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ABSTRACT

Benchmarking can drive the development of technologies by fa-
cilitating standardization of features for comparison of different
methods. While hardware security has seen an exponential growth
in innovation throughout the last decade, the lack of sufficient
benchmarks for data-driven analysis is prominent. Researchers
must currently rely on decades-old VLSI benchmarks, which in
most cases were not designed with security evaluation in mind.
Considering the present day computational power, these bench-
marks lack in both quality and quantity for usage in hardware
security topics such as obfuscation and hardware Trojans. Many
advanced techniques, like statistical analysis and machine learning,
require a large number of samples in order to sufficiently examine
the feature space. In an attempt to resolve this issue, we have devel-
oped the first synthetic benchmark generation process flow. This
paper describes our novel technique that utilizes linear optimization
to generate an endless number of synthetic combinational bench-
marks that are adaptable to user input constraints and divergent in
quantifiable structural features from input reference benchmarks.
Thus, our framework offers customization for generating richer and
more challenging benchmarks for data-driven hardware security.
Through experimentation, we verify that our benchmarks offers
more structural variation than the current benchmark suites.
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1 INTRODUCTION

Benchmarks are standardized designs that allow fair evaluation and
comparison of different techniques/tools on a common problem.
These designs should possess a certain level of difficulty in pro-
cessing them that enables quantifiable performance measure, e.g.,
overhead or speed, for the techniques under comparison. Bench-
marks can also be utilized to validate and to determine limitations
of existing or new methods. Development and utilization of com-
mon benchmarks has enabled progress in fields such as computer
architecture, multimedia, machine learning, digital signal process-
ing [11,17, 19]. In electronic design, benchmarks played a key role in
development of computer aided design (CAD) and electronic design
automation (EDA) tools [14, 15]. In hardware security, benchmarks
inserted with hardware Trojans are widely used to compare detec-
tion methods [23, 24, 33]. Hardware obfuscation benchmarks [3]
have also been proposed to standardize evaluation of attacks on
obfuscation.

The existing electronic design benchmarks [1, 2, 6-8, 16] were
sufficient for their original purposes, e.g., automatic test pattern gen-
eration (ATPG), FPGA optimization, floorplanning, place-and-route,
etc. Due to the lack of dedicated hardware security benchmarks, re-
searchers in this field often rely on existing benchmarks that are not
well-equipped for their need. For example, attacking simple designs
like multiplier or ALU does not reflect realistic security threats or
protections. For hardware obfuscation, side-channel analysis, fault
injection and many other hardware security topics, benchmarks
should be challenging, should contain or imitate secrets/assets, or
represent valuable intellectual property (IP) that is worth protec-
tion. Further, machine learning and statistical analysis are being
increasingly used in hardware security [4, 9]. To correctly model a
system, millions of proper sample are often needed especially for
deep learning. To both use machine learning and verify the methods
being proposed that use it, it is undeniable that large number of
circuit benchmarks are essential. Further, such benchmarks should
have diverse characteristics in order to fully explore corner cases.

In this work, we propose a novel synthetic benchmark gener-
ation framework to tackle this issue. While our framework sup-
ports qualitatively superior and quantitatively unbounded synthetic
benchmarks for any application, we focus the demonstration on
hardware security since it is a timely topic. The contributions of
this work can be summarized as follows

e We outline the limitations of current benchmarks and syn-
thetic benchmark generation tools.

e We propose and implement a framework for generating com-
binational benchmarks!. Features are extracted from pre-

The tool will be made available on Trust-Hub in Fall 2020.
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processed circuits and an integer linear programming (ILP)
is used to generate benchmarks that are optimally divergent
from the set of reference benchmarks in terms of structure.
The framework can generate an arbitrarily large number of
benchmarks with characteristics such as number of logical
units or nodes, primary inputs, etc. set by the user. We also
introduce a second logic customization step that assigns
operators (NAND, XOR, etc.) to each node in the circuit in
order to make the benchmarks more targeted to specific
applications in hardware security.

e We demonstrate the scalability of the proposed approach
and show that the resulting benchmarks contain different
structures and security features compared to existing ones.

The rest of the paper is organized as follows. The motivation
and necessity of synthetic benchmarks in hardware security is fur-
ther explained in Section 2. We also discuss the limitations of prior
synthetic benchmark generation tools in the field of EDA and why
they leave a gap. The synthetic benchmark generation flow with
associated features, optimization techniques and generation pro-
cesses, and limitations are described in Section 3. The experimental
results are presented in Section 4 while Section 5 concludes the
paper and discusses future work.

