTURING 

ENVIRONMENT AND LAYOUT ACTIONS 

The goal of this virtual environment is to demonstrate the 
concept of a Poisson distribution, which describes the 
probability of k occurrences of an event occurring in a fixed 
interval of time or space. It has the probability mass function 
𝜆𝑘𝑒𝜆/𝑘!. For the manufacturing context, k represents the 
number of drill housings produced by the injection molding 
press per second. The state parameter 𝛳1 corresponds to λ in 
the above probability mass function and corresponds the 
average amount of drill housings produced per second. 𝛳2 
controls the speed of the conveyor belt, such that 𝛳2 is the 
amount of time taken for a drill housing to travel along the 
length of the conveyor belt in seconds. Finally, 𝛳3 specifies the 
amount of time it takes for a robotic arm to pick up a drill 
housing, place it in the tote, and be ready to pick up another 
drill housing, also in seconds.  

Thus, the agent must choose the number of robotic arms 
and conveyor belts needed to not allow any drill housings to 
land on the floor. This will be impacted by each of the three 
parameters specified by the user, as the first two will impact 
the throughput of drill housings from the injection molding 
machine, and the final parameter impacts the rate at which 
robotic arms can pick up the drill housings. If the rate is too 
low compared to the throughput, then drill housings will land 
on the floor. However, the agent is also penalized for each 

robotic arm it places, so it is incentivized to solve the problem 
with the least amount of resources possible. 

Given 𝑁 (10 in our experiments) drill housings are 
generated by the injection molding press, 𝑀 total robotic arms 
are placed by the agent, and 𝐹 drill housings dropped to the 
floor, the reward function for the context is: 

 
𝑹 = 𝑵 − 𝑴 − 𝑭   ( 4) 

 This task allows a student to dynamically visualize how a 
Poisson distribution with various parameters interact in a 
virtual environment that mimics a realistic Industrial 
Engineering application. 
 
4.2 Grocery Store 

 
Figure 5 shows the 3D virtual grocery store environment, 

where 𝑁 customers will have a shopping list that contains a 
subset of items from an overall 𝑀 possible items available in 
the grocery store. In these experiments, 𝑁 = 50 and 𝑀 = 3. 
For example, if the three possible items are pineapples, 
oranges, and bananas, each customer will have a subset of these 
three items on their shopping list. In these experiments, the 3 
possible items that can be placed are pineapples, oranges, and 
bananas. Analogous to the manufacturing setting, there are 3 
discrete positions (shelves) shown in Figure 5. For elements of 
the action vector, the agent selects one of the following: 

 
0. Pineapples 
1. Oranges 
2. Bananas 

 

 
Figure 5: ILLUSTRATION OF GROCERY STORE 

ENVIRONMENT CONTEXT 

The goal of this environment is to demonstrate the 
Bernoulli distribution, which takes the value 1 with probability 
𝑝, and 0 with probability (1 − 𝑝). The user-specified 
parameters 𝛳1-𝛳3 correspond to the parameter 𝑝 for the 
probability that each of the three grocery items will appear on 
a given customer’s shopping list. The agent has control over 
which of the 𝑀 items appears on each of the 𝑀 shelves in the 
store. The shelves may be at varying distances from the 
entrance, and a single item may appear on more than one shelf.  

The virtual customers will navigate the store to each item 
on their list and add them to their basket before checking out. 
If a customer did not find an item on their list on any shelf (e.g., 
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because the agent left some item out by placing duplicates of 
other items), then a penalty is applied for each item where this 
occurred.  

In addition to ensuring that all items are placed, the task of 
the agent is to minimize the average amount of time spent 
shopping by all customers, by deciding which items should 
appear on the closer shelves, and which items should appear on 
the more distant shelves. This reward function can be 
mathematically formulated as: 

 
𝑹 = ∑ 𝒈𝒊

𝑴
𝒊=𝟎 − ∑ 𝒕𝒋

𝑵
𝒋=𝟎   ( 5) 

 
where  

• 𝑔𝑖 is 1 if the i-th item appears on any shelf and -1 
otherwise  

• 𝑡𝑗 is the time spent shopping by the j-th customer. 
 

