
This paper is included in the Proceedings of the

17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

Learning in situ: a randomized experiment
in video streaming

Francis Y. Yan and Hudson Ayers, Stanford University; Chenzhi Zhu,

Tsinghua University; Sadjad Fouladi, James Hong, Keyi Zhang, Philip Levis,

and Keith Winstein, Stanford University

https://www.usenix.org/conference/nsdi20/presentation/yan

Learning in situ: a randomized experiment in video streaming

Francis Y. Yan Hudson Ayers Chenzhi Zhu† Sadjad Fouladi

James Hong Keyi Zhang Philip Levis Keith Winstein

Stanford University, †Tsinghua University

Abstract

We describe the results of a randomized controlled trial of

video-streaming algorithms for bitrate selection and network

prediction. Over the last year, we have streamed 38.6 years

of video to 63,508 users across the Internet. Sessions are

randomized in blinded fashion among algorithms.

We found that in this real-world setting, it is difficult for so-

phisticated or machine-learned control schemes to outperform

a “simple” scheme (buffer-based control), notwithstanding

good performance in network emulators or simulators. We

performed a statistical analysis and found that the heavy-tailed

nature of network and user behavior, as well as the challenges

of emulating diverse Internet paths during training, present

obstacles for learned algorithms in this setting.

We then developed an ABR algorithm that robustly outper-

formed other schemes, by leveraging data from its deployment

and limiting the scope of machine learning only to making

predictions that can be checked soon after. The system uses

supervised learning in situ, with data from the real deployment

environment, to train a probabilistic predictor of upcoming

chunk transmission times. This module then informs a classi-

cal control policy (model predictive control).

To support further investigation, we are publishing an

archive of data and results each week, and will open our ongo-

ing study to the community. We welcome other researchers to

use this platform to develop and validate new algorithms for

bitrate selection, network prediction, and congestion control.

1 Introduction

Video streaming is the predominant Internet application, mak-

ing up almost three quarters of all traffic [41]. One key al-

gorithmic question in video streaming is adaptive bitrate

selection, or ABR, which decides the compression level se-

lected for each “chunk,” or segment, of the video. ABR al-

gorithms optimize the user’s quality of experience (QoE):

more-compressed chunks reduce quality, but larger chunks

may stall playback if the client cannot download them in time.

In the academic literature, many recent ABR algorithms use

statistical and machine-learning methods [4, 25, 38–40, 46],

which allow algorithms to consider many input signals and

try to perform well for a wide variety of clients. An ABR

decision can depend on recent throughput, client-side buffer

occupancy, delay, the experience of clients on similar ISPs or

types of connectivity, etc. Machine learning can find patterns

in seas of data and is a natural fit for this problem domain.

However, it is a perennial lesson that the performance of

learned algorithms depends on the data or environments used

to train them. ML approaches to video streaming and other

wide-area networking challenges are often hampered in their

access to good and representative training data. The Inter-

net is complex and diverse, individual nodes only observe a

noisy sliver of the system dynamics, and behavior is often

heavy-tailed and changes with time. Even with representative

throughput traces, accurately simulating or emulating the di-

versity of Internet paths requires more than replaying such

traces and is beyond current capabilities [15, 16, 31, 45].

As a result, the performance of algorithms in emulated envi-

ronments may not generalize to the Internet [7]. For example,

CS2P’s gains were more modest over real networks than in

simulation [40]. Measurements of Pensieve [25] saw narrower

benefits on similar paths [11] and a large-scale streaming

service [24]. Other learned algorithms, such as the Remy

congestion-control schemes, have also seen inconsistent re-

sults on real networks, despite good results in simulation [45].

This paper seeks to answer: what does it take to create a

learned ABR algorithm that robustly performs well over the

wild Internet? We report the design and findings of Puffer1,

an ongoing research study that operates a video-streaming

website open to the public. Over the past year, Puffer has

streamed 38.6 years of video to 63,508 distinct users, while

recording client telemetry for analysis (current load is about

60 stream-days of data per day). Puffer randomly assigns each

session to one of a set of ABR algorithms; users are blinded

to the assignment. We find:

1https://puffer.stanford.edu

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 495

In our real-world setting, sophisticated algorithms based

on control theory [46] or reinforcement learning [25]

did not outperform simple buffer-based control [18]. We

found that more-sophisticated algorithms do not necessarily

beat a simpler, older algorithm. The newer algorithms were

developed and evaluated using throughput traces that may not

have captured enough of the Internet’s heavy tails and other

dynamics when replayed in simulation or emulation. Training

them on more-representative traces doesn’t necessarily re-

verse this: we retrained one algorithm using throughput traces

drawn from Puffer (instead of its original set of traces) and

evaluated it also on Puffer, but the results were similar (§5.3).

Statistical margins of error in quantifying algorithm per-

formance are considerable. Prior work on ABR algorithms

has claimed benefits of 10–15% [46], 3.2–14% [40], or 12–

25% [25], based on throughput traces or real-world experi-

ments lasting hours or days. However, we found that the em-

pirical variability and heavy tails of throughput evolution and

rebuffering create statistical margins of uncertainty that make

it challenging to detect real effects of this magnitude. Even

with a year of experience per scheme, a 20% improvement in

rebuffering ratio would be statistically indistinguishable, i.e.,

below the threshold of detection with 95% confidence. These

uncertainties affect the design space of machine-learning ap-

proaches that can practically be deployed [13, 26].

