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A STATISTICAL OVERVIEW ON DATA PRIVACY 
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ABSTRACT 

The eruption of big data with the increasing collection and processing 
of vast volumes and variety of data have led to breakthrough discoveries and 
innovation in science, engineering, medicine, commerce, criminal justice, 
and national security that would not have been possible in the past.  While 
there are many benefits to the collection and usage of big data, there are 
also growing concerns among the general public on what personal infor-
mation is collected and how it is used.  In addition to legal policies and 
regulations, technological tools and statistical strategies also exist to pro-
mote and safeguard individual privacy, while releasing and sharing useful 
population-level information.  In this overview, I introduce some of these 
approaches, as well as the existing challenges and opportunities in statisti-
cal data privacy research and applications to better meet the practical needs 
of privacy protection and information sharing.  

INTRODUCTION 

Today, digitization touches every part of our lives, affecting how we work 
and live.  Emerging technologies, such as artificial intelligence, high perfor-
mance computing, cloud storage, and computing, help to accelerate the digital 
transformation.  As technology capabilities continue to expand, there is also a 
growing concern in the public around increasing collection, storage, dissemina-
tion, and processing of personal information.  According to the Pew Research 
Center, roughly sixty percent of U.S. adults do not think it is possible to go 
through daily life without their personal data collected by either companies or 
the government, and over eighty percent are concerned about what is being done 
with their data.1 

The issue of data privacy is not new and can be dated back to 1890, when 
two U.S. lawyers, Samuel D. Warren and Louis D. Brandeis, wrote The Right 
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to Privacy to declare a right to privacy in the United States.2  Fast forward to 
today, not only are there legal policies and regulations, but also administrative 
controls, and computer and statistical strategies to promote and safeguard pri-
vacy.  For example, the European Union enforced the implementation of the 
General Data Protection Regulation (GDPR) on May 25, 2018; the U.S. privacy 
laws Health Insurance Portability and Accountability Act (HIPAA) and Chil-
dren’s Online Privacy Protection Act (COPPA) protect personal information of 
patients since 1996 and of children under thirteen since 1998, respectively; and 
China has recently adopted the National Standard of Information Security Tech-
nology—Personal Information Security Specification.3  Technology and meth-
odologies have also been in development to protect privacy, such as access con-
trol (e.g., password and electronic gatekeepers for remote access to computer 
databases), destruction (deletion of the data that are no longer needed), digital 
passport, data anonymization and pseudonymization, and encryption, among 
others.  

Anonymization and pseudonymization relate the most to the statistical 
strategies for protecting privacy and are often regarded as a must when perform-
ing scientific or statistical research.  Specifically, anonymization and pseudon-
ymization consist of stripping individual identifying information or injecting 
noises into the original data before releasing the data and information to the 
public.  This greatly reduces the identification risk of individuals and the dis-
closure risk of attribute information.  On the other hand, due to the perturbation 
used in the data to achieve anonymization and pseudonymization, there will be 
unavoidable information loss and the released information to the public will not 
be as accurate or precise as the original information.  Ideally, a data perturbation 
approach should maximize the protection of respondents in a data set, while 
minimizing the information loss due to the perturbation.  However, in reality, 
the more protection there is, the less useful the released data are.  Figure 1 illus-
trates how information starts to get lost and privacy increases as more noises 
and perturbations are injected into the original data, which are the images of 
human faces.  An optimal or near-optimal balance between the two extremes—
maximal information and no privacy for individuals versus zero information 
and maximal privacy for individuals—is often the goal when developing strat-
egies for data release.   
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Figure 1: Data utility decreases and privacy increases as perturbation increases 

   

(a) Original data4 (b) Perturbed data with some 
preservation of original  

information 

(c) Extremely perturbed data 
that are almost useless 

In what follows, I will first provide an overview on the assessment of pri-
vacy risk in released data in Section I, and then present some approaches in 
Section II to assess utility of the data if they are processed for privacy protection 
purposes before being released to the public.  I will use Section III to introduce 
some traditional and state-of-the-art methods and techniques for perturbing the 
original data to lower the privacy risk while maintaining some level of utility 
upon release.  Discussions and concluding remarks are provided in Section IV. 

I. PRIVACY RISK MEASUREMENT 

One of the research topics in data privacy is to measure the privacy risk 
level in the released data and whether the individual privacy can be safeguarded 
when releasing information.  There are two main types of privacy risk: re-iden-
tification risk and attribute disclosure risk.  The former occurs when a data in-
truder is able to recognize an individual from the released data, and the latter 
refers to when a data intruder can figure out the value on an attribute of his 
target, even without precisely identifying the records from the released data.  

Privacy risk measures can be roughly grouped in two categories: relative 
privacy risk measures and absolute privacy risk measures.5  The former is also 
referred to by many as “differential privacy” (DP)6 or “formal privacy”.7  In 
relative privacy risk measures, there is a pre-set privacy parameter that upper 
bounds the additional leakage of privacy with each release of information.  Data 
perturbation mechanisms build in the framework of DP and are designed to 
achieve the pre-specified privacy level.  Since the privacy risk control is 
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guaranteed upfront, there is often no need to perform a post-hoc assessment of 
the privacy risk in the released perturbed data, and one may focus on achieving 
the highest utility possible for the released information when developing a dif-
ferentially private perturbation mechanism.  In contrast, absolute privacy risk 
measures focus on quantifying the totality of the privacy risk in released data.  
In the rest of this Section, I will first examine the absolute privacy risk, and then 
present the DP concept.  

I.1. Absolute Privacy Risk 

I.1.1.  k-Anonymity, 𝑙-Diversity, and 𝑡-Closeness  

The concept of k-anonymity was first introduced by Samarati and 
Sweeney in 1998.8  A release of data is said to have the k-anonymity property 
if the information for each person contained in the release cannot be distin-
guished from at least 𝑘 − 1 individuals in the released data.  For example, if 
𝑘 = 2, then there is no unique record in the released data and each record looks 
the same to at least one other records.  On the other hand, achieving k-anonymity 
exactly can be computationally infeasible when the number of attributes are 
large; but approximate methods often yield effective results.9  Though k-ano-
nymity is a promising concept for privacy protection, data of k-anonymity are 
still susceptible to many attacks, especially when data attackers possess some 
background knowledge.10  In addition, k-anonymity does not include any ran-
domization, attackers can still make inferences that may harm individuals.  Fi-
nally, it is not effective for high-dimensional data (there are many attributes in 
the data, or the so-called “large-𝑝” problem in statistics).  

