é? usenix
N THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Learning in situ: a randomized experiment
in video streaming

Francis Y. Yan and Hudson Ayers, Stanford University; Chenzhi Zhu,
Tsinghua University; Sadjad Fouladi, James Hong, Keyi Zhang, Philip Levis,
and Keith Winstein, Stanford University

https://www.usenix.org/conference/nsdi20/presentation/yan

This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI '20)
February 25-27, 2020 Santa Clara, CA, USA
978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked
Systems Design and Implementation

(NSDI '20) is sponsored by

. fiNetApp® —

Learning in situ: a randomized experiment in video streaming

Francis Y. Yan
James Hong

Hudson Ayers
Keyi Zhang

Chenzhi Zhu'
Philip Levis

Sadjad Fouladi
Keith Winstein

Stanford University, T Tsinghua University

Abstract

We describe the results of a randomized controlled trial of
video-streaming algorithms for bitrate selection and network
prediction. Over the last year, we have streamed 38.6 years
of video to 63,508 users across the Internet. Sessions are
randomized in blinded fashion among algorithms.

We found that in this real-world setting, it is difficult for so-
phisticated or machine-learned control schemes to outperform
a “simple” scheme (buffer-based control), notwithstanding
good performance in network emulators or simulators. We
performed a statistical analysis and found that the heavy-tailed
nature of network and user behavior, as well as the challenges
of emulating diverse Internet paths during training, present
obstacles for learned algorithms in this setting.

We then developed an ABR algorithm that robustly outper-
formed other schemes, by leveraging data from its deployment
and limiting the scope of machine learning only to making
predictions that can be checked soon after. The system uses
supervised learning in situ, with data from the real deployment
environment, to train a probabilistic predictor of upcoming
chunk transmission times. This module then informs a classi-
cal control policy (model predictive control).

To support further investigation, we are publishing an
archive of data and results each week, and will open our ongo-
ing study to the community. We welcome other researchers to
use this platform to develop and validate new algorithms for
bitrate selection, network prediction, and congestion control.

1 Introduction

Video streaming is the predominant Internet application, mak-
ing up almost three quarters of all traffic [41]. One key al-
gorithmic question in video streaming is adaptive bitrate
selection, or ABR, which decides the compression level se-
lected for each “chunk,” or segment, of the video. ABR al-
gorithms optimize the user’s quality of experience (QoE):
more-compressed chunks reduce quality, but larger chunks
may stall playback if the client cannot download them in time.

In the academic literature, many recent ABR algorithms use
statistical and machine-learning methods [4, 25, 3840, 46],
which allow algorithms to consider many input signals and
try to perform well for a wide variety of clients. An ABR
decision can depend on recent throughput, client-side buffer
occupancy, delay, the experience of clients on similar ISPs or
types of connectivity, etc. Machine learning can find patterns
in seas of data and is a natural fit for this problem domain.

However, it is a perennial lesson that the performance of
learned algorithms depends on the data or environments used
to train them. ML approaches to video streaming and other
wide-area networking challenges are often hampered in their
access to good and representative training data. The Inter-
net is complex and diverse, individual nodes only observe a
noisy sliver of the system dynamics, and behavior is often
heavy-tailed and changes with time. Even with representative
throughput traces, accurately simulating or emulating the di-
versity of Internet paths requires more than replaying such
traces and is beyond current capabilities [15, 16,31,45].

As aresult, the performance of algorithms in emulated envi-
ronments may not generalize to the Internet [7]. For example,
CS2P’s gains were more modest over real networks than in
simulation [40]. Measurements of Pensieve [25] saw narrower
benefits on similar paths [11] and a large-scale streaming
service [24]. Other learned algorithms, such as the Remy
congestion-control schemes, have also seen inconsistent re-
sults on real networks, despite good results in simulation [45].

This paper seeks to answer: what does it take to create a
learned ABR algorithm that robustly performs well over the
wild Internet? We report the design and findings of Puffer',
an ongoing research study that operates a video-streaming
website open to the public. Over the past year, Puffer has
streamed 38.6 years of video to 63,508 distinct users, while
recording client telemetry for analysis (current load is about
60 stream-days of data per day). Puffer randomly assigns each
session to one of a set of ABR algorithms; users are blinded
to the assignment. We find:

Uhttps://puffer.stanford.edu

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 495

In our real-world setting, sophisticated algorithms based
on control theory [46] or reinforcement learning [25]
did not outperform simple buffer-based control [18]. We
found that more-sophisticated algorithms do not necessarily
beat a simpler, older algorithm. The newer algorithms were
developed and evaluated using throughput traces that may not
have captured enough of the Internet’s heavy tails and other
dynamics when replayed in simulation or emulation. Training
them on more-representative traces doesn’t necessarily re-
verse this: we retrained one algorithm using throughput traces
drawn from Puffer (instead of its original set of traces) and
evaluated it also on Puffer, but the results were similar (§5.3).

Statistical margins of error in quantifying algorithm per-
formance are considerable. Prior work on ABR algorithms
has claimed benefits of 10-15% [46], 3.2-14% [40], or 12—
25% [25], based on throughput traces or real-world experi-
ments lasting hours or days. However, we found that the em-
pirical variability and heavy tails of throughput evolution and
rebuffering create statistical margins of uncertainty that make
it challenging to detect real effects of this magnitude. Even
with a year of experience per scheme, a 20% improvement in
rebuffering ratio would be statistically indistinguishable, i.e.,
below the threshold of detection with 95% confidence. These
uncertainties affect the design space of machine-learning ap-
proaches that can practically be deployed [13,26].

It is possible to robustly outperform existing schemes by
combining classical control with an ML predictor trained
in situ on real data. We describe Fugu, a data-driven ABR
algorithm that combines several techniques. Fugu is based
on MPC (model predictive control) [46], a classical control
policy, but replaces its throughput predictor with a deep neural
network trained using supervised learning on data recorded in
situ (in place), meaning from Fugu’s actual deployment envi-
ronment, Puffer. The predictor has some uncommon features:
it predicts transmission time given a chunk’s file size (vs. esti-
mating throughput), it outputs a probability distribution (vs. a
point estimate), and it considers low-level congestion-control
statistics among its input signals. Ablation studies (§4.2) find
each of these features to be necessary to Fugu’s performance.

In a controlled experiment during most of 2019, Fugu
outperformed existing techniques—including the simple
algorithm—in stall ratio (with one exception), video qual-
ity, and the variability of video quality (Figure 1). The im-
provements were significant both statistically and, perhaps,
practically: users who were randomly assigned to Fugu (in
blinded fashion) chose to continue streaming for 5-9% longer,
on average, than users assigned to the other ABR algorithms.”

Our results suggest that, as in other domains, good and
representative training is the key challenge for robust perfor-
mance of learned networking algorithms, a somewhat differ-
ent point of view from the generalizability arguments in prior

2This effect was driven solely by users streaming more than 3 hours of
video; we do not fully understand it.

Results of primary experiment (Jan. 26-Aug. 7 & Aug. 30-Oct. 16, 2019)

Algorithm Time stalled Mean SSIM SSIM variation Mean duration
(lower is better) (higher is better) (lower is better) (time on site)
Fugu 0.13% 16.64 dB 0.74 dB 33.6 min
MPC-HM [46] 0.22% 16.61 dB 0.79 dB 30.8 min
BBA [18] 0.19% 16.56 dB 1.11dB 32.1 min
Pensieve [25] 0.17% 16.26 dB 1.05 dB 31.6 min
RobustMPC-HM ~ 0.12% 16.01 dB 0.98 dB 31.0 min

Figure 1: In an eight-month randomized controlled trial with
blinded assignment, the Fugu scheme outperformed other
ABR algorithms. The primary analysis includes 637,189
streams played by 54,612 client IP addresses (13.1 client-
years in total). Uncertainties are shown in Figures 9 and 1.

work [25,37,44]. One way to achieve representative training
is to learn in place (in situ) on the actual deployment envi-
ronment, assuming the scheme can be feasibly trained this
way and the deployment is widely enough used to exercise a
broad range of scenarios.’ The approach we describe here is
only a step in this direction, but we believe Puffer’s results
suggest that learned systems will benefit by addressing the
challenge of “how will we get enough representative scenar-
ios for training—what is enough, and how do we keep them
representative over time?” as a first-class consideration.

We intend to operate Puffer as an “open research” project
as long as feasible. We invite the research community to train
and test new algorithms on randomized subsets of its traf-
fic, gaining feedback on real-world performance with quanti-
fied uncertainty. Along with this paper, we are publishing an
archive of data and results back to the beginning of 2019 on
the Puffer website, with new data and results posted weekly.

In the next few sections, we discuss the background and
related work on this problem (§2), the design of our blinded
randomized experiment (§3) and the Fugu algorithm (§4),
with experimental results in Section 5, and a discussion of
results and limitations in Section 6. In the appendices, we
provide a standardized diagram of the experimental flow for
the primary analysis and describe the data we are releasing.