It is possible to robustly outperform existing schemes by

combining classical control with an ML predictor trained

in situ on real data. We describe Fugu, a data-driven ABR

algorithm that combines several techniques. Fugu is based

on MPC (model predictive control) [46], a classical control

policy, but replaces its throughput predictor with a deep neural

network trained using supervised learning on data recorded in

situ (in place), meaning from Fugu’s actual deployment envi-

ronment, Puffer. The predictor has some uncommon features:

it predicts transmission time given a chunk’s file size (vs. esti-

mating throughput), it outputs a probability distribution (vs. a

point estimate), and it considers low-level congestion-control

statistics among its input signals. Ablation studies (§4.2) find

each of these features to be necessary to Fugu’s performance.

In a controlled experiment during most of 2019, Fugu

outperformed existing techniques—including the simple

algorithm—in stall ratio (with one exception), video qual-

ity, and the variability of video quality (Figure 1). The im-

provements were significant both statistically and, perhaps,

practically: users who were randomly assigned to Fugu (in

blinded fashion) chose to continue streaming for 5–9% longer,

on average, than users assigned to the other ABR algorithms.2

Our results suggest that, as in other domains, good and

representative training is the key challenge for robust perfor-

mance of learned networking algorithms, a somewhat differ-

ent point of view from the generalizability arguments in prior

2This effect was driven solely by users streaming more than 3 hours of

video; we do not fully understand it.

Results of primary experiment (Jan. 26–Aug. 7 & Aug. 30–Oct. 16, 2019)

Algorithm Time stalled Mean SSIM SSIM variation Mean duration
(lower is better) (higher is better) (lower is better) (time on site)

Fugu 0.13% 16.64 dB 0.74 dB 33.6 min

MPC-HM [46] 0.22% 16.61 dB 0.79 dB 30.8 min

BBA [18] 0.19% 16.56 dB 1.11 dB 32.1 min

Pensieve [25] 0.17% 16.26 dB 1.05 dB 31.6 min

RobustMPC-HM 0.12% 16.01 dB 0.98 dB 31.0 min

Figure 1: In an eight-month randomized controlled trial with

blinded assignment, the Fugu scheme outperformed other

ABR algorithms. The primary analysis includes 637,189

streams played by 54,612 client IP addresses (13.1 client-

years in total). Uncertainties are shown in Figures 9 and 11.

work [25, 37, 44]. One way to achieve representative training

is to learn in place (in situ) on the actual deployment envi-

ronment, assuming the scheme can be feasibly trained this

way and the deployment is widely enough used to exercise a

broad range of scenarios.3 The approach we describe here is

only a step in this direction, but we believe Puffer’s results

suggest that learned systems will benefit by addressing the

challenge of “how will we get enough representative scenar-

ios for training—what is enough, and how do we keep them

representative over time?” as a first-class consideration.

We intend to operate Puffer as an “open research” project

as long as feasible. We invite the research community to train

and test new algorithms on randomized subsets of its traf-

fic, gaining feedback on real-world performance with quanti-

fied uncertainty. Along with this paper, we are publishing an

archive of data and results back to the beginning of 2019 on

the Puffer website, with new data and results posted weekly.

In the next few sections, we discuss the background and

related work on this problem (§2), the design of our blinded

randomized experiment (§3) and the Fugu algorithm (§4),

with experimental results in Section 5, and a discussion of

results and limitations in Section 6. In the appendices, we

provide a standardized diagram of the experimental flow for

the primary analysis and describe the data we are releasing.

2 Background and related work

The basic problem of adaptive video streaming has been the

subject of much academic work; for a good overview, we refer

the reader to Yin et al. [46]. We briefly outline the problem

here. A service wishes to serve a pre-recorded or live video

stream to a broad array of clients over the Internet. Each

client’s connection has a different and unpredictable time-

varying performance. Because there are many clients, it is not

feasible for the service to adjust the encoder configuration in

real time to accommodate any one client.

3Even collecting traces from a deployment environment and replaying

them in a simulator or emulator to train a control policy—as is typically

necessary in reinforcement learning—is not what we mean by “in situ.”

496 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm Control Predictor Optimization goal How trained

BBA classical (linear control) n/a +SSIM s.t. bitrate < limit n/a

MPC-HM classical (MPC) classical (HM) +SSIM, –stalls, –∆SSIM n/a

RobustMPC-HM classical (robust MPC) classical (HM) +SSIM, –stalls, –∆SSIM n/a

Pensieve learned (DNN) n/a +bitrate, –stalls, –∆bitrate reinforcement learning in simulation

Fugu classical (MPC) learned (DNN) +SSIM, –stalls, –∆SSIM supervised learning in situ

Figure 5: Distinguishing features of algorithms used in the primary experiment. HM = harmonic mean of last five throughput

samples. MPC = model predictive control. DNN = deep neural network.

Sessions are randomly assigned to serving daemons. Users

can switch channels without breaking their TCP connection

and may have many “streams” within each session.

Puffer is not a client-side DASH [28] (Dynamic Adaptive

Streaming over HTTP) system. Like DASH, though, Puffer is

an ABR system streaming chunked video over a TCP connec-

tion, and runs the same ABR algorithms that DASH systems

can run. We don’t expect this architecture to replace client-

side ABR (which can be served by CDN edge nodes), but we

expect its conclusions to translate to ABR schemes broadly.

The Puffer website works in the Chrome, Firefox, Edge, and

Opera browsers, including on Android phones, but does not

play in the Safari browser or on iOS (which lack support for

the Media Source Extensions or Opus audio).

3.3 Hosting arbitrary ABR schemes

We implemented buffer-based control (BBA), MPC, Ro-

bustMPC, and Fugu in back-end daemons that serve video

chunks over the WebSocket. We use SSIM in the objective

functions for each of these schemes. For BBA, we use the

formula in the original paper [18] to decide the maximum

chunk size, and subject to this constraint, the chunk with the

highest SSIM is selected to stream. We also choose reservoir

values consistent with our 15-second maximum buffer.

Deploying Pensieve for live streaming. We use the released

Pensieve code (written in Python with TensorFlow) directly.