The 𝑙-diversity is an extension of the k-anonymity model.11  The l-diver-
sity model handles some of the weaknesses of k-anonymity.  For example, when 
the sensitive values within a group are homogenous, the l-diversity model pro-
motes the intra-group diversity on a sensitive attribute.  Instead of every indi-
vidual having the same value on the attribute, there are at least l ”well repre-
sented” values for the sensitive attribute.12  “Well represented” in this context 
can be interpreted in three ways: (1) at least 𝑙 distinct values; (2) entropy 𝑙-
diversity; or (3) recursive (𝑐 − 𝑙)-diversity that ensures that the most common 
value does not appear too often while less-common values are ensured to not 
appear too infrequently.  Similar to the 𝑘-anonymity, the 𝑙-diversity model does 
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PROCEEDINGS 223, 223–28 (2004). 
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not scale well with the number of attributes.  In addition, it might still leak sen-
sitive information when the “diversity” is defined at a granular level and those 
diverse values may still be semantically close.  For example, a data intruder can 
still conclude an individual has a stomach disease if a data set to which the in-
dividual belongs only lists three different stomach diseases.  The 𝑡-closeness is 
a further refinement of the l-diversity that deals with some of its drawbacks.13  
The threshold t gives an upper bound on the difference between the distributions 
of the sensitive attribute values within an anonymized group as compared to the 
global distribution of values for numeric attributes.14 

I.1.2. Other Approaches  

All the three privacy risk concepts discussed in Section I.1.1 have pre-
specified privacy parameters.  Once the parameters are set, a protocol or an al-
gorithm is developed and implemented to achieve the pre-set privacy level for 
the released data; and there is often no need for further privacy risk assessment 
after the data are released.  Besides the parameterized privacy risk models, there 
exist other privacy risk assessment approaches that are not necessarily associ-
ated with a privacy parameter, but rather aim at quantifying re-identification 
risk or attribute disclosure risk in the released data, often by imposing assump-
tions on the external knowledge and behaviors of data intruders.  These ap-
proaches can be regarded as the post-hoc privacy risk assessment as they are 
carried out upon receiving the data and depend on the approaches used to per-
form the risk assessment, the assumptions imposed, and sometimes the type of 
released data.  

One of these approaches is through the record-linkage technique that links 
the released data with external knowledge that a data intruder possesses to re-
identify his target.  Depending on the assumption on the external knowledge, 
the re-identification risk varies.  In that sense, the approach is, to a degree, ad-
hoc and non-robust.  While one can always adopt the worst-case scenario ap-
proach by assuming the intruder has maximal external knowledge he could use 
to link to the released data, the meaning of “worst-case” and its supposed guar-
antee only pertain to the status quo and is not future-proof.  In other words, the 
“worst-case” scenarios may no longer hold if the data intruder obtains more 
information in the future, and the data perturbation methods built upon it would 
no longer maintain the originally desired confidentiality levels.  

The other privacy risk approach quantifies the probability that a sample 
unique is also a population unique.  A “sample unique” refers to the case that 
there is only one individual in the sample data that possesses certain values of 
the attributes; and a “population unique” means there is only one individual in 
the population that possesses certain values of the attributes.  When a sample 
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unique is a population unique, the re-identification risk of that individual is 
maximal.  If the data intruder knows his target is in the released data and has 
information on all the pseudo-identifiers for his target, and if that target is a 
sample unique, then that target will be identified even if the target is not a pop-
ulation unique. Therefore, the existence of sample unique per se imposes pri-
vacy risk.  The good news is that while every individual in the population is 
unique, sample data are finite in terms of the number of attributes.  Therefore, 
it is likely that some individuals share the same set of attribute values in the 
sample, especially when the sample size (the total number of individuals) is 
large.   

For the approaches without formal privacy parameters but focusing on the 
post-hoc privacy risk assessment, the privacy risk will vary by perturbation 
mechanisms.  Some approaches will lead to better privacy protection than the 
others per either the record-linkage assessment, the population unique probabil-
ity quantification, or other risk assessment metrics.  In other words, not only 
will different approaches lead to different utility for the perturbed data, but also 
their privacy guarantees are different.  This will make the comparison of pertur-
bation approaches harder than in the setting of formal privacy, where every per-
turbation approach is under the same privacy guarantee, and those that offer 
higher utility are preferred.  

I.2. Differential Privacy  

Differential privacy (DP), a concept popularized in the theoretical com-
puter science community,15 provides strong privacy guarantee in mathematical 
terms without making assumptions about the background knowledge of data 
intruders.  It is also immune to post-processing and is future-proof, meaning the 
achieved privacy level for the individuals in the released data will remain the 
same regardless of what post-processing procedure is applied to the data and 
what future information the data intruder will have about his target.  DP is 
claimed to provably thwart any privacy attack, including the re-identification 
and attribute disclosure risks.16  DP is the state-of-the-art concept in data privacy 
research and has also started to influence how practitioners (industry and gov-
ernment) collect and release data. In what follows, I will provide more details 
on the concept of DP. 

I.2.1. The Classical Definition 

In brief, an 𝜖-differentially private mechanism perturbs a statistic (a quan-
tity calculated from a data set) to satisfy the following condition: when the sta-
tistic is calculated from two neighboring data sets that differ by one record, the 
ratio of the probabilities of that statistic taking the same value (any) based on 
the two sets, is bounded between (𝑒−𝜖, 𝑒𝜖).  The perturbed statistic via an 𝜖-
differentially private mechanism is often referred to as the sanitized statistic.  In 
 

15. Dwork et al., supra note 6. 
16. Cynthia Dwork et al., Exposed! A Survey of Attacks on Private Data, 4 ANN. REV. STAT. 

& ITS APPLICATION 61, 61–84 (2017). 
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layman’s terms, DP means that the chance an individual will be identified based 
on the sanitized statistic is low if 𝜖 is small since the statistic would be about 
the same with or without the individual in the database.  Inversely, if 𝜖 is larger, 
then the sanitized statistic will be different when an individual is absent or pre-
sent in the data, leading to a higher chance of that individual being identified 
and his attribute values being disclosed from the released sanitized results.  

To achieve 𝜖-DP, noises will be injected to the original statistics to obtain 
sanitized statistics to release to the public.  The higher the requirement on pri-
vacy, the smaller the 𝜖, the more noises are needed to perturb the original results 
to achieve 𝜖-DP, and the less useful the released sanitized results will be.  The 
desire to achieve a higher level of utility has motivated the work on relaxing the 
original DP definition, such as the approximate differential privacy,17 the prob-
abilistic differential privacy,18 the random differential privacy,19 and the con-
centrated differential privacy.20  For all these relaxed versions of the classical 
DP, there is at least one more parameter in addition to 𝜖 that governs the amount 
of relaxation.  