2 Background and related work

The basic problem of adaptive video streaming has been the
subject of much academic work; for a good overview, we refer
the reader to Yin et al. [46]. We briefly outline the problem
here. A service wishes to serve a pre-recorded or live video
stream to a broad array of clients over the Internet. Each
client’s connection has a different and unpredictable time-
varying performance. Because there are many clients, it is not
feasible for the service to adjust the encoder configuration in
real time to accommodate any one client.

3Even collecting traces from a deployment environment and replaying
them in a simulator or emulator to train a control policy—as is typically
necessary in reinforcement learning—is not what we mean by “in situ.”

496 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Instead, the service encodes the video into a handful of
alternative compressed versions. Each represents the original
video but at a different quality, target bitrate, or resolution.
Client sessions choose from this limited menu. The service
encodes the different versions in a way that allows clients
to switch midstream as necessary: it divides the video into
chunks, typically 2—6 seconds each, and encodes each version
of each chunk independently, so it can be decoded without
access to any other chunks. This gives clients the opportunity
to switch between different versions at each chunk boundary.
The different alternatives are generally referred to as different
“bitrates,” although streaming services today generally use
“variable bitrate” (VBR) encoding [32], where within each
alternative stream, the chunks vary in compressed size [47].

Choosing which chunks to fetch. Algorithms that select
which alternative version of each chunk to fetch and play,
given uncertain future throughput, are known as adaptive
bitrate (ABR) schemes. These schemes fetch chunks, accu-
mulating them in a playback buffer, while playing the video at
the same time. The playhead advances and drains the buffer at
a steady rate, 1 s/s, but chunks arrive at irregular intervals dic-
tated by the varying network throughput and the compressed
size of each chunk. If the buffer underflows, playback must
stall while the client “rebuffers”: fetching more chunks before
resuming playback. The goal of an ABR algorithm is typically
framed as choosing the optimal sequence of chunks to fetch
or replace [38], given recent experience and guesses about
the future, to minimize startup time and presence of stalls,
maximize the quality of chunks played back, and minimize
variation in quality over time (especially abrupt changes in
quality). The importance tradeoff for these factors is captured
in a QoE metric; several studies have calibrated QoE metrics
against human behavior or opinion [6, 12,21].

Adaptive bitrate selection. Researchers have produced a lit-
erature of ABR schemes, including “rate-based” approaches
that focus on matching the video bitrate to the network
throughput [20,23,27], “buffer-based” algorithms that steer
the duration of the playback buffer [18,38,39], and control-
theoretic schemes that try to maximize expected QoE over
a receding horizon, given the upcoming chunk sizes and a
prediction of the future throughput.

Model Predictive Control (MPC), FastMPC, and Robust-
MPC [46] fall into the last category. They comprise two mod-
ules: a throughput predictor that informs a predictive model
of what will happen to the buffer occupancy and QoE in the
near future, depending on which chunks it fetches, with what
quality and sizes. MPC uses the model to plan a sequence
of chunks over a limited horizon (e.g., the next 5-8 chunks)
to maximize the expected QoE. We implemented MPC and
RobustMPC for Puffer, using the same predictor as the paper:
the harmonic mean of the last five throughput samples.

CS2P [40] and Oboe-tuned RobustMPC [4] are related to
MPC; they constitute better throughput predictors that inform

z B
£ 28 £
= S 24
Z £

2
50 5 20
= =
i< <]
2 2
£ =

24 1.6

0 40 80 120 160 200 0 50 100 150 200
Epoch Epoch

(a) CS2P example session (Fig- (b) Typical Puffer session with
ure 4a from [40]) similar mean throughput

Figure 2: Puffer has not observed CS2P’s discrete throughput
states. (Epochs are 6 seconds in both plots.)

the same control strategy (MPC). These throughput predictors
were trained on real datasets that recorded the evolution of
throughput over time within a session. CS2P clusters users by
similarity and models their evolving throughput as a Marko-
vian process with a small number of discrete states; Oboe uses
a similar model to detect when the network path has changed
state. In our dataset, we have not observed CS2P and Oboe’s
observation of discrete throughput states (Figure 2).

Fugu fits in this same category of algorithms. It also uses
MPC as the control strategy, informed by a network predic-
tor trained on real data. This component, which we call the
Transmission Time Predictor (TTP), incorporates a number
of uncommon features, none of which can claim novelty on
its own. The TTP explicitly predicts the transmission time
of a chunk with given size and isn’t a “throughput” predictor
per se. A throughput predictor models the transmission time
of a chunk as scaling linearly with size, but it is well known
that observed throughput varies with file size [7,32,47], in
part because of the effects of congestion control and because
chunks of different sizes experience different time intervals
of the path’s varying capacity. To our knowledge, Fugu is the
first to use this fact operationally as part of a control policy.

Fugu’s predictor is also probabilistic: it outputs not a single
predicted transmission time, but a probability distribution on
possible outcomes. The use of uncertainty in model predictive
control has a long history [36], but to our knowledge Fugu
is the first to use stochastic MPC in this context. Finally,
Fugu’s predictor is a neural network, which lets it consider
an array of diverse signals that relate to transmission time,
including raw congestion-control statistics from the sender-
side TCP implementation [17,42]. We found that several of
these signals (RTT, CWND, etc.) benefit ABR decisions (§5).

Pensieve [25] is an ABR scheme also based on a deep neu-
ral network. Unlike Fugu, Pensieve uses the neural network
not simply to make predictions but to make decisions about
which chunks to send. This affects the type of learning used
to train the algorithm. While CS2P and Fugu’s TTP can be
trained with supervised learning (to predict chunk transmis-
sion times recorded from past data), it takes more than data to
train a scheme that makes decisions; one needs training envi-

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 497

—4— 5500 Kbps
—— 200 kbps

Size (MB)
IS

10

/
Average SSIM (dB)

—+— 5500 kbps
—— 200 kbps

1 2 3 1 2 3
Chunk number Chunk number

(a) VBR encoding lets chunk (b) Picture quality also varies
size vary within a stream [47]. with VBR encoding [32].

Figure 3: Variations in picture quality and chunk size within
each stream suggest a benefit from choosing chunks based on
SSIM and size, rather than average bitrate (legend).

ronments that respond to a series of decisions and judge their
consequences. This is known as reinforcement learning (RL).
Generally speaking, RL techniques expect a set of training en-
vironments that can exercise a control policy through a range
of situations and actions [3], and need to be able to observe
a detectable difference in performance by slightly varying a
control action. Systems that are challenging to simulate or
that have too much noise present difficulties [13,26].

3 Puffer: an ongoing live study of ABR

To understand the challenges of video streaming and mea-
sure the behavior of ABR schemes, we built Puffer, a free,
publicly accessible website that live-streams six over-the-air
commercial television channels. Puffer operates as a random-
ized controlled trial; sessions are randomly assigned to one
of a set of ABR or congestion-control schemes. The study
participants include any member of the public who wishes to
participate. Users are blinded to algorithm assignment, and
we record client telemetry on video quality and playback. A
Stanford Institutional Review Board determined that Puffer
does not constitute human subjects research.

Our reasoning for streaming live television was to collect
data from enough participants and network paths to draw
robust conclusions about the performance of algorithms for
ABR control and network prediction. Live television is an
evergreen source of popular content that had not been broadly
available for free on the Internet. Our study benefits, in part,
from a law that allows nonprofit organizations to retransmit
over-the-air television signals without charge [1]. Here, we
describe details of the system, experiment, and analysis.

3.1 Back-end: decoding, encoding, SSIM

Puffer receives six television channels using a VHF/UHF
antenna and an ATSC demodulator, which outputs MPEG-
2 transport streams in UDP. We wrote software to decode
a stream to chunks of raw decoded video and audio, main-
taining synchronization (by inserting black fields or silence)

Fugu @

MPC-HM []
BBA

16.6

2
2

Pensieve

Average SSIM (dB)

3
o

RobustMPC-HM
[

4 4‘,] 4.‘2 4‘.3 4.‘4
Average bitrate (Mbit/s)
Figure 4: On Puffer, schemes that maximize average SSIM
(MPC-HM, RobustMPC-HM, and Fugu) delivered higher
quality video per byte sent, vs. those that maximize bitrate
directly (Pensieve) or the SSIM of each chunk (BBA).

in the event of lost transport-stream packets on either sub-
stream. Video chunks are 2.002 seconds long, reflecting the
1/1001 factor for NTSC frame rates. Audio chunks are 4.8
seconds long. Video is de-interlaced with ffmpeg to produce
a “canonical” 1080p60 or 720p60 source for compression.

Puffer encodes each video chunk in ten different H.264
versions, using 1ibx264 in veryfast mode. The encodings
range from 240p60 video with constant rate factor (CRF) of
26 (about 200 kbps) to 1080p60 video with CRF of 20 (about
5,500 kbps). Audio chunks are encoded in the Opus format.