When a client is assigned to Pensieve, Puffer spawns a Python

subprocess running Pensieve’s multi-video model.

We contacted the Pensieve authors to request advice on

deploying the algorithm in a live, multi-video, real-world set-

ting. The authors recommended that we use a longer-running

training and that we tune the entropy parameter when training

the multi-video neural network. We wrote an automated tool

to train 6 different models with various entropy reduction

schemes. We tested these manually over a few real networks,

then selected the model with the best performance. We mod-

ified the Pensieve code (and confirmed with the authors) so

that it does not expect the video to end before a user’s session

completes. We were not able to modify Pensieve to optimize

SSIM; it considers the average bitrate of each Puffer stream.

We adjusted the video chunk length to 2.002 seconds and the

buffer threshold to 15 seconds to reflect our parameters. For

training data, we used the authors’ provided script to generate

1000 simulated videos as training videos, and a combination

of the FCC and Norway traces linked to in the Pensieve code-

base as training traces.

3.4 The Puffer experiment

To recruit participants, we purchased Google and Reddit ads

for keywords such as “live tv” and “tv streaming” and paid

people on Amazon Mechanical Turk to use Puffer. We were

also featured in press articles. Popular programs (e.g. the 2019

and 2020 Super Bowls, the Oscars, World Cup, and “Bachelor

in Paradise”) brought large spikes (> 20×) over baseline load.

Our current average load is about 60 concurrent streams.

Between Jan. 26, 2019 and Feb. 2, 2020, we have streamed

38.6 years of video to 63,508 registered study participants

using 111,231 unique IP addresses. About eight months of

that period was spent on the “primary experiment,” a ran-

domized trial comparing Fugu with other algorithms: MPC,

RobustMPC, Pensieve, and BBA (a summary of features is

in Figure 5). This period saw a total of 314,577 streaming

sessions, and 1,904,316 individual streams. An experimental-

flow diagram in the standardized CONSORT format [35] is

in the appendix (Figure A1).

We record client telemetry as time-series data, detailing the

size and SSIM of every video chunk, the time to deliver each

chunk to the client, the buffer size and rebuffering events at

the client, the TCP statistics on the server, and the identity of

the ABR and congestion-control schemes. A full description

of the data is in Appendix B.

Metrics and statistical uncertainty. We group the time se-

ries by user stream to calculate a set of summary figures: the

total time between the first and last recorded events of the

stream, the startup time, the total watch time between the first

and last successfully played portion of the stream, the total

time the video is stalled for rebuffering, the average SSIM,

and the chunk-by-chunk variation in SSIM. The ratio between

“total time stalled” and “total watch time” is known as the re-

buffering ratio or stall ratio, and is widely used to summarize

the performance of streaming video systems [22].

We observe considerable heavy-tailed behavior in most of

these statistics. Watch times are skewed (Figure 11), and while

the risk of rebuffering is important to any ABR algorithm,

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 499

actual rebuffering is a rare phenomenon. Of the 637,189 eli-

gible streams considered for the primary analysis across all

five ABR schemes, only 24,328 (4%) of those streams had

any stalls, mirroring commercial services [22].

These skewed distributions create more room for the play

of chance to corrupt the bottom-line statistics summarizing a

scheme’s performance—even two identical schemes will see

considerable variation in average performance until a substan-

tial amount of data is assembled. In this study, we worked to

quantify the statistical uncertainty that can be attributed to the

play of chance in assigning sessions to ABR algorithms. We

calculate confidence intervals on rebuffering ratio with the

bootstrap method [14], simulating streams drawn empirically

from each scheme’s observed distribution of rebuffering ratio

as a function of stream duration. We calculate confidence

intervals on average SSIM using the formula for weighted

standard error, weighting each stream by its duration.

These practices result in substantial confidence intervals:

with at least 2.5 years of data for each scheme, the width of the

95% confidence interval on a scheme’s stall ratio is between

±13% and ±21% of the mean value. This is comparable to

the magnitude of the total benefit reported by some academic

work that used much shorter real-world experiments. Even

a recent study of a Pensieve-like scheme on Facebook [24],

encompassing 30 million streams, did not detect a change in

rebuffering ratio outside the level of statistical noise.

We conclude that considerations of uncertainty in real-

world learning and experimentation, especially given uncon-

trolled data from the Internet with real users, deserve further

study. Strategies to import real-world data into repeatable

emulators [45] or reduce their variance [26] will likely be

helpful in producing robust learned networking algorithms.

4 Fugu: design and implementation

Fugu is a control algorithm for bitrate selection, designed to

be feasibly trained in place (in situ) on a real deployment envi-

ronment. It consists of a classical controller (model predictive

control, the same as in MPC-HM), informed by a nonlinear

predictor that can be trained with supervised learning.

Figure 6 shows Fugu’s high-level design. Fugu runs on the

server, making it easy to update its model and aggregate per-

formance data across clients over time. Clients send necessary

telemetry, such as buffer levels, to the server.

Data Aggregation

Transmission Time
Predictor

MPC Controller

Puffer

Video Server

bitrate

selection

state

update

update

model

d
a

il
y
 t

ra
in

in
g

m
o

d
e

l-b
a

s
e

d
 c

o
n

tro
l

Figure 6: Overview of Fugu

The controller, described in Section 4.4, makes decisions

by following a classical control algorithm to optimize an

objective QoE function (§4.1) based on predictions for how

long each chunk would take to transmit. These predictions are

provided by the Transmission Time Predictor (TTP) (§4.2),

a neural network that estimates a probability distribution for

the transmission time of a proposed chunk with given size.

4.1 Objective function

For each video chunk Ki, Fugu has a selection of versions of

this chunk to choose from, Ks
i , each with a different size s.