As can be observed from the discussion above, 𝜖 is a critical parameter 
when it comes to the practical implementation, as it quantifies the privacy level 
of the sanitized results and affects the usefulness of the released information.  
Regarding what value of 𝜖  is appropriate or acceptable for practical use, Dwork 
states that the choice of 𝜖 is a social question but suggests small values like 0.01, 
0.1, or even as large as ln2 or ln3.21  Lee and Clifton suggest a formula to cal-
culate 𝜖 if the goal is to hide any individual’s presence (or absence) in the data-
base.22  Abowd and Schmutte address the question from the economic perspec-
tive by accounting for the public-good properties of privacy loss and data utility, 
and define the optimal choice of 𝜖 by formulating a social planner’s problem.23  
In the numerical examples published in the literature on DP, many examine a 
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range of 𝜖, but often curb the maximum 𝜖 at 1.24  An application of DP to the 
U.S. Census Bureau’s OnTheMap data (commuting patterns of the U.S. popu-
lation) uses (𝜖 = 8.6, 𝛿 = 10−5)-probabilistic DP.  In summary, there are many 
factors that affect the choice of 𝜖—the social perception of privacy, the sensi-
tivity level of the information to be released, and the desired utility, among oth-
ers.  The choice of 𝜖 is still an active research area and might take some time 
before a consensus, if possible, can be reached.  

I.2.2. Extension of Classical Differential Privacy  

Local Differential Privacy 

One of the population extensions of the classical DP is the so-called local 
DP.25  Formally, local DP bounds the likelihood ratio of obtaining the same 
response through a randomization mechanism, when the true response takes any 
two different values, below 𝑒𝜖.  In other words, it suggests that the likelihood 
that a subject produces a randomized response is close to a constant (how close 
depends on the value of 𝜖) regardless what his true response is.  The concept of 
local DP captures a type of plausible deniability, which means people have the 
ability to deny knowledge because of a lack of evidence that can confirm their 
participation, even if they were personally involved in, or at least willfully ig-
norant of, the actions.26  

Randomized response, a mechanism proposed in 1965 for data collection 
with privacy protection,27 can be regarded as a form of the local DP.  There are 
several ways to conduct randomized response.  For example, suppose a subject 
is asked a sensitive and private question, say, on whether he had ever stolen.  
Before answering the question, the subject is instructed to flip a coin, and an-
swer truthfully if the coin lands on tails or flip a second coin if it lands on heads.  
If the second coin comes up heads, then the subject is to answer “Yes,” or an-
swer “No” if lands on tails.  If the coin is unbiased and the true population pro-
portion of ever stealing is 𝜃, then the expected probability of getting a “Yes” 
response via randomized response is 0.25 +  0.50 𝜃 and that of getting a “No” 
response is 0.25 +  0.50(1 −  𝜃).  Interpreted in the context of local DP, it 
means that if the subject’s response is “Yes,” then he can claim that is because 
the coin landed heads up and his privacy is protected.  It is easy to prove that 
the likelihood ratio of having a “Yes” response through the two-time coin flip-
ping randomized response mechanism when the true response is “Yes” versus 
when the true response is “No” is bounded below 3 (that is, 𝜖 = 𝑙𝑛 (3)).  Data 
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(last visited Mar. 8, 2020). 
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obtained through the randomized response mechanism still allow us to find an 
unbiased estimate of 𝜃, which is a population-level parameter of interest, even 
without knowing the true response from each subject or who answers the ques-
tions truthfully.  

Location Privacy with Geo-Indistinguishability 

It is very common nowadays that untrusted servers collect massive infor-
mation on users’ location with the increased popularity of mobile devices.  Lo-
cation information is sensitive; no one wants to be followed or “spied on” (even 
virtually), especially by someone that they do not trust or know.  Andrés et al. 
propose the concept of geo-indistinguishability, a formal notion of location pri-
vacy that extends the classical DP framework.28  Geo-indistinguishability for-
malizes the intuitive notion that the more precise the location information is 
about the user, the more sensitive that information is and the more privacy con-
cern there is for the user.  The precision of the location information and the 
privacy protection level can be characterized by the radius 𝑟 of the neighbor-
hood around the user’s true location–the smaller 𝑟 is, the less privacy protection 
there is.  Geo-indistinguishability states that the user enjoys (𝜖 × 𝑟)-privacy, if 
the randomization mechanism draws a random location from the neighborhood 
of radius 𝑟 around the true location.  𝜖 corresponds to the level of privacy for 
one unit of distance, and  𝜖 × 𝑟 quantifies the overall privacy level for the ran-
domized mechanism.  Figure 2 shows that the privacy protection level increases 
as the radius 𝑟 of the neighborhood around the user’s true location increases. 

 
Figure 2: Privacy protection level increases with the radius of the neighborhood 

around the user’s true location per geo-indistinguishability29 

 
28. Miguel E. Andrés et al., Geo-Indistinguishability: Differential Privacy for Location-

Based Systems, in 20 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS 
SECURITY PROCEEDINGS 901, 901–14 (2013). 

29. Map obtained from Map data ©2020 Google. 
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I.2.3. Differential Privacy in Practice 

Given the attractive mathematical properties of DP, software and web-
based interfaces that collect data and release statistics and information with DP 
have been developed.  For example, RescueDP30 is an online aggregate moni-
toring scheme that publishes real-time population statistics on spatial-temporal, 
crowd-sourced data from mobile phone users with DP.31  PSI (𝛹), 32 developed 
by the Harvard Privacy Tool Project, implements a system for generating and 
releasing differentially private queries and statistical models, and is integrated 
with the Dataverse repository,33 an open source web application to share, cite, 
explore, and analyze research data.34  Big companies such as Uber, IBM, and 
Google have released open-sourced differential privacy libraries at GitHub for 
experimenting and developing DP applications.35  The U.S. Census Bureau 
is pushing the implementation of DP for releasing the 2020 Decennial Census 
and will extend it to the American Community Survey in the future.36 

Google, Apple, and other companies have applied local DP to collect us-
ers’ data.  Google employs Randomized Aggregatable Privacy-Preserving Or-
dinal Response (RAPPOR), an end-user client software to collect Chrome 
browser data for crowd-sourcing statistics, where local DP is ensured by imple-
menting two types of randomized responses.37  Figure 3 depicts the system ar-
chitecture used by Apple for data collection with DP.  The system consists of 
device-side and server-side data processing.38  The local DP is implemented in 
two places in this system—when collecting the raw data (the privatization stage) 
and when the restricted-access server further processes and aggregates data to 
generate histograms.  Uber took a different route and developed an approximate 
DP method on practical private SQL queries instead of using local DP. 
 

30. Qian Wang et al., RescueDP: Real-Time Spatio-Temporal Crowd-Sourced Data Pub-
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33. DATAVERSE PROJECT, https://dataverse.org (last visited Mar. 8, 2020). 
34. Id. 
35. IBM: Differential-Privacy-Library, GITHUB, https://github.com/IBM/differential-

privacy-library (last visited Mar. 2, 2020); Google: Differential-Privacy, GITHUB, 
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May 20, 2020). 
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Figure 3: The system architecture for differentially private data collection and pro-
cessing in Apple, Inc. (modified from the Apple Machine Learning Journal39) 

II. MEASUREMENT OF DATA UTILITY 

It is critical to evaluate the utility of the data perturbed for privacy protec-
tion reasons before releasing them to the public.  If there is too much perturba-
tion, it might render the data useless for research or practical use.  To evaluate 
the balance between privacy protection and data utility, frameworks and ap-
proaches for efficiently and accurately assessing utility are needed.  In this sec-
tion, I provide an overview on some existing theoretical and methodological 
approaches for assessing the data utility.  Some approaches focus on a single or 
a limited set of statistics and query results, while others are more ambitious and 
aim to assess the overall utility of a released data set. 