2 MOTIVATION AND RELATED WORK

In the design of systems and tools, a set of benchmarks is often
needed to validate the output and to evaluate the performance,
especially against the current state-of-the-art. In the 1980’s and
1990’s, the era of EDA tool development, standard circuit bench-
marks were introduced in renowned conferences [6-8, 16]. With
continual growth of development of EDA, numerous larger designs
were sought, hence started the process of synthetic benchmark gen-
eration [12]. These benchmarks were constructed automatically,
by modifying some existing reference circuits. Application specific
algorithms were later published to meet new objectives [26, 30].

With the introduction of machine learning and artificial intel-
ligence into design and optimization of circuits with traditional
as well as security constraints, versatile and large (both in size
and number) benchmark sets are necessary. Machine learning is
data-driven and demands many training samples to successfully
learn from and make predictions on; deep learning in particular
can require millions of samples. This is why in applications such as
face recognition, a great deal of effort is devoted to data augmenta-
tion [22, 25]. Even small circuits can have exponentially large num-
ber permutations in both logic and structure that should be explored
by machine learning methods. However, the existing benchmarks
are simply not enough - both in number and variety.

2.1 Benchmarks in Hardware Security

In hardware security research, researchers have been forced to
either evaluate/compare approaches using these three-decade old
obsolete circuit, or use open-source circuit designs [29]. We have
looked into 43 combinational hardware obfuscation techniques and
attack publications, and Figure 1 represents the benchmarks they
used to validate their approaches. Even though the methods claims
their efficacy for modern designs, the use of decade old benchmarks
in most of them question their scalability and more. This does not
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Figure 1: A summary of the benchmarks used in hardware
obfuscation techniques and attacks from 2008-2020.

facilitate the need of significant number of samples or variety for
data-driven approaches in hardware security.

Another key issue of using benchmarks intended for CAD de-
velopment in security analysis is objective. Hardware obfuscation,
hardware Trojan insertion, side channel analysis, etc. are signifi-
cantly different applications and have separate set of criteria for
the benchmarks to be considered “good” gauges of usefulness. For
example, a benchmark for Trojan insertion should have many low
observable nodes [23, 24, 33], while a benchmark for obfuscation
or side channel analysis should have assets worth protecting [3].
None of these criteria can be explicitly found in CAD oriented
benchmarks that researchers are using since they were not origi-
nally designed for such applications. Note that this is not a direct
criticism of the aforementioned works [3, 23, 24, 33] which do an
excellent job of modifying benchmarks for security purposes by
inserting Trojans and key gates; nevertheless, they are severely
limited by the original benchmarks that they modify.

Methods that allow a designer or researcher to emphasize spe-
cific hardware security criteria in generation process can result in
such objective-oriented benchmarks. The only solution we envision
to support this is an automated system that generates synthetic
benchmarks.

2.2 Synthetic Benchmark Generation

In light of the above, we briefly introduce preliminary work on
synthetic circuit generation here. Synthetic benchmark generation
was initially performed as logic graph modification [18]. Circuits
were analyzed as graphs [31] until one of the earliest works to offer
a detail generation process from scratch in [12]. Additional works
used partitioning and clustering of designs [14, 32].

Synthetic combination circuit benchmark generation in [12]
followed a method where the structural data of reference circuits
was extracted by Ccrgre tool [13], as arrays of parameters, and
another generation tool, Cggn [13], utilized that data to construct
anew circuit based on these parameters. Some of the key parameters
extracted from the circuit were maximum depth level, number of
logical unit or nodes at each depth level, number of inputs to and
outputs from each depth level, number of wires of each possible
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Figure 3: A hypothetical n = 3 dimensional plane showing
the structural parameter distribution of existing (blue) vs.
ideal synthetic benchmarks (orange).

functional length (measured in depth levels), etc. The step-by-step
generation process used this data. The gates and input-outputs
were assigned in each depth level, and then the wires were placed
to complete the design. A simplified overview of the generation
process is shown in Fig. 2. As only the extracted parameters are
used, the new synthetic circuit are structurally very similar to the
original reference circuit.

