B SN

N
usenix \
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Actions Speak Louder than Words: Entity-Sensitive
Privacy Policy and Data Flow Analysis with PoLiCHeck

Benjamin Andow, IBM T.J. Watson Research Center; Samin Yaseer Mahmud,
Justin Whitaker, William Enck, and Bradley Reaves, North Carolina State
University; Kapil Singh, IBM T.J. Watson Research Center; Serge Egelman,
U.C. Berkeley / 1CSI / AppCensus Inc.

https://www.usenix.org/conference/usenixsecurity20/presentation/andow

This paper is included in the Proceedings of the
29th USENIX Security Symposium.
August 12-14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium
is sponsored by USENIX.

ar

Actions Speak Louder than Words: Entity-Sensitive Privacy Policy and Data Flow
Analysis with POLICHECK

Benjamin Andow,* Samin Yaseer Mahmud,” Justin Whitaker,
William Enck,” Bradley Reaves,” Kapil Singh,* Serge Egelman*
*IBM T.J. Watson Research Center
"North Carolina State University
tU.C. Berkeley / ICSI / AppCensus Inc.

Abstract

Identifying privacy-sensitive data leaks by mobile applica-
tions has been a topic of great research interest for the past
decade. Technically, such data flows are not “leaks” if they
are disclosed in a privacy policy. To address this limitation
in automated analysis, recent work has combined program
analysis of applications with analysis of privacy policies to de-
termine the flow-to-policy consistency, and hence violations
thereof. However, this prior work has a fundamental weak-
ness: it does not differentiate the entity (e.g., first-party vs.
third-party) receiving the privacy-sensitive data. In this paper,
we propose POLICHECK, which formalizes and implements
an entity-sensitive flow-to-policy consistency model. We use
POLICHECK to study 13,796 applications and their privacy
policies and find that up to 42.4% of applications either incor-
rectly disclose or omit disclosing their privacy-sensitive data
flows. Our results also demonstrate the significance of con-
sidering entities: without considering entity, prior approaches
would falsely classify up to 38.4% of applications as hav-
ing privacy-sensitive data flows consistent with their privacy
policies. These false classifications include data flows to third-
parties that are omitted (e.g., the policy states only the first-
party collects the data type), incorrect (e.g., the policy states
the third-party does not collect the data type), and ambiguous
(e.g., the policy has conflicting statements about the data type
collection). By defining a novel automated, entity-sensitive
flow-to-policy consistency analysis, POLICHECK provides the
highest-precision method to date to determine if applications
properly disclose their privacy-sensitive behaviors.

1 Introduction

Privacy is a long-standing open research challenge for mobile
applications. Literature has proposed various program analy-
sis tools for Android [7, 11, 12, 14] and iOS [10] apps, often
citing private-information disclosure as motivations. Subse-
quent empirical studies [16, 18,23-25,27] have demonstrated
pervasive and continual disclosure of privacy-sensitive infor-
mation such as device identifiers and geographic location.

Broadly speaking, the concept of privacy is only vaguely
defined and frequently debated. Privacy resides at the inter-
section of technical, cultural, and legal considerations. In the
case of mobile applications, data collection and sharing are
often considered (legally) acceptable if it is disclosed in the
privacy policy for the application. While there have been sev-
eral manual analyses of application privacy policies [9, 20], it
is hard to computationally reason about what privacy policies
say, and therefore how applications adhere to them.

A recent thread of research has begun studying privacy
policies and mobile applications [29, 32, 34,38]. The goal of
these studies is to help app developers write accurate privacy
policies, help application stores identify privacy violations,
and help end users choose more-privacy-friendly applications.
Conceptually, these studies use a combination of static pro-
gram analysis and natural language processing to perform an
analysis of flow-to-policy consistency. Simply, flow-to-policy
consistency analysis determines whether an app’s behavior is
consistent with what is declared in the privacy policy.

While such prior studies have led to promising results, the
techniques have a fundamental weakness: they do not dif-
ferentiate the entity (e.g., first-party vs. third-parties, such as
advertisers and analytics providers) receiving the data. In fact,
in Section 5.2, we show that entity-insensitive models may
wrongly classify 38.4% of applications as having privacy-
sensitive data flows consistent with their privacy policies due
to reasoning over third-party data flows using policy state-
ments discussing first-party collection practices. For example,
consider the following sentence from a popular Android ap-
plication with over 10 million downloads:

When you launch any of our applications, we col-
lect information regarding your device type, oper-
ating system and version, carrier provider, IP ad-
dress, Media Access Control (MAC) address, In-
ternational Equipment Mobile ID (IMEI), whether
you are using a point package, the game version,
the device’s geo-location, language settings, and
unique device ID.

USENIX Association

29th USENIX Security Symposium 985

This statement indicates that the app (the first-party) collects
different device identifiers; but there is no mention of third-
parties collecting this data. In actuality, dynamic analysis
found that the application sends the IMEI, Android ID, and
Ad ID to Tapjoy and the Android ID and Ad ID to Flurry (two
third-party advertisers). By not considering the entity receiv-
ing the privacy-sensitive data, prior work would incorrectly
classify these data flows as being consistent with the policy.

In addition, the importance developers disclosing the third-
party entities with which they are sharing information is
grounded in regulations, such as GDPR [3] and CCPA [1]. In
particular, GDPR mandates that data controllers disclose the
recipients or categories of recipients with which they share
personal data. In the case of applications, the first-party (de-
veloper) is considered the data controller while third-parties
can either be data controllers or data processors. The major-
ity of the entities involved in this study self-identify as data
controllers (e.g., Google, Facebook, TapJoy). Based on the
requirement that data controllers are required to disclose their
identity and contact information according to GDPR, it is
debatable whether the application is required to disclose all
third-parties by name if they also take the role as a data con-
troller. Further, the CCPA states that the privacy policy should
disclose the categories of third-parties with whom the busi-
ness shared personal information. Therefore, the application’s
privacy policy is also mandated to disclose the third-party
entities with which they share data based on the CCPA.

In this paper, we propose POLICHECK, which provides
an entity-sensitive flow-to-policy consistency model to deter-
mine if an application’s privacy policy discloses relevant data
flows. We formally specify a novel flow-to-policy consistency
model that is sensitive to the semantic granularity of both the
data type and the entity receiving the data and sentiment of
the statement. We dissect flow-to-policy consistency into 5
distinct types of disclosures (including non-disclosures) to
allow for targeted exploration of how apps are (not) disclos-
ing their privacy practices. We use POLICHECK to study the
flow-to-policy consistency of 13,796 Android applications
observed to send privacy sensitive values to servers during
dynamic analysis (45,603 data flows).

The findings from our large-scale empirical study found
several significant flow-to-policy inconsistencies in popular
real-world applications that impact tens-of-millions of users,
such as not disclosing data sharing with advertisers and analyt-
ics providers in privacy policies. In general, we found that ap-
plications almost never clearly disclose their privacy-sensitive
data flows to third-parties. In fact, 40.4% of data flows in-
volving third-party entities are broadly discussed using the
term “third-party,” leaving it up to guesswork to determine
where the data is flowing. Furthermore, we found 5.2% of
applications state that they do not share or collect a specific
type of information within their privacy policy, but dynamic
analysis shows the opposite.

The results from our empirical study highlight the poor state

of privacy policies for Android applications, which demon-
strates the need for action from regulatory agencies and ap-
plication markets. For example, the FTC has set precedent
by charging mobile applications that were found to be omit-
ting or incorrectly disclosing their privacy practices [15,30],
which corresponds to our omitted disclosures and incorrect
disclosures. Regulatory agencies could use POLICHECK for
automated analysis at-scale to identify applications violating
their privacy policies and take whichever actions they deem
appropriate. Further, application markets could also lever-
age POLICHECK to triage and remove applications that are
not correctly disclosing their privacy practices and to urge
developers to provide clearer disclosures.
This paper makes the following main contributions:

o We formally define an entity-sensitive flow-to-policy con-
sistency model for mobile apps. This model includes two
types of consistencies and three types of inconsistencies.
By considering entities, the model avoids significant mis-
classifications that result from prior approaches.

e We design and implement the POLICHECK tool for an-
alyzing the flow-to-policy consistency of Android appli-
cations. POLICHECK builds on top of PolicyLint [4]
for privacy policy analysis and AppCensus [6] for dy-
namic analysis of Android applications. In doing so, we
bridge the gap between the low-level data types and DNS
domains used by program analysis tools and the often
higher-level concepts present in privacy policies.

o We study and characterize the flow-to-policy consistency
of 13,796 Android applications. Our characterization
differentiates first-party and third-party collection and
demonstrates the importance of an entity-sensitive con-
sistency model. We show that our entity-sensitive con-
sistency finds significant flow-to-policy inconsistencies
that involve sharing data to third-party entities, impact-
ing tens-of-millions of users.

The rest of this paper proceeds as follows. Section 2 uses ex-
amples to provide the high-level intuition behind POLICHECK.
Section 3 formally defines the different types of flow-to-policy
consistencies and inconsistencies. Section 4 describes the de-
sign of POLICHECK. Section 5 presents our empirical study.
Section 6 discusses additional case studies. Section 7 dis-
cusses limitations and future work. Section 8 overviews re-
lated work. Section 9 concludes.

2 Flow-to-Policy Consistency

This section motivates POLICHECK’s functionality through
five examples that POLICHECK identified. We simultaneously
provide a high-level intuition of its functionality by walking
through how a human analyst might approach the task. In
doing so, we also exemplify the limitations of prior work.

986 29th USENIX Security Symposium

USENIX Association

App

Policy

pR— U—>| - Flowsﬁ\» (vague Disclosure)
Privacy o Collection ()
| ‘j—PI PolicyLint U—>| Omitted Disclosure

Statements

Flow-to-Policy Consistency

s N

(Clear Disclosure)

jua)sisuo)

Incorrect Disclosure

(Ambiguous Disclosure)

& J

jua)sisuoou|

Figure 1: POLICHECK determines the consistency of a mobile application’s data flows to its privacy policy.

This section does not cover every corner case. Sections 3
and 4 describe POLICHECK in detail.

As shown in Figure 1, POLICHECK seeks to determine
if the privacy policies for mobile applications disclose their
privacy-sensitive data flows to different network entities, as
required by various regulations [1,3]. We define a data flow
as a type of privacy-sensitive data (e.g., IMEIL, location, email
address) and the entity receiving the data (e.g., Facebook,
TapJoy, AdMob). If an application’s privacy policy appro-
priately discusses the sharing or collection of the specific
data type to or by a specific entity for a given data flow, we
refer to the data flow as being consistent with the privacy
policy. To ensure sufficient evidence of sharing or collection
by an entity, we scope data flows to network transmission
identified during dynamic analysis. While dynamic analysis
may under-approximate data flows if sufficient code cover-
age is not achieved during testing, our goal was to optimize
for precision over recall. In contrast, static analysis may over-
approximate data flows and lead to lower precision (e.g., some
ad libraries collect geographic location based on an applica-
tion developer’s server-side configuration).