If the released information contains a finite set of query results or statistics 
(e.g., histograms, cross-tabulations, means, model parameter estimates, predic-
tions), we may examine the distance between the perturbed statistics and the 
original statistics, by using the so-called “𝑙𝑝 distance”.  Some common choices 
of 𝑝 is 1, 2, and ∞.  When 𝑝 = 1, it becomes the 𝑙1 distance (summed absolute 
differences between the original and perturbed sets); when 𝑝 = 2, it becomes 
the 𝑙2 distance (summed squared differences between the two sets).  When 𝑝 = 
∞, it becomes the 𝑙∞ distance (the maximum absolute distance between two 
sets).  The smaller the distance, the more similar the perturbed set is to the orig-
inal set, and the more original information are preserved per that metric.  Mean 
squared error (MSE) is another commonly-used metric to assess the utility of 
the released data.  Compared to the 𝑙𝑝 distance, MSE captures both the distance 
and the variability (stability) of the perturbed results.   

These utility measures have been employed for utility analysis not only in 
empirical studies with real-life and simulated data, but also theoretically.  Some 
of the notable theoretical work focuses on bounding the  𝑙𝑝 distance, or bound-
ing with a high probability the so-called “excess risk”, often defined as the ex-
pected 𝑙𝑝 distance between the perturbed statistics and the statistics that would 
 

39. Id. 
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be obtained assuming an infinite amount of information.  Often times, the 
bounds are functions of the sample size (or sample complexity), the privacy 
parameters (such as 𝜖 in the DP framework), and some accuracy parameter.  
With the functional relationships, one can also obtain a lower bound on the sam-
ple size given a desired accuracy level with a high probability.40   

While it is desirable to preserve as much original sample information as 
possible, the objectives for sharing and releasing data in many cases are to make 
inferences on the underlying population parameters where the original data are 
sampled.  In others words, if the released data can preserve well the population-
level information, then it should be sufficient from a data utility perspective.  It 
has been shown that perturbation, if done appropriately, can help to increase the 
stability and robustness of the estimates for population parameters, boost the 
accuracy of predictions, and improve the generalizability of models or parame-
ters learned from training the original data.  Therefore, rather than merely fo-
cusing on preserving the original sample information, which contains sampling 
variability and in some cases is harder to achieve, one could instead examine 
the utility from a statistical inference perspective.  For example, in the case of 
releasing the result for statistical hypothesis testing, rather than focusing on pre-
serving as much as possible the original test statistic value, one may preserve 
the conclusion for hypothesis testing with a high probability of not violating 
privacy, which is supposedly an easier task.  In the case of releasing parameter 
estimation (e.g., means or proportions), in addition to releasing a private param-
eter estimate, one may consider releasing a private uncertainty measurement 
along with that parameter estimate.  If the private confidence interval based on 
the private point and uncertainty estimates provides close-to-nominal coverage 
or has a significant overlap with the original confidence interval, then the pop-
ulation-level information might be well-preserved.  In summary, shifting the 
focus to preserving the population-level information will help to alleviate the 
tension between privacy protection and the data utility as the utility is not about 
retrieving the individual information in the original data, which is in direct con-
flict with privacy protection, but rather about preserving population-level infor-
mation, which is more of an indirect conflict with privacy protection.  As a side 
 

40. Kamalika Chaudhuri, Claire Monteleoni & Anand D. Sarwate, Differentially Private 
Empirical Risk Minimization, 12 J. MACHINE LEARNING RES. 1069, 1069–109 (2011); Daniel Kifer, 
Adam Smith & Abhradeep Thakurta, Private Convex Empirical Risk Minimization and High-Di-
mensional Regression, in 25 ANNUAL CONFERENCE ON LEARNING THEORY PROCEEDINGS 25.1, 
25.1–25.40 (2012); Moritz Hardt & Kunal Talwar, On the Geometry of Differential Privacy, in 42 
ACM SYMPOSIUM ON THEORY OF COMPUTING PROCEEDINGS 705, 705–14 (2010); Mark Bun, Jon-
athan Ullman & Salil Vadhan, Fingerprinting Codes and the Price of Approximate Differential 
Privacy, in 46 ACM SYMPOSIUM ON THEORY OF COMPUTING PROCEEDINGS 1, 1–10 (2014); 
Thomas Steinke & Jonathan Ullman, Between Pure and Approximate Differential Privacy, J. 
PRIVACY & CONFIDENTIALITY, Jan. 2017, at 3, 3–22; Raef Bassily, Adam Smith & Abhradeep 
Thakurta, Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds, in 55 
ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE PROCEEDINGS 464, 464–73 
(2014); Yu-Xiang Wang, Revisiting Differentially Private Linear Regression: Optimal and Adap-
tive Prediction & Estimation in Unbounded Domain, in 34 AUAI CONFERENCE ON UNCERTAINTY 
IN ARTIFICIAL INTELLIGENCE PROCEEDINGS (2018). 
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benefit, the private inferences might offer better generalizability than the infer-
ences based on the original data, which are more susceptible to overfitting.  Fig-
ure 4 shows a pictorial representation of the idea.  The perturbed data deviates 
from the original sample data.  The deviation scenarios in (a) and (b) are ac-
ceptable given that the perturbed data still represent the population-level infor-
mation well, whereas scenario (c) is a bad case where the perturbed data contain 
biased information about the target population. 