The lack of versatility in such existing synthetic generation sys-
tems [12, 13] is a key problem in using them for data-driven applica-
tions. Some prior works are based on synthesizing new benchmarks
by mutation of an existing one [3, 12]. The mutated benchmarks are
somewhat useful, but do not significantly differ in structure from
their references. For example, if we observe the reconvergence, a
parameter representing the nestedness of a circuit, of some common
benchmarks, we can see most of them lies within the range of 0.1 to
0.4 on the scale of 0 to 1. However, a design of multiplier, which is
found very resilient to state-of-art SAT attack against logic locking,
has a higher reconvergence of around 0.8 [3]. In order to study the
relation between structure and attack resiliency, one needs large
number of benchmarks which are significantly different, in size,
delay, shape, reconvergence, and so on. If we imagine a hypothetical
multidimensional space, like the example in Figure 3, where each
axis represents a unique structural quality of circuit designs, almost
all existing benchmarks as well as those generated by mutation
would fall in a close concentrated cluster. If one wants a design that
lies far from the cluster, the horizon for the parameters must be
extended.

In order to construct such “divergent” benchmarks, one possible
way would be to modify the data extracted by the Ccrge tool, and
then use the Cggn tool to generate the modified design. However,
in our preliminary experiments, we found that the extracted data
also included other detailed information that was not explained
in the accompanying literature. If the key parameters are altered,

ICCAD ’20, November 2-5, 2020, Virtual Event, USA

User Inputs
Size, Depth, Primary Input, Primary
Output, Max Fanin, Max Fanout

Reference Stats files

T ey B

’|=' Linear
Programming

Reference Benchmarks
Previously generated
synthetic designs

Custom
@D} <« Generation
Synthetic Benchmark tool Op::frél:;i;:;;tral

Figure 4: Overview of proposed synthetic benchmark gener-
ation framework.

the modification is unlikely to result in a feasible circuit and thus
the Cggn tool fails to generate a modified benchmark from the
manually modified data. For example, increasing or decreasing
the maximum depth level of the intended circuit is not possible
without the detailed knowledge of every parameter presented in
the extracted data.

As research on EDA development is past its peak, further de-
velopment has largely ceased on synthetic benchmark generation.
Thus, as part of this work, we developed a new generation tool,
partially based on the idea used in Cggn tools [12]. In the next
section, we describe our automated flow for generating synthetic,
combinational circuit benchmarks that overcomes the above lim-
itations. The proposed approach is adaptive, allowing the user to
specify parameters of the desired circuit (e.g, number of nodes or
gates, depth, number of primary inputs, etc.) and associated gates
(e.g., maximum fanin and fanout). Such control is important in gen-
erating circuits that both are realistic and allow one to explore the
scalability of approaches to be benchmarked or evaluated. The pri-
mary method of optimization is linear programming which allows
the solution - a synthetic benchmark set - to match this input spec,
meet the requirements of a feasible circuit, e.g., no floating nets or
nodes, and achieve the main objective, i.e., have fundamentally dif-
ferent structural parameters than reference benchmarks. The latter
can, therefore, enable realization of the divergent cluster shown in
Figure 3. Our approach is also complemented by a procedure for
assigning logical operations for the nodes in the resulting circuits
based on the needs of the benchmarking application, such as logic
locking or hardware Trojan insertion. As proof-of-concept, we ex-
plore features like observablity, controllability, canonical form [27],
etc. that can play valuable roles in evaluating attack/detection re-
silient qualities of circuits.

3 PROPOSED METHODOLOGY AND
IMPLEMENTATION

A simplified overview of the proposed synthetic benchmark gen-
eration flow and its components is presented in Figure 4. Three
inputs are provided to the flow: (1) one or more reference circuits -
these could be existing benchmarks; and (2) the basic features of the
synthetic benchmarks produced - in this paper, these are number
of nodes (i.e., circuit Size), depth (n), number of primary inputs
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Figure 5: Example of structural features from the graph representation of a circuit. The diamonds on top and bottom represent

inputs and outputs respectively. The circles represent gates.