Puffer then uses f fmpeg to calculate each encoded chunk’s
SSIM [43], a measure of video quality, relative to the canoni-
cal source. This information is used by the objective function
of BBA, MPC, RobustMPC, and Fugu, and for our evalua-
tion. In practice, the relationship between bitrate and quality
varies chunk-by-chunk (Figure 3), and users cannot perceive
compressed chunk sizes directly—only what is shown on the
screen. ABR schemes that maximize bitrate do not necessarily
see a commensurate benefit in picture quality (Figure 4).

Encoding six channels in ten versions each (60 streams
total) with 11bx264 consumes about 48 cores of an Intel x86-
64 2.7 GHz CPU in steady state. Calculating the SSIM of
each encoded chunk consumes an additional 18 cores.

3.2 Serving chunks to the browser

To make it feasible to deploy and test arbitrary ABR schemes,
Puffer uses a “dumb” player (using the HTMLS <video> tag
and the JavaScript Media Source Extensions) on the client
side, and places the ABR scheme at the server. We have a 48-
core server with 10 Gbps Ethernet in a datacenter at Stanford.
The browser opens a WebSocket (TLS/TCP) connection to
a daemon on the server. Each daemon is configured with a
different TCP congestion control (for the primary analysis,
we used BBR [9]) and ABR scheme. Some schemes are more
efficiently implemented than others; on average the CPU load
from serving client traffic (including TLS, TCP, and ABR)
is about 5% of an Intel x86-64 2.7 GHz core per stream.

498 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Algorithm Control Predictor Optimization goal How trained

BBA classical (linear control) n/u +SSIM s.z. bitrate < limit ~ n/a

MPC-HM classical (MPC) classical (HM) +SSIM, —stalls, ~ASSIM n/a

RobustMPC-HM classical (robust MPC) classical (HM) +SSIM, —stalls, ~ASSIM n/a

Pensieve learned (DNN) n/a +bitrate, —stalls, —Abitrate reinforcement learning in simulation
Fugu classical (MPC) learned (DNN) +SSIM, —stalls, ~ASSIM supervised learning in situ

Figure 5: Distinguishing features of algorithms used in the primary experiment. HM = harmonic mean of last five throughput
samples. MPC = model predictive control. DNN = deep neural network.

Sessions are randomly assigned to serving daemons. Users
can switch channels without breaking their TCP connection
and may have many “streams” within each session.

Puffer is not a client-side DASH [28] (Dynamic Adaptive
Streaming over HTTP) system. Like DASH, though, Puffer is
an ABR system streaming chunked video over a TCP connec-
tion, and runs the same ABR algorithms that DASH systems
can run. We don’t expect this architecture to replace client-
side ABR (which can be served by CDN edge nodes), but we
expect its conclusions to translate to ABR schemes broadly.
The Puffer website works in the Chrome, Firefox, Edge, and
Opera browsers, including on Android phones, but does not
play in the Safari browser or on iOS (which lack support for
the Media Source Extensions or Opus audio).

3.3 Hosting arbitrary ABR schemes

We implemented buffer-based control (BBA), MPC, Ro-
bustMPC, and Fugu in back-end daemons that serve video
chunks over the WebSocket. We use SSIM in the objective
functions for each of these schemes. For BBA, we use the
formula in the original paper [18] to decide the maximum
chunk size, and subject to this constraint, the chunk with the
highest SSIM is selected to stream. We also choose reservoir
values consistent with our 15-second maximum buffer.

Deploying Pensieve for live streaming. We use the released
Pensieve code (written in Python with TensorFlow) directly.
When a client is assigned to Pensieve, Puffer spawns a Python
subprocess running Pensieve’s multi-video model.

We contacted the Pensieve authors to request advice on
deploying the algorithm in a live, multi-video, real-world set-
ting. The authors recommended that we use a longer-running
training and that we tune the entropy parameter when training
the multi-video neural network. We wrote an automated tool
to train 6 different models with various entropy reduction
schemes. We tested these manually over a few real networks,
then selected the model with the best performance. We mod-
ified the Pensieve code (and confirmed with the authors) so
that it does not expect the video to end before a user’s session
completes. We were not able to modify Pensieve to optimize
SSIM; it considers the average bitrate of each Puffer stream.
We adjusted the video chunk length to 2.002 seconds and the
buffer threshold to 15 seconds to reflect our parameters. For

training data, we used the authors’ provided script to generate
1000 simulated videos as training videos, and a combination
of the FCC and Norway traces linked to in the Pensieve code-
base as training traces.

3.4 The Puffer experiment

To recruit participants, we purchased Google and Reddit ads
for keywords such as “live tv”’ and “tv streaming” and paid
people on Amazon Mechanical Turk to use Puffer. We were
also featured in press articles. Popular programs (e.g. the 2019
and 2020 Super Bowls, the Oscars, World Cup, and “Bachelor
in Paradise”) brought large spikes (> 20x) over baseline load.
Our current average load is about 60 concurrent streams.

Between Jan. 26, 2019 and Feb. 2, 2020, we have streamed
38.6 years of video to 63,508 registered study participants
using 111,231 unique IP addresses. About eight months of
that period was spent on the “primary experiment,” a ran-
domized trial comparing Fugu with other algorithms: MPC,
RobustMPC, Pensieve, and BBA (a summary of features is
in Figure 5). This period saw a total of 314,577 streaming
sessions, and 1,904,316 individual streams. An experimental-
flow diagram in the standardized CONSORT format [35] is
in the appendix (Figure A 1).

We record client telemetry as time-series data, detailing the
size and SSIM of every video chunk, the time to deliver each
chunk to the client, the buffer size and rebuffering events at
the client, the TCP statistics on the server, and the identity of
the ABR and congestion-control schemes. A full description
of the data is in Appendix B.

Metrics and statistical uncertainty. We group the time se-
ries by user stream to calculate a set of summary figures: the
total time between the first and last recorded events of the
stream, the startup time, the total watch time between the first
and last successfully played portion of the stream, the total
time the video is stalled for rebuffering, the average SSIM,
and the chunk-by-chunk variation in SSIM. The ratio between
“total time stalled” and “total watch time” is known as the re-
buffering ratio or stall ratio, and is widely used to summarize
the performance of streaming video systems [22].

We observe considerable heavy-tailed behavior in most of
these statistics. Watch times are skewed (Figure 11), and while
the risk of rebuffering is important to any ABR algorithm,

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 499

actual rebuffering is a rare phenomenon. Of the 637,189 eli-
gible streams considered for the primary analysis across all
five ABR schemes, only 24,328 (4%) of those streams had
any stalls, mirroring commercial services [22].

These skewed distributions create more room for the play
of chance to corrupt the bottom-line statistics summarizing a
scheme’s performance—even two identical schemes will see
considerable variation in average performance until a substan-
tial amount of data is assembled. In this study, we worked to
quantify the statistical uncertainty that can be attributed to the
play of chance in assigning sessions to ABR algorithms. We
calculate confidence intervals on rebuffering ratio with the
bootstrap method [14], simulating streams drawn empirically
from each scheme’s observed distribution of rebuffering ratio
as a function of stream duration. We calculate confidence
intervals on average SSIM using the formula for weighted
standard error, weighting each stream by its duration.

These practices result in substantial confidence intervals:
with at least 2.5 years of data for each scheme, the width of the
95% confidence interval on a scheme’s stall ratio is between
+13% and 4+21% of the mean value. This is comparable to
the magnitude of the total benefit reported by some academic
work that used much shorter real-world experiments. Even
a recent study of a Pensieve-like scheme on Facebook [24],
encompassing 30 million streams, did not detect a change in
rebuffering ratio outside the level of statistical noise.

We conclude that considerations of uncertainty in real-
world learning and experimentation, especially given uncon-
trolled data from the Internet with real users, deserve further
study. Strategies to import real-world data into repeatable
emulators [45] or reduce their variance [26] will likely be
helpful in producing robust learned networking algorithms.

4 Fugu: design and implementation

Fugu is a control algorithm for bitrate selection, designed to
be feasibly trained in place (in situ) on a real deployment envi-
ronment. It consists of a classical controller (model predictive
control, the same as in MPC-HM), informed by a nonlinear
predictor that can be trained with supervised learning.

Figure 6 shows Fugu’s high-level design. Fugu runs on the
server, making it easy to update its model and aggregate per-
formance data across clients over time. Clients send necessary
telemetry, such as buffer levels, to the server.

. Puffer
Data Aggregation %

update
model

state bitrate
update selection

daily training
01JU00 PBsEq-apOL

%

Transmission Time

Predictor MPC Controller

Figure 6: Overview of Fugu

The controller, described in Section 4.4, makes decisions
by following a classical control algorithm to optimize an
objective QoE function (§4.1) based on predictions for how
long each chunk would take to transmit. These predictions are
provided by the Transmission Time Predictor (TTP) (§4.2),
a neural network that estimates a probability distribution for
the transmission time of a proposed chunk with given size.