2.1 Clear Disclosures

A data flow has a clear disclosure when there exists a state-
ment within the privacy policy that directly discusses the
exact type of data and entity of the data flow, and there is
no other policy statement that contradicts it. For illustrative
purposes, consider the “Dr. Panda Town: Vacation” (com.d-
rpanda.town.holiday) game application with over 1 million
downloads on Google Play. This application is built on top
of the Unity third-party game engine. For analytics purposes,
it obtains the device’s advertising identifier and sends it to
cdp.cloud.unity3d.com (i.e., Unity).

To determine if this data flow is disclosed by the privacy
policy, the first step is to resolve cdp.cloud.unity3d.com to
the entity “Unity” by matching the root domain (unity3d. com)
to a list of known analytics providers. For each policy state-
ment, we look for a direct positive sentiment match between
the flow’s data type and entity and the policy statement’s data
type and entity. In this case, we identify the following state-
ment, “Unity collects the following information through our

Games: unique device ID and AD ID.” We then look for policy
statements that contradict the statement by extracting all nega-
tive sentiment statements that discuss the flow’s data type and
entity at any semantic granularity (e.g., analytics providers
collecting device information). In this specific case, we do
not find any policy statements that contradict the statement
above. Therefore, we label this case as a clear disclosure.

2.2 Vague Disclosures

A data flow has a vague disclosure when the only statements
within a privacy policy that match a data flow use broad
terms for the data type or entity. Similar to clear disclosures, a
statement is a vague disclosure only if a contradictory policy
statement does not exist. We differentiate vague disclosures
from clear disclosures, because there is a risk that the language
used to disclose the data flow is so broad that it encapsulates
a wide-range of data flows, making it difficult to determine if
third-party sharing or collection occurs. Vague disclosures are
similar to Slavin et al. [29] and Wang et al.’s [32] definition
of weak violations, but entity-sensitive, sentiment-sensitive,
and contradiction-sensitive.

As an example, consider the popular “Elite Killer: SWAT”
(com.yx.sniper) game application on Google Play with over
10 million downloads and a 4.3 star rating. For monetiza-
tion purposes, this application uses the TapJoy advertising
provider to deliver advertisements within the application.
When requesting advertisements from TapJoy, the application
obtains the user’s Android advertising identifier and transmits
it to ws.tapjoyads.com.

Similar to the previous example, we resolve ws.tapjoy-
ads.com to “TapJoy” through a substring match of the root
domain in our list of known advertisers. However, rather than
identifying only direct matches, we look for policy statements
with positive sentiment that match at any semantic granularity
for the flow’s data type and entity. In this case, we identify
the following statement, “A device identifier and in-game or
user session activity may be shared with the advertiser.” This
statement matches the data flow, because TapJoy is an ad-
vertiser and the Android advertising identifier is a type of
device identifier. Next, we look for matching policy state-
ments with negative sentiment statements. Since we do not

USENIX Association

29th USENIX Security Symposium 987

find any policy statements that contradict this statement, we
label this data flow as a vague disclosure. Finally, we calculate
a vagueness score for the resolved policy statement to allow a
ranked ordering, which is based on a normalized ontological
distance between the flow’s data type and entity and the policy
statements data type and entity.

2.3 Omitted Disclosure

A data flow has an omitted disclosure when there are no policy
statements that discuss it. Omitted disclosures are similar to
Wang et al.’s [32] definition of strong violations. However, as
we demonstrate in the following example, prior definitions
do not consider both data type and entity, and therefore may
incorrectly classify an omitted disclosure as being flow-to-
policy consistent.

Consider the application “Flash Emoji Keyboard &
Themes” (com.xime.latin.lite) on Google Play, which cur-
rently has over 50 million downloads and a 4.1 star rating.
This application uses the Avazu advertising provider to serve
advertisements within the application for monetization pur-
poses. When requesting advertisements from Avazu, this
application obtains the user’s Android identifier, IMEI, and
phone number and transmits that information to Avazu servers
(api.c.avazunativeads.com).

Similar to the previous cases, we look for policy statements
that describe the data flow at any semantic granularity, but
with both positive and negative sentiment. For these data
flows, we do not find any policy statements that match both
data type and entity.

This example application demonstrates the need for consid-
ering both the data type and entity. If we only considered the
data type, we would identify the following policy statement:
“When you access our Services, we automatically record and
upload information from your device including, but not lim-
ited to attributes such as the operating system, hardware
version, device settings, battery and signal strength, device
identifiers...” This policy statement indicates application itself
is collecting device identifiers. However, it does not disclose
a data flow to the advertiser. Therefore, the Android identi-
fier, IMEI, and phone number data flows to the advertiser lack
flow-to-policy consistency. Prior works [29,32,38] that do not
consider entities when reasoning over privacy policies would
have incorrectly identified these data flows as consistent.

2.4 Incorrect Disclosure

A data flow has an incorrect disclosure if a policy statement
indicates that the flow will not occur (i.e., a negative senti-
ment sharing or collection statement) and there is not a con-
tradicting positive sentiment statement. However, we must
be careful when determining if a positive sentiment policy
statement contradicts the negative sentiment statement. Poli-
cyLint [4] identified a class of narrowing definitions (labeled

N to Ny in Table 1) that use a negative sentiment when refer-
ring to a more specific data type or entity. A human reading
these policy statements would not view them as contradict-
ing; rather, the negative sentiment statement would be viewed
as providing an exception to a broad sharing or collection
practice. Therefore, we still classify a data flow as an incor-
rect disclosure if there is a corresponding positive sentiment
statement that matches the narrowing definitions relationship.

For example, consider the “Furby BOOM!” (com.hasbr-
o.FurbyBoom) game application, which has over 10 million
downloads on Google Play. This application is built on top
of the Unity third-party game engine. To provide statistics
to Unity for optimization purposes of their game platform,
the application obtains and sends the device’s IMEI to Unity
(stats.unity3d.com).

Similar to the above cases, we find all relevant policy state-
ments that describe the data flow at any semantic granularity.
In this case, we only find one policy statement, “Our Apps do
not send the device ID or IP address to us or to any third-party,
and our App does not make further use of this information.”
As the device’s IMEI is a type of device identifier and Unity
is a third-party, the application is inconsistent with its own
policy, as it is stating that the data flow should not exist. Note
that prior works [29,32] would have incorrectly identified this
data flow as consistent with the policy, as they do not handle
negative sentiment statements.

2.5 Ambiguous Disclosure

A data flow has an ambiguous disclosure if the flow matches
two or more contradictory policy statements where it is not
clear if the flow will or will not occur. As mentioned above,
PolicyLint [4] identified different types of relationships be-
tween positive and negative sharing statements. We classify
a data flow as having an ambiguous disclosure if there exist
two policy statements that have a logical contradiction rela-
tionship (Cj to Cs in Table 1), but not a narrowing definition
relationship (N; to Ny in Table 1), as described above. Further-
more, we introduce a new set of conflicting policy statements
called flow-sensitive contradiction relationships (Cg to Cy3 in
Table 1), which Section 3 explains in more detail. Data flows
matching two or more policy statements with a flow-sensitive
contradiction relationship are also classified as ambiguous
disclosures.

For example, consider the “Flip Diving” (com.motionvol-
t.flipdiving) game application, which has over 50 million
downloads on Google Play. This application uses the Ad-
Colony advertising provider to serve advertisements for mon-
etization purposes. When requesting advertisements from Ad-
Colony, the application obtains the user’s Android advertising
identifier and transmits it to androidads23.adcolony.com.

Similar to the above cases, we find all relevant policy state-
ments that describe the data flow at any semantic granularity.
In this case, we only find two relevant policy statements, “On

988 29th USENIX Security Symposium

USENIX Association

our apps, these third party advertising companies will collect
and use your data to provide you with targeted advertising
that is relevant to you and your preferences with your con-
sent.” and “We don’t give or sell your data to third parties
for them to market to you.” As their policy states that they
both do and do not give your data to third-parties for advertis-
ing/marketing, the policy is ambiguous. Prior works [29, 32]
would have falsely identified this data flow as consistent, as
they do not capture negative sentiment sharing or collection
statements, nor do they identify conflicting statements.

3 Consistency Model

In this section, we provide the core logic model for our defini-
tion of flow-to-policy consistency, as motivated in Section 2.
We begin with a formal specification of data flows and pri-
vacy policy statements. We then introduce four ontological
operations required for reasoning over data flows. Finally,
we formalize the two types of flow-to-policy consistencies
(clear disclosures and vague disclosures) and the three types
of inconsistencies (omitted disclosures, incorrect disclosures,
and ambiguous disclosures).

3.1 Data Flow and Policy Statements

We model an application a as a tuple, a = (F, P), where F is
a set of data flows observed for the application and P is a set
of sharing and collection policy statements extracted from the
application’s privacy policy. Let D represent the total set of
data types and E represent the total set of entities. Then, a
data flow is represented by the following definition.

Definition 3.1 (Data Flow). A data flow f € F is a tuple
f = (e,d) where d € D is the data type that is sent to an entity
eck.

For example, an application that sends the device’s adver-
tising identifier to AdMob can be concisely represented by
the data flow tuple (AdMob, advertising identifier).

Similar to PolicyLint [4], we represent a sharing and col-
lection policy statement as a tuple (actor, action, data type,
entity) where the actor performs an action on a data type, and
an entity receives a data object of that type. We consider four
actions: share, not share, collect, and not collect. For example,
the statement, “We will share your personal information with
advertisers” is represented as (we, share, personal informa-
tion, advertisers). As our analysis can only observe client-side
behaviors, we adopt PolicyLint’s simplified policy statement
form, which transforms the 4-tuple into a more compact 3-
tuple. Intuitively, these transformation rules remove the actor
and sharing actions and only considers the entities who may
possibly receive (i.e., collect) the data type based on the pol-
icy statement (e.g., sharing data implies the actor also collects
it). Therefore, we represent a policy statement as follows.

Definition 3.2 (Policy Statement). A policy statement p €
P is a tuple, p = (e,c,d), where data type d € D is either
collected or not collected, ¢ € {collect,not_collect}, by an
entity e € E.

For example, the above 4-tuple (we, share, personal infor-
mation, advertisers) is represented as two 3-tuples: (we, col-
lect, personal information) and (advertisers, collect, personal
information).

3.2 Ontological Operations

Privacy policies may disclose data flows using terms with a
different semantic granularity than the actual data flow. For
example, a privacy policy may specify (advertiser, collect, de-
vice identifier) to disclose the data flow (AdMob, advertising
identifier). To match the policy statement to the data flow,
an analysis tool must know that AdMob is an advertiser and
an advertising identifier is a type of device identifier. These
relationships are commonly referred to as subsumptive rela-
tionships, where a more specific term is subsumed under a
more general term (e.g., AdMob is subsumed under adver-
tisers, and advertising identifier is subsumed under device
identifier). Such relationships are often encoded into an on-
tology, which is a rooted directed acyclic graph where terms
are nodes and edges are labeled with the relationship between
those terms.