and outputs (PI and PO), and maximum fanin/out of nodes (mFI
and mFO) in the circuit; and (3) the desired number of synthetic
benchmarks to be produced as output. The generation flow builds
on the basic idea of Cggn tool [12], but with critical modifications
to satisfy our objectives. Specifically, we construct synthetic bench-
marks from more direct and detailed structural information than the
one generated by the original Ccre tool. For example, along with
number of logical units per depth level, it includes number of wires
of each length generating from each depth level. This detailed data
is thorough and holds a complete information of a netlist structure.
Any valid modification in the data would result in a different design.
From these references stats, integer linear programming is used to
generate a synthetic benchmark that is the most structurally differ-
ent from those references stats. Stats from the synthetic benchmark
are extracted and included as feedback to the linear programming
to generate additional synthetic benchmarks in an iterative fashion.
In this way, generated synthetic benchmarks are more divergent
and can cover the whole space as shown in Figure 3. Finally, the
structural parameters of these synthetic benchmarks are passed to
a custom generation tool that assigns logical operations (NAND,
NOR, etc.) to the nodes in these benchmarks based on another
objective (e.g., higher controllability).

3.1 Structural Features

Most of the structural features that we extract from references and
optimize are vectors of length n where n represents the maximum
logical depth. This depth is the length of the longest path from the
input to the output (in terms of number of gates in the path).

(1) Node distribution (Nodes): Defined as array of number of
gates in each depth. Primary inputs are placed in the first
level (depth = 1). Nodes; represents the number of nodes
with depth i in the circuit. Node; is the number of gates that
are on i — 1 delay from the input (figure 5a).

(2) Internal inputs distribution (Input): Array of number of in-

ternal inputs to each depth. Input; is the number of internal

input to depth i. As no internal input goes in primary inputs,

Input; = 0 (figure 5b).

Internal outputs distribution (Output): Array of number of

internal outputs, where Output; refers to number of internal

outputs coming from depth i. The last depth n does not have
any internal outputs, so Output, = 0 (figure 5c).

(4) Primary outputs distribution (PO): Array of number of pri-

mary outputs drawn from each depth. PO; would refer to

number of primary outputs that have a delay of i — 1 from
the primary inputs (figure 5d).

Wire length distribution (Edge): This is an array that contains

number of wires of each length in the entire circuit. Here

length is the difference in depth level between a node and its
fanout node. Here, Edge; represents total number of wires
in the design that has length i — 1 (figure 5e).

(6) Fanout distribution (Fanout): Array containing number of
gates with each fanout in the entire circuit. Fanout; refer to
total number of gates in the design that has fanout = i.In a
typical design, Fanout; is the largest number, followed by
Fanouts (figure 5f).

—
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=

—
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=

3.2 Constrained Optimization

Seemingly, it would be easy to generate a set of features than differs
from reference features using basic optimization techniques. How-
ever, because the resulting benchmarks must be genuine circuits,
a constrained optimization approach is critical. In this section, we
discuss the objective functions and constraints (some withheld for
brevity) in order to achieve divergent benchmarks.

3.2.1 Nonlinear vs. Linear Programming. Initially, we explored non-
linear optimization methods where the objective is to find miny f(x)
where f(x) is a nonlinear function [20]. For example, the equation
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representing the Euclidean distance between two vectors in a n
dimension space is defined by

where x1, X2, ..., x, are elements of one vector and x{, xé, . X}, are
elements of a second vector. For our purposes, each x” would rep-
resent a structural feature per depth of the reference benchmarks
while each x would represent similar of the resulting synthetic
benchmark. Unfortunately, we found that nonlinear optimization
was not suitable for our application because the resultant solution
(x1,x2 etc.) contains fractions. Our structural features used gener-
ating in real circuits such as number of nodes, edges, inputs, etc.
can only take on integer values. A naive approach to resolve this
could be to round up the optimized fractional solution but this in-
troduces two major errors. First, the solution is no longer optimal;
second and even worse, rounding can cause the resulting circuit to
be invalid, introducing one or more discrepancies.

As the circuit parameters are real integer numbers, we found
integer linear programming to be the more appropriate choice.
This optimization technique [20] finds the minimum of a problem
specified by

minfo st. Ax<b (1)
X

AegX = beg (2)

Ib<x; <ubVi (3)

x; €EZVi (4)

where f, x, b, beg, Ib, and ub are vectors. A and A.q are matrices
that represents the coefficients of x in linear inequality and equality
constraints, respectively. The third and fourth constraints restrict
the range of each feature x; to [Ib, ub] and to an integer, respectively.
In order to use distances in linear optimization, linearization of the
distance equation is required. Therefore, the workable distance
equation is defined by
n

3 i =

i=1
where the symbols represent the same meaning as in the non-linear
distance equation.