As with prior approaches, Fugu quantifies the QoE of each

chunk as a linear combination of video quality, video quality

variation, and stall time [46]. Unlike some prior approaches,

which use the average compressed bitrate of each encoding

setting as a proxy for image quality, Fugu optimizes a percep-

tual measure of picture quality—in our case, SSIM. This has

been shown to correlate with human opinions of QoE [12].

We emphasize that we use the exact same objective function

in our version of MPC and RobustMPC as well.

Let Q(K) be the video quality of a chunk K, T (K) be the un-

certain transmission time of K, and Bi be the current playback

buffer size. Following [46], Fugu defines the QoE obtained

by sending Ks
i (given the previously sent chunk Ki−1) as

QoE(Ks
i ,Ki−1) = Q(Ks

i)−λ|Q(Ks
i)−Q(Ki−1)|

−µ ·max{T (Ks
i)−Bi,0},

(1)

where max{T (Ks
i)− Bi,0} describes the stall time experi-

enced by sending Ks
i , and λ and µ are configuration constants

for how much to weight video quality variation and rebuffer-

ing. Fugu plans a trajectory of sizes s of the future H chunks

to maximize their expected total QoE.

4.2 Transmission Time Predictor (TTP)

Once Fugu decides which chunk from Ks
i to send, two por-

tions of the QoE become known: the video quality and video

quality variation. The remaining uncertainty is the stall time.

The server knows the current playback buffer size, so what it

needs to know is the transmission time: how long will it take

for the client to receive the chunk? Given an oracle that re-

ports the transmission time of any chunk, the MPC controller

can compute the optimal plan to maximize QoE.

Fugu uses a trained neural-network transmission-time pre-

dictor to approximate the oracle. For each chunk in the fixed

H-step horizon, we train a separate predictor. E.g., if opti-

mizing for the total QoE of the next five chunks, five neural

networks are trained. This lets us parallelize training.

Each TTP network for the future step h ∈ {0, . . . ,H − 1}
takes as input a vector of:

1. sizes of past t chunks Ki−t , . . . ,Ki−1,

2. actual transmission times of past t chunks: Ti−t , . . . ,Ti−1,

500 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3. internal TCP statistics (Linux tcp_info structure),

4. size s of a proposed chunk Ks
i+h.

The TCP statistics include the current congestion window

size, the number of unacknowledged packets in flight, the

smoothed RTT estimate, the minimum RTT, and the TCP

estimated throughput (tcpi_delivery_rate).

Prior approaches have used Harmonic Mean (HM) [46]

or a Hidden Markov Model (HMM) [40] to predict a single

throughput for the entire lookahead horizon irrespective of the

size of chunk to send. In contrast, the TTP acknowledges the

fact that observed throughput varies with chunk size [7,32,47]

by taking the size of proposed chunk Ks
i+h as an explicit input.

In addition, it outputs a discretized probability distribution of

predicted transmission time T̂ (Ks
i+h).

4.3 Training the TTP

We sample from the real usage data collected by any scheme

running on Puffer and feed individual user streams to the

TTP as training input. For the TTP network in the future

step h, each user stream contains a chunk-by-chunk series

of (a) the input 4-vector with the last element to be size of

the actually sent chunk Ki+h, and, (b) the actual transmission

time Ti+h of chunk Ki+h as desired output; the sequence is

shuffled to remove correlation. It is worth noting that unlike

prior work [25, 40] that learned from throughput traces, TTP

is trained directly on real chunk-by-chunk data.

We train the TTP with standard supervised learning: the

training minimizes the cross-entropy loss between the output

probability distribution and the discretized actual transmission

time using stochastic gradient descent.

We retrain the TTP every day, using training data collected

over the prior 14 days, to avoid the effects of dataset shift and

catastrophic forgetting [33,34]. Within the 14-day window, we

weight more recent days more heavily. The weights from the

previous day’s model are loaded to warm-start the retraining.

4.4 Model-based controller

Our MPC controller (used for MPC-HM, RobustMPC-HM,

and Fugu) is a stochastic optimal controller that maximizes

the expected cumulative QoE in Equation 1 with replanning. It

queries TTP for predictions of transmission time and outputs a

plan Ks
i ,K

s
i+1, . . . ,K

s
i+H−1 by value iteration [8]. After sending

Ks
i , the controller observes and updates the input vector passed

into TTP, and replans again for the next chunk.

Given the current playback buffer level Bi and the last sent

chunk Ki−1, let v∗i (Bi,Ki−1) denote the maximum expected

sum of QoE that can be achieved in the H-step lookahead

horizon. We have value iteration as follows:

v∗i (Bi,Ki−1) = max
Ks

i

{

∑
ti

Pr[T̂ (Ks
i) = ti]·

(QoE(Ks
i ,Ki−1)+ v∗i+1(Bi+1,K

s
i))

}

,

where Pr[T̂ (Ks
i) = ti] is the probability predicted by TTP for

the transmission time of Ks
i to be ti, and Bi+1 can be derived

by system dynamics [46] given an enumerated (discretized) ti.

The controller computes the optimal trajectory by solving the

above value iteration with dynamic programming (DP). To

make the DP computational feasible, it also discretizes Bi into

bins and uses forward recursion with memoization to only

compute for relevant states.

4.5 Implementation

TTP takes as input the past t = 8 chunks, and outputs a

probability distribution over 21 bins of transmission time:

[0,0.25), [0.25,0.75), [0.75,1.25), . . . , [9.75,∞), with 0.5 sec-

onds as the bin size except for the first and the last bins. TTP

is a fully connected neural network, with two hidden layers

with 64 neurons each. We tested different TTPs with vari-

ous numbers of hidden layers and neurons, and found similar

training losses across a range of conditions for each. We im-

plemented TTP and the training in PyTorch, but we load the

trained model in C++ when running on the production server

for performance. A forward pass of TTP’s neural network in

C++ imposes minimal overhead per chunk (less than 0.3 ms

on average on a recent x86-64 core). The MPC controller

optimizes over H = 5 future steps (about 10 seconds). We set

λ = 1 and µ = 100 to balance the conflicting goals in QoE.