Our analysis uses two ontologies: data type and entity.
While ontologies can represent several different types of re-
lationships, our ontologies are limited to subsumptive and
synonym relationships. We use the following notation to de-
scribe binary relationships between terms in a given ontology,
which expands on the operators defined by PolicyLint. The
operators are parameterized with an ontology o, which repre-
sents either the data type (d) or entity (€) ontologies.

Definition 3.3 (Semantic Equivalence). Let x and y be terms
partially ordered by an ontology 0. x =, y is true if x and y
are synonyms, defined with respect to an ontology o.

Definition 3.4 (Subsumptive Relationship). Let x and y be
terms partially ordered by “is-a” relationships in an ontology
0.x [,y is true if term x is subsumed under the term y and
x %,y (e.g., “xis-ay” or “xis-a...is-ay”). Similarly, x =,
YyoXxhoy VX=oy.

In addition to these two ontological operators, we iden-
tify a third type of ontological operator that impacts flow-to-
policy consistency analysis. We define a semantic approxima-
tion operator that identifies terms that have common descen-
dants in the ontology, but are not direct descendants of one
other. For example, consider we have the data flow (Flurry,
advertising identifier) and the policy statements: (advertiser,
not_collect, identifiers) and (analytic provider, collect, iden-
tifier). As Flurry is both an advertiser and analytics provider
(common descendant), the policy becomes ambiguous when

USENIX Association

29th USENIX Security Symposium 989

considering whether the data flow is disclosed by the policy.
We define semantic approximation as follows.

Definition 3.5 (Semantic Approximation). Let x and y be
terms partially ordered by “is-a” relationships in an ontology
0.x=,yistrueif Iz suchthatz Cox A 20,y A xEZpy A

yZ()x-

Finally, when discussing vague disclosures, it is useful to
characterize the vagueness using a metric. To help define this
metric, we define the following two operations to determine a
distance between two terms in a given ontology.

Definition 3.6 (Ontological Distance). Let x and y be terms
partially ordered by “is-a” relationships in an ontology o, and
x C, y. The ontological distance A, (x,y) is the shortest path
between x and y.

Definition 3.7 (Normalized Ontological Distance). Let x and
y be terms partially ordered by “is-a” relationships in an on-
tology o, and x C, y. The normalized ontological distance
A,(x,y) is the length of the shortest path between x and y
divided by the length of the shortest path between x and

the root node (T) that goes through y. More specifically,

A . Ap(xy)
Ao(xvy) - W

3.3 Consistency

Section 2 informally defined five types of disclosures used to
describe flow-to-policy consistency and inconsistency. This
section formally defines a consistency model via the logical
relationships between terms in data flows and policy state-
ments. A key part of the informal definitions in Section 2 is
the interpretation of situations with conflicting policy state-
ments, that is, contradictions and narrowing definitions. The
existence of such policy statement conflicts requires flow-to-
policy consistency analysis to consider the policy as a whole,
rather than looking for the existence of any sharing or collec-
tion statement, as done in prior work [29, 32, 38].

PolicyLint [4] introduced five types of logical contradic-
tions (Cj to Cs) and four types of narrowing definitions (N
to Ny) as shown in Table 1. Logical contradictions are a pair
of policy statements that are either exact contradictions (C)
or those that discuss not collecting broad types of data, but
also discuss collecting exact or more specific types (C; to Cs).
Narrowing definitions are a pair of policy statements where
broad data types are stated to be collected, and specific data
types are stated to not be collected (N; to Ny).

We introduce a third pairing of conflicting policy state-
ments called flow-sensitive contradictions (Cg to Cy2 in Ta-
ble 1). Flow-sensitive contradictions are a pair of policy state-
ments with opposing sentiment, such that at least one of the
data types or entities are semantically approximate to the
other. Similar to logical contradictions, flow-sensitive con-
tradictions result in an ambiguous policy when reasoning

Table 1: Types of conflicting policy statements in a privacy
policy: narrowing definitions (N;_4) and logical contradic-
tions from PolicyLint [4], and flow-sensitive contradictions
(Cs—12). C1—12 may lead to ambiguous policies.

Rule Logic
Ny ej=¢e; N\ dyJs5d

Example*
(Flurry, collect, Dev Info)
(Flurry, not_collect, IMEI)

Ny e;jCeej N dydsd; | (Flurry, collect, Dev Info)

(Advertiser, not_collect, IMEI)

N3 e; Jeej N\ dy=gd; | (Advertiser, collect, IMEI)

(Flurry, not_collect, IMEI)

Ny e; Jeej N\ dy Jsd; | (Advertiser, collect, Dev Info)
(Flurry, not_collect, IMEI)
(Flurry, collect, IMEI)

(Flurry, not_collect, IMEI)

C eiEEej/\dkESd[

C ei=ce; N\ dyCgd; | (Flurry, collect, IMEI)

(Flurry, not_collect, Dev Info)

C3 eiCeej N\ dy=gd; | (Flurry, collect, IMEI)

(Advertiser, not_collect, IMEI)

Cy eiCeej N dyCgd; | (Flurry, collect, IMEI)
(Advertiser, not_collect, Dev

Info)

Cs e; Jgej N\ dy Cgd; | (Advertiser, collect, IMEI)
(Flurry, not_collect, Dev Info)
(Flurry, collect, Dev Info)

(Flurry, not_collect, Track Info)

Ce eizgej/\dk%g;dl

C7 e;iCeej N\ dy=gd; | (Flurry, collect, Dev Info)
(Advertiser, not_collect, Track

Info)

Cg e; Jeej A dp=~sd; | (Advertiser, collect, Dev Info)

(Flurry, not_collect, Track Info)

Cy ej~gej N\ dy=sd; | (Analytic, collect, IMEI)

(Advertiser, not_collect, IMEI)

Cio ej~gej N\ diCsd; | (Analytic, collect, IMEI)
(Advertiser, not_collect, Dev

Info)

(O ej~ge; N\ dy Jsd; | (Analytic, collect, Dev Info)

(Advertiser, not_collect, IMEI)

Cio ej~ge; N dy~gd; | (Analytic, collect, Dev Info)
(Advertiser, not_collect, Track
Info)

*P = {(e;,collect,dy), (ej,not_collect,d;) }, f = (Flurry,IMEI)

whether a specific data flow is disclosed. For example, con-
sider we have the data flow (Flurry, advertising identifier) and
the policy statements (analytic provider, collect, advertising
identifier) and (advertiser, not_collect, advertising identifier).
Since Flurry is both an advertiser and analytic provider, the
policy is ambiguous with respect to this data flow.

Before defining our flow-to-policy consistency model, we
define three filters on the set policy statements in a policy.
These filters simplify the notation used to formally describe
the five disclosure types. The following discussion assumes
the analysis of an individual application, and each disclosure
is described with respect to a specific data flow f. Applica-
tions may have multiple data flows. Furthermore, each appli-

990 29th USENIX Security Symposium

USENIX Association

cation has a set of policy statements P.

Definition 3.8 (Contradicting Policy Statements). Let P be a
set of policy statements (Definition 3.2). P¢ is the set of policy
statements p € P for which there exists a p’ € P such that p
and p’ have a logical contradiction (C;_s) or a flow-sensitive
contradiction (Cs_12).

Definition 3.9 (Narrowing Definition Policy Statements). Let
P be a set of policy statements (Definition 3.2). Py is the set
of policy statements p € P for which there exists a p’ € P
such that p and p’ have a narrowing definition (N;_4).

Definition 3.10 (Flow-Relevant Policy Statements). Let P be
a set of policy statements (Definition 3.2) and f be a data flow
(Definition 3.1). Py is the set of policy statements in P that are
relevant to the data flow f. More specifically, Py = {p | p €
PA fdCspd A f.eCep.e}.

3.3.1 Flow-to-Policy Consistency

Using the above definitions, we can now define flow-to-policy
consistency. As discussed in Section 2, there are two types of
consistent disclosures: clear disclosures and vague disclosures.
We now formally define flow-to-policy consistency and the
two types of disclosures, as well as a vagueness metric to help
quantify the significance of vague disclosures.

Definition 3.11 (Flow-to-Policy Consistency). A data flow
f is consistent with an application’s privacy policy P
if and only if 3p € Py suchthat p.c = collect A Ap' €
Py such that p'.c = not_collect.

Definition 3.12 (Clear Disclosure). An application’s privacy
policy has a clear disclosure of a data flow f if there exists
a collect policy that uses terms of the same semantic granu-
larity for both data type and entity, and there does not exist
a conflicting not_collect policy for the data type and entity.
More specifically, there is a clear disclosure of f if and only
if dp € Py such that p.c =collect A f.d =s p.d N f.e=¢ p.e
and Ap’ € Py such that p.c = not_collect.

Definition 3.13 (Vague Disclosure). An application’s pri-
vacy policy has a vague disclosure of a data flow f if there
does not exist clear disclosure, but there does exist a collect
policy using a broader semantic granularity for either the
data type of entity, and there does not exist a conflicting
not_collect policy for the data type and entity. More specif-
ically, there is a vague disclosure of f if and only if Ap €
Py such that p.c = collect A f.d =5 p.d N\ f.e =¢ p.e and
Jp’ € Py such that p’.c =collect A f.d Cs p'.d A f.e Ce p'.e
and Ap” € Py such that p”.c = not_collect.

A data flow with a vague disclosure is not necessarily bad.
However, if the terms in the matching policy statement are
too broad, the disclosure may not be meaningful to the user.

For example, the policy statement (third-party, collect, per-
sonal data) is considerably more vague than (AdMob, collect,
advertising identifier) to describe the data flow (AdMob, ad-
vertising identifier). As vagueness is subjective, we do not
seek a binary classification (e.g., weak violations [29]). In-
stead, we provide a quantitative metric [0.0-1.0] to rank and
compare statements in terms of vagueness. A higher value
indicates greater vagueness.

Our metric calculates a tuple for vagueness of a flow f’s
disclosure via a policy statement p using the ontological dis-
tances, with values for both data type and entity. Since the
magnitude of ontological distances can vary, we normalize
the ontological distance to allow ranked comparisons.

Definition 3.14 (Vagueness Metric). The vagueness of
a flow f by a policy statement p is represented by

(AE(f'ea pe)aAS(fdapd))

Note that the vagueness metric allows reasoning in two-
dimensions (i.e., entity and data type). We observed that rea-
soning in two-dimensional space increased utility of the met-
ric for triage in comparison to reducing the metric to one-
dimension by averaging of summing the scores. For example,
if averaging or summing, the tuples (anyone, collect, device
information) and (advertising network, collect, information)
would have the same vagueness score for the flow (AdMob,
Ad ID). In this case, consider an analyst wants to identify
which applications are not discussing entities overly broad
when disclosing data sharing practices. A one-dimensional re-
duction would require additional filtering based on the result,
but the two-dimensional vagueness metric directly supports
such triage approaches.