3.22  Problem Formulation. The linear optimization problem can
be defined as finding the maximum of a problem specified by-

maxfT (x) where
X

n N
f(x)= Z Z Z |param,~ —param,'j|

param =1 j=1
Vparam € {Node, Input, Output, PO, Edge, Fanout}, ®)
Constraints

subject to { Bounds
x integer
where N is the number of reference designs; x is the concatenated
array of the optimal distribution of parameters that can later be
translated to circuit in netlist form. Optimization constraints are dis-
cussed in section 3.2.3. Setting the highest and lowest possible value
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as upper and lower bounds respectively reduces the optimization
time by reducing range of sweep for each variable.

Here, the dimension i corresponds to a single depth level for
each structural feature. If the intended synthetic benchmark has
maximum depth n and the number of feature types is p, then the
total number of dimensions would be n * p. For example, for param
= [Node, Input, Output, PO, Edge, Fanout}, p = 6. The resultant
distribution of parameters reflects maximum possible difference in
each depth for each parameter.

Note that for this formulation, the depth of each reference must
be the same. Since many of the references may have different depth,
we developed a pre-processing step to adjust their depth. This is
done by either adding buffer layers in a uniform fashion or truncat-
ing the circuit (more details in Appendix A.2).

3.2.3 Constraints. The constraints and bounds ensure the resultant
data represents a valid circuit. In our work, we have employed more
than 25 validity constraints to ensure that the resulting features
result in a valid circuit solution. For brevity, we only cover a few of
the most significant of those constraints here:

(i) As mentioned earlier, the circuit size (Size) in terms of total
number of nodes along with number of primary inputs (PI)
and number of primary outputs (PO) are defined by the
user as input. Nodes at the first depth represents PIs, hence
should be equal to user input of such. The total nodes from
depths 2 to n should be equal to user-defined circuit Size. The
total number of POs of all the depths should be equal to the
total number of POs. These are expressed by the following
equality constraints:

PI = Node; (6)
n
Size = Node; (7)
i=2
n
PO = Z PO; (8)
i=1

(if) The number of nodes in any depth should not be more than
maximum possible internal inputs and POs in the later part
of the circuit. Similarly, the nodes in any depth should not be
more than maximum possible internal outputs in the prior
depths. Both are also related to the maximum fanin (mFI) and
fanout (mFO) of nodes in the circuit. These can be expressed
using the following inequality constraints:

n n
Node; < ' Nodej xmFI+ » PO; Vi 9)
j=i+l j=i+l
i-1
Node; < ZNodej XmFOV i (10)
j=1

(iii) The maximum possible input to a depth is Node; times mFI,
where mFI refers to maximum fanin (user-defined param-
eter). Inputs to depth i (Input;) should not be more than
maximum possible input to that depth. Also, total outputs
of any depth, internal and external, should not be more than
maximum possible output of that depth, which is the number
of nodes in that depth (Node;) times maximum fanout of
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each node (mFO). These can be expressed using the follow-
ing inequality constraints:
Node; < Input; < Node; X mFIV i (11)
Node; < Output; + PO; < Node; X mFO'V i (12)

With an additional dozens of constraints (more shown in Ap-
pendix), the f(x) is maximized to determine the unique circuit
structure that is farthest from the reference in every axis in a hypo-
thetical circuit plane. In this way the optimization makes sure that
the generated benchmark suite is diversified, unique, arbitrarily large,
and designer-specified to match the application. Our results in Sec-
tion 4 shows how these optimal benchmarks contrast in structure
from input reference clusters.

3.3 Custom Logic Assignment

The above optimization determines the structure of synthetic bench-
mark in terms of logical units (nodes) and their interconnections
(edges), like a graph. It is represented by an array of numbers, simi-
lar to the output of Ccyre tool. However, the logic to be defined in
the logical units are not specified by the optimizer. This numerical
representation is converted to a workable library dependent or
independent verilog netlist by the our Custom Generation tool (see
Figure 4). The assessment of logic in the generation stage can be
random or heuristically driven.

o For random logic assignment, the generation tool determines
logic for each node, based on the number of input and out-
put to that node. Given a set of choices, a pseudo-random
function is used to choose the logic. In this assessment, rate
of occurrence for all logic choices are same.