Each retraining takes about 6 hours on a 48-core server.

4.6 Ablation study of TTP features

We performed an ablation study to assess the impact of the

TTP’s features (Figure 7). The prediction accuracy is mea-

sured using mean squared error (MSE) between the predicted

transmission time and the actual (absolute, unbinned) value.

For the TTP that outputs a probability distribution, we com-

pute the expected transmission time by weighting the median

value of each bin with the corresponding probability. Here

are the more notable results:

Use of low-level congestion-control statistics. The TTP’s

nature as a DNN lets it consider a variety of noisy inputs,

including low-level congestion-control statistics. We feed the

kernel’s tcp_info structure to the TTP, and find that several

of these fields contribute positively to the TTP’s accuracy,

especially the RTT, CWND, and number of packets in flight

(Figure 7). Although client-side ABR systems cannot typi-

cally access this structure directory because the statistics live

on the sender, these results should motivate the communica-

tion of richer data to ABR algorithms wherever they live.

Transmission-time prediction. The TTP explicitly consid-

ers the size of a proposed chunk, rather than predicting

throughput and then modeling transmission time as scaling

linearly with chunk size [7, 32, 47]. We compared the TTP

with an equivalent throughput predictor that is agnostic to the

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 501

about systematic uncertainties and the difficulties of running

experiments and accumulating so much data.

Some of Fugu’s performance (and that of MPC, Ro-

bustMPC, and BBA) relative to Pensieve may be due to the

fact that these four schemes received more information as

they ran—namely, the SSIM of each possible version of each

future chunk—than did Pensieve. It is possible that an “SSIM-

aware” Pensieve might perform better. The load of calculating

SSIM for each encoded chunk is not insignificant—about an

extra 40% on top of encoding the video.

6.2 Limitations of Fugu

There is a sense that data-driven algorithms that more “heav-

ily” squeeze out performance gains may also put themselves

at risk to brittleness when a deployment environment drifts

from one where the algorithm was trained. In that sense, it is

hard to say whether Fugu’s performance might decay catas-

trophically some day. We tried and failed to demonstrate a

quantitative benefit from daily retraining over “out-of-date”

vintages, but at the same time, we cannot be sure that some

surprising detail tomorrow—e.g., a new user from an unfa-

miliar network—won’t send Fugu into a tailspin before it can

be retrained. A year of data on a growing userbase suggests,

but doesn’t guarantee, robustness to a changing environment.

Fugu does not consider several issues that other research

has concerned itself with—e.g., being able to “replace”

already-downloaded chunks in the buffer with higher quality

versions [38], or optimizing the joint QoE of multiple clients

who share a congestion bottleneck [29].

Fugu is not tied as tightly to the TCP or congestion control

as it might be—for example, Fugu could wait to send a chunk

until the TCP sender tells it that there is a sufficient congestion

window for most of the chunk (or the whole chunk) to be sent

immediately. Otherwise, it might choose to wait and make

a better-informed decision later. Fugu does not schedule the

transmission of chunks—it will always send the next chunk

as long as the client has room in its playback buffer.

7 Conclusion

Machine-learned systems in computer networking sometimes

describe themselves as achieving near-“optimal” performance,

based on results in a contained or modeled version of the

problem [25, 37, 39]. Such approaches are not limited to the

academic community: in early 2020, a major video-streaming

company announced a $5,000 prize for the best low-delay

ABR scheme, in which candidates will be evaluated in a net-

work simulator that follows a trace of varying throughput [2].

In this paper, we suggest that these efforts can benefit from

considering a broader notion of performance and optimality.

Good, or even near-optimal, performance in a simulator or

emulator does not necessarily predict good performance over

the wild Internet, with its variability and heavy-tailed distri-

butions. It remains a challenging problem to gather the ap-

propriate training data (or in the case of RL systems, training

environments) to properly learn and validate such systems.

In this paper, we asked: what does it take to create a learned

ABR algorithm that robustly performs well over the wild Inter-

net? In effect, our best answer is to cheat: train the algorithm

in situ on data from the real deployment environment, and use

an algorithm whose structure is sophisticated enough (a neural

network) and yet also simple enough (a predictor amenable to

supervised learning on data, informing a classical controller)

to benefit from that kind of training.

Over the last year, we have streamed 38.6 years of video

to 63,508 users across the Internet. Sessions are randomized

in blinded fashion among algorithms, and client telemetry

is recorded for analysis. The Fugu algorithm robustly out-

performed other schemes, both simple and sophisticated, on

objective measures (SSIM, stall time, SSIM variability) and

increased the duration that users chose to continue streaming.

We have found the Puffer approach a powerful tool for net-

working research—it is fulfilling to be able to “measure, then

build” [5] to iterate rapidly on new ideas and gain feedback.

Accordingly, we are opening Puffer as an “open research” plat-

form. Along with this paper, we are publishing our full archive

of data and results on the Puffer website. The system posts

new data each week, along with a summary of results from

the ongoing experiments, with confidence intervals similar to

those in this paper. (The format is described in Appendix B.)

We redacted some fields from the public archive to protect

participants’ privacy (e.g., IP address) but are willing to work

with researchers on access to these fields in an aggregated

fashion. Puffer and Fugu are also open-source software, as

are the analysis tools used to prepare the results in this paper.

We plan to operate Puffer as long as feasible and invite

researchers to train and validate new algorithms for ABR

control, network and throughput prediction, and congestion

control on its traffic. We are eager to collaborate with and

learn from the community’s ideas on how to design and deploy

robust learned systems for the Internet.