 
Figure 4: Relationship between the original data, the perturbed data, and the  

underlying population where the original data are sampled 

(a) (b) (c) 
 

The above-discussed utility assessment focuses on assessing the infor-
mation preservation on a finite set of statistics.  Sometimes, the released infor-
mation is a whole data set, which is often referred to as the “synthetic data” or 
“surrogate data” (see Section III for more discussion).  In this case, it would be 
nice to have a rather comprehensive metric that shows the general utility of the 
release data.  Strictly speaking, there is no universal data utility measure, unless 
strong assumptions are made about the distributions of the data.  That said, there 
are some approaches that try to fulfil the goal; and one of the ideas is the pro-
pensity-score utility measures, which aim at quantifying the general utility of 
the synthetic data by measuring their similarity with the original data, regardless 
the dimensionality of the data.  For these approaches, the synthetic data and 
original data are first combined.  A statistical model is then built on the com-
bined data, and the propensity score (the likelihood) of an observation belonging 
to the synthetic (or the original) data is estimated.  There exist several ap-
proaches that formulate a single metric based on the property scores that sum-
marizes the similarity between the synthetic and original data.41  If the synthetic 

 
41. Mi-Ja Woo et al., Global Measures of Data Utility for Microdata Masked for Disclosure 

Limitation, 1 J. PRIVACY & CONFIDENTIALITY 111, 111–124 (2009); Joseph W. Sakshaug & Trivel-
lore E. Raghunathan, Synthetic Data for Small Area Estimation, in INTERNATIONAL CONFERENCE 
ON PRIVACY IN STATISTICAL DATABASES PROCEEDINGS 162, 162–73 (2010); Joshua Snoke et al., 
General and Specific Utility Measures for Synthetic Data, 181 J. ROYAL STAT. SOC’Y (SERIES A) 
663, 663–88 (2018); Claire McKay Bowen & Fang Liu, Differentially Private Release and Analysis 
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data preserve the original information well, then the observations from the syn-
thetic and original data sets are indistinguishable, and the metric should reflect 
that.  All the approaches focus on preserving the original sample data rather than 
the population-level information.  For example, the synthetic data in scenarios 
(a) and (b) in Figure 4 are regarded as acceptable from a population-information 
preservation perspective but might be labelled as “unacceptable” per one of the 
propensity-score based approaches, especially scenario (b).  Further research is 
warranted and better approaches for evaluating the general utility of the syn-
thetic data are needed. 

III. PERTURBATION METHODS 

As mentioned in Sections I and II, supra, it is important to find the right 
balance between sufficient privacy protection and satisfactory utility when de-
veloping a data perturbation approach to release information.  Different data 
perturbation approaches will lead to the various relationships between privacy 
and utility.42  The ideal case would be maximal utility plus minimal privacy, but 
this is unachievable in reality; the worst case, minimal utility plus maximal pri-
vacy, is unnecessary and defeats the purpose of data release and sharing.  Be-
tween the two extremes, there is a wide spectrum where data perturbation meth-
ods can be explored and developed.  The closer the curve is to the ideal case and 
the larger the area under the curve, the more efficient the corresponding pertur-
bation approach is in protecting privacy yet achieving good utility. 
 
Figure 5: Pictorial representation of the privacy versus utility tradeoff.  Different solid 
lines represent different data perturbation approaches for releasing private information 

 

 
of Youth Voter Registration Data via Statistical Election to Partition Sequentially (Mar. 18, 2018) 
(unpublished), https://arxiv.org/pdf/1803.06763.pdf. 

42. See Figure 5, infra. 
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In the rest of this section, I will introduce some existing approaches for 
data perturbation, including their advantages and disadvantages.  Some of the 
methods are traditional and have existed for as long as almost half a century; 
others are relatively new and developed within the last decade in the DP frame-
work.  

III.1. Traditional Approaches 

Data privacy protection in the statistical community has been known as 
statistical disclosure limitation or statistical disclosure control (SDL or SDC) 
for a long time.  The methods introduced in this subsection are the traditional 
approaches for privacy protection before the DP started to dominate the privacy 
research field.  Some of these SDC methods were documented in two major 
reports from the U.S. Federal Committee on Statistical Methodology in 197843 
and 1994.44  Many of these long-existing techniques are still being employed 
today for releasing data, largely owing to their simplicity and easy implementa-
tion.  These techniques can be roughly grouped into two categories: model-free 
and model-based approaches.  

Commonly used model-free approaches include global recoding, local 
suppression, micro-aggregation, data swapping, and post randomization 
(PRAM).  The first three approaches are not random and the information is sup-
pressed in a deterministic way whereas the latter two methods are randomiza-
tion mechanisms.  Global recoding coarsens sensitive information and groups 
individuals who are at higher risk of being identified and disclosed on their per-
sonal information.  For example, “annual income,” which is often viewed as 
sensitive personal information, can be coarsened to an ordinal variable (e.g. 
≤$31K, $31K–$42K, $42K–$126K, $126K–$188K, >$188K) that is less sensi-
tive.  Local suppression removes information that leads to either identification 
or disclosure of sensitive information in some records.  Though global recoding 
and local suppression provide protection, the incurred information loss can be 
large and the missing values created by local suppression impose an extra bur-
den on data analysts.  Micro-aggregation aims at masking extreme values.45  It 
first defines buckets for the values of the attributes, then allocates individual 
records to these buckets and derives surrogate values for the attributes in each 
bucket.  To reduce information loss, individuals need to be as homogeneous as 
possible in each bucket in their attributes.  Since micro-aggregation acts more 
on outlying observations, disclosure risk may still exist for sensitive non-

 
43. U.S. DEP’T OF COMMERCE, STATISTICAL POLICY WORKING PAPER 2: REPORT ON 

STATISTICAL AND DISCLOSURE-AVOIDANCE TECHNIQUES (1978), 
https://nces.ed.gov/FCSM/pdf/spwp2.pdf. 

44. U.S. OFFICE OF MGMT. & BUDGET, STATISTICAL POLICY WORKING PAPER 22 (SECOND 
VERSION, 2005): REPORT ON STATISTICAL DISCLOSURE LIMITATION METHODOLOGY (2005), 
https://nces.ed.gov/FCSM/pdf/spwp22.pdf (originally prepared in 1994 and revised in 2005). 

45. D. Defays & M.N. Anwar, Masking Microdata Using Micro-Aggregation, 14 J. 
OFFICIAL STAT. 449, 449–61 (1998). 
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outlying cases.  Data swapping switches quasi-identifiers46 among randomly 
picked individuals47 or among individuals within the same neighborhood de-
fined based on the similarity of the values on the attribute to be swapped.48  Data 
swapping may lead to distorted relationships between swapped and non-
swapped attributes.  Post Randomization (PRAM) is originally developed to 
transform values for categorical attributes,49 and the probabilities of transform-
ing (e.g., from female to male, or the other way around) are stored in the “Mar-
kov probability matrix” or “transition matrix”.  PRAM is performed inde-
pendently on each individual; and the information loss from PRAM can be 
large.  

Despite the simplicity of the model-free procedures, many of them do not 
ensure valid statistical inferences based on the perturbed data.  Not only are 
population parameters subject to bias, the uncertainty of these parameter esti-
mates can be under- or over-estimates as well.  Model-based approaches can 
help to solve some of the issues, if applied in a proper way.  The model-based 
approaches often start with building a statistical model on the original data, from 
which synthetic data (basically predicted values from the model) are generated.  
The synthetic data might include the whole data set to be released, or only sen-
sitive attributes (such as sexual orientation or financial status) or quasi-identifi-
ers.  In the setting of sampling survey, Rubin proposes building a statistical 
model from the sample data, and predicting non-sampled values of survey var-
iables for the individuals in the population where the sample is drawn.50  The 
prediction and sampling can be repeated independently multiple times, and the 
multiple samples will be released to the public.  Little suggests synthesizing a 
part of the original data, specifically the values of sensitive attributes,51 which 
is later extended to the values of quasi-identifiers.52  To fully account for the 
uncertainty of the synthetic data, the Bayesian framework is often used where 
the synthetic data are drawn from the posterior predictive distributions.  