3.3.2 Flow-to-Policy Inconsistency

A data flow is inconsistent with the privacy policy if it does
not satisfy the above consistency conditions. We define three
types of disclosures that represent flow-to-policy inconsis-
tency: omitted disclosures, incorrect disclosures, and ambigu-
ous disclosures.

Definition 3.15 (Omitted Disclosures). An application’s pri-
vacy policy has an omitted disclosure of a data flow f if it
does not include either collect or not_collect statements at
any semantic granularity for the flow’s data type and entity.
More specifically, there is an omitted disclosure of f if and
only if Py = 0.

Definition 3.16 (Incorrect Disclosure). An application’s pri-
vacy policy has an incorrect disclosure of a data flow f when
the policy states that it does not collect or share the data type.
More specifically, there is an incorrect disclosure of f if and
only if Vp € Py, p.c = not_collect or (Py #0 A PN Py # 0
ANPrNPc = 0).

Note that incorrect disclosures include narrowing defini-
tions, because they represent an unambiguous case where a

USENIX Association

29th USENIX Security Symposium 991

policy has relevant flows with both collect and not_collect
sentiment. Since narrowing definitions have not_collect senti-
ment for the more specific type, a matching data flow repre-
sents an incorrect disclosure.

Definition 3.17 (Ambiguous Disclosure). An application’s
privacy policy has an ambiguous disclosure of a data flow f
when it contains contradicting statements about the data flow.
More specifically, there is an ambiguous disclosure of f if
and only if PrNPc # 0.

4 Design

The core contribution of this paper is our formalization and
enhancement of flow-to-policy consistency analysis with the
knowledge of which entities collect information. Determin-
ing the type of disclosure (Section 3) for each observed flow
requires both dynamic analysis of applications and natural
language processing of application privacy policies. We chose
dynamic analysis over static analysis, because it provides (1)
evidence that the flow occurs (some ad libraries use server-
side configuration to determine what data types to collect),
and (2) the network destination of the flow. As dynamic anal-
ysis of Android apps has received significant treatment in
literature, we build upon AppCensus [6], which is the latest
state-of-the-art for dynamically performing privacy analy-
sis. Similarly, for processing privacy policies, we build on
top of PolicyLint [4], which enhances prior approaches by
extracting entities, as well as negative sentiment statements.
POLICHECK’s implementation primarily consists of our for-
malization provided in Section 3. The remainder of this sec-
tion describes the components required to transform data
flows and policy statements into our logical representation.
Data Flow Extraction: AppCensus [6] identifies privacy sen-
sitive data flows in Android apps using the approach proposed
by Reyes et al. [27]. In particular, Reyes et al. instrument the
Android operating system to log access to sensitive resources
and use the Android VPN API to intercept and log network
traffic (including installing a root certificate to decrypt TLS
traffic). They exercise the application with Monkey [5] and
collect both the system and network logs. Next, they identify
the privacy-sensitive data values from the system logs in the
network traffic logs by using value-matching along with a set
of heuristics to detect encodings of the data, such as base64 or
hashing algorithms. The data flows reported by AppCensus
are a tuple, (destination domain/IP address, data type). For
example, the data flow discussed in Section 2.1 is represented
as (cdp.cloud.unity3d.com, advertising identifier). Table 2
shows the complete list of data types tracked via dynamic
analysis within this study.

Domain-to-Entity Mapping: While data flows are repre-
sented as a type of data being transmitted to a domain or
IP address, privacy policies discuss data flows using terms
for entities instead of domains (e.g., cdp.cloud.unity3d.com

Table 2: Data types tracked via dynamic analysis

Data Types

name, location, phone number, email address, IMEI, Wi-Fi
MAC address, Ad ID, GSF ID, Android ID, serial number,
SIM serial number

could be referred to as “Unity” within the privacy policy).
Therefore, POLICHECK must map domain names to entities
so that data flows conform to Definition 3.1. Note that for the
data flows that had only IP addresses without domain names,
we first perform a reverse-DNS search to try to resolve the IP
address as a domain name. If we could not resolve a domain
name, we discard the data flow from the data set.

We curated a list of 144 advertisers and 40 analytics
providers on the Google Play store from AppBrain.com. This
list included the primary website for each organization. We
manually produced a supplementary set of terms based on
organization names to search our set of domain names with.
After obtaining a list of potential domain names for each orga-
nization by keyword matching our search terms, we manually
culled incorrect or irrelevant domain names. This resulted in
a set of domain names for the top analytics and advertising
organizations on Google Play.

Entity First-Party Classification: Determining which net-
work domain is the first-party of a given application requires
careful consideration. First, we check if reversing the second-
level domain name of the network destination domain matches
the beginning of the application’s package name. For ex-
ample, if the flow (advertising identifier, analytics.mobil-
e.walmart.com) occurs in the app com.walmart.android, we
mark the flow as a first-party flow, as reversing walmart.c-
om results in com.walmart, which matches the beginning of
the package name. Similarly, we check if the second-level
domain name of the link to the application’s privacy pol-
icy matches the root domain of the destination domain. For
example, the privacy policy of the Walmart application is
located at https://corporate.walmart.com/privacy-secur-
ity/walmart-privacy-policy and the destination domain is
analytics.mobile.walmart.com. Since the second-level do-
main name of the privacy policy (walmart.com) matches the
second-level domain name domain of the destination domain
is walmart .com, we mark the flow as first-party.

Sharing and Collection Statement Extraction:
POLICHECK uses the policy statements output by Pol-
icyLint [4]. PolicyLint uses sentence-level natural language
processing to extract sharing and collection statements
from privacy policies while capturing the entities and data
types involved along with the sentiment of the statement.
PolicyLint outputs policy statements as defined by the form
in Definition 3.2.

Data Type and Entity Ontology Extension: We extended
PolicyLint’s ontologies to include all of the data types in-
volved in data flows and all of the entities identified when
constructing the domain-to-entity mapping. We begin by prun-

992 29th USENIX Security Symposium

USENIX Association

Table 3: Data Flows and Apps for each Disclosure Type

Clear Vague Omit. Incorr. Ambig.
First Flows 215 2,196 197 16 390
Apps 205 1,589 146 9 244
Third Flows 6 24,434 12,395 2,209 3,573
Apps 6 7,105 4,582 779 990
Total Flows 221 26,630 12,592 2,225 3,963
Apps 211 7,885 4,659 788 1,193

ing PolicyLint’s ontologies to remove nodes and edges that
did not reach a data type or entity node in the data flows. For
all missing data types and entities, we manually added them
to their corresponding ontology and added edges. Finally, we
extended PolicyLint’s synonym list by searching policy state-
ments using keywords for entity names and data types. For
example, extended the synonym list for “advertising network”
by searching the policy statements for “advertising”.
Consistency Analysis: POLICHECK uses the data flows and
policy statements from the prior steps to perform flow-to-
policy consistency analysis. To do so, we implemented the
consistency model logic defined in Section 3.

5 Consistency Characterization

Our primary motivation for creating POLICHECK was to
analyze whether applications are disclosing their privacy-
sensitive data flows in their privacy policies, especially for
third-party sharing. In this section, we use POLICHECK to
perform a large-scale study of analyzing the consistency of
45,603 data flows from 13,796 unique Android applications
and their corresponding privacy policies.

Dataset Selection: To select our dataset, we began by scrap-
ing the top 100 free applications (“topselling_free” collection)
across Google Play’s 35 application categories in February
2019. We enhanced the dataset with an additional 42,129 ran-
domly selected Android applications from AppCensus. Any
overlaps between the two datasets were resolved by only ana-
lyzing the latest version. For each application, we downloaded
the data flows from AppCensus and downloaded the HTML
privacy policies from the developer’s website via the link on
Google Play. We excluded applications that did not have any
data flows reported by AppCensus (23,488 apps). We also
excluded applications whose privacy policies were not suc-
cessfully downloaded (e.g., 404 errors, links to homepages) or
were not written in English based on Python’s langdetect
module (6,039 apps). We also excluded data flows that did
not map to nodes in our entity ontology, which resulted in a
final data set of 13,796 applications with 45,603 data flows.

5.1 Consistency Analysis

We extracted sharing and collection statements from 94.4%
(13,021/ 13,796) of privacy policies. From those policies,

218,257 policy statements were extracted from 48,831 sen-
tences that were identified as a sharing or collection sentence,
such that 7,526 had negative sentiment and 210,731 had posi-
tive sentiment. 31.2% (4,299/ 13,796) of policies had at least
one negative sentiment policy statement and 92.6% (12,779/
13,796) of policies had at least one positive sentiment policy
statement. The policy statements discussed 34 distinct granu-
larities of data types and 52 distinct granularities of entities.
In total, there were 412 unique policy statement tuples.

For the 45,603 data flows across the 13,796 applications,
there were 13 unique data types transmitted to 2,243 unique
domains. The 2,243 domains were resolved to 112 unique en-
tities. In total, there were 364 unique data flow tuples. Overall,
Ad IDs were the most frequently transmitted data type, which
accounted for 26,628 data flows to 100 unique entities across
11,585 applications. Across all of the flows, Unity was the
most common recipient, which accounted for 6,270 data flows
containing 6 unique data types across 4,381 applications.

We ran POLICHECK on the dataset and the raw statistics
from analysis are listed in Table 3. We find that 42.4% of
applications contain at least one omitted disclosure or incor-
rect disclosure, which the data flow is not disclosed by the
policy or is in direct conflict with statements in the policy.
We presented various case studies found by POLICHECK in
Section 2. Section 6 provides additional case studies. The
remainder of this section discusses the findings made possible
by POLICHECK.

Note that, in this study, we consider all device IDs to be
personally identifiable information (PII). Device IDs are clas-
sified as PII under GDPR [3] and CCPA [1], as they are gen-
erally used for tracking and attribution. Ad IDs were initially
introduced as a pseudonymous identifier to be used to track
users instead of collecting persistent identifiers, such as An-
droid IDs, IMEI, and email addresses. However, we find that
74.7% of entities that receive Ad IDs also receive a persistent
identifier. Therefore, we also consider Ad IDs to be PII, be-
cause mixing them with persistent identifiers nullifies their
originally intended properties since they lose the property of
non-persistence and tracking can be bridged across resets. We
find that 11,589 applications send this unique identifier to
third-parties, which is then linkable to users’ email addresses,
other device identifiers, and other sensitive information.
Finding 1: Only 0.5% of data flows were explicitly discussed
by sentences within the privacy policy in terms of the exact
entity and exact data type. In total, only 223 data flows were
classified as clear disclosures. Figure 2 shows the number
of clear disclosures for each of the data flow tuples. The
hatched sections denote that there were no transmissions of
that specific data type to that entity in the entire dataset. While
third-parties account for 42,592 of the total data flows, only 7
data flows were classified as clear disclosures. As we discuss
in Finding 2, this is likely due to the fact that policies are
being vague about third-party disclosures.