4.1 Objective function

For each video chunk K;, Fugu has a selection of versions of
this chunk to choose from, K7, each with a different size s.
As with prior approaches, Fugu quantifies the QoE of each
chunk as a linear combination of video quality, video quality
variation, and stall time [46]. Unlike some prior approaches,
which use the average compressed bitrate of each encoding
setting as a proxy for image quality, Fugu optimizes a percep-
tual measure of picture quality—in our case, SSIM. This has
been shown to correlate with human opinions of QoE [12].
We emphasize that we use the exact same objective function
in our version of MPC and RobustMPC as well.

Let Q(K) be the video quality of a chunk K, T'(K) be the un-
certain transmission time of K, and B; be the current playback
buffer size. Following [46], Fugu defines the QoE obtained
by sending K? (given the previously sent chunk K;_;) as

QoE (K}, Ki-1) = Q(K}) — MO(K}) — O(Ki-1)|

—p-max{T(K?) — B;,0}, o

where max{7 (K?) — B;,0} describes the stall time experi-
enced by sending K, and A and u are configuration constants
for how much to weight video quality variation and rebuffer-
ing. Fugu plans a trajectory of sizes s of the future H chunks
to maximize their expected total QoE.

4.2 Transmission Time Predictor (TTP)

Once Fugu decides which chunk from K} to send, two por-
tions of the QoE become known: the video quality and video
quality variation. The remaining uncertainty is the stall time.
The server knows the current playback buffer size, so what it
needs to know is the transmission time: how long will it take
for the client to receive the chunk? Given an oracle that re-
ports the transmission time of any chunk, the MPC controller
can compute the optimal plan to maximize QoE.

Fugu uses a trained neural-network transmission-time pre-
dictor to approximate the oracle. For each chunk in the fixed
H-step horizon, we train a separate predictor. E.g., if opti-
mizing for the total QoE of the next five chunks, five neural
networks are trained. This lets us parallelize training.

Each TTP network for the future step 4 € {0,...,H — 1}
takes as input a vector of:

1. sizes of pastz chunks K;_¢,...,K;_1,

2. actual transmission times of past # chunks: 7;_;,..., T;_1,

500 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

3. internal TCP statistics (Linux tcp_info structure),

4. size s of a proposed chunk K7 .

The TCP statistics include the current congestion window
size, the number of unacknowledged packets in flight, the
smoothed RTT estimate, the minimum RTT, and the TCP
estimated throughput (tcpi_delivery_rate).

Prior approaches have used Harmonic Mean (HM) [46]
or a Hidden Markov Model (HMM) [40] to predict a single
throughput for the entire lookahead horizon irrespective of the
size of chunk to send. In contrast, the TTP acknowledges the
fact that observed throughput varies with chunk size [7,32,47]

by taking the size of proposed chunk K7, as an explicit input.

In addition, it outputs a discretized probability distribution of
predicted transmission time 7'(K}, ;).

4.3 Training the TTP

We sample from the real usage data collected by any scheme
running on Puffer and feed individual user streams to the
TTP as training input. For the TTP network in the future
step h, each user stream contains a chunk-by-chunk series
of (a) the input 4-vector with the last element to be size of
the actually sent chunk K;,j, and, (b) the actual transmission
time T, of chunk K;; as desired output; the sequence is
shuffled to remove correlation. It is worth noting that unlike
prior work [25,40] that learned from throughput traces, TTP
is trained directly on real chunk-by-chunk data.

We train the TTP with standard supervised learning: the
training minimizes the cross-entropy loss between the output
probability distribution and the discretized actual transmission
time using stochastic gradient descent.

We retrain the TTP every day, using training data collected
over the prior 14 days, to avoid the effects of dataset shift and
catastrophic forgetting [33,34]. Within the 14-day window, we
weight more recent days more heavily. The weights from the

previous day’s model are loaded to warm-start the retraining.

4.4 Model-based controller

Our MPC controller (used for MPC-HM, RobustMPC-HM,
and Fugu) is a stochastic optimal controller that maximizes
the expected cumulative QoE in Equation | with replanning. It
queries TTP for predictions of transmission time and outputs a
plan K}, K7 (..., K}, y_ by value iteration [8]. After sending
K?, the controller observes and updates the input vector passed
into TTP, and replans again for the next chunk.

Given the current playback buffer level B; and the last sent
chunk K;_i, let vi(B;,K;—1) denote the maximum expected
sum of QoE that can be achieved in the H-step lookahead
horizon. We have value iteration as follows:

v (Bi.Ki1) = max { Y Pr[7(KS) = 1]
c T

i

(QOE (K} Ki1) + iy (Bir1, K}) |,

where Pr[T(K}) = t;] is the probability predicted by TTP for
the transmission time of K7 to be #;, and B;, | can be derived
by system dynamics [46] given an enumerated (discretized) ;.
The controller computes the optimal trajectory by solving the
above value iteration with dynamic programming (DP). To
make the DP computational feasible, it also discretizes B; into
bins and uses forward recursion with memoization to only
compute for relevant states.

4.5 Implementation

TTP takes as input the past t+ = 8 chunks, and outputs a
probability distribution over 21 bins of transmission time:
[0,0.25),[0.25,0.75),[0.75,1.25),...,[9.75,00), with 0.5 sec-
onds as the bin size except for the first and the last bins. TTP
is a fully connected neural network, with two hidden layers
with 64 neurons each. We tested different TTPs with vari-
ous numbers of hidden layers and neurons, and found similar
training losses across a range of conditions for each. We im-
plemented TTP and the training in PyTorch, but we load the
trained model in C++ when running on the production server
for performance. A forward pass of TTP’s neural network in
C++ imposes minimal overhead per chunk (less than 0.3 ms
on average on a recent x86-64 core). The MPC controller
optimizes over H = 5 future steps (about 10 seconds). We set
A =1 and u = 100 to balance the conflicting goals in QoE.
Each retraining takes about 6 hours on a 48-core server.

4.6 Ablation study of TTP features

We performed an ablation study to assess the impact of the
TTP’s features (Figure 7). The prediction accuracy is mea-
sured using mean squared error (MSE) between the predicted
transmission time and the actual (absolute, unbinned) value.
For the TTP that outputs a probability distribution, we com-
pute the expected transmission time by weighting the median
value of each bin with the corresponding probability. Here
are the more notable results:

Use of low-level congestion-control statistics. The TTP’s
nature as a DNN lets it consider a variety of noisy inputs,
including low-level congestion-control statistics. We feed the
kernel’s tcp_info structure to the TTP, and find that several
of these fields contribute positively to the TTP’s accuracy,
especially the RTT, CWND, and number of packets in flight
(Figure 7). Although client-side ABR systems cannot typi-
cally access this structure directory because the statistics live
on the sender, these results should motivate the communica-
tion of richer data to ABR algorithms wherever they live.

Transmission-time prediction. The TTP explicitly consid-
ers the size of a proposed chunk, rather than predicting
throughput and then modeling transmission time as scaling
linearly with chunk size [7,32,47]. We compared the TTP
with an equivalent throughput predictor that is agnostic to the

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 501

0.125 025 0.5 1 2 4 8 16 32

TTP (Probabilistic)

TTP (Point Estimate)

Throughput Predictor

Linear Regression (no DNN)

Harmonic Mean (HM)

TCP Delivery Rate

TTP (Probabilistic)

No History

No History + No Delivery Rate

No History + No RTT or min RTT

No History + No CWND or Packets in Flight

0125 025 05 1 2 4 8 16 32
Mean squared error of transmission time prediction

Figure 7: Ablation study of Fugu’s Transmission Time Pre-
dictor (TTP). Removing any of the TTP’s inputs reduced its
ability to predict the transmission time of a video chunk. A
non-probabilistic TTP (“Point Estimate™) and one that pre-
dicts throughput without regard to chunk size (‘“Throughput
Predictor”) both performed markedly worse. TCP statistics
(RTT, CWND, packets in flight) also proved helpful.

chunk’s size (keeping everything else unchanged). The TTP’s
predictions were much more accurate (Figure 7).

Prediction with uncertainty. The TTP outputs a probability
distribution of transmission times. This allows for better deci-
sion making compared with a single point estimate without
uncertainty. We evaluated the expected accuracy of a prob-
abilistic TTP vs. a point-estimate version that outputs the
median value of the most-probable bin, and found an im-
provement in prediction accuracy with the former (Figure 7).
To measure the end-to-end benefits of a probabilistic TTP,
we deployed both versions on Puffer in August 2019 and col-
lected 39 stream-days of data. It performed much worse than
normal Fugu: the rebuffering ratio was 5x worse, without
significant improvement in SSIM (data not shown).

Use of neural network. We found a significant benefit from
using a deep neural network in this application, compared with
a linear-regression model that was trained the same way. The
latter model performed much worse on prediction accuracy
(Figure 7). We also deployed it on Puffer and collected 448
stream-days of data in Aug.—Oct. 2019; its rebuffering ratio
was 2.5 x worse (data not shown).