 
46. Quasi-identifiers are not of unique identifiers (such as social security numbers), but they 

also contain identifying information sufficiently correlated with an individual and may lead to a 
unique identifier after being combined with other quasi-identifiers. Demographic information, such 
as age, race, gender, and geographical information are often regarded as quasi-identifiers.  

47. Tore Dalenius & Steven P. Reiss, Data-Swapping: A Technique for Disclosure Control, 
6 J. STAT. PLAN. & INFERENCE 73, 73–85 (1982). 

48. B. Greenberg, U.S. Bureau of the Census, Rank Swapping for Masking Ordinal Micro-
data (1987) (unpublished manuscript). 

49. J.M. Gouweleeuw et al., Post Randomisation for Statistical Disclosure Control: Theory 
and Implementation, 14 J. OFFICIAL STAT. 463, 463–78 (1998). 

50. Donald B. Rubin, Statistical Disclosure Limitation, 9 J. OFFICIAL STAT. 461, 461–68 
(1993). 

51. Roderick J.A. Little, Statistical Analysis of Masked Data, 9 J. OFFICIAL STAT. 407, 407–
26 (1993). 

52. Fang Liu & Roderick J.A. Little, SMIKe vs. Data Swapping and PRAM for Statistical 
Disclosure Control in Microdata: A Simulated Study, in ASA SURVEY RESEARCH METHODS 
SECTION PROCEEDINGS 2497 (2003). 
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If the synthesis model reflects the underlying unknown distribution that 
generates the original data, then the model-based approaches will lead to valid 
and more efficient statistical inferences given the synthetic data, compared to 
the model-free approaches.  On the other hand, if the synthesis model deviates 
from the underlying known distribution that generates the original data, then the 
synthetic data are not trustworthy.  In addition, developing statistical models for 
high-dimensional data can be very difficult, making it an inefficient approach 
for dealing with privacy in many situations in the big data era.  Since the syn-
thetic data are generated from a statistical model, some perturbation is automat-
ically incorporated with the uncertainty of the synthesis model as well as the 
sampling error from generating the synthetic data.  In addition, the synthetic 
values are not associated with any real individuals, they are often regarded as 
providing privacy protection on the individuals who contribute their data in the 
original data; but a definitive assessment would be needed to quantify the safety 
level.  

III.2. The Need for New Approaches to Combat Contemporary Privacy 
Concerns  

Advances in analytical techniques and computation, together with the 
eruption of big data and real-time data collection and processing, can make the 
traditional methods for privacy protection ineffective.  In fact, there have been 
incidents of database reconstruction and individual identification from suppos-
edly anonymized data.  Even if every individual piece of information is stripped 
of personal information, the relationships between the individual pieces can re-
veal the individual’s identity and a data intruder may still identify an individual 
in a data set via linkage with other public information.  Dinur and Nissim have 
documented this possibility in their seminal article53 and proved the “database 
reconstruction theorem,”54  also known as the “fundamental law of information 
recovery.”55 Some notable examples on individual identification breach in pub-
licly released or restricted access data based on database reconstruction include 
the Netflix prize,56 the genotype and HapMap linkage effort,57 and the 

 
53. Irit Dinur & Kobbi Nissim, Revealing Information While Preserving Privacy, in 22 

ACM SIGACT-SIGMOD- SIGART SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS 
PROCEEDINGS 202, 202–10 (2003).  

54. John M. Abowd, Associate Director for Research & Methodology & Chief Scientist U.S. 
Census Bureau, Address: Why Statistical Agencies Need to Take Privacy-Loss Budgets Seriously, 
and What It Means When They Do (Dec. 6–7, 2016), https://digitalcommons.ilr.cor-
nell.edu/cgi/viewcontent.cgi?article=1031&context=ldi.  

55. Dwork & Rothblum, supra note 20. 
56. Arvind Narayanan & Vitaly Shmatikov, Robust De-Anonymization of Large Sparse Da-

tasets, in IEEE SYMPOSIUM ON SECURITY AND PRIVACY PROCEEDINGS 111, 111–25 (2008). 
57. Nils Homer et al., Resolving Individuals Contributing Trace Amounts of DNA to Highly 

Complex Mixtures Using High-Density SNP Genotyping Microarrays, PLOS GENETICS, Aug. 2008, 
http://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1000167&type=printa-
ble. 
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Washington State health record identification.58  The U.S. Census Bureau also 
provides convincing evidence on the need for a more rigorous privacy protec-
tion framework in the modern world.  Specifically, the Census Bureau con-
ducted an internal experiment to reconstruct and re-identify the 2010 Census 
records based on the released 150 billion statistics on age, sex, race, ethnicity, 
and relationship (to householder) for about 309 million individuals.59  Note that 
the released statistics are already perturbed using some of the traditional tech-
niques (e.g., global recoding, local suppression, and data swapping).  The find-
ings are striking.  First, “census block and voting age (18+) were correctly re-
constructed for all [309 million] records and for all 6,207,027 inhabited 
blocks.”60  Second, block, sex, age, race (OMB 63 categories), and ethnicity 
were reconstructed for 46% of the population (142 million individuals) and 
within one year for 71% of the population (219 million individuals).61  Third, 
applications of record-linkage techniques with external commercial data on 
block, sex, and age led to putative re-identification of 45% of the population 
(138 million individuals), and 38% of the identifications (52 million individu-
als) are correct re-identifications.62 “The privacy law, in Title 13 of the United 
States Code, mandates that information about specific individuals, households 
and businesses is not revealed, even indirectly through our published statis-
tics.”63 And the experiment results from the Census Bureau clearly show that 
the traditional disclosure avoidance methods are insufficient to counter the pri-
vacy risk.  

In summary, the new challenges posed by the current paradigm for data 
collection, analysis, and sharing call for more rigorous privacy concepts and 
frameworks.  Without knowing what intruders know and how powerful they 
are, privacy protection should aim at dealing with the worst-case scenarios.  In 
other words, the party who releases data should employ a framework that does 
not make ad-hoc and strong assumptions on how much background information 
intruders possess, and what algorithms or techniques intruders use to identify 
individuals, calculate sensitive information, or re-construct a database, given 
the released data.  DP fits the description of such a framework.  As mentioned 
in Section I.2.3, the U.S. Census Bureau is one of the organizations that have 
decided to adopt DP to guarantee formal privacy to meet its continuing obliga-
tions to safeguard respondent information.64  Specifically, the results from the 
2020 census will be published using differentially private mechanisms.  As an 
 

58. Latanya Sweeney, Matching Known Patients to Health Records in Washington State 
Data (Data Privacy Lab, White Paper No. 1089-1, 2013), http://www.dataprivacylab.org/pro-
jects/wa/1089-1.pdf.  