In contrast, applications were more likely to clearly dis-

USENIX Association

29th USENIX Security Symposium 993

- 80

Phone # gg 0 % 13
z
g
IMEI 0 0 0 41 - 60 2
g
o o
S Location 1 0 a
& g
E 0 &
A& Email Addr 0 39 o
&
=3
Android ID 0 0 0 7 -20 2
g

AdID 5 0 1 35

-0
. & e 8
\5&6 ~e°°> & Qé\
© Q@“" N
Entity

Figure 2: Clear Disclosure HeatMap - Policies are clearer
about the first-party receiving a specific data type than a third-
party doing so.

Sim Serial # 58
Serial# | 0 | 4 1|6 0 160 [1000
Router SSID 0 3o 2|5 |24 1400
Phone # 76 z
—_ - 1200 §
MAC Addr 50 2 21 g
o
g IMEI 232 3 1 [297| 2 [237 - 1000 2
B @
8 o H
S GSFID 8 -800 o
I 2
Location | 12 8 3 4 150 s
—— -600 £
Email Addr 23 @
Apps Installed 3 - 400
Android ID 100 010 26 637571 2 |925 ~200
AdID 679 959 615 [PAS) 903 | 526
-0
R)
4\,@0 R Q\é‘ S o Q_)Q\i & \@(‘
IR RS

Figure 3: Vague Disclosure Heatmap - Policies often discuss
the sharing of Android and advertising IDs in vague terms.

close their first-party data flows (216 data flows across 206
apps). The most commonly disclosed first-party flow involved
location data, which was clearly discussed for 81 data flows.
However, as there were over 282 instances of first-parties
collecting location data, this only accounts for 28.7% (81/
282) of first-party data flows involving location. Similarly,
IMEIs are the second most frequent clear disclosure with 41
data flows, but still only accounted for 12.1% (41/339) of
total first-party data flows. The low rate of clear disclosure
indicates that privacy policies are not explicitly discussing the
types of data that they collect and with whom they share it.

Finding 2: 49.5% of applications are disclosing their third-
party sharing practices using vague terms. In total, 54.9%
(23,367/ 42,592) of third-party flows were disclosed using
vague terms to refer to the entity, the data type, or both. Fig-
ure 3 shows the number of vague disclosures for each of the
data flow tuples with the 8 most common third-party entities.
The hatched sections denote that there were no transmissions

Root

— 8000

0.75
[[J - 6000

0.5
= 4000

Entity Vagueness
SOINSO[ISI(] JO JOQUINN

0.25
= 2000

Exact

Exact 0.25 0.5 0.75 Root
Data Vagueness
Figure 4: Vagueness Score Scatter Plot - Policies are likely to
use vague terms to describe both data types and entities.

of that specific data type to that entity in the entire dataset. Ad
IDs and Android IDs accounted for 50.2% (21,363/ 42,592)
of the vague disclosures for third-party flows. Ad IDs and An-
droid IDs were disclosed 40.7% of the time by the policy state-
ment (third-party, collect, personally identifiable information)
and 25.2% of the time by (third-party, collect, information).

The vagueness of these policy statements does not provide
transparency to the wide-range of advertisers and analytics
providers that this information is being sent to. As shown
in Figure 3, Crashlytics and Unity3d were the most frequent
entities of data flows that were classified as vague disclosures.
Crashlytics is an analytics provider owned by Google and
Unity3d provides a game engine to developers, but also pro-
vides advertisements and analytics. In particular, data flows
to Crashlytics and Unity3d accounted for 7.4% of third-party
vague disclosures (3,131/ 42,592). These entities were dis-
cussed as third-parties in 80.7% (2,528/ 3,131) and 72.9%
(2,142/2,938) of the time, respectively.

Figure 4 shows a graphical representation of the frequency
of policy consistency vagueness. Note the root node of the
data vagueness is the term “information” while the root node
of the entity vagueness is “anyone.” The data vagueness score
of around 0.5 generally represents terms such as “personally
identifiable information,” “device information,” or “user infor-
mation.” The entity vagueness score of around 0.67 generally
represents the term “third-party” while 0.5 represents terms
such as “advertising network”™ or “analytic provider.” There-
fore, in general, third-party data flows are most frequently
described in vague terms for both entities and data types. As
the corners of the figure are relatively sparse, it means that if
the policy is discussing the entity vaguely then they are likely
discussing the data type vaguely. Further, the fact that “third-
party” is the most commonly used term to discuss entities,
it raises concerns that applications are not complying to the
GDPR’s mandate on specificity of disclosures.

Figure 5 shows the CDF of the number of unique entities
and data types involved within third-party vague disclosures
per application. In total, around 80% of the applications with

994 29th USENIX Security Symposium

USENIX Association

o

4
%

S
o

e
i

S
o

Entities

Cumulative Ratio of Apps
with Third-Party Vague Disclosures

—— Data Types

S
o

0 2 4 6 8 10 12 14 16
Number of Unique {Entities | Data Types} in Data Flows
Figure 5: It is feasible for developers to convert vague disclo-
sures to clear disclosures.

third-party vague disclosures contain 4 or fewer unique enti-
ties within its data flows. Further, 97.8% of applications with
third-party vague disclosures contain 3 or fewer unique data
types within its data flows. Therefore, it is largely feasible
that developers explicitly disclose the exact data types being

shared with the exact entities (clear disclosures) As the devel-
opers disclosed the behaviors within the privacy policy, albeit
vaguely, they are likely aware that the third-party libraries
collect some data. However, it is unknown whether develop-
ers are using vague terminology due to not understanding the
scope of data collection or whether they do not understand the
importance of clear disclosures. Determining the root cause
for vague disclosures is left as future work.

Finding 3: 11.6% of applications are disclosing their first-
party collection practices using broad terms. In total, 73.4%
(2,211/ 3,011) of first-party flows were disclosed using vague
terms to refer to the data type. The right column in Figure 3

shows the distribution of vague disclosures for first-parties.
Android IDs accounted for 41.8% (925/ 2,211) of the first-
party vague disclosures. Similar to the case for third-parties,
these flows were most commonly disclosed as the policy tuple
(we, collect, personally identifiable information). Surprisingly,
they were only disclosed by the terms “device identifiers” or
“identifiers” in 20.8% of the flows (192 / 925). A similar trend
follows for first-party collection of Ad IDs and IMEISs. In total,
97.7% of the applications with first-party vague disclosures
contain 3 or fewer unique data types within its data flows.
Therefore, it is also feasible that developers explicitly disclose
the exact data types that they collect (i.e., clear disclosures).

Finding 4: 719 applications make incorrect statements about
their data practices. POLICHECK identified that 719 appli-
cations contained incorrect disclosures. These applications
consisted of 4.2% (1,930/ 45,603) of the data flows. Figure 6
shows that the most frequent incorrect disclosures involved
sharing Ad IDs and Android IDs with Crashlytics (15.7%:
303/ 1,930), Unity3d (13.7%: 264/ 1,930), and Flurry (9.6%:
185/ 1,930). The policy statement (third-party, not_collect,
personally identifiable information) accounted for 63.4% dis-
closures for these cases.

Finding 5: POLICHECK identified 31.1% (14,409/45,603)

Sim Serial #

- 160
Serial# 0 | 0 0fo 110]2 z
- 140 g
Router SSID 018 1 {0 0 0 g
- 120 ;
o MAC Addr 16 | 16 0l]0]0 =
= ~ 100 2
< IMEI 23 0 o|l6]of4 g
5 -80 &
A Location | 0 103 |1 ofof2 o
=60 Z
Apps Installed 2 =)
-4 E
AndroidID = 9 0 0 40|26 3 | 4 g
— -20
AdID 31 | 87 | 79 | 84 PREIRECN 37 37|13
-0
) S I
& ‘<\§\f§ & & Q?‘\ & Q\Q“‘\\
i C\‘b“' (/\@ W A
Entity

Figure 6: Incorrect Disclosure Heatmap - POLICHECK identi-
fied 1,912 incorrect disclosures across 719 applications

Serial # | 3 | 0 o4 0 5& 5
Serial L 1200

Router SSID 2 245 310 2131]6
p
Phone # 5 — 1000 g
g
MAC Addr 64 | 183 1 5 =
o -800 2
= IMEI 300 0 316410 |30 g
] =3
<3 GSFID 4 =600 &
e — I~
Location | 7 5814 (1 0 19 z
— -400 3
Email Addr 6 ;
3

Android ID | 48 3 |629| 3 JEENS5TS| 127 0 | 78 =200
AdID 409 [EREN 565 [498 |t 5531492|519(50
-0
& . N T)
& & & 3‘“‘6
=Y S Cfo’ C&‘ Y’QQ RO
Entity

Figure 7: Omitted Disclosure Heatmap - Applications often
do not disclose sharing Android and Ad IDs with third-parties.
This may be due to the perception that such collection is
implied when they disclose that they use an advertiser.

of data flows as omitted disclosures. Of the 14,409 omitted
disclosures, 208 were first-party flows and 14,201 involved
third-parties. As shown in Figure 7 only 6.9% (208 / 3,011)
of first-party flows were not disclosed. The 3 most frequently
omitted data types for first-party flows were Android IDs
(78/208), Ad IDs (50/208), and the device IMEI (30/208).

For third-party flows, Figure 7 shows that sharing both An-
droid IDs and Ad IDs with Crashlytics and Unity3d accounted
for 27.8% (3,168/11,398) and 24.7% (2,810/11,398) omit-
ted disclosures, respectively. Further, sharing AD IDs with
Facebook accounts for 15.8% (1,798/11,398) of third-party
omitted disclosures. It is surprising that Crashlytics collects
Android IDs, as they are a subsidiary of Google, and using
persistent hardware identifiers is against Google’s outline for
the best practices on collecting unique identifiers.

The significant number of omitted disclosures raises the
following two questions. First, do developers understand the
types of data that are actually being collected when they in-

USENIX Association

29th USENIX Security Symposium 995

Serial# | 0 | 14 0| 4 0] 0|62
- 250

Router SSID 0 0 0 1 0 2 >
Phone # 5 - 200 %
e
» MACAddr 11 1{9|7 >
s - 150 2
o IMEI | 34 [37 0 2126 2|27 @&
. i 1] 0] o |30 &
Location —100 @
z
Email Addr 0 1 2
Android ID [ERN 65 1 56 | 47 | 17 [133 -50 &

AdID (141 50 [EEEE 49 |GH[93 | 91

-0
I S T i G S
N) N &
T TSI SIS
RSSO S
Entity

Figure 8: Ambiguous Disclosure Heatmap - Privacy policies
are often contradictory when they discuss the sharing of An-
droid and advertising IDs.

clude a third-party SDK into their application? Second, do
developers know that they are responsible for disclosing such
behaviors in their privacy policy? We leave the exploration
of these questions as future work. Note that in comparison
to other disclosure types, POLICHECK has lower precision
for detecting omitted disclosures. We discuss this in detail in
Section 5.2 and provide a case study that they may also be
used as indicators for policies that are difficult to comprehend.