 Each action in the 𝑀-length action vector corresponds to 
placing an item in that position. The item placement actions 
will be informed by a state that contains the Bernoulli 
parameters for each item. For the fruit items example, if the 
Bernoulli parameters vector was 0.25, 0.5, and 0.75, 
respectively, then each customer will have pineapples on their 
list with probability of 0.25, oranges with probability of 0.5, 
and bananas with a probability of 0.75. In order to reduce the 
average amount of time spent in the store for each customer, 
the agent would want to place the bananas as close as possible 
to the entrance, and pineapples as far as possible from the 
entrance. 

 
5. RESULTS AND DISCUSSION 
 

Figure 6 shows the learning curve of the agent over the 
training iterations. The curve shows the average across all 32 
parallel generations for that training iteration, and thus contains 
a mix of generations of both contexts. For this reason, the 
absolute value of the reward is less important than the fact that 
it monotonically increases to a saturation point where the agent 
cannot further improve the policy. 

 
 

TABLE 2: REWARD OF TRAINED AND UNTRAINED 
AGENTS FOR EACH CONTEXT 

 Mfg. 
Untrained 

Mfg. 
Trained 

Grocery 
Untrained 

Grocery 
Trained 

Mean 
Reward 

2.78 7.13 
 

1.09 2.19 

STD  
Reward 

3.93 2.01 0.986 0.256 

 

 
Figure 6: LEARNING CURVE OF REWARD 

The results show that the agent is able to learn to maximize 
its reward function in multiple contexts across a diverse range 
of user input. In order to validate whether the agent achieved 
the original goal of generating environments that optimally 
exploit the user parameters, some test cases with easily verified 
solutions are visualized. Figure 7 shows the generated 
manufacturing environment for the user parameters of [3, 4, 2] 
and [1, 2, 2] on the left and right, respectively. In both cases, 
no drill housings touched the ground, but in the latter case, less 
robotic arms were utilized due to the smaller Poisson parameter 
values for the conveyor belt and the machine. This led to a 
lesser throughput of drill housings and thus the agent placed 
fewer robotic arms to optimize its reward function. 
Furthermore, there are no “stranded” conveyor belts such as the 
configuration on the right of Figure 4, where the robotic arm at 
the end does not contribute to the task. This suggests that the 
agent is able to generate the proper manufacturing environment 
given the user input, and the reward function aligns with the 
design goal of the agent. 

 

 
Figure 7: MANUFACTURING CONTEXT SAMPLE 

GENERATIONS. SPEED IS IN PARTS/SEC 
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Figure 8 shows sample grocery store generations for 
parameters of [0.16, 0.53, 0.41] and [0.78 ,0.53, 0.80]. In both 
cases, the items were placed progressively further away from 
the entrance in the order of decreasing Bernoulli parameter, 
and that all items were represented on the shelves. These 
samples suggest that the agent indeed learned to generate the 
appropriate environment based on the user input.  

 
 

Figure 8:GROCERY STORE CONTEXT SAMPLE 
GENERATIONS 

6. CONCLUSION 
Virtual Reality (VR) technology has advanced quickly in 

recent years. While VR offers many advantages that has led to 
improvements in students’ learning, motivation, and 
engagement, many studies have pointed out the impact of 
novelty effect in reducing the benefits of using VR in the 
classroom. The novelty effect might diminish individuals’ 
motivation and engagement over time if they keep interacting 
with the same virtual environment. Moreover, while advances 
in VR hardware technology have been on the rise, the extensive 
resources needed to create VR content is still a barrier that 
hinders the wide use of VR in STEM education. PCG 
approaches to content generation not only reduce the resources 
required for product development and design, but increasingly 
offer the ability to customize content for an individual’s needs. 
The application of ML in PCG advances the degree to which 
PCG can be customized over heuristic-based algorithms. 
However, there exists the drawback of requiring large datasets 
of example virtual environments to effectively generate new 
environments. In contrast, RL approaches do not require a 
dataset for training but instead, learn to generate valid 
environments through interaction with a simulation 
environment. One way to increase personalization of PCG 
methods is to allow the user to select from multiple contexts of 
environments to be generated. 

In order to achieve this goal of personalization, this work 
presents a Deep RL-based PCG algorithm for the generation of 

virtual environments that include simulation environments in 
multiple contexts that are connected by a common theme in the 
training process. The resulting PCG algorithm is able to 
robustly generate environments multiple contexts. This 
furthers the degree to which PCG can personalize content. 