59. Hawes, supra note 5. 
60. Id. 
61. Id. 
62. Id. 
63. Shelly Hedrick, Census Protections Evolve Continuously to Address Emerging Threats, 

U.S. CENSUS BUREAU (Feb. 3, 2020), https://www.census.gov/library/stories/2020/02/through-the-
decades-how-the-census-bureau-protects-your-privacy.html. 

64. Abowd, supra note 36. 
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experiment, it applied the DP mechanism that it will implement (subject to mod-
ifications and changes) on the 2020 census to the 2010 census, and the re-iden-
tification risk lowered to 0 at privacy budget ε = 0 (as expected), 3% at ε = 2, 
4.5% at ε = 4, 6% at ε = 8, and 8.2% at ε = 16.  The decreases in the privacy risk 
are very significant compared to the traditional privacy protection techniques.  

III.3. Differential Privacy Based Approaches 

Many approaches and randomization mechanisms have been developed to 
achieve DP guarantee for released information.  Some of them do not target 
specific statistics or analyses, such as the Laplace mechanism,65 the Gaussian 
mechanism for releasing numerical data,66 and the Exponential mechanism67 
that can release both numerical and categorical data.  Differentially private ver-
sions of many common statistical analyses and machine learning techniques 
have also been proposed in the past decade, ranging from simple analyses such 
as releasing histograms and summary statistics, to common regression models,68 
to principle component analysis,69 to regularized empirical risk minimization,70 
to deep learning,71 among others.  Releasing one private statistic or a limited set 
of private results as the interactive query-based data release from the data cura-
tor who has access to the original data has drawbacks.  Specifically, the require-
ment to pre-specify the level of privacy budget often dictates the number and 
the types of future queries with the privacy budget parallel composition 
 

65. Dwork et al., supra note 6. 
66. Cynthia Dwork & Aaron Roth, The Algorithmic Foundations of Differential Privacy, 9 

FOUND. & TRENDS THEORETICAL COMPUTER SCI. 211, 211–407 (2014); Fang Liu, Generalized 
Gaussian Mechanism for Differential Privacy, 31 IEEE TRANSACTIONS ON KNOWLEDGE & DATA 
ENGINEERING, 747, 747–56 (2019). 

67. Frank McSherry & Kunal Talwar, Mechanism Design via Differential Privacy, in 48 
ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE PROCEEDINGS 94, 94–103 
(2007). 

68. Adam Smith, Efficient, Differentially Private Point Estimators (Sept. 27, 2008) (un-
published), https://arxiv.org/pdf/0809.4794.pdf; Duy Vu & Aleksandra Slavković, Differential Pri-
vacy for Clinical Trial Data: Preliminary Evaluations, in 9 IEEE INTERNATIONAL CONFERENCE 
ON DATA MINING PROCEEDINGS 138, 138–43 (2009).  

69. Cynthia Dwork et al., Analyze Gauss: Optimal Bounds for Privacy-Preserving Principal 
Component Analysis, in 46 ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING PROCEEDINGS 
11, 11–20 (2014); Kamalika Chaudhuri, Anand Sarwate & Kaushik Sinha, Near-Optimal Differen-
tially Private Principal Components, in 25 ADVANCES IN NEURAL INFORMATION PROCESSING 
SYSTEMS CONFERENCE PROCEEDINGS (2012). 

70. Chaudhuri, Monteleoni & Sarwate, supra note 40; Kifer, Smith & Thakurta, supra note 
40. 

71. Reza Shokri & Vitaly Shmatikov, Privacy-Preserving Deep Learning, in 22 ACM 
SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY PROCEEDINGS 1310, 
1310–21 (2015); Martín Abadi et al., Deep Learning with Differential Privacy, in 23 ACM SIGSAC 
CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY PROCEEDINGS 308, 308–18 
(2016); Briland Hitaj, Giuseppe Ateniese & Fernando Perez-Cruz, Deep Models Under the GAN: 
Information Leakage from Collaborative Deep Learning, in 24 ACM SIGSAC CONFERENCE ON 
COMPUTER AND COMMUNICATIONS SECURITY PROCEEDINGS 603, 603–18 (2017). 
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theorem,72 which means that every time the same set of data is queried, there is 
a privacy cost.  Since the overall privacy cost is the sum of all the privacy budg-
ets spent on releasing all queries from that data set, if the sum exceeds the pre-
set overall privacy budget, the curator will refuse to answer any further queries.  
It would be great if data users had direct access to the differentially private in-
dividual-level data that are of the same structure as the original data to perform 
any analysis as if they had the original data.   

The DP framework for releasing differentially private individual-level 
data, is referred to as Differentially Private Data Synthesis (DIPS).  Efforts have 
been made to advance the techniques on DIPS.  Some DIPS techniques focus 
on generating differentially private distributions from which synthetic data can 
be sampled without imposing assumptions on the distribution of the original 
data.  Other approaches first build a model on the original data, by consuming 
a portion of the privacy budget, and then generate synthetic data from the con-
structed model.  Though only a fraction of the privacy budget is allocated for 
data synthesis per se compared to the model-free approaches which use all the 
budget to generate synthetic data, the benefits of using a well-specified model 
to generate synthetic data may outweigh the budget splitting between model 
selection and data synthesis.  DIPS approaches to dealing with special types of 
data have also been developed, such as graphs and networks,73  and mobility 
data from GPS trajectories.74  Interested readers may refer to Bowen and Liu75 
for a more comprehensive overview on DIPS methods.   

It is worth noting that the National Institute of Standards and Technology 
sponsored the Differential Privacy Synthetic Data Challenge in 2018, encour-
aging development of new methods and improving existing DIPS methods for 
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releasing data, while preserving the dataset’s utility for analysis.76  This compe-
tition encourages in-demand work and promotes efforts that help transition from 
the theoretical work to the practical applications in the area of DP. 

IV. SUMMARY AND DISCUSSION 

The world is in the middle of a data and technology revolution.  Today’s 
sophisticated computer technology and the increasing data collection and infor-
mation access have equipped data intruders with more tools to launch privacy 
attacks successfully.  Confidentiality is vital for the future cooperation of indi-
vidual data contributors and collection of high-quality data to guide policy mak-
ers, industries, and businesses to make efficient and timely evidence-based de-
cisions.   