Finding 6: 7.6% of applications have ambiguous privacy
policies. In total, 7.6% (3,463/ 45,603) of data flows were
classified as ambiguous disclosures, which occurred across
7.6% (1,101/ 13,796) of applications. As shown in Figure 8,
Android IDs and Ad IDs are involved in 88.8% (3,074/ 1,101)
of ambiguous disclosures. In total, C| contradictions were the
most common type whose policy statements both state that
they do and do not collect information at the same semantic
granularity, which accounted for 1,618 types of ambiguous
disclosures. For example, on such example is a children’s
application called “MiraPhone - Kids Phone 4-in-1 apk™ (-
com.gokids.chydofon). This application collects the user’s
Android ID, but the privacy policy explicitly states, “We DO
NOT collect your unique identificator [sic],” and also states
“Anonymous identifiers, we use anonymous identifiers when
you interact with services, such as advertising services and
others.” These two statements are contradictory policy state-
ments and it is unclear what the correct interpretation of the
policy should be.

Finding 7: Only 2.7% of applications may not be sharing
data with third-parties. In total, only 4.5% (622/13,796) of
applications in our dataset did not contain any data flows
to third-parties in the observed client-side behavior. 60.0%
(373/622) of those applications did not contain statements that
disclosed that data may be shared with third-parties. There-
fore, assuming that their privacy policy accurately reflects
server-side behaviors, only around 2.7% (373/13,796) of ap-

plications are not sharing data with third-parties. While the
other 40% (249/622) of applications did not contain any data
flows to third-parties in the observed client-side behavior, their
privacy policy contained statements that disclosed potential
third-party sharing. This property may indicate that the data
collected within first-party flows may flow to third-parties
server-side. For example, we found that 35 applications con-
tained first-party flows collecting a wide-range of data (e.g.,
location (22 apps), phone number (6 apps), email address (2
apps), applications installed (1 app), Ad IDs (3 apps), and
various identifiers (3)). Their privacy policy states that they
share data that subsumes the data from a first-party flow to
“third-parties,” which permits server-side sharing of such data.

5.2 Evaluation

In this section, we present our evaluation of POLICHECK and
additional findings from our evaluation. First, we manually
validate a random selection of 153 data flows across 151 ap-
plications and show that POLICHECK has a 90.8% precision.
Second, we perform a sensitivity analysis on POLICHECK’S
consistency model and show that POLICHECK’s entity-
sensitive model vastly outperforms entity-insensitive models.
The remainder of this section describes these experiments.

5.2.1 POLICHECK’s Performance

To evaluate the precision of POLICHECK, we manually val-
idate a subset of data flows. Note that we do not evaluate
ambiguous disclosures, as attempting to resolve ambiguity
injects annotator bias into the evaluation. For the remaining
disclosure types, we randomly select up to 5 data flows for
each data type, such that the first-party and third-party data
flows are proportionate to the disclosure type’s population.
Our dataset consists of 180 data flows across 166 apps.
Validation Methodology: For validation, one-of-three au-
thors began by reading through the sentences that were ex-
tracted from each privacy policy to ensure correctness of
policy statement extraction. If there was an error with pol-
icy statement extraction, we record the disclosure as a false
positive and stopped analysis. For clear disclosures, vague
disclosures, and incorrect disclosures, we locate the sentences
in the policy and ensure that the sentence retains the same
meaning in the context of the rest of the policy. For omitted
disclosures, we read through the rest of the policy to determine
if any statements disclose the data flow. If it is not apparent
and there is any uncertainty, we mark the flow as “uncertain”
to avoid bias. Note that we marked 27 flows as uncertain,
resulting in 153 data flows across 151 applications

Results: POLICHECK achieves an overall 90.8% precision
(139/153) for performing flow-to-policy consistency analysis.
For identifying consistencies (i.e., clear disclosures and vague
disclosures), POLICHECK had 86 true positives and only 4
false positives. For incorrect disclosures, POLICHECK had 35

996 29th USENIX Security Symposium

USENIX Association

true positives and 3 false positives.

For omitted disclosures, POLICHECK had 18 true positives
and 7 false positives, which was primarily due to incomplete
policy statement extraction. The main reason for incomplete
policy extraction was that the information describing the shar-
ing and collection practices spanned multiple sentences and
sections of the policy. The policy did not make declarative
statements on their collection and sharing practices. Under-
standing an entire document is beyond the current limits of
NLP, but this stratification also leads to an important obser-
vation. The policies for the omitted disclosure false positives
were generally more difficult to read than other policies, and
often required a great deal of mental effort to understand.
Therefore, these omissions can potentially be indicative of
poor privacy policy interpretability. We explored this direc-
tion by analyzing a select number of applications with the
greatest number of omitted disclosures in our data set.

Case Study: Omitted disclosures may also indicate confusing
language in privacy policies: A popular game application
with over 100M+ downloads called ‘Ant Smasher by Best
Cool & Fun Games,” (com.bestcoolfungames.antsmasher)
had 17 unique omitted disclosures. The application has an
E rating, which means that it is marketed towards children,
but yet it shares Ad IDs, Android IDs, and location data with
advertisers and analytics providers. When validating these
data flows, we found the following policy statement, which
potentially discloses these practices albeit vaguely.

For instance, whenever you access and start to in-
teract with our Apps, we are able to identify your
IP address, system configuration, browser type and
other sorts of information arising from your device.
We may aggregate that data in order to improve our
Apps and other services we provide, but we will not
exploit it commercially or disclose it without your
consent, except for third-party service providers in
order to enable the existence of our Apps and the
provision of our services.

First, they never explicitly mention the data types, but it could
arguably fall under the vague umbrella phrase, “other sorts
of information arising from your device.” Second, the lan-
guage is unclear and potentially deceptive, because the policy
initially implies that device data is not sent to third-parties
for commercial reasons. However, it adds an exception for
enabling the “existence of their application,” which may be
interpreted as the revenue from selling user data to advertisers.
While our POLICHECK classified this policy as containing
omitted disclosures, it is unclear whether this is actually the
case and requires analysis by a legal expert. The language that
this policy uses is significantly difficult to interpret and that
its behaviors should be disclosed more clearly to end-users.

5.2.2 Sensitivity Analysis

To measure the impact of entities in flow-to-policy consis-
tency, we simulated the error rate of entity-insensitive consis-
tency models (i.e., models that do not consider entities) by
running consistency analysis in the following three configu-
rations: (1) without entities and without negations (negation-
insensitive and entity-insensitive); (2) without entities (entity-
insensitive); and (3) without negations (negation-insensitive).
Based on the output of the entity-insensitive consistency anal-
ysis, we aim to measure the potential error rate. First, we
measure the frequency in which third-party data flows are
reasoned over using policy statements with semantically un-
related entities (i.e., f.e [Z¢ p.e). This first metric measures
when unrelated policy statements are used to reason whether
a flow is consistent. Second, we measure the frequency in
which third-party data flows are classified as consistent in the
entity-insensitive consistency models that would have been
classified as consistent in the inconsistent in entity-sensitive
consistency models. This second metric measures when un-
related policy statements cause entity-insensitive models to
falsely claim that a data flow is consistent when it is in fact
inconsistent. Further, we also measure how these different
configurations of consistency models impact the classification
of disclosure types.

Finding 8: Prior entity insensitive flow-to-policy consistency
models may wrongly classify up to 37.1% of inconsistent
third-party flows as consistent. We first ran analysis simu-
lating negation-insensitive and entity-insensitive consistency
models, such as Slavin et al. [29] and Wang et al. [32]’s mod-
els. We found that 53.9% (22,959/ 42,592) of third-party
flows were falsely resolved to policy statements that discuss
semantically unrelated entities. Of those resolved statements,
39.8% (16,931/ 42,592) referenced first-parties and 14.2%
(6,028/ 42,592) references a semantically unrelated third-
party. In terms of consistency, 37.1% (15,807/ 42,592) of
third-party flows were falsely marked as consistent across
38.4% (5,304/ 13,796) of applications. Of those results, 23.0%
(9,779/ 42,592) were due to first-party policy statements and
14.2% (6,028/ 42,592) due to third-party policy statements
with a semantically unrelated entity. Therefore, negation-
insensitive and entity-insensitive models falsely mark 23.0%
inconsistencies as consistent.

We next ran consistency analysis simulation entity-
insensitive consistency models, such as Zimmeck et al. [38].
We found 55.8% (23,775/ 42,592) of third-party flows were
improperly resolved to policy statements that discuss se-
mantically unrelated entities. Of those resolved statements,
41.6% (17,698/ 42,592) resolved to policy statements refer-
encing first-parties and 14.3% (6,077/ 42,592) resolved to
third-parties. In terms of consistency, 30.5% (13,014/ 42,592)
of third-party data flows are falsely marked as consistent
across 32.2% (4,445/ 13,796) of applications. Of those re-
sults, 16.3% (6,937/ 42,592) were due to first-party policy

USENIX Association

29th USENIX Security Symposium 997

Table 4: Sensitivity Analysis of Flow-to-Policy Consistency: Entity-insensitive models frequently misclassify data flows

PoliCheck (- - d) (- c,d) (e, -, d)
v X v X v X
Clear 223 223 3,180 216 1,856 223 39
Vague 25,578 22,964 | 17,149 | 18,122 | 9,852 | 25,578 | 5,354
Omitted 14,409 2,087 0 2,087 0 14,409 0
Incorrect 1,930 0 0 558 5,081 0 0
Ambiguous 3,463 0 0 2,298 | 5,533 0 0
*(-, -, d): entity-insensitive and negation-insensitive
*(-, ¢, d): entity-insensitive and negation-sensitive
* (e, -, d): entity-sensitive and negation-insensitive
statements and 14.3% (6,077/ 42,592) due to third-party pol- z
icy statements with a semantically unrelated entity. Therefore, 5 10 r
entity-insensitive models falsely mark 30.5% of inconsisten- 8
cies as consistent. % 08
Finding 9: Entity-insensitive analysis results in the frequent Z 06
misclassification of disclosure types. Table 4 shows the re- f
sults of our sensitivity analysis for classifying each disclosure 204 Ambiguous
type. Overall, entity-insensitive consistency models have the g Incorrect
worst performance at classifying disclosure types, as they sig- f02 ——Qmitied
nificantly overestimate the number of clear disclosures and = : Zfite
vague disclosures. Negation-insensitive consistency models E 0.0
cannot detect incorrect disclosures or ambiguous disclosures, 0 5 10 15 20

which correspond to 4.2% and 7.6% of data flows, respectively.
With negation-insensitive consistency models, the incorrect
disclosures or ambiguous disclosures are wrongly classified
as either clear disclosures or vague disclosures, which is con-
cerning as these models would state that the data flow is
consistent with the policy. While consistency models that
are negation-sensitive and entity-insensitive (-, ¢, d) can the-
oretically identify incorrect disclosures and ambiguous dis-
closures, the results show that their identification of these
disclosure types are imprecise due to not considering entities.
The results from this analysis demonstrate both the impor-
tance of entity-sensitive and negation-sensitive analysis at
classifying disclosure types and the unprecedented view that
POLICHECK’s flow-to-policy consistency model provides on
privacy disclosures.