Acknowledgments

We are greatly indebted to Emily Marx, who joined this

project after the original submission of this paper, found and

corrected bugs in our analysis tools, and performed the final

data analysis. We thank our shepherd, Vyas Sekar, and the

ACM SIGCOMM and USENIX NSDI reviewers for their

helpful feedback. We are grateful for conversations with and

feedback from Danfei Xu, T.Y. Huang, Hongzi Mao, Michael

Schapira, and Nils Krahnstoever, and we thank the participants

in the Puffer research study, without whom these experiments

could not have been conducted. This work was supported by

NSF grant CNS-1909212 and by Google, Huawei, VMware,

Dropbox, Facebook, and the Stanford Platform Lab.

506 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Locast: Non-profit retransmission of broadcast televi-

sion, June 2018. https://news.locast.org/app/uploads/

2018/11/Locast-White-Paper.pdf.

[2] MMSys’20/Twitch Grand Challenge on Adaptation Al-

gorithms for Near-Second Latency, January 2020. https:

//2020.acmmmsys.org/lll_challenge.php.

[3] Alekh Agarwal, Nan Jiang, and Sham M. Kakade. Lec-

ture notes on the theory of reinforcement learning. 2019.

[4] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan,

Sanjay Rao, Jessica Chen, Ethan Katz-Bassett, Bruno

Ribeiro, Jibin Zhan, and Hui Zhang. Oboe: Auto-

tuning video ABR algorithms to network conditions.

In Proceedings of the 2018 Conference of the ACM SIG-

COMM, pages 44–58, 2018.

[5] Remzi Arpaci-Dusseau. Measure, then build (USENIX

ATC 2019 keynote). Renton, WA, July 2019. USENIX

Association.

[6] Athula Balachandran, Vyas Sekar, Aditya Akella, Srini-

vasan Seshan, Ion Stoica, and Hui Zhang. Developing

a predictive model of quality of experience for Inter-

net video. ACM SIGCOMM Computer Communication

Review, 43(4):339–350, 2013.

[7] Mihovil Bartulovic, Junchen Jiang, Sivaraman Balakr-

ishnan, Vyas Sekar, and Bruno Sinopoli. Biases in data-

driven networking, and what to do about them. In Pro-

ceedings of the 16th ACM Workshop on Hot Topics in

Networks, pages 192–198, 2017.

[8] Richard Bellman. A Markovian decision process. Jour-

nal of mathematics and mechanics, pages 679–684,

1957.

[9] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,

Soheil Hassas Yeganeh, and Van Jacobson. BBR:

Congestion-based congestion control. ACM Queue,

14(5):20–53, 2016.

[10] Federal Communications Commission. Measuring

Broadband America. https://www.fcc.gov/general/

measuring-broadband-america.

[11] Paul Crews and Hudson Ayers. CS 244 ’18:

Recreating and extending Pensieve, 2018. https:

//reproducingnetworkresearch.wordpress.com/2018/

07/16/cs-244-18-recreating-and-extending-pensieve/.

[12] Zhengfang Duanmu, Kai Zeng, Kede Ma, Abdul

Rehman, and Zhou Wang. A quality-of-experience index

for streaming video. IEEE Journal of Selected Topics in

Signal Processing, 11(1):154–166, 2016.

[13] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd

Hester. Challenges of real-world reinforcement learning.

In ICML 2019 Workshop RL4RealLife, 2019.

[14] Bradley Efron and Robert Tibshirani. Bootstrap methods

for standard errors, confidence intervals, and other mea-

sures of statistical accuracy. Statistical science, pages

54–75, 1986.

[15] Sally Floyd and Eddie Kohler. Internet research needs

better models. ACM SIGCOMM Computer Communi-

cation Review, 33(1):29–34, 2003.

[16] Sally Floyd and Vern Paxson. Difficulties in simulating

the internet. IEEE/ACM Transactions on Networking,

9(4):392–403, 2001.

[17] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine

Wu, Riad S. Wahby, and Keith Winstein. Salsify: Low-

latency network video through tighter integration be-

tween a video codec and a transport protocol. In 15th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 18), pages 267–282, 2018.

[18] Te-Yuan Huang, Ramesh Johari, Nick McKeown,

Matthew Trunnell, and Mark Watson. A buffer-based

approach to rate adaptation: Evidence from a large video

streaming service. In Proceedings of the 2014 Confer-

ence of the ACM SIGCOMM, pages 187–198, 2014.

[19] Junchen Jiang, Vyas Sekar, Henry Milner, Davis Shep-

herd, Ion Stoica, and Hui Zhang. CFA: A practical

prediction system for video QoE optimization. In 13th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 16), pages 137–150, 2016.

[20] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving

fairness, efficiency, and stability in HTTP-based adap-

tive video streaming with FESTIVE. In Proceedings

of the 8th International Conference on emerging Net-

working EXperiments and Technologies, pages 97–108,

2012.

[21] S. Shunmuga Krishnan and Ramesh K. Sitaraman.

Video stream quality impacts viewer behavior: Inferring

causality using quasi-experimental designs. IEEE/ACM

Transactions on Networking, 21(6):2001–2014, 2013.

[22] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio

Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor

Kouranov, Ian Swett, Janardhan Iyengar, et al. The

QUIC transport protocol: Design and Internet-scale de-

ployment. In Proceedings of the 2017 Conference of the

ACM SIGCOMM, pages 183–196, 2017.

[23] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao

Hu, Ali C. Begen, and David Oran. Probe and adapt:

Rate adaptation for HTTP video streaming at scale.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 507

IEEE Journal on Selected Areas in Communications,

32(4):719–733, 2014.

