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Abstract

Sub-seasonal climate forecasting (SSF) focuses on predicting key climate variables such as
temperature and precipitation in the 2-week to 2-month time scales. Skillful SSF would have
immense societal value, in areas such as agricultural productivity, water resource management,
transportation and aviation systems, and emergency planning for extreme weather events.
However, SSF is considered more challenging than either weather prediction or even seasonal
prediction. In this paper, we carefully study a variety of machine learning (ML) approaches for
SSF over the US mainland. While atmosphere-land-ocean couplings and the limited amount of
good quality data makes it hard to apply black-box ML naively, we show that with carefully
constructed feature representations, even linear regression models, e.g., Lasso, can be made to
perform well. Among a broad suite of 10 ML approaches considered, gradient boosting performs
the best, and deep learning (DL) methods show some promise with careful architecture choices.
Overall, suitable ML methods are able to outperform the climatological baseline, i.e., predictions
based on the 30-year average at a given location and time. Further, based on studying feature
importance, ocean (especially indices based on climatic oscillations such as El Nifio) and land
(soil moisture) covariates are found to be predictive, whereas atmospheric covariates are not
considered helpful.
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1 Introduction

Over the past few decades, major advances have been made in weather forecasts on time scales
of days to about a week [33, 45, 36, 35|. Similarly, major advances have been made in seasonal
forecasts on time scales of 2-9 months [4]. However, making high quality forecasts of key climate
variables such as temperature and precipitation on sub-seasonal time scales, defined here as the
time range between 2-8 weeks, has long been a gap in operational forecasting [35]. Skillful climate
forecasts at sub-seasonal time scales would be of immense societal value, and would have an impact
in a wide variety of domains including agricultural productivity, hydrology and water resource
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management, and emergency planning for extreme climate, etc. [37, 29]. The importance of sub-
seasonal climate forecasting (SSF) has been discussed in great detail in two recent high profile reports
from the National Academy of Sciences (NAS) [36, 35]. Despite the scientific, societal, and financial
importance of SSF, the progress on the problem has been restricted [5, 9] partly because it has
attracted less attention compared to weather and seasonal climate prediction. Also, SSF is arguably
more difficult compared to weather or seasonal forecasting due to limited predictive information
from land and ocean, and virtually no predictive information from the atmosphere, which forms the
basis of numerical weather prediction (NWP) [49, 44| (Figure 1(a)).

There exists great potential to advance sub-seasonal prediction using machine learning techniques,
which has revolutionized statistical prediction in many other fields. Due in large part to this
potential promise, a recently concluded real-time forecasting competition called the Sub-Seasonal
Climate Forecast Rodeo, was sponsored by the Bureau of Reclamation in partnership with NOAA,
USGS, and the U.S. Army Corps of Engineers [26]. However, a direct application of standard
black-box machine learning approaches to SSF can run into challenges due to the high-dimensionality
and strong spatial correlation of the raw data from atmosphere, ocean, and land, e.g., Figure 1
shows that popular approaches such as Fully connected Neural Networks (FNN) and Convolutional
Neural Networks (CNN) do not perform so well when directly applied to the raw data. Besides,
sub-seasonal forecasting does not lie in the big data regime: about 40 years of reliable data exists for
all climate variables, with each day corresponding to one data point, which totals less than 20,000
data points. Furthermore, different seasons have different predictive relations, and many climate
variables have strong temporal correlations on daily time scales, further reducing the effective data
size. Therefore, it is worth carefully and systematically investigating the capability of both classical
and modern Machine Learning (ML) approaches including Deep Learning (DL) while keeping in
mind the high-dimensionality, spatial-temporal correlations, and limited observational data available
for SSF. While such a study can be extended to consider climate model output data at sub-seasonal
time scales, we do not consider using model output data in the current study.

In this paper, we perform a comprehensive empirical study on ML approaches for SSF and discuss
the challenges and advancements. Our main contributions are as follows:

e We illustrate the difficulty of SSF due to the complex physical couplings as well as the unique
nature of climate data, i.e., strong spatial-temporal correlation and high-dimensionality.

e We show that suitable ML models, e.g., XGBoost, to some extent, capture predictability for
sub-seasonal time scales from climate data, and persistently outperform existing approaches in
climate science, such as climatology and the damped persistence model.

e We demonstrate that even though DL models are not the obvious winner, they still show
promising results with demonstrated improvements from careful architectural choices. With
further improvements, DL models present a great potential topic for future research.

e We find that ML models tend to select covariates from the land and ocean, such as soil moisture
and El Nino indices, and rarely select atmospheric covariates, such as 500mb geopotential
height or other indicators of the atmospheric general circulation.

Organization of the paper. We start with a review of related work in Section 2. Section 3
provides a formal description of the specific SSF problem targeted in this paper and demonstrates
the difficulty of sub-seasonal climate forecasting for ML techniques. Next, we briefly discuss ML
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Figure 1: (a) Sources of predictability at different forecast time scales. Atmosphere is most predictive
at weather time scales, whereas for SSF, land and ocean are considered important sources of
predictability [49]. (b) Maximum information coefficient (MIC) [40] between temperature of week 3
& 4 and week -2 & -1. Small MICs (< 0.1) at a majority of locations indicate little information shared
between the most recent date and the forecasting target. (c) Predictive skills of Fully connected
Neural Networks (FNN) and Convolutional Neural Networks (CNN), in terms of temporal cosine
similarity (see definition in Section 5), for temperature prediction over 2017-2018. Positive values
closer to 1 (green) indicate better predictive skills.

approaches we plan to investigate (Section 4) followed by details on data and experimental setup
(Section 5). Subsequently, Section 6.3 presents experimental results, comparing the predictive skills
over 10 ML models, including several DL models. Finally, we conclude in Section 7.