The results of this work show that the proposed Deep RL-
based PCG approach is able to take users’ inputs which specify 
the parameters of probability distributions, and generate 
environments that demonstrate the underlying concept in both 
a manufacturing facility environment as well as a grocery store 
environment. However, this work addresses a simple version 
of the problem, where the context is expressed by a single 
parameter and the user input is limited to only three parameters. 
A future direction to expand this work would be to allow for 
less parameterized representation of contexts (e.g., using an 
image to represent the context) to allow for better 
generalizability.  

Additionally, the impact of the proposed approach to 
increase personalization should be studied in a real classroom 
environment to assess its impact on motivation and learning 
outcomes. This work lays the foundation for these future 
extensions that may impact the level of personalization 
possible using PCG in educational settings.  
 
ACKNOWLEDGMENTS 

This research is funded by the National Science 
Foundation NSF DUE #183446. Any opinions, findings, or 
conclusions found in this paper are those of the authors and do 
not necessarily reflect the views of the sponsors.  
 
REFERENCES 

[1] M. Miller, J. P. De Clerck, S. A. Sorby, L. M. Roberts, 
W. J. Endres, and K. D. Hale, “Meeting the NAE grand 
challenge: Personalized learning for engineering 
students through instruction on metacognition and 
motivation strategies,” ASEE Annu. Conf. Expo. Conf. 
Proc., 2013. 

[2] J. A. Bennett and C. P. Saunders, “A Virtual Tour of 
the Cell: Impact of Virtual Reality on Student Learning 
and Engagement in the STEM Classroom †,” J. 
Microbiol. Biol. Educ., vol. 20, no. 2, pp. 2–4, 2019, 
doi: 10.1128/jmbe.v20i2.1658. 

[3] J. P. Monge;, G. Lopez;, and L. A. Guerrero, 
“Advances in Human Factors and Ergonomics in 
Healthcare,” vol. 482, pp. 309–315, 2017, doi: 
10.1007/978-3-319-41652-6. 

[4] Oculus, “Oculus Rift,” 2018. . 
[5] S. Azad, C. Saldanha, C. H. Gan, and M. O. Riedl, 

“Mixed reality meets procedural content generation in 
video games,” AAAI Work. - Tech. Rep., vol. WS-16-
21-, pp. 22–26, 2016. 

[6] J. P. A. Campos and R. Rieder, “Procedural content 
generation using artificial intelligence for unique 
virtual reality game experiences,” Proc. - 2019 21st 
Symp. Virtual Augment. Reality, SVR 2019, pp. 147–



 
               9                                                                 Copyright © 2020 by ASME  

151, 2019, doi: 10.1109/SVR.2019.00037. 
[7] C. Lopez, O. Ashour, and C. Tucker, “Reinforcement 

Learning Content Generation for Virtual Reality 
Applications,” in Proceedings of the ASME 2019 
International Design Engineering Technical 
Conferences & Computers and Information in 
Engineering Conference (IDETC/CIE), 2019. 

[8] J. W. Park and S. H. Oh, “A Study on Creation and 
Usability of Real Time City Generator via Procedural 
Content Generation: - Focus on virtual reality contents 
for senior,” 2019 Int. Symp. Multimed. Commun. 
Technol. ISMAC 2019, pp. 0–3, 2019, doi: 
10.1109/ISMAC.2019.8836162. 

[9] C. E. Lopez, J. Cunningham, O. Ashour, and C. S. 
Tucker, “Deep Reinforcement Learning for Procedural 
Content Generation of 3D Virtual Environments 
(accepted manuscript),” ASME J. Comput. Inf. Sci. 
Eng., 2020, doi: 10.1115/1.4046293. 

[10] D. A. Guttentag, “Virtual reality: Applications and 
implications for tourism,” Tour. Manag., 2010, doi: 
10.1016/j.tourman.2009.07.003. 

[11] S. Choi, K. Jung, and S. Do Noh, “Virtual reality 
applications in manufacturing industries: Past 
research, present findings, and future directions,” 
Concurr. Eng. Res. Appl., 2015, doi: 
10.1177/1063293X14568814. 