6 Additional Case Studies

The examples in Section 2 provide real-world case-studies
that demonstrate POLICHECK s utility, the significance of our
findings, and the importance of an entity-sensitive consistency
model. In this section, we provide additional case studies
from our analysis of the most inconsistent applications for
each consistency type (i.e., the applications in the long tail in
Figure 9). We analyzed each data flow, the policy statements
extracted, and the privacy policy itself to validate the findings.
The remainder of this section presents concrete examples.

Number Unique Flows

Figure 9: The majority of applications have less than five data
flows for each disclosure type, but a small percentage have
significantly more.

6.1 Omitted Disclosures

We investigated applications in our dataset with high numbers
of omitted data flows. “Survival Island Games - Survivor
Craft Adventure” (com.gamefirst.chibisurvivor) is a game
with over 500K installs on Google play. We found that the
app collects the user’s location data, Android ID, and MAC
address to share with advertisers and analytics providers. Its
privacy policy does not discuss any details regarding data
sharing. Omitted disclosures are grave concerns, especially in
cases like the one above, which involves tracking the user’s
physical location along with persistent identifiers.

While validating omitted disclosures, we found another
application called “Cloudventure: Arcade + Editor” (at .ha-
kkon.pufpuf.android) that has an omitted disclosure of Ad
ID being shared with AdColony. The privacy policy is copied
below in entirety, which shows the potential deceptiveness of
their policy.

Okay guys listen up, I'm forced to write this privacy
policy or Google will take this APP from the store.
- There is an option in the app to share your level
with your friends. This is made by making a screen-
shot of your screen and is the reason why camera
permission is needed.

998 29th USENIX Security Symposium

USENIX Association

- Also this is a game so you don’t want the
screen to go dark while playing, right? That’s
why I need the phone state permission. (an-
droid.permission.READ_PHONE_STATE)

That’s it, this app is not evil and I'm not selling
your data to some crazy marketing company to get
you filled up with spam.

6.2 Incorrect Disclosures

Three of the top five applications that had the greatest number
of incorrect disclosures were released by the same publisher,
“Nazara Games.” Their games on Google Play have over 57
million total downloads for 33 applications (eight of which
occur in our dataset). They publish games with an E rating,
which may be used by targeted towards children, but still
collect a wide-array of privacy-sensitive data. From the 8
applications in our dataset, we found 95 flows originating
from Nazara Games applications, of which, 75 had incorrect
disclosures. Their application “Chhota Bheem Speed Rac-
ing” (com.nazara.tinylabproductions.chhotabheem-22002)
has over 10M+ downloads and has 15 incorrect disclosures
detected by POLICHECK. These flows included location data,
Android IDs, Ad IDs, IMEISs, router SSIDs, and other serial
numbers. Nazara Games’ applications sent this data to 14
distinct advertisers and analytics providers, such as Flurry,
ironSource, and Unity3d Ads. As some of their applications
targeted towards children, the mass collection and sharing of
this sensitive user data is egregious. Even more so when con-
sidering that they’re sending this information is likely being
used to target ads towards children.

In Nazara Games’ privacy policies, that they do not sell or
rent personal information unless the user gives consent.

Nazara does not sell or rent your Personal Informa-
tion to third-parties for marketing purposes without
your consent.

As some of these applications are for children, verifiable con-
sent is required from the child’s legal guardian according to
regulations [2]. As discussed by prior work [27], clicking a
button likely does not constitute verifiable consent. For the ap-
plications that are not targeted towards children, it is unclear
if consent is explicitly request or implicitly through accep-
tance of the policy. We leave it as future work to analyze how
applications are requesting consent.

6.3 Ambiguous Disclosures

“Roller Coaster Tycoon 4” (com.atari.mobile.rctdm) is a
popular game from Atari which has over 10M downloads.
We found that this application has 15 ambiguous disclosures
due to their sharing of Ad IDs, Android IDs, and IMEI with ad-
vertisers and analytics providers, such as TapJoy, ironSource,
and AdColony. Atari does not consider device information

to be PII. However, various regulations [1, 3] identify such
information as PII, as they can be used to identify users over
a long span of time across different applications and services.
The main source of ambiguous disclosures were due to state-
ments regarding allowing business partners to collect device
identifiers, but then stating that third-parties will not collect
device identifiers without consent.

The “Bowmasters” game application (com.miniclip.bowm-
asters) has over SOM downloads and 12 unique ambiguous
disclosures. Their policy states “We don’t give or sell your
data to third-parties for them to market to you”, but later it
states, “On our apps, these third-party advertising companies
will collect and use your data to provide you with targeted
advertising.” As serving targeted advertisements is a form of
marketing, this policy contradicts itself and is ambiguous in
terms of the flow.

7 Limitations

POLICHECK provides a concise formalization of an entity-
sensitive flow-to-policy consistency model and disclosure
types. Our findings from Section 2, Section 5, and Section 6
demonstrate the utility and value of such analysis. However, as
the current implementation of POLICHECK is built on top of
PolicyLint [4] and AppCensus [6], we inherit their limitations.
For example, PolicyLint’s performance depends on the com-
pleteness of the verb lists a policy statement patterns, which
may impact overall recall. PolicyLint also does not extract the
purpose of collection, which we leave as future work. Further,
the data flows used by POLICHECK may also be incomplete
if the behaviors were not executed during runtime due to lack
of code coverage. In addition, POLICHECK only tracks the
data types in Table 2. Future work can improve completeness
of policy statement extraction and dynamic analysis, which
can then be used as input to POLICHECK.

Another limitation is that POLICHECK’s domain-to-entity
mapping may be incomplete, as our study is primarily focused
on popular advertisers and analytics providers. POLICHECK’S
approach for classifying first-party entities also has the poten-
tial for misclassifying third-party flows as first-parties if the
privacy policies are hosted on third-party domains. However,
misclassification would also require a data flow to that domain
within the application, which was not observed during vali-
dation. Additional techniques are also required for resolving
cloud hosts and content-delivery networks to entities, such
as Razaghpanah et al.’s certificate-based approach [23]. As
discussed in Section 5, we discard data flows where the en-
tity could not be resolved. Therefore, a more comprehensive
mapping and resolution will improve the completeness of our
analysis but will not impact the soundness of our empirical
study in terms of the classification of disclosure types. Future
work can explore more comprehensive approaches for resolv-
ing domains and IP addresses to entities and constructing
domain-to-entity mappings.

USENIX Association

29th USENIX Security Symposium 999

Moreover, while POLICHECK correctly reasons over third-
party disclosures that are disclosed in terms of parent com-
panies (i.e., subsidiary relationships), the current implemen-
tation does not capture subsidiary relationships of first-party
disclosures. While we did not observe this limitation resulting
in false positives during validation, future work can adapt the
entity ontology based on the application under analysis to
address this limitation.

Finally, our empirical study focuses on the privacy poli-
cies of Android applications. While we cannot claim that our
findings generalize to other platforms (e.g., i0S, web), we
hypothesize that our findings on the disclosure types would
likely mirror other domains, as the policies are generally writ-
ten to cover multi-platform applications and similar data types
are available for collection in other platforms.

8 Related Work

In recent years, there has been an increased focus on analyz-
ing flow-to-policy inconsistencies in mobile applications. The
works differ in how app behavioral flows and privacy poli-
cies are analyzed. While much of the prior works [29, 34, 38]
use Android’s application program interface (API) calls to
evaluate privacy breaches, Wang et al. [32] extended the taint
sources to include sensitive data entered through an app’s UL
For policy analysis, Zimmeck et al. [38] and Yu et al. [34] rely
on keyword-based approaches, of using bi-grams and verb
modifiers respectively, to infer the privacy policies, while
Slavin et al. [29] and Wang et al. [32] use crowdsourced
ontologies for policy analysis. POLICHECK makes signifi-
cant advancement over all these prior works by considering
DNS domains of data-receiving entity for comprehensive
entity-sensitive analysis. Accuracy of the analysis is further
improved by considering entities, statement sentiment, and ac-
counting for different semantic granularities and internal con-
tradictions. Our empirical results (Section 5) further demon-
strate the effectiveness of these capabilities.

Other recent research has focused on analyzing specific
application categories, such as those designed for families,
for compliance and privacy violations [17,21,26,27]. Similar
to POLICHECK, they use dynamic analysis to identify sen-
sitive flows along with the entities receiving the data. How-
ever, their policy analysis is either manual [17, 26, 27] or
semi-automatic based on keyword searches [21]. While these
approaches potentially worked for a category of apps with
explicit requirements, they are severely limited in precision
and scale for broader categories as targeted by our work. In
contrast, POLICHECK uses an automated, comprehensive pol-
icy analysis that improves precision by considering additional
capabilities, such as semantic granularities and contradictions.

Numerous works focus on the automated analysis of pri-
vacy policies themselves. Privee [37] uses natural language
processing for deriving answers to a limited set of binary ques-
tions from the privacy policies, while Hermes [31] applies

topic modeling to reduce ambiguity in privacy policies. Priva-
cyCheck [35] use data mining models to analyze the privacy
policies to automatically extract their graphical summaries
representing what information is used and how. A more recent
work, Polisis [19], provides an automated policy analysis tool
that uses deep learning to infer types of data collected and the
reason for collection. While it provides alternate approaches
for comprehensive policy analysis, it does not consider nega-
tions and exclusions in text. PolicyLint [4] recently showed
that a considerable number of policies include negations and
exclusions that would be missed by prior works. Our policy
analysis is built on top of PolicyLint and hence improves pre-
cision over prior art. Moreover, none of the works focus on
the evaluation of app behavior, which is a core component for
our entity-sensitive flow-to-policy analysis.

There is a rich body of work to understand [8, 13,22, 33]
and bridge [28,36] the gap between application behaviors and
users’ understanding of these behaviors. POLICHECK differs
from these works in its focus of analyzing privacy policy to
behavior inconsistencies.