e For heuristically driven, we assume that there is some hard-
ware security application. For example, one can generate
good synthetic benchmarks for hardware Trojan insertion,
by assigning logic that maximize controllability or observ-
ability. Following the equations of determining controlla-
bility or observability of logic gates [10], the logic choices
can be chronologically sorted. From our preliminary experi-
ments, we have seen an strict law of maximizing these pa-
rameters (i.e. making the design harder to control or observe)
results in a selection of all ‘AND’/*NAND’ logic for all nodes.
This type of design can be significantly reduced to smaller
one, and not a good realistic design. Thus, we suggest a bet-
ter selection to increase controllability or observability by
increasing the rate occurrence for ‘AND’/'NAND’ logic over
that for ‘OR’/'NOR’ logic. Such heuristics will be explored for
applications such as logic locking and side channel analysis
in future work.

3.4 Current Limitations

In this initial implementation of the proposed benchmark gener-
ation flow, we only consider combinational benchmarks for sim-
plicity, but plan to extend it to sequential designs in future work.
Also, optimization of structure and logic are performed separately
resulting in the need for custom generation tool. In future work,
we’d prefer to combine this into one optimization step. This is im-
portant because synthesis tools can optimize and alter the structure
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of our synthetic benchmarks based on their logic, thus resulting in
sub-optimal differences from the references.

4 EXPERIMENTAL RESULTS

Through detailed analysis with existing and novel structural param-
eters, we tested how the generated combinational benchmarks pos-
sess differentiating qualities compared to existing standard bench-
marks. We also analyzed the scalability of our generation flow for
design parameter variation, the relations between controllable de-
sign parameters of our method and significant features of resultant
benchmarks, and the applicability and performance of generated
benchmarks in some hardware security topics.

In our experimental setup, we have used integer linear program-
ming from MATLAB on RedHat Linux Server to perform the op-
timization. The complete structure of the netlist is defined by the
optimizer, except the logic assignment. The optimized structural
data is converted to a verilog netlist by our generation tool de-
veloped on Java 1.8 platform. Performance of the framework and
synthetic benchmarks are elaborated in next subsections.

4.1 Divergence of Synthetic Benchmarks

Each synthetic benchmark is generated by optimizing the maximum
distances between parameters of references along with already gen-
erated benchmarks and that of the design to be generated. Figure 6
plots one such sample of references averaged and resultant distri-
bution of parameters.

The synthetic benchmarks and existing benchmarks are analyzed
for structural parameters. We worked with existing combinational
benchmarks from ISCAS [7] benchmark suites which is referenced
to generate the sample synthetic benchmarks presented in here.
To compare and quantify the differences between reference and
generated benchmarks, other than the obvious variation in size and
depth, industry standard and popular academic parameters like con-
trollability, observability (evaluated with Synopsis TetraMAX[21]),
number of conjunctive normal form (CNF) clauses (calculated with
ABC tool[5]) have been measured and benchmarks are plotted
against those as axes in Figure 7(a). Also, to summarize additional
standard and ad hoc parameters that have been measured, Principal
Component Analysis (PCA) has been employed. Benchmarks are
plotted against the three most significant components as axes in
Figure 7(b). In both these plots, the red dots representing synthetic
benchmarks spread more widely than the blue dots representing
existing standard benchmarks, signifying the divergence of the
prior. As the features of synthetic benchmarks are customizable,
and the number of benchmarks that can be generated is virtually
unbound, it can be predicted that the space covered by synthetic
benchmarks would be larger with further generation.

4.2 Scalability

The times needed for ILP optimization per benchmark versus the
depth is presented in figure 8. The total number of gates is also
varying and represented by a different line. Since the the number of
optimization variables and number of equations are quadratically
dependent on intended maximum depth, the ILP optimization time
increases with depth. However, the size of design in terms of number
nodes/gates does not have significant effect on this time. While
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Figure 7: Comparing existing and synthetic benchmarks on the basis of structural parameters. Benchmarks are compared
based on (a) controllability, observability and number of CNF clauses; and (b) three principal components of PCA performed

on multiple analyzed structural parameters.

benchmarks need only be generated once and can be used in many
applications, the optimization time can be improved in future work.