[12] L. Jensen and F. Konradsen, “A review of the use of 
virtual reality head-mounted displays in education and 
training,” Educ. Inf. Technol., vol. 23, no. 4, pp. 1515–
1529, 2018, doi: 10.1007/s10639-017-9676-0. 

[13] S. Kavanagh, A. Luxton-Reilly, B. Wuensche, and B. 
Plimmer, “A systematic review of Virtual Reality in 
education,” Themes Sci. Technol. Educ., vol. 10, no. 2, 
pp. 85–119, 2017. 

[14] L. Freina and M. Ott, “A literature review on 
immersive virtual reality in education: state of the art 
and perspectives,” in Conference proceedings 
of »eLearning and Software for Education« (eLSE), 
2015, pp. 133–141, doi: 10.12753/2066-026X-15-020. 

[15] M. D. Dickey, “Brave New (Interactive) Worlds: A 
review of the design affordances and constraints of two 
3D virtual worlds as interactive learning 
environments,” Interact. Learn. Environ., vol. 13, no. 
1–2, pp. 121-137., 2005, doi: 
10.1080/10494820500173714. 

[16] L. Dawley and C. Dede, “Situated learning in virtual 
worlds and immersive simulations,” in Handbook of 
Research on Educational Communications and 
Technology: Fourth Edition, M. Spector, M. D. 
Merrill, J. Elen, and M. J. Bishop, Eds. New York: 
Springer, 2014, pp. 723–734. 

[17] O. Çalişkan, “Virtual field trips in education of earth 
and environmental sciences,” in Procedia - Social and 
Behavioral Sciences, 2011, pp. 3239–3243, doi: 
10.1016/j.sbspro.2011.04.278. 

[18] P. Barata, M. Filho, and M. Nunes, “Consolidating 

learning in power systems: Virtual reality applied to 
the study of the operation of electric power 
transformers,” IEEE Trans. Educ., vol. 58, no. 4, pp. 
255-261., 2015, doi: 10.1109/TE.2015.2393842. 

[19] B. G. Witmer and M. J. Singer, “Measuring presence 
in virtual environments: A presence questionnaire,” 
Presence Teleoperators Virtual Environ., 1998, doi: 
10.1162/105474698565686. 

[20] W. Winn, M. Windschitl, R. Fruland, and Y. Lee, 
“When Does Immersion in a Virtual Environment Help 
Students Construct Understanding ?,” in Challenge, 
2002, doi: 10.1016/j.vaccine.2008.02.054. 

[21] W. S. Alhalabi, “Virtual reality systems enhance 
students??? achievements in engineering education,” 
Behav. Inf. Technol., 2016, doi: 
10.1080/0144929X.2016.1212931. 

[22] D. Janßen, C. Tummel, A. Richert, and I. Isenhardt, 
“Towards measuring user experience, activation and 
task performance in immersive virtual learning 
environments for students,” in Communications in 
Computer and Information Science, 2016, doi: 
10.1007/978-3-319-41769-1_4. 

[23] T. A. Mikropoulos and A. Natsis, “Educational virtual 
environments: A ten-year review of empirical research 
(1999-2009),” Comput. Educ., vol. 56, no. 3, pp. 769–
780, 2011, doi: 10.1016/j.compedu.2010.10.020. 

[24] L. M. Alves Fernandes et al., “Exploring educational 
immersive videogames: an empirical study with a 3D 
multimodal interaction prototype,” Behav. Inf. 
Technol., 2016, doi: 
10.1080/0144929X.2016.1232754. 

[25] G. Tsaramirsis, S. M. Buhari, K. O. Al-Shammari, S. 
Ghazi, M. S. Nazmudeen, and K. Tsaramirsis, 
“Towards simulation of the classroom learning 
experience: Virtual reality approach,” in Proceedings 
of the 10th INDIACom; 2016 3rd International 
Conference on Computing for Sustainable Global 
Development, INDIACom 2016, 2016, pp. 1343–1346. 

[26] M. Akçayır and G. Akçayır, “Advantages and 
challenges associated with augmented reality for 
education: A systematic review of the literature,” 
Educ. Res. Rev., vol. 20, no. 1, pp. 1–11, 2017, doi: 
10.1016/j.edurev.2016.11.002. 