[24] Hongzi Mao, Shannon Chen, Drew Dimmery, Shaun

Singh, Drew Blaisdell, Yuandong Tian, Mohammad Al-

izadeh, and Eytan Bakshy. Real-world video adaptation

with reinforcement learning. In ICML 2019 Workshop

RL4RealLife, 2019.

[25] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.

Neural adaptive video streaming with Pensieve. In

Proceedings of the 2017 Conference of the ACM SIG-

COMM, pages 197–210. ACM, 2017.

[26] Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte

Schwarzkopf, and Mohammad Alizadeh. Variance re-

duction for reinforcement learning in input-driven en-

vironments. In International Conference on Learning

Representations, 2019.

[27] Ricky K.P. Mok, Xiapu Luo, Edmond W.W. Chan, and

Rocky K.C. Chang. QDASH: a QoE-aware DASH

system. In Proceedings of the 3rd Multimedia Systems

Conference, pages 11–22, 2012.

[28] Dynamic adaptive streaming over HTTP (DASH) — Part

1: Media presentation description and segment formats,

April 2012. ISO/IEC 23009-1 (http://standards.iso.org/

ittf/PubliclyAvailableStandards).

[29] Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichan-

dra Addanki, Mehrdad Khani, Prateesh Goyal, and Mo-

hammad Alizadeh. End-to-end transport for video qoe

fairness. In Proceedings of the ACM Special Interest

Group on Data Communication, SIGCOMM ’19, page

408–423, New York, NY, USA, 2019. Association for

Computing Machinery.

[30] Ravi Netravali, Anirudh Sivaraman, Somak Das,

Ameesh Goyal, Keith Winstein, James Mickens, and

Hari Balakrishnan. Mahimahi: Accurate record-and-

replay for HTTP. In 2015 USENIX Annual Technical

Conference (USENIX ATC 15), pages 417–429, 2015.

[31] Vern Paxson and Sally Floyd. Why we don’t know

how to simulate the Internet. In Proceedings of the

29th conference on Winter simulation, pages 1037–1044,

1997.

[32] Yanyuan Qin, Shuai Hao, Krishna R. Pattipati, Feng

Qian, Subhabrata Sen, Bing Wang, and Chaoqun Yue.

ABR streaming of VBR-encoded videos: characteriza-

tion, challenges, and solutions. In Proceedings of the

14th International Conference on emerging Networking

EXperiments and Technologies, pages 366–378. ACM,

2018.

[33] Anthony Robins. Catastrophic forgetting, rehearsal and

pseudorehearsal. Connection Science, 7(2):123–146,

1995.

[34] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A

reduction of imitation learning and structured predic-

tion to no-regret online learning. In Proceedings of

the Fourteenth International Conference on Artificial

Intelligence and Statistics, pages 627–635, 2011.

[35] Kenneth F. Schulz, Douglas G. Altman, and David Mo-

her. CONSORT 2010 statement: updated guidelines

for reporting parallel group randomised trials. BMC

medicine, 8(1):18, 2010.

[36] Alexander T. Schwarm and Michael Nikolaou. Chance-

constrained model predictive control. AIChE Journal,

45(8):1743–1752, 1999.

[37] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker,

and Hari Balakrishnan. An experimental study of the

learnability of congestion control. In Proceedings of

the 2014 Conference of the ACM SIGCOMM, pages

479–490, 2014.

[38] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio.

From theory to practice: Improving bitrate adaptation

in the DASH reference player. In Proceedings of the

9th ACM Multimedia Systems Conference, MMSys ’18,

pages 123–137, New York, NY, USA, 2018. ACM.

[39] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitara-

man. BOLA: Near-optimal bitrate adaptation for online

videos. In INFOCOM 2016-The 35th Annual IEEE In-

ternational Conference on Computer Communications,

IEEE, pages 1–9. IEEE, 2016.

[40] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan

Lin, Nanshu Wang, Tao Liu, and Bruno Sinopoli. CS2P:

Improving video bitrate selection and adaptation with

data-driven throughput prediction. In Proceedings of

the 2016 Conference of the ACM SIGCOMM, pages

272–285, 2016.

[41] Cisco Systems. Cisco Visual Networking Index:

Forecast and trends, 2017–2022, November 2018.

https://www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/

white-paper-c11-741490.pdf.

[42] Guibin Tian and Yong Liu. Towards agile and smooth

video adaptation in dynamic HTTP streaming. In Pro-

ceedings of the 8th International Conference on emerg-

ing Networking EXperiments and Technologies, pages

109–120, 2012.

508 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[43] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and

Eero P. Simoncelli. Image quality assessment: from

error visibility to structural similarity. IEEE Transac-

tions on Image Processing, 13(4):600–612, 2004.

[44] Keith Winstein and Hari Balakrishnan. TCP ex Machina:

Computer-generated congestion control. Proceedings of

the 2013 Conference of the ACM SIGCOMM, 43(4):123–

134, 2013.

[45] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Ragha-

van, Riad S. Wahby, Philip Levis, and Keith Winstein.

Pantheon: the training ground for Internet congestion-

control research. In 2018 USENIX Annual Technical

Conference (USENIX ATC 18), pages 731–743, Boston,

MA, 2018. USENIX Association.

[46] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno

Sinopoli. A control-theoretic approach for dynamic

adaptive video streaming over HTTP. In Proceedings

of the 2015 Conference of the ACM SIGCOMM, pages

325–338, 2015.

[47] Tong Zhang, Fengyuan Ren, Wenxue Cheng, Xiaohui

Luo, Ran Shu, and Xiaolan Liu. Modeling and ana-

lyzing the influence of chunk size variation on bitrate

adaptation in DASH. In IEEE INFOCOM 2017-IEEE

Conference on Computer Communications, pages 1–9.