Research and practical applications on data privacy have been gaining mo-
mentum in recent years.  Great progress has been made on the theories and 
methods in data perturbation, the evaluation of the impact of data perturbation 
on utility, information loss, statistical inference, and privacy risk measures.  In 
the last decade, DP has been dominating the research on data privacy and there 
is no sign of slowing down.  In addition, practical applications of DP and open-
source codes for implementation have started to catch up in recent years.  Com-
pared to other parameterized or absolute privacy risk measures, DP does not 
impose strong assumptions on, or model, data intruder’s behavior and external 
knowledge.  As such, it is robust, immune to post-processing, and future-proof.  
In other words, data intruders cannot gain additional information about his tar-
get from released differentially private information no matter what he does to 
the released information and no matter how much future information he will 
obtain.  These powerful properties of DP and the associated potentials for prac-
tical implementation are the key reasons for attracting attention from research-
ers and practitioners alike. 

Big companies such as Google and Apple, and more recently Facebook, 
have pioneered the implementation of DP techniques in data collection and 
analysis, the descriptions of which can be easily found online.  Online technol-
ogy news media and blogs (e.g. Wired, AdExchangers, CNET, Science, 
TechRepublic, Tech Chums) have been closely following the moves and up-
dates regarding the implementation of the DP-related technology in industry 
and business.  Open-source codes have also been made public through GitHub 
(hosting software development and version control).  Despite all the publicity 
and actual deployment, the DP systems implemented by some of the companies 
are still subject to conceptual and technical flaws.  For example, it is suggested 
the privacy-loss budget employed by Apple to collect users’ data on mobile de-
vices is too high to be acceptable for privacy protection.77  To gain the trust of 
consumers who opt to share their data, companies should continually improve 
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their DP systems and models and make sure the privacy risk of their consumers 
can be controlled at the pre-specified level. 

The government agencies, who collect huge amounts of data every year 
through surveys and who are obligated to share the collected information with 
taxpayers, should also consider making a transition to apply data perturbation 
approaches with stricter privacy protection.  It is not an easy task to make such 
a transition, as many government agencies have been using the traditional data 
perturbation approaches for a very long time.  In addition, there are no docu-
mented cases and minimal complaints regarding the privacy risk on the infor-
mation shared by the government agencies over the years, providing few ration-
ales and very weak motivation on the adoption of more formal privacy concept, 
such as DP.  The decision of the U.S. Census Bureau of applying DP in the 2020 
Census had occupied some headline news since the official announcement in 
2018 and has made many ears prick up.  “[C]ritics of the new policy believe the 
Census Bureau is moving too quickly to fix a system that isn’t broken.  They 
also fear the changes will degrade the quality of the information used by thou-
sands of researchers, businesses, and government agencies.”78  It is argued that 
database reconstruction, similar to what the Census Bureau has experimented 
with, have been exaggerated, and the DP approach is inconsistent with the stat-
utory obligations, history, and core mission of the Census Bureau.79  I would 
argue that the DP approach adopted by the Census Bureau might seem like over-
protection for the present, but the privacy protection offered by DP covers the 
worst-case scenario and is future-proof.  This is very important as no one can 
predict what the future is like for certain.  In addition,  if the DP strategies 
adopted by the Census Bureau on the 2020 census turn out to yield useless data 
(which is very unlikely) by injecting too perturbation for privacy purposes, the 
Census Bureau could always fall back on the traditional ways of releasing data, 
without losing much in either privacy or utility, except for the resources or man-
power devoted to the DP project.  

Despite the rapid growth in the field of DP, issues and opportunities in 
research and applications exist.  The field of DP has witnessed a huge jump in 
the number of manuscripts in recent years.  Papers on DP were published 
quickly due to its popularity at the expense of quality.  For example, there have 
been cases where a published manuscript claims satisfaction of a certain 𝜖-level, 
but the actual privacy cost is much higher; or, two manuscripts discuss the same 
topic, but draw conflicting conclusions.80  Peer-reviewed journals and confer-
ences will need to better police the research on data privacy, especially on DP.  
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I list below some potential areas in DP and data privacy in general that 
will benefit from more work and further research.  First, more work is needed 
to test the scalability and feasibility of the developed DP methods in practice.  
Though many published DP techniques share empirical evidence on their po-
tentials for practical implementation by running experiments and tests on pub-
licly available data, many of the employed data are a “nice” subset with signif-
icantly fewer attributes than the raw data, or pre-processed by removing hard-
to-deal problems, such as cases with missing values.  The “real” real-life data 
can be much nastier and messier than those used by researchers in their manu-
scripts.  Not only are there missing values, data entry errors, and outliers, but 
also data might exhibit correlation and the dimensionality can be huge (number 
of attributes in the hundreds or thousands).  In the case of survey data, complex 
survey designs and weighting schemes might be used, which cannot be ignored 
when performing analysis.  Improvement and extension of available approaches 
and development of new methods should be able to handle these real-life chal-
lenges as much as possible.  Second, easy-to-use, user-friendly, and computa-
tionally-cheap software and tools to implement data perturbation with a guar-
antee of formal privacy and to measure data utility are still in great need.  
Without proper tools developed and deployed in time to facilitate application, 
the excitement about a new approach or technique will soon disappear and be 
abandoned by practitioners quickly.  Third, most research on privacy in com-
puter science focuses on prediction and might not be easily extendable to private 
statistical inferences.  Statisticians and computer scientists should work together 
to provide effective solutions to this problem.  Fourth, if a parameterized pri-
vacy protection technique is used, choosing appropriate hyper-parameters (both 
privacy and accuracy parameters) is critical.  In the case of DP, there is still no 
consensus on the appropriate amount of the privacy budget for practical use.  
Even with the 2020 Census just around the corner, the Census Bureau is still 
searching for a suitable privacy budget for the 2020 census.  Finally, there is an 
urgent need to educate the public on what DP is, especially if it will be widely 
used for collecting and releasing data in the near future.  Efforts have been 
made.  For example, the YouTube video “Protecting Privacy with MATH,” a 
collaboration between minute physics and the Census Bureau, posted on Sep-
tember 12, 2019, has had 334,290 views as of March 9, 2020.81  The American 
Statistical Association Committee on Privacy and Confidentiality, which I am 
part of, regularly invites speakers to talk about DP through webinars on Data 
Privacy day, which offers free registration to the public.  The fact that house-
hold-name big companies employ DP in data collection and release and that the 
Census Bureau will use DP for releasing 2020 Census data have helped grab 
some people’s attention to DP.  Despite all these efforts, there are still confu-
sions about what formal privacy means, not only among the public, but also 
among researchers who are not specialized in privacy research.  Industries, gov-
ernment agencies, and researchers who are adopting DP or conducting research 
in DP should make more efforts to reach out to the public on the increase in 
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privacy risk that is largely due to the collection of big data and recent technical 
advances, the state-of-art privacy research, the techniques that can help combat 
the new privacy threats, and the importance and necessity of continuing data 
collection and sharing under the formal privacy guarantee.   

In summary, to help people to exercise their right to privacy, policy mak-
ers, legislators, industries and businesses, academia and research institutes, and 
individuals/consumers will need to work together to achieve that goal.  It is not 
an easy task, but something has to be done not only for ourselves, but also for 
many generations to come. 
 