[27] L. Corno and E. B. Mandinach, “The Role Of 
Cognitive Engagement in Classroom Learning and 
Motivation,” Educ. Psychol., vol. 18, no. 2, pp. 88–
108, 1983, doi: 10.1080/00461528309529266. 

[28] T. Chao, J. Chen, J. R. Star, and C. Dede, “Using 
digital resources for motivation and engagement in 
learning mathematics: Reflections from teachers and 
students,” Digit. Exp. Math. Educ., vol. 2, no. 3, pp. 
253–277, 2016. 

[29] K. J. Pugh, L. Linnenbrink-Garcia, K. L. K. Koskey, 
V. C. Stewart, and C. Manzey, “Motivation, learning, 
and transformative experience: A study of deep 
engagement in science,” Sci. Educ., vol. 94, no. 1, pp. 



 
               10                                                                 Copyright © 2020 by 
ASME  

1–38, 2010, doi: 10.1002/sce.20344. 
[30] A. Summerville and M. Mateas, “Super mario as a 

string: Platformer level generation via lstms,” arXiv 
Prepr., vol. arXiv:1603, 2016. 

[31] M. Guzdial, N. Sturtevant, and B. Li, “Deep Static and 
Dynamic Level Analysis : A Study on Infinite Mario,” 
in AIIDE Workshop AAAI Technical Report WS-16-22, 
2016, pp. 31–38. 

[32] P. Shi and K. Chen, “Learning Constructive Primitives 
for Real-time Dynamic Difficulty Adjustment in Super 
Mario Bros,” IEEE Trans. Comput. Intell. AI Games, 
vol. 10, no. 2, pp. 155–169, 2018, doi: 
10.1109/TCIAIG.2017.2740210. 

[33] G. N. Yannakakis, “Game AI revisited,” in 
Proceedings of the 9th conference on Computing 
Frontiers - CF ’12, 2012, doi: 
10.1145/2212908.2212954. 

[34] A. Summerville, M. Behrooz, M. Mateas, and A. Jhala, 
“The learning of zelda: Datadriven learning of level 
topology,” in Proceedings of the FDG workshop on 
Procedural Content Generation in Games., 2015. 

[35] B. Horn, S. Dahlskog, N. Shaker, G. Smith, and J. 
Togelius, “A Comparative Evaluation of Procedural 
Level Generators in the Mario AI Framework,” in 
Foundations of Digital Games 2014, 2014, pp. 1–8. 

[36] V. Volz, S. M. Lucas, J. Schrum, A. Smith, J. Liu, and 
S. Risi, “Evolving Mario levels in the latent space of a 
deep convolutional generative adversarial network,” in 
GECCO 2018 - Proceedings of the 2018 Genetic and 
Evolutionary Computation Conference, 2018, pp. 221–
228, doi: 10.1145/3205455.3205517. 

[37] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. 
Togelius, and S. Risi, “Illuminating generalization in 
deep reinforcement learning through procedural level 
generation,” in preprint arXiv, 2018, p. 
arXiv :1806.10729. 

[38] P. Bontrager and J. Togelius, “Fully Differentiable 
Procedural Content Generation through Generative 
Playing Networks.,” Prepr. arXiv, 2020. 

[39] D. Hooshyar, M. Yousefi, M. Wang, and H. Lim, “A 
data-driven procedural-content-generation approach 
for educational games,” J. Comput. Assist. Learn., vol. 
34, no. 6, pp. 731–739, 2018, doi: 10.1111/jcal.12280. 

[40] D. Hooshyar, M. Yousefi, and H. Lim, “A systematic 
review of data-driven approaches in player modeling 
of educational games,” Artificial Intelligence Review, 
pp. 1–27, 2017. 

[41] K. Hullett and M. Mateas, “Scenario generation for 
emergency rescue training games,” in Proceedings of 
the 4th International Conference on Foundations of 
Digital Games - FDG ’09, 2009, doi: 
10.1145/1536513.1536538. 

[42] A. M. Smith, E. Andersen, M. Mateas, and Z. Popović, 
“A case study of expressively constrainable level 
design automation tools for a puzzle game,” in 

Proceedings of the International Conference on the 
Foundations of Digital Games - FDG ’12, 2012, doi: 
10.1145/2282338.2282370. 