9 Conclusion

Privacy threats from mobile applications are arguably a
greater risk than malware for most smartphone users. While
the last decade has produced many static and dynamic analy-
sis to detect when mobile applications send privacy-sensitive
data to the network, such data flows are not privacy leaks if
they are disclosed in a privacy policy. Recently, several efforts
have sought to more fully automate the detection of privacy
leaks by contrasting data flows with the application’s privacy
policy. However, these works have a fundamental limitation:
they do not consider the entity receiving the data (e.g., first-
party vs. third-party). In this paper, we proposed POLICHECK
and an entity-sensitive flow-to-policy consistency model. We
used POLICHECK to study 13,796 applications, comparing
their data flows to their policy statements. We find significant
evidence of omitted, incorrect, and ambiguous disclosures,
many of which are only possible to identify by considering the
entity. As such, POLICHECK provides the highest-precision
method to date to determine if apps properly disclose their
privacy-sensitive behaviors.

Acknowledgment

We thank our shepherd, Anita Nikolich, and the anonymous
reviewers for their valuable comments. This work is supported
in part by NSF grant CNS-1513690. Any findings and opin-
ions expressed in this material are those of the authors and do
not necessarily reflect the views of the funding agencies.

1000 29th USENIX Security Symposium

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

California ~ Consumer Privacy Act (CCPA).
https://oag.ca.gov/privacy/ccpa.
Children’s Online Privacy Protection Rule.

https://www.ftc.gov/enforcement/rules/rulemaking-
regulatory-reform-proceedings/childrens-online-
privacy-protection-rule.

The EU General Data
https://eugdpr.org.

Protection Regulation.

Benjamin Andow, Samin Yaseer Mahmud, Wenyu
Wang, Justin Whitaker, William Enck, Bradley Reaves,
Kapil Singh, and Tao Xie. PolicyLint: Investigating In-
ternal Privacy Policy Contradictions on Google Play. In
Proceedings of the USENIX Security Symposium, Au-
gust 2019.

Android Studio. Ul/Application Exerciser Mon-
key. https://developer.android.com/studio/
test/monkey.html, 2019. Accessed: May 15, 2019.

AppCensus AppSearch.
appcensus.io/.

https://search.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric
Bodden, Alexandre Bartel, Jacques Klein, Yves Le
Traon, Damien Octeau, and Patrick McDaniel. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps.
In Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI), 2014.

David Barrera, H. Giines Kayacik, Paul C. van Oorschot,
and Anil Somayaji. A Methodology for Empirical Anal-
ysis of Permission-based Security Models and Its Appli-
cation to Android. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security
(CCS), October 2010.

J. Bowers, B. Reaves, I. Sherman, P. Traynor, and K. But-
ler. Regulators, Mount Up! Analysis of Privacy Policies
for Mobile Money Applications. In Proceedings of the
USENIX Symposium on Usable Privacy and Security
(SOUPS), 2017.

Manuel Egele, Christopher Kruegel, Engin Kirda, and
Giovanni Vigna. PiOS: Detecting Privacy Leaks in
i0S Applications. In Proceedings of the ISOC Network
and Distributed System Security Symposium (NDSS),
February 2011.

William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. TaintDroid: An Information-Flow Track-
ing System for Realtime Privacy Monitoring on Smart-
phones. In Proceedings of the USENIX Symposium on

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

Operating Systems Design and Implementation (OSDI),
October 2010.

William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. A Study of Android Application
Security. In Proceedings of the USENIX Security Sym-
posium, August 2011.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, and David Wagner. Android Permissions Demys-
tified. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS), Oc-
tober 2011.

Xinming Ou Fengguo Wei, Sankardas Roy and Robby.
Amandroid: A Precise and General Inter-component
Data Flow Analysis Framework for Security Vetting
of Android Apps. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS),
November 2014.

In the Matter of Goldenshores Technologies, LLC, and
Erik M. Geidl. https://www.ftc.gov/enforcement/cases-
proceedings/132-3087/goldenshores-technologies-llc-
erik-m-geidl-matter.

Michael Grace, Wu Zhou, Xuxian Jiang, and Ahmad-
Reza Sadeghi. Unsafe Exposure Analysis of Mobile
In-App Advertisements. In Proceedings of the ACM
Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec), 2012.

Catherine Han, Irwin Reyes, Amit Elazari Bar On, Joel
Reardon, Alvaro Feal, Kenneth A. Bamberger, Serge
Egelman, and Narseo Vallina-Rodriguez. Do You Get
What You Pay For? Comparing The Privacy Behaviors
of Free vs. Paid Apps. In Workshop on Technology and
Consumer Protection (ConPro), May 2019.

Jin Han, Qiang Yan, Debin Gao, Jianying Zhou, and
Robert Deng. Comparing Mobile Privacy Protection
through Cross-Platform Applications. In Proceedings of
the ISOC Network and Distributed Systems Symposium
(NDSS), February 2013.

Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian
Schaub, Kang G. Shin, and Karl Aberer. Polisis: Au-
tomated Analysis and Presentation of Privacy Policies
Using Deep Learning. In Proceedings of the USENIX
Security Symposium, 2018.

K. Butler J. Bowers, I. Sherman and P. Traynor. Char-
acterizing Security and Privacy Practices in Emerging
Digital Credit Applications. In Proceedings of the ACM
Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec), 2019.

USENIX Association

29th USENIX Security Symposium 1001

https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://search.appcensus.io/
https://search.appcensus.io/

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Ehimare Okoyomon, Nikita Samarin, Primal Wijesek-
era, Amit Elazari Bar On, Narseo Vallina-Rodriguez,
Irwin Reyes, Alvaro Feal, and Serge Egelman. On The
Ridiculousness of Notice and Consent: Contradictions
in App Privacy Policies. In Workshop on Technology
and Consumer Protection (ConPro), May 2019.

Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li,
Alan Qi, Rahul Potharaju, Cristina Nita-Rotaru, and Ian
Molloy. Using Probabilistic Generative Models for
Ranking Risks of Android Apps. In Proceedings of
the ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), October 2012.

Abbas Razaghpanah, Rishab Nithyanand, Narseo
Vallina-Rodriguez, Srikanth Sundaresan, Mark Allman,
Christian Kreibich, and Phillipa Gill. Apps, Trackers,
Privacy, and Regulators: A Global Study of the Mobile
Tracking Ecosystem. In Proceedings of the Network
and Distributed System Security Symposium (NDSS),
2018.

Joel Reardon, Alvaro Feal, Primal Wijesekera, Amit
Elazari Bar On, Narseo Vallina-Rodriguez, and Serge
Egelman. 50 Ways to Leak Your Data: An Exploration
of Apps’ Circumvention of the Android Permission Sys-
tem. In Proceedings of the USENIX Security Symposium,
2019.

Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud
Legout, and David R. Choffnes. ReCon: Revealing and
Controlling Privacy Leaks in Mobile Network Traffic. In
Proceedings of the ACM SIGMOBILE MobiSys, pages
361-374, 2016.

Irwin Reyes, Primal Wiesekera, Abbas Razaghpanah,
Joel Reardon, Narseo Vallina-Rodriguez, Serge Egel-
man, and Christian Kreibich. “Is Our Children’s Apps
Learning?” Automatically Detecting COPPA Violations.
In Workshop on Technology and Consumer Protection
(ConPro), May 2017.

Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit
Elazari Bar On, Abbas Razaghpanah, Narseo Vallina-
Rodriguez, and Serge Egelman. “Won’t Somebody
Think of the Children?” Examining COPPA Compli-
ance at Scale. In Proceedings on Privacy Enhancing
Technologies (PETS), July 2018.

Sanae Rosen, Zhiyun Qian, and Z. Morely Mao. App-
Profiler: A Flexible Method of Exposing Privacy-related
Behavior in Android Applications to End Users. In
Proceedings of the ACM Conference on Data and Ap-
plication Security and Privacy (CODASPY, February

2013.
Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini,

James Hester, Ram Krishnan, Jaspreet Bhatia, Travis D.

(30]

(31]

(32]

(33]

[34]

(35]

[36]

[37]

(38]

Breaux, and Jianwei Niu. Toward a Framework for De-
tecting Privacy Policy Violations in Android Application
Code. In Proceedings of the International Conference
on Software Engineering (ICSE), 2016.

In the Matter of Snapchat, Inc.
https://www.ftc.gov/enforcement/cases-
proceedings/132-3078/snapchat-inc-matter.

John W. Stamey and Ryan A. Rossi. Automatically
Identifying Relations in Privacy Policies. In Proceed-
ings of the ACM International Conference on Design of
Communication (SIGDOC), 2009.

Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky
Slavin, Travis D. Breaux, and Jianwei Niu. GUILeak:
Tracing Privacy Policy Claims on User Input Data for
Android Applications. In Proceedings of the Inter-
national Conference of Software Engineering (ICSE),
2018.

Primal Wijesekera, Arjun Baokar, Ashkan Hosseini,
Serge Egelman, David Wagner, and Konstantin
Beznosov. Android Permissions Remystified: A Field
Study on Contextual Integrity. In Proceedings of the
USENIX Security Symposium, August 2015.

Le Yu, Xiapu Luo, Xule Liu, and Tao Zhang. Can We
Trust the Privacy Policies of Android Apps? In Pro-
ceedings of the IEEE/IFIP Conference on Dependable
Systems and Networks (DSN), 2016.

Razieh Nokhbeh Zaeem, Rachel L. German, and
K. Suzanne Barber. PrivacyCheck: Automatic Summa-
rization of Privacy Policies Using Data Mining. ACM
Transactions on Internet Technology (TOIT), 2013.

Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang,
Guofei Gu, Peng Ning, X. Sean Wang, and Binyu Zang.
Vetting Undesirable Behaviors in Android Apps with
Permission Use Analysis. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications
Security (CCS), November 2013.

Sebastian Zimmeck and Steven M. Bellovin. Privee:
An Architecture for Automatically Analyzing Web Pri-
vacy Policies. In Proceedings of the USENIX Security
Symposium, 2014.

Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger
Iyengar, Bin Liu, Florian Schaub, Shomir Wilson, Nor-
man Sadeh, Steven M. Bellovin, and Joel Reidenberg.
Automated Analysis of Privacy Requirements for Mo-
bile Apps. In Proceedings of the ISOC Network and
Distributed System Security Symposium (NDSS), 2017.

1002 29th USENIX Security Symposium

USENIX Association

	Introduction
	Flow-to-Policy Consistency
	Clear Disclosures
	Vague Disclosures
	Omitted Disclosure
	Incorrect Disclosure
	Ambiguous Disclosure

	Consistency Model
	Data Flow and Policy Statements
	Ontological Operations
	Consistency
	Flow-to-Policy Consistency
	Flow-to-Policy Inconsistency

	Design
	Consistency Characterization
	Consistency Analysis
	Evaluation
	PoliCheck's Performance
	Sensitivity Analysis

	Additional Case Studies
	Omitted Disclosures
	Incorrect Disclosures
	Ambiguous Disclosures

	Limitations
	Related Work
	Conclusion