Daily retraining. To evaluate our practice of retraining the
TTP each day, we conducted a randomized comparison of
several “out-of-date” versions of the TTP on Puffer between
Aug. 7 and Aug. 30, 2019, and between Oct. 16, 2019 and
Jan. 2, 2020. We compared vintages of the TTP that had been
trained in February, March, April, and May 2019, alongside
the TTP that is retrained each day. (We emphasize that the
older TTP vintages were also learned in situ on two weeks of
data from the actual deployment environment—they are sim-
ply earlier versions of the same predictor.) Somewhat to our

490,596 streams
10.7 stream-years
16.45

Fugu-Mar

Fugu-Feb

Fugu

Fugu-May

16.35

Average SSIM (dB)

Fugu-Apr

T T T T T
0.2 0.18 0.16 0.14 0.12

Time spent stalled (%)

Figure 8: Fugu, which is retrained every day, did not outper-
form older versions of itself that were trained up to 11 months
earlier. Our practice of daily retraining appears to be overkill.

surprise and disappointment, we were not able to document
a benefit from daily retraining (Figure 8). This may reflect
a lack of dynamism in the Puffer userbase, or the fact that
once “enough” data is available to put the predictor through
its paces, more-recent data is not necessarily beneficial, or
some other reason. We suspect the older predictors might
become stale at some point in the future, but for the moment,
our practice of daily retraining appears to be overkill.

S Experimental results

We now present findings from our experiments with the Puffer
study, including the evaluation of Fugu. Our main results
are shown in Figure 9. In summary, we conducted a parallel-
group, blinded-assignment, randomized controlled trial of five
ABR schemes between Jan. 26 and Aug. 7, and between
Aug. 30 and Oct. 16,2019. The data include 13.1 stream-years
of data split across five algorithms, counting all streams that
played at least 4 seconds of video. A standardized diagram of
the experimental flow is available in the appendix (Figure A1).

We found that simple “buffer-based” control (BBA) per-
forms surprisingly well, despite its status as a frequently out-
performed research baseline. The only scheme to consistently
outperform BBA in both stalls and quality was Fugu, but only
when all features of the TTP were used. If we remove the prob-
abilistic “fuzzy” nature of Fugu’s predictions, or the “depth”
of the neural network, or the prediction of transmission time
as a function of chunk size (and not simply throughput), Fugu
forfeits its advantage (§4.6). Fugu also outperformed other
schemes in terms of SSIM variability (Figure 1). On a cold
start to a new session, prior work [19,40] suggested a need
for session clustering to determine the quality of the first
chunk. TTP provides an alternative approach: low-level TCP
statistics are available as soon as the (HTTP/WebSocket, TLS,
TCP) connection is established and allow Fugu to begin safely
at a higher quality (Figure 10).

We conclude that robustly beating “simple” algorithms
with machine learning may be surprisingly difficult, notwith-

502 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Primary experiment (637,189 streams, 13.1 stream-years)

Fugu
MPC-HM +
16.6 1 + }
BBA

16.4

Pensieve
16.2
RobustMPC-HM
16 +

T T T
0.24 0.2 0.16 0.12
Time spent stalled (%)

Average SSIM (dB)

Slow network paths (126,465 streams, 1.8 stream-years)

15 q
MPC-HM

—_—

Fugu
—

14.5 1 BBA

RobuslMPCﬂ{_
Pensieve

T T T
1.2 1 0.8 0.6
Time spent stalled (%)

Average SSIM (dB)
=
|

13.5

Figure 9: Main results. In a blinded randomized controlled trial that included 13.1 years of video streamed to 54,612 client IP
addresses over an eight-month period, Fugu reduced the fraction of time spent stalled (except with respect to RobustMPC-HM),
increased SSIM, and reduced SSIM variation within each stream (tabular data in Figure 1). “Slow” network paths have average
throughput less than 6 Mbit/s; following prior work [25,46], these paths are more likely to require nontrivial bitrate-adaptation
logic. Such streams accounted for 14% of overall viewing time and 83% of stalls. Error bars show 95% confidence intervals.

[Fugu
)
=
s 114
17
7
<
e
E
£
e
Z 108 -
&
2 [Pensieve
I
2 [MPC-HM
06| g ——]
BBA RobustMPC-HM
T T T
0.44 0.43 0.42
Startup delay (s)

Figure 10: On a cold start, Fugu’s ability to bootstrap ABR
decisions from TCP statistics (e.g., RTT) boosts initial quality.

standing promising results in contained environments such as
simulators and emulators. The gains that learned algorithms
have in optimization or smarter decision making may come at
a tradeoff in brittleness or sensitivity to heavy-tailed behavior.

5.1 Fugu users streamed for longer

We observed significant differences in the session durations
of users across algorithms (Figure 11). Users whose sessions
were assigned to Fugu chose to remain on the Puffer video
player about 5-9% longer, on average, than those assigned to
other schemes. Users were blinded to the assignment, and we
believe the experiment was carefully executed not to “leak”
details of the underlying scheme (MPC and Fugu even share
most of their codebase). The average difference was driven
solely by the upper 4% tail of viewership duration (sessions
lasting more than 3 hours)—viewers assigned to Fugu are
much more likely to keep streaming beyond this point, even
as the distributions are nearly identical until then.
Time-on-site is a figure of merit in the video-streaming

0.1

9

8 001
o
Fugu (mean 33.6 £0.9)
—— MPC-HM (mean 30.8 + 0.8)
0.001 = RobustMPC-HM (mean 31.0 £ 0.8)
Pensieve (mean 31.6 £ 0.8)
————— BBA (mean 32.1 £0.8)

0.0001 TR . |
10 100 1000

Total time on video player (minutes)

Figure 11: Users randomly assigned to Fugu chose to remain
on the Puffer video player about 5%—9% longer, on average,
than those assigned to other schemes. Users were blinded to
the assignment. Legend shows 95% confidence intervals on
the average time-on-site in minutes.

industry and might be increased by delivering better-quality
video with fewer stalls, but we simply do not know enough
about what is driving this phenomenon.

5.2 The benefits of learning in situ

Each of the ABR algorithms we deployed has been evaluated
in emulation in prior work [25,46]. Notably, the results in
those works are qualitatively different from some of the real
world results we have seen here—for example, buffer-based
control matching or outperforming MPC-HM and Pensieve.
To investigate this further, we constructed an emulation
environment similar to that used in [25]. This involved run-
ning the Puffer media server locally, and launching headless
Chrome clients inside mahimahi [30] shells to connect to
the server. Each mahimahi shell imposed a 40 ms end-to-end
delay on traffic originating inside it and limited the downlink

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 503

157 @MPC-HM F 71
@fugu 44,326 streams

BBA 0.9 stream-years
14.54
16.5

(]
RobustMPC-HM
13.54

Average SSIM (dB)
Average SSIM (dB)
>
L

15.5

Pensieve @ 15 4

Fugu
MPC-HM
BBA 0.8

RobustMPC-HM

Emulation-trained Fugu

Pensieve

0.6

CDF

0.4

02

Puffer traces
FCC traces

12.5 T T T T T 1 T T
L5 1.25 1 0.75 0.5 0.25 0 0.5 0.4

Time spent stalled (%)

Time spent stalled (%)

T T 0.0
02 0.1 0.1 1 10 100

Throughput (Mbps)

Figure 12: Left: performance in emulation, run in mahimahi [30] using the FCC traces [10], following the method of Pen-
sieve [25]. Middle: During Jan. 26—Apr. 2, 2019, we randomized sessions to a set of algorithms including “emulation-trained
Fugu.” For Fugu, training in emulation did not generalize to the deployment environment. In addition, emulation results (left) are
not indicative of real-world performance. Right: comparison of throughput distribution of FCC traces and of real Puffer sessions.

capacity over time to match the capacity recorded in a set
of FCC broadband network traces [10]. As in the Pensieve
evaluation, uplink speeds in all shells were capped at 12 Mbps.
Within this test setup, we automated 12 clients to repeatedly
connect to the media server, which would play a 10 minute
clip recorded on NBC over each network trace in the dataset.
Each client was assigned to a different ABR algorithm, and
played the 10 minute video repeatedly over more than 15
hours of FCC traces. Results are shown in Figure 12.

We trained a version of Fugu in this emulation environ-
ment to evaluate its performance. Compared with the in situ
Fugu—or with every other ABR scheme—the real-world per-
formance of emulation-trained Fugu was horrible (Figure 12,
middle panel). Looking at the other ABR schemes, almost
each of them lies somewhere along the SSIM/stall frontier
in emulation (left side of figure), with Pensieve rebuffering
the least and MPC delivering the highest quality video. In the
real experiment (middle of figure), we see a more muddled
picture, with a different qualitative arrangement of schemes.