4.3 Relation Between Controllable Features
and Security Critical Parameters

There are security critical structural features that directly relates
to resiliency against attacks in hardware security. For example, the
larger the number of clauses and literals in CNF form of a circuit,
the longer it takes for SAT attacks to execute on logic locked cir-
cuits [27]. The controllability and observability of a design also
relates to how easily an obfuscation or logic locking key gate can
be excited and its key value be propagated to primary outputs in
Key sensitization attack [34]. These critical features are found to
be directly proportional to circuit depth or maximum delay level,
as shown in Figure 9. In experiment, the controllability and observ-
ability are calculated with Synopsys TetraMAX [21] and number
of clauses and literals of CNF form is measured with Barkley ABC
tool [5].

In our synthetic benchmark generation framework, depth is
a user defined parameter. Thus, in order to study the resiliency
of a logic locking scheme against those attacks, the depth of the
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Maximum delay

50
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Figure 8: Generation times of circuits with varying depth
and number of gates (size).

synthetic benchmarks can be made arbitrarily small. Whereas if one
wants to ignore such attacks and study some other logic locking
attacks, the depth can be made larger.
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Figure 9: Relationship of controllable features in synthetic
benchmark generation and observable parameters that can
impact security of logic locking: (a) Controllability of pri-
mary outputs, (b) observability of primary inputs, (c) Num-
ber of clauses and (d) literals in CNF form against maximum
depth.

4.4 Applicability for Security Research

We have performed brief analysis to evaluate synthetic benchmark
against existing ones in security research like Trojan detection
and attack resiliency. First, we inserted Trojans randomly and ran
simulation with random input patterns to detect the Trojan by com-
paring with golden outputs. 4.79% patterns for single Trojan and
10.49% patterns for multiple (5) Trojans were detected as faulting
on ISCAS benchmarks, while the detection rates were 0.10% and
3.64% for synthetic benchmarks, respectively. This indicates better
applicability for such analysis, providing superior challenge for
detection algorithms.

Second, we have obfuscated the benchmarks randomly with 32
bit and 256 bit keys, and performed SAT attack [27] with author
provided tool [28] with a timeout as 1 hour. The plot of time taken by
the attack to determine the obfuscation key is presented in Figure 10.
It also shows the improved challenge against the attack in synthetic
benchmarks compared to the existing reference benchmarks.

The experiments have been repeated multiple times to mitigate
the effect of randomness introduced by random insertion of Trojan
and obfuscation gates.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel adaptable and divergent
synthetic benchmark technique utilizing linear optimization. We
have outlined the problem, detailed the proposed methodology and
elaborated on the experimental outcomes. It is our believe that the
synthetic benchmarks developed through this framework would
be crucial in development of many fields, especially data-driven
and machine learning for hardware security. We plan to release
the initial tool to the public to enable such research. In future

Sarah Amir and Domenic Forte
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Figure 10: Time taken by SAT attack[27] to break 256 bit ran-
domly obfuscated benchmarks. Timeout is set as 1 hour.

work, we aim to expand its capabilities to sequential circuits and
improve on its current limitations. Examples include alternative
objective functions and depth adjustment methods, more scalable
optimization methods, and combined logic/structure optimization.
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A APPENDIX

A.1 Additional Constraints

A.1.1 Edge Table. We construct an edge table where each row rep-
resents the wires starting from each depth level and each columns
represents the length of wires. Here d = depth, and | = length.

Ein Ei2 .. Ein
Edge Table = 21 22 Zn
v e Egi ..
En,l En,Z En,n
Additional constraints related to edge table:
Node; < Ej1; Vi

i-1i-1
Inputi= 3, X Egyi=; ¥ i
d=11=1

n
Output; = ), Eip; Vi (13)
=1

n
Edge; = ), Eq; Vi
d=1
Egen = Egsi>n =0V d V1

A.2 Depth Adjustment

The reference design parameters are either truncated or extended
to match the user-defined intended depth. Assume, the reference
design has maximum depth = depth, ¢ and the intended design
depth is d. To truncate, the circuit is split at the depth d (where
d < depthy.y), and the internal outputs from depth d is considered
primary outputs. To extend when d > depth,. ¢, new buffer layers
are inserted in between existing delay layers. If a1 > d/depth,.f >
ay, then a; — 1 buffer layers are inserted after first nq layers, and
ay — 1 layers are inserted after the rest of the ny layers, where
ny*ai+ny*xas=d, ny+ny= depthref and a; —ay = 1.
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