[43] L. Rodrigues, R. P. Bonidia, and J. D. Brancher, “A 
math educacional computer game using procedural 
content generation,” in Brazilian Symposium on 
Computers in Education (Simpósio Brasileiro de 
Informática na Educação-SBIE), 2017, p. 756. 

[44] C. Grappiolo, Y. G. Cheong, J. Togelius, R. Khaled, 
and G. N. Yannakakis, “Towards player adaptivity in a 
serious game for conflict resolution,” in Proceedings - 
2011 3rd International Conferenceon Games and 
Virtual Worlds for Serious Applications, VS-Games 
2011, 2011, doi: 10.1109/VS-GAMES.2011.39. 

[45] D. Hooshyar, M. Yousefi, and H. Lim, “A Procedural 
Content Generation-Based Framework for Educational 
Games: Toward a Tailored Data-Driven Game for 
Developing Early English Reading Skills,” J. Educ. 
Comput. Res., vol. 56, no. 2, pp. 293–310, 2018, doi: 
10.1177/0735633117706909. 

[46] R. Bidarra, K. J. de Kraker, R. M. Smelik, and T. 
Tutenel, “Integrating semantics and procedural 
generation: key enabling factors for declarative 
modeling of virtual worlds,” in FOCUS K3D 
Conference on Semantic 3D Media and Content, 2010, 
doi: 10.1016/j.cag.2010.11.011. 

[47] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: 
Reactive planning and constraint solving for mixed-
initiative level design,” in IEEE Transactions on 
Computational Intelligence and AI in Games, 2011, 
doi: 10.1109/TCIAIG.2011.2159716. 

[48] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and 
A. A. Bharath, “Deep reinforcement learning: A brief 
survey,” IEEE Signal Process. Mag., vol. 34, no. 6, pp. 
26–38, 2017, doi: 10.1109/MSP.2017.2743240. 

[49] K. LP, L. ML, and M. AW, “Reinforcement learning : 
a survey,” Int J Artif Intell Res, vol. 4, pp. 237–285, 
1996. 

[50] X. Xu, L. Zuo, and Z. Huang, “Reinforcement learning 
algorithms with function approximation: Recent 
advances and applications,” Inf. Sci. (Ny)., vol. 261, pp. 
1–31, 2014, doi: 10.1016/j.ins.2013.08.037. 

[51] V. Mnih et al., “Playing atari with deep reinforcement 
learning,” arXiv Prepr., vol. arXiv:1312, 2013. 

[52] D. Silver et al., “Mastering the game of Go without 
human knowledge,” Nature, vol. 550, no. 7676, p. 354, 
2017, doi: 10.1038/nature24270. 

[53] V. Mnih et al., “Human-level control through deep 
reinforcement learning,” Nature, 2015, doi: 
10.1038/nature14236. 

[54] P. Wang, J. Rowe, W. Min, B. Mott, and J. Lester, 
“Interactive narrative personalization with deep 
reinforcement learning,” in IJCAI International Joint 
Conference on Artificial Intelligence, 2017. 

[55] J. Rowe, A. Smith, R. Pokorny, B. Mott, and J. Lester, 



 
               11                                                                 Copyright © 2020 by 
ASME  

“Toward Automated Scenario Generation with Deep 
Reinforcement Learning in GIFT.,” in Proceedings of 
the Sixth Annual GIFT Users Symposium, 2018, p. 65. 

[56] R. R. Torrado, P. Bontrager, J. Togelius, J. Liu, and D. 
Perez-Liebana, “Deep reinforcement learning for 
general video game ai,” in IEEE Conference on 
Computational Intelligence and Games (CIG), 2018, 
pp. 1–8. 

[57] N. Justesen, P. Bontrager, J. Togelius, and S. Risi, 
“Deep Learning for Video Game Playing,” IEEE 
Trans. Games, 2019, doi: 10.1109/tg.2019.2896986. 

[58] N. Shaker et al., “The 2010 mario ai championship: 
Level generation track,” IEEE Trans. Comput. Intell. 
AI Games, 2011, doi: 10.1109/TCIAIG.2011.2166267. 

[59] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and 
O. Klimov, “Proximal Policy Optimization 
Algorithms,” pp. 1–12, 2017. 

[60] A. Juliani et al., “Unity: A General Platform for 
Intelligent Agents,” pp. 1–28, 2018. 

 