5.3 Remarks on Pensieve and RL for ABR

The original Pensieve paper [25] demonstrated that Pensieve
outperformed MPC-HM, RobustMPC-HM, and BBA in both
emulation-based tests and in video streaming tests on low
and high-speed real-world networks. Our results differ; we
believe the mismatch may have occurred for several reasons.

First, we have found that simulation-based training and
testing do not capture the vagaries of the real-world paths
seen in the Puffer study. Unlike real-world randomized trials,
trace-based emulators and simulators allow experimenters to
limit statistical uncertainty by running different algorithms
on the same conditions, eliminating the effect of the play of
chance in giving different algorithms a different distribution
of watch times, network behaviors, etc. However, it is difficult
to characterize the systematic uncertainty that comes from
selecting a set of traces that may omit the variability or heavy-
tailed nature of a real deployment experience (both network

behaviors as well as user behaviors, such as watch duration).

Reinforcement learning (RL) schemes such as Pensieve
may be at a particular disadvantage from this phenomenon.
Unlike supervised learning schemes that can learn from train-
ing “data,” RL typically requires a training environment to
respond to a sequence of control decisions and decide on
the appropriate consequences and reward. That environment
could be real life instead of a simulator, but the level of sta-
tistical noise we observe would make this type of learning
extremely slow or require an extremely broad deployment of
algorithms in training. RL relies on being able to slightly vary
a control action and detect a change in the resulting reward.
By our calculations, the variability of inputs is such that it
takes about 2 stream-years of data to reliably distinguish two
ABR schemes whose innate “true” performance differs by
15%. To make RL practical, future work may need to explore
techniques to reduce this variability [26] or construct more
faithful simulators and emulators that model tail behaviors
and capture additional dynamics of the real Internet that are
not represented in throughput traces (e.g. varying RTT, cross
traffic, interaction between throughput and chunk size [7]).

Second, most of the evaluation of Pensieve in the original
paper focused on training and evaluating Pensieve using a
single test video. As a result, the state space that model had
to explore was inherently more limited. Evaluation of the
Pensieve “multi-video model”—which we have to use for our
experimental setting—was more limited. Our results are more
consistent with a recent large-scale study of a Pensieve-multi-
video-like scheme on 30 million streams at Facebook [24].

Third, the right side of Figure 12 shows that the distribution
of throughputs in the FCC traces differs markedly from those
on Puffer. This dataset shift could have harmed the perfor-
mance of Pensieve, which was trained on the FCC traces. In
response to reviewer feedback, we trained a version of Pen-
sieve on throughput traces randomly sampled from real Puffer
video sessions. This is essentially as close to a “learned in
situ” version of Pensieve as we think we can achieve, but is

504 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Average SSIM (dB)

16.6

16.5

16.4

16.3

All sessions

244,028 streams
3.8 stream-years BBA

Fugu

Pensieve | Pensieve (Puffer traces)

T T T
045 0.3 0.15
Time spent stalled (%)

Slow network paths (< 6 Mbit/s)

33,817 streams BBA
145 4 0.5 stream-years Fugu

Average SSIM (dB)

Pensieve Pensieve (Puffer traces)

54 SENIX Association 17th USENIX €

T T T T T
5 4 3 2 1
Time spent stalled (%)

Figure 13: During Jan. 2-Feb. 2, 2020, we evaluated a version of Pensieve that was trained on a collection of network traces
drawn randomly from actual Puffer sessions. This improved its performance compared with the original Pensieve, but the overall

results were broadly similar.

not quite the same (§5.3). We compared “Pensieve on Puffer
traces™ with the original Pensieve, BBA, and Fugu between
Jan. 2 and Feb. 2, 2020 (Figure 13). The results were broadly
similar; the new Pensieve achieved better performance, but
was still significantly worse than BBA and Fugu. The results
deserve further study: they suggest that the representativeness
of training data is not the end of the story when it comes to the.
real-world performance of RL schemes trained in simulation.
Finally, Pensieve optimizes a Qo melric centered aroun
bitrate as a proxy for video quality. We did not alter this
and leave the discussion to Section 6. Figure 4 shows that
Pensieve was the #2 scheme in terms of bitrate (below BBA)
in the primary analysis. We emphasize that our findings do
not indicate that Pensieve cannot be a useful ABR algorithm,
especially in a scenario where similar, pre-recorded video is
played over a familiar set of known networks.

6 Limitations

‘The design of the Puffer experiment and the Fugu system are
subject to important limitations that may affect their perfor-

‘mance and generalizability.

6.1 Limitations of the experiments

Our randomized controlled trial represents a rigorous, but
necessarily “black box,” study of ABR algorithms for video
streaming. We don’t know the true distribution of network
paths and throughput-generating processes; we don’t know
the participants or why the distribution in watch times differs
by assigned algorithm; we don’t know how to emulate these
behaviors accurately in a controlled environment.

‘We have supplemented this black-box work with ablation
analyses to relate the real-world performance of Fugu to the
12 accuracy of its predictor, and have studied various ablated
versions of Fugu in deployment. However, ultimately part
of the reason for this paper is that we cannot replicate the

experimental findings outside the real world—a real world
whose behavior is noisy and takes lots of time to measure
precisely. That may be an unsatisfying conclusion, and we.
doubt it will be the final word on this topic. Perhaps it will
become possible to model enough of the vagaries of the real
Intemet “in silico” to enable the development of robust control
strategies without extensive real-world experiments.

Itis also unknown to what degree Puffer’s results—which
are about a single server in a university datacenter, sending to
clients across our entire country over the wide-area Internet—
generalize to a different server at a different institution, much
less the more typical paths between a user on an access net-
work and their nearest CDN edge node. We don’t know for
sure if the pre-trained Fugu model would work in a different
location, or whether training a new Fugu based on data from
that location would yield comparable results. Our results show
that learning in situ works, but we don’t know how specific
the situs needs to be. And while we expect that Fugu could be
implemented in the context of client-side ABR (especially if
the server is willing to share its tep_inZo statistics with the
client), we haven't demonstrated this;

Although we believe that past rescarch papers may have

the in real-world
with realistic Internet paths and users, we also may be guilty
of ling our own inties or i un-

certainties that are only relevant to small or medium-sized
academic studies, such as ours, and irrelevant to the industry.
‘The current load on Puffer is about 60 concurrent streams on
average, meaning we collect about 60 stream-days of data per
day. Our primary analysis covers about 2.6 stream-years of
data per scheme collected overan cight-month period, and was
sufficient to measure its performance metrics to within about
£15% (95% CI). By contrast, we understand YouTube has
an average load of more than 60 million concurrent streams
at any given time. We imagine the considerations of conduct-
ing data-driven experiments at this level may be completely
different—perhaps less about statistical uncertainty, and more

about systematic uncertainties and the difficulties of running
experiments and accumulating so much data.

Some of Fugu’s performance (and that of MPC, Ro-
bustMPC, and BBA) relative to Pensieve may be due to the
fact that these four schemes received more information as
they ran—namely, the SSIM of each possible version of each
future chunk—than did Pensieve. It is possible that an “SSIM-
aware” Pensieve might perform better. The load of calculating
SSIM for each encoded chunk is not insignificant—about an
extra 40% on top of encoding the video.

6.2 Limitations of Fugu

There is a sense that data-driven algorithms that more “heav-
ily” squeeze out performance gains may also put themselves
at risk to brittleness when a deployment environment drifts
from one where the algorithm was trained. In that sense, it is
hard to say whether Fugu’s performance might decay catas-
trophically some day. We tried and failed to demonstrate a
quantitative benefit from daily retraining over “out-of-date”
vintages, but at the same time, we cannot be sure that some
surprising detail tomorrow—e.g., a new user from an unfa-
miliar network—won’t send Fugu into a tailspin before it can
be retrained. A year of data on a growing userbase suggests,
but doesn’t guarantee, robustness to a changing environment.

Fugu does not consider several issues that other research
has concerned itself with—e.g., being able to “replace”
already-downloaded chunks in the buffer with higher quality
versions [38], or optimizing the joint QoE of multiple clients
who share a congestion bottleneck [29].

Fugu is not tied as tightly to the TCP or congestion control
as it might be—for example, Fugu could wait to send a chunk
until the TCP sender tells it that there is a sufficient congestion
window for most of the chunk (or the whole chunk) to be sent
immediately. Otherwise, it might choose to wait and make
a better-informed decision later. Fugu does not schedule the
transmission of chunks—it will always send the next chunk
as long as the client has room in its playback buffer.

7 Conclusion

Machine-learned systems in computer networking sometimes
describe themselves as achieving near-*“optimal” performance,
based on results in a contained or modeled version of the
problem [25,37,39]. Such approaches are not limited to the
academic community: in early 2020, a major video-streaming
company announced a $5,000 prize for the best low-delay
ABR scheme, in which candidates will be evaluated in a net-
work simulator that follows a trace of varying throughput [2].