IEEE, 2017.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 509

A Randomized trial flow diagram

314,577 sessions underwent randomization

1,904,316 streams

69,017 unique IPs

17.2 client-years of data

69,941 sessions were excluded

437,266 streams

4.0 client-years of data

◦ 102,994 streams were assigned CUBIC

◦ 334,272 streams were assigned experimental algorithms for

◦ portions of the study duration

49,960 sessions were assigned

Fugu

303,250 streams

49,084 sessions were assigned

MPC-HM

294,541 streams

48,519 sessions were assigned

RobustMPC-HM

293,323 streams

47,819 sessions were assigned

Pensieve

283,683 streams

49,254 sessions were assigned

BBA

292,253 streams

170,629 streams were excluded

◦ 385 did not begin playing

◦ 170,180 had watch time less than 4s

◦ 64 stalled from a slow video decoder

166,186 streams were excluded

◦ 527 did not begin playing

◦ 165,603 had watch time less than 4s

◦ 56 stalled from a slow video decoder

166,792 streams were excluded

◦ 213 did not begin playing

◦ 166,487 had watch time less than 4s

◦ 92 stalled from a slow video decoder

158,879 streams were excluded

◦ 380 did not begin playing

◦ 158,474 had watch time less than 4s

◦ 25 stalled from a slow video decoder

167,375 streams were excluded

◦ 330 did not begin playing

◦ 167,009 had watch time less than 4s

◦ 35 stalled from a slow video decoder

◦ 1 sent contradictory data

3,810 streams were truncated

because of a loss of contact

3,580 streams were truncated

because of a loss of contact

3,327 streams were truncated

because of a loss of contact

3,557 streams were truncated

because of a loss of contact

3,585 streams were truncated

because of a loss of contact

132,621 streams were considered

2.8 client-years of data

128,355 streams were considered

2.6 client-years of data

126,531 streams were considered

2.5 client-years of data

124,804 streams were considered

2.5 client-years of data

124,878 streams were considered

2.7 client-years of data

637,189 streams were considered

13.1 client-years of data

◦ 1.2 client-days spent in startup

◦ 7.9 client-days spent stalled

◦ 13.1 client-years spent playing

Figure A1: CONSORT-style diagram [35] of experimental flow for the primary results (Figures 1 and 9), obtained during the period Jan. 26–Aug. 7, 2019, and

Aug. 30–Oct. 16, 2019. A “session” represents one visit to the Puffer video player and may contain many “streams.” Reloading starts a new session, but changing

channels only starts a new stream and does not change TCP connections or ABR algorithms.

5
1
0
 1

7
th

 U
S

E
N

IX
 S

y
m

p
o
s
iu

m
 o

n
 N

e
tw

o
rk

e
d
 S

y
s
te

m
s
 D

e
s
ig

n
 a

n
d
 Im

p
le

m
e
n
ta

tio
n

U
S

E
N

IX
 A

s
s
o

c
ia

tio
n

B Description of open data

The open data we are releasing comprise different

“measurements”—each measurement contains a different set

of time-series data collected on Puffer servers. Below we high-

light the format of interesting fields in three measurements

that are essential for analysis: video_sent, video_acked,

and client_buffer.

video_sent collects a data point every time a Puffer server

sends a video chunk to a client. Each data point contains:

• time: timestamp when the chunk is sent

• session_id: unique ID for the video session

• expt_id: unique ID to identify the experimental group;

expt_id can be used as a key to retrieve the experimen-

tal setting (e.g., ABR, congestion control) when sending

the chunk, in another file we are providing.

• channel: TV channel name

• video_ts: unique presentation timestamp of the chunk

• format: encoding settings of the chunk, including reso-

lution and constant rate factor (CRF)

• size: size of the chunk

• ssim_index: SSIM of the chunk

• cwnd: congestion window size (tcpi_snd_cwnd)

• in_flight: number of unacknowledged packets in

flight (tcpi_unacked - tcpi_sacked - tcpi_lost +

tcpi_retrans)

• min_rtt: minimum RTT (tcpi_min_rtt)

• rtt: smoothed RTT estimate (tcpi_rtt)

• delivery_rate: estimate of TCP throughput

(tcpi_delivery_rate)

video_acked collects a data point every time a Puffer

server receives a video chunk acknowledgement from a client.

Each data point can be matched to a data point in video_sent

using video_ts (if the chunk is ever acknowledged) and used

to calculate the transmission time of the chunk—difference

between the timestamps in the two data points. Specifically,

each data point in video_acked contains:

• time: timestamp when the chunk is acknowledged

• session_id

• expt_id

• channel

• video_ts

client_buffer collects client-side information reported

to Puffer servers on a regular interval and when certain events

occur. Each data point contains:

• time: timestamp when the client message is received

• session_id

• expt_id

• channel

• event: event type, e.g., was this triggered by a regular

report every quarter second, or because the client stalled

or began playing.

• buffer: playback buffer size

• cum_rebuf: cumulative rebuffer time in the current
stream

Between Jan. 26, 2019 and Feb. 2, 2020, we collected

675,839,652 data points in video_sent, 677,956,279 data

points in video_acked, and 4,622,575,336 data points in

client_buffer.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 511

	Introduction
	Background and related work
	Puffer: an ongoing live study of ABR
	Back-end: decoding, encoding, SSIM
	Serving chunks to the browser
	Hosting arbitrary ABR schemes
	The Puffer experiment

	Fugu: design and implementation
	Objective function
	Transmission Time Predictor (TTP)
	Training the TTP
	Model-based controller
	Implementation
	Ablation study of TTP features

	Experimental results
	Fugu users streamed for longer
	The benefits of learning in situ
	Remarks on Pensieve and RL for ABR

	Limitations
	Limitations of the experiments
	Limitations of Fugu

	Conclusion
	Randomized trial flow diagram
	Description of open data