In this paper, we suggest that these efforts can benefit from
considering a broader notion of performance and optimality.
Good, or even near-optimal, performance in a simulator or
emulator does not necessarily predict good performance over

the wild Internet, with its variability and heavy-tailed distri-
butions. It remains a challenging problem to gather the ap-
propriate training data (or in the case of RL systems, training
environments) to properly learn and validate such systems.

In this paper, we asked: what does it take to create a learned
ABR algorithm that robustly performs well over the wild Inter-
net? In effect, our best answer is to cheat: train the algorithm
in situ on data from the real deployment environment, and use
an algorithm whose structure is sophisticated enough (a neural
network) and yet also simple enough (a predictor amenable to
supervised learning on data, informing a classical controller)
to benefit from that kind of training.

Over the last year, we have streamed 38.6 years of video
to 63,508 users across the Internet. Sessions are randomized
in blinded fashion among algorithms, and client telemetry
is recorded for analysis. The Fugu algorithm robustly out-
performed other schemes, both simple and sophisticated, on
objective measures (SSIM, stall time, SSIM variability) and
increased the duration that users chose to continue streaming.

We have found the Puffer approach a powerful tool for net-
working research—it is fulfilling to be able to “measure, then
build” [5] to iterate rapidly on new ideas and gain feedback.
Accordingly, we are opening Puffer as an “open research” plat-
form. Along with this paper, we are publishing our full archive
of data and results on the Puffer website. The system posts
new data each week, along with a summary of results from
the ongoing experiments, with confidence intervals similar to
those in this paper. (The format is described in Appendix B.)
We redacted some fields from the public archive to protect
participants’ privacy (e.g., IP address) but are willing to work
with researchers on access to these fields in an aggregated
fashion. Puffer and Fugu are also open-source software, as
are the analysis tools used to prepare the results in this paper.

We plan to operate Puffer as long as feasible and invite
researchers to train and validate new algorithms for ABR
control, network and throughput prediction, and congestion
control on its traffic. We are eager to collaborate with and
learn from the community’s ideas on how to design and deploy
robust learned systems for the Internet.

Acknowledgments

We are greatly indebted to Emily Marx, who joined this
project after the original submission of this paper, found and
corrected bugs in our analysis tools, and performed the final
data analysis. We thank our shepherd, Vyas Sekar, and the
ACM SIGCOMM and USENIX NSDI reviewers for their
helpful feedback. We are grateful for conversations with and
feedback from Danfei Xu, T.Y. Huang, Hongzi Mao, Michael
Schapira, and Nils Krahnstoever, and we thank the participants
in the Puffer research study, without whom these experiments
could not have been conducted. This work was supported by
NSF grant CNS-1909212 and by Google, Huawei, VMware,
Dropbox, Facebook, and the Stanford Platform Lab.

506 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Locast: Non-profit retransmission of broadcast televi-
sion, June 2018. https://news.locast.org/app/uploads/
2018/11/Locast- White-Paper.pdf.

MMSys’20/Twitch Grand Challenge on Adaptation Al-
gorithms for Near-Second Latency, January 2020. https:
/12020.acmmmsys.org/111_challenge.php.

Alekh Agarwal, Nan Jiang, and Sham M. Kakade. Lec-
ture notes on the theory of reinforcement learning. 2019.

Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan,
Sanjay Rao, Jessica Chen, Ethan Katz-Bassett, Bruno
Ribeiro, Jibin Zhan, and Hui Zhang. Oboe: Auto-
tuning video ABR algorithms to network conditions.
In Proceedings of the 2018 Conference of the ACM SIG-
COMM, pages 44-58, 2018.

Remzi Arpaci-Dusseau. Measure, then build (USENIX
ATC 2019 keynote). Renton, WA, July 2019. USENIX
Association.

Athula Balachandran, Vyas Sekar, Aditya Akella, Srini-
vasan Seshan, Ion Stoica, and Hui Zhang. Developing
a predictive model of quality of experience for Inter-
net video. ACM SIGCOMM Computer Communication
Review, 43(4):339-350, 2013.

Mihovil Bartulovic, Junchen Jiang, Sivaraman Balakr-
ishnan, Vyas Sekar, and Bruno Sinopoli. Biases in data-
driven networking, and what to do about them. In Pro-
ceedings of the 16th ACM Workshop on Hot Topics in
Networks, pages 192-198, 2017.

Richard Bellman. A Markovian decision process. Jour-
nal of mathematics and mechanics, pages 679—684,
1957.

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-based congestion control. ACM Queue,
14(5):20-53, 2016.

Federal Communications Commission. Measuring
Broadband America. https://www.fcc.gov/general/
measuring-broadband-america.

Paul Crews and Hudson Ayers. CS 244 ’18:
Recreating and extending Pensieve, 2018. https:
//reproducingnetworkresearch.wordpress.com/2018/
07/16/cs-244-18-recreating-and-extending-pensieve/.

Zhengfang Duanmu, Kai Zeng, Kede Ma, Abdul
Rehman, and Zhou Wang. A quality-of-experience index
for streaming video. IEEE Journal of Selected Topics in
Signal Processing, 11(1):154-166, 2016.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd
Hester. Challenges of real-world reinforcement learning.
In ICML 2019 Workshop RL4RealLife, 2019.

Bradley Efron and Robert Tibshirani. Bootstrap methods
for standard errors, confidence intervals, and other mea-

sures of statistical accuracy. Statistical science, pages
54-75, 1986.

Sally Floyd and Eddie Kohler. Internet research needs
better models. ACM SIGCOMM Computer Communi-
cation Review, 33(1):29-34, 2003.

Sally Floyd and Vern Paxson. Difficulties in simulating
the internet. IEEE/ACM Transactions on Networking,
9(4):392-403, 2001.

Sadjad Fouladi, John Emmons, Emre Orbay, Catherine
Wu, Riad S. Wahby, and Keith Winstein. Salsify: Low-
latency network video through tighter integration be-
tween a video codec and a transport protocol. In /5th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 267-282, 2018.

Te-Yuan Huang, Ramesh Johari, Nick McKeown,
Matthew Trunnell, and Mark Watson. A buffer-based
approach to rate adaptation: Evidence from a large video
streaming service. In Proceedings of the 2014 Confer-
ence of the ACM SIGCOMM, pages 187-198, 2014.

Junchen Jiang, Vyas Sekar, Henry Milner, Davis Shep-
herd, Ion Stoica, and Hui Zhang. CFA: A practical
prediction system for video QoE optimization. In 13th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 137-150, 2016.

Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving
fairness, efficiency, and stability in HTTP-based adap-
tive video streaming with FESTIVE. In Proceedings
of the 8th International Conference on emerging Net-
working EXperiments and Technologies, pages 97-108,
2012.

S. Shunmuga Krishnan and Ramesh K. Sitaraman.
Video stream quality impacts viewer behavior: Inferring
causality using quasi-experimental designs. IEEE/ACM
Transactions on Networking, 21(6):2001-2014, 2013.

Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan Iyengar, et al. The
QUIC transport protocol: Design and Internet-scale de-
ployment. In Proceedings of the 2017 Conference of the
ACM SIGCOMM, pages 183-196, 2017.

Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao
Hu, Ali C. Begen, and David Oran. Probe and adapt:
Rate adaptation for HTTP video streaming at scale.

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation

507

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

IEEE Journal on Selected Areas in Communications,
32(4):719-733, 2014.

Hongzi Mao, Shannon Chen, Drew Dimmery, Shaun
Singh, Drew Blaisdell, Yuandong Tian, Mohammad Al-
izadeh, and Eytan Bakshy. Real-world video adaptation
with reinforcement learning. In ICML 2019 Workshop
RILARealLife, 2019.

Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with Pensieve. In
Proceedings of the 2017 Conference of the ACM SIG-
COMM, pages 197-210. ACM, 2017.

Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte
Schwarzkopf, and Mohammad Alizadeh. Variance re-
duction for reinforcement learning in input-driven en-
vironments. In International Conference on Learning
Representations, 2019.

Ricky K.P. Mok, Xiapu Luo, Edmond W.W. Chan, and
Rocky K.C. Chang. QDASH: a QoE-aware DASH
system. In Proceedings of the 3rd Multimedia Systems
Conference, pages 11-22,2012.

Dynamic adaptive streaming over HTTP (DASH) — Part
1: Media presentation description and segment formats,
April 2012. ISO/IEC 23009-1 (http://standards.iso.org/
ittf/Publicly AvailableStandards).

Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichan-
dra Addanki, Mehrdad Khani, Prateesh Goyal, and Mo-
hammad Alizadeh. End-to-end transport for video qoe
fairness. In Proceedings of the ACM Special Interest
Group on Data Communication, SIGCOMM 19, page
408423, New York, NY, USA, 2019. Association for
Computing Machinery.

Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate record-and-
replay for HTTP. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pages 417-429, 2015.

Vern Paxson and Sally Floyd. Why we don’t know
how to simulate the Internet. In Proceedings of the
29th conference on Winter simulation, pages 1037-1044,
1997.

Yanyuan Qin, Shuai Hao, Krishna R. Pattipati, Feng
Qian, Subhabrata Sen, Bing Wang, and Chaoqun Yue.
ABR streaming of VBR-encoded videos: characteriza-
tion, challenges, and solutions. In Proceedings of the
14th International Conference on emerging Networking
EXperiments and Technologies, pages 366-378. ACM,
2018.

(33]

[34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

Anthony Robins. Catastrophic forgetting, rehearsal and
pseudorehearsal. Connection Science, 7(2):123—-146,
1995.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of
the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 627—635, 2011.

Kenneth F. Schulz, Douglas G. Altman, and David Mo-
her. CONSORT 2010 statement: updated guidelines
for reporting parallel group randomised trials. BMC
medicine, 8(1):18, 2010.

Alexander T. Schwarm and Michael Nikolaou. Chance-
constrained model predictive control. AIChE Journal,
45(8):1743-1752, 1999.

Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker,
and Hari Balakrishnan. An experimental study of the
learnability of congestion control. In Proceedings of
the 2014 Conference of the ACM SIGCOMM, pages
479-490, 2014.

Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio.
From theory to practice: Improving bitrate adaptation
in the DASH reference player. In Proceedings of the
9th ACM Multimedia Systems Conference, MMSys 18,
pages 123-137, New York, NY, USA, 2018. ACM.

Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitara-
man. BOLA: Near-optimal bitrate adaptation for online
videos. In INFOCOM 2016-The 35th Annual IEEE In-
ternational Conference on Computer Communications,
IEEE, pages 1-9. IEEE, 2016.

Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan
Lin, Nanshu Wang, Tao Liu, and Bruno Sinopoli. CS2P:
Improving video bitrate selection and adaptation with
data-driven throughput prediction. In Proceedings of
the 2016 Conference of the ACM SIGCOMM, pages
272-285, 2016.

Cisco Systems. Cisco Visual Networking Index:
Forecast and trends, 2017-2022, November 2018.
https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/
white-paper-c11-741490.pdf.

Guibin Tian and Yong Liu. Towards agile and smooth
video adaptation in dynamic HTTP streaming. In Pro-
ceedings of the 8th International Conference on emerg-
ing Networking EXperiments and Technologies, pages
109-120, 2012.

508

17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

[43]

[44]

[45]

[46]

[47]

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and
Eero P. Simoncelli. Image quality assessment: from
error visibility to structural similarity. /EEE Transac-
tions on Image Processing, 13(4):600-612, 2004.

Keith Winstein and Hari Balakrishnan. TCP ex Machina:
Computer-generated congestion control. Proceedings of
the 2013 Conference of the ACM SIGCOMM, 43(4):123—
134, 2013.

Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Ragha-
van, Riad S. Wahby, Philip Levis, and Keith Winstein.
Pantheon: the training ground for Internet congestion-
control research. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 731-743, Boston,
MA, 2018. USENIX Association.

Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno
Sinopoli. A control-theoretic approach for dynamic
adaptive video streaming over HTTP. In Proceedings
of the 2015 Conference of the ACM SIGCOMM, pages
325-338, 2015.

Tong Zhang, Fengyuan Ren, Wenxue Cheng, Xiaohui
Luo, Ran Shu, and Xiaolan Liu. Modeling and ana-
lyzing the influence of chunk size variation on bitrate
adaptation in DASH. In I[EEE INFOCOM 2017-IEEE
Conference on Computer Communications, pages 1-9.
IEEE, 2017.

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation

509

0lg

uoneluswa|dw] pue ubisag swalsAg paxiomiaN uo wnisodwAs XINISN YiZL

UONBId0SSY XINISN

A Randomized trial flow diagram

314,577 sessions underwent randomization

1,904,316 streams
69,017 unique IPs
17.2 client-years of data

69,941 sessions were excluded
437,266 streams
4.0 client-years of data

Y
© 102,994 streams were assigned CUBIC
o 334,272 streams were assigned experimental algorithms for
portions of the study duration
.

f

[

1

)

49,960 sessions were assigned
Fugu
303,250 streams

49,084 sessions were assigned
MPC-HM
294,541 streams

48,519 sessions were assigned
RobustMPC-HM
293,323 streams

47,819 sessions were assigned
Pensieve
283,683 streams

49,254 sessions were assigned
BBA
292,253 streams

!

!

!

l

l

170,629 streams were excluded

o 385 did not begin playing
0 170,180 had watch time less than 4s
o 64 stalled from a slow video decoder

166,186 streams were excluded

0 527 did not begin playing
0 165,603 had watch time less than 4s
o 56 stalled from a slow video decoder

166,792 streams were excluded

0 213 did not begin playing
0 166,487 had watch time less than 4s
o 92 stalled from a slow video decoder

158,879 streams were excluded

o 380 did not begin playing
© 158,474 had watch time less than 4s
o 25 stalled from a slow video decoder

167,375 streams were excluded

o 330 did not begin playing
0 167,009 had watch time less than 4s
o 35 stalled from a slow video decoder
o 1 sent contradictory data

|

|

|

|

|

3,810 streams were truncated
because of a loss of contact

3,580 streams were truncated
because of a loss of contact

3,327 streams were truncated
because of a loss of contact

3,557 streams were truncated
because of a loss of contact

3,585 streams were truncated
because of a loss of contact

|

|

|

!

|

132,621 streams were considered
2.8 client-years of data

128,355 streams were considered
2.6 client-years of data

126,531 streams were considered
2.5 client-years of data

124,804 streams were considered
2.5 client-years of data

124,878 streams were considered
2.7 client-years of data

|

L

)

J

Y

637,189 streams were considered
13.1 client-years of data

o 1.2 client-days spent in startup
o 7.9 client-days spent stalled
o 13.1 client-years spent playing

Figure A1: CONSORT-style diagram [35] of experimental flow for the primary results (Figures | and 9), obtained during the period Jan. 26—-Aug. 7, 2019, and
Aug. 30-Oct. 16, 2019. A “session” represents one visit to the Puffer video player and may contain many “streams.” Reloading starts a new session, but changing
channels only starts a new stream and does not change TCP connections or ABR algorithms.

B Description of open data

The open data we are releasing comprise different
“measurements”—each measurement contains a different set
of time-series data collected on Puffer servers. Below we high-
light the format of interesting fields in three measurements
that are essential for analysis: video_sent, video_acked,
and client_buffer.
video_sent collects a data point every time a Puffer server
sends a video chunk to a client. Each data point contains:
e time: timestamp when the chunk is sent
e session_id: unique ID for the video session
e expt_id: unique ID to identify the experimental group;
expt_1id can be used as a key to retrieve the experimen-
tal setting (e.g., ABR, congestion control) when sending
the chunk, in another file we are providing.
e channel: TV channel name
e video_ts: unique presentation timestamp of the chunk
format: encoding settings of the chunk, including reso-
lution and constant rate factor (CRF)
size: size of the chunk
ssim_index: SSIM of the chunk
cwnd: congestion window size (tcpi_snd_cwnd)
in_flight: number of unacknowledged packets in
flight (tcpi_unacked - tcpi_sacked - tcpi_lost +
tcpi_retrans)
e min_rtt: minimum RTT (tcpi_min_rtt)
e rtt:smoothed RTT estimate (tcpi_rtt)
e delivery_rate: estimate of TCP
(tcpi_delivery_rate)

throughput

video_acked collects a data point every time a Puffer
server receives a video chunk acknowledgement from a client.
Each data point can be matched to a data point in video_sent
using video_ts (if the chunk is ever acknowledged) and used
to calculate the transmission time of the chunk—difference
between the timestamps in the two data points. Specifically,
each data point in video_acked contains:

time: timestamp when the chunk is acknowledged
session_id

expt_id

channel

video_ts

client_buffer collects client-side information reported
to Puffer servers on a regular interval and when certain events
occur. Each data point contains:

time: timestamp when the client message is received
session_id
expt_id
channel
event: event type, e.g., was this triggered by a regular
report every quarter second, or because the client stalled
or began playing.

e buffer: playback buffer size

e cum_rebuf: cumulative rebuffer time in the current

stream

Between Jan. 26, 2019 and Feb. 2, 2020, we collected
675,839,652 data points in video_sent, 677,956,279 data
points in video_acked, and 4,622,575,336 data points in
client_buffer.

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 511

	Introduction
	Background and related work
	Puffer: an ongoing live study of ABR
	Back-end: decoding, encoding, SSIM
	Serving chunks to the browser
	Hosting arbitrary ABR schemes
	The Puffer experiment

	Fugu: design and implementation
	Objective function
	Transmission Time Predictor (TTP)
	Training the TTP
	Model-based controller
	Implementation
	Ablation study of TTP features

	Experimental results
	Fugu users streamed for longer
	The benefits of learning in situ
	Remarks on Pensieve and RL for ABR

	Limitations
	Limitations of the experiments
	Limitations of Fugu

	Conclusion
	Randomized trial flow diagram
	Description of open data