2 Related Work

Although statistical models were used for weather prediction before the 1970s [14], since the 1980s
weather forecasting has been carried out using mainly physics-based dynamic system models [4].
More recently, there is a surge of application for ML approaches to both short-term weather
forecasting |7, 21, 38|, and longer-term climate prediction [1, 8]. However, little attention has
been paid on forecasting with sub-seasonal time scale which has been considered a “predictability
desert” [56]. Recently, ML techniques have made great strides in statistical prediction in many fields,
so it is natural to investigate whether it can advance sub-seasonal climate prediction. In particular,
many advances have occurred in high-dimensional sparse models and their variants which could be
suitable for spatial-temporal climate data [19, 20, 18, 10, 23|. Such models have been successfully
applied to certain problems, e.g., predicting land temperature using oceanic climate data |10, 23].
Recently, promising progresses [26, 23| have been seen on applying ML algorithms to solve SSF.

Since SSF can be formulated as a sequential modeling problem [48, 55|, bringing the core strength of
DL-based sequential modeling, a thriving research area, has the great potential for a transformation
in climate forecasting [22, 39, 42|. In the past decade, recurrent neural network (RNN) [16], and long
short-term memory (LSTM) models [17], are two of the most popular sequential models and have
been successfully applied in language modeling and other seq-to-seq tasks [47]. Starting from [48,
46|, the encoder-decoder structure with RNN or LSTM has become one of the most competitive



Table 1: Description of climate variables and their data sources.

Type Climate variable Description Unit Spatial coverage Data Source
Daily average ° CPC Global Daily
tmp2m temperature at 2 meters © Us inland Temperature [13]
o Monthly . mainian CPC Soil Moisture
= Soil moisture [25, 53, 12]
3 & Daily sea surface co° North Pacific Optimum Interpolation
g‘ S8 temperature & Atlantic Ocean SST (OISST) [41]
g Daily relative humidity
7;3 rhum near the surface % Atmospheric
B (sigma level 0.995) US mainland Resezrch
g 1 Daily pressure P and North Pacific Reanalysi
n sip at sea level a & Atlantic Ocean Dai:s:ty[z;]
Daily geopotential height
hgt10 & hgt500 at 10mb and 500mb m
MEI Bimonthly multivariate NOAA ESRL
= ENSO index MEILv2 [62]
5 Nino 1+2, 3, Weekly Oceanic NOAA National
g 3.4, 4 Nifio Index (ONI) NA NA Weather Service, CPC [41]
) NAO Daily North Atlantic NOAA National
= Oscillation index Weather Service, CPC [3, 51]
MJO phase Madden-Julian Australian
& amplitude Oscillation index Government BoM [60]

algorithms for sequence transduction. The variants of such model that incorporate mechanisms like
convolution [61, 43| or attention mechanisms [2| have achieved remarkable breakthroughs for audio
synthesis, word-level language modeling, and machine translation [54].

3 Sub-seasonal Climate Forecasting

Problem statement. In this paper, we focus on building temperature forecasting models at the
forecast horizon of 15-28 days ahead, i.e., the average daily temperature of week 3 & 4. The
geographic region of interest is the US mainland (latitudes 25N-49N and longitudes 76W-133W) at
a 2° by 2° resolution (197 grid points). For covariates, we consider climate variables, such as sea
surface temperature, soil moisture, and geopotential height, etc., that can indicate the status of the
three main components, i.e., land, ocean, and atmosphere. Table 1 provides a detailed description.

Difficulty of the problem. To illustrate the challenge of SSF, we measure the dependence between
the normalized average temperature of week -2 & -1 (1-14 days in the past) and week 3 & 4 (15-28
days in the “future") at each grid by maximum information coefficient (MIC) [40], an information
theory-based measure of the linear or non-linear association between two variables. The values of
MIC range between 0 and 1, and a small MIC value close to 0 indicates a weak dependence. To
assess statistical significance, we apply moving block bootstrap [30] to time series of 2-week average
temperature at each grid point from 1986 to 2018, with the block size of 365 days. The top panel in
Figure 1(b) illustrates the average MIC from 100 bootstrap over the US mainland, and the marginal
distribution of all locations is shown at bottom. Small MIC values (< 0.1), which indicates little
predictive information shared between the most recent data and the forecasting target, to some
extent, demonstrate how difficult SSF is.

From an ML perspective, applying black-box DL approaches naively to SSF is less likely to work
due to the limited number of samples, and the high-dimensional and spatial-temporally correlated
features. Figure 1(c) shows the performance of two vanilla DL models: Fully connected Neural
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Figure 2: Architectures of the designed DL models. (a) Encoder (LSTM)-Decoder (FNN) includes a
few LSTM layers as the Encoder, and two fully connected layers as the Decoder. (b) CNN-LSTM
consists of a few convolutional layers followed by an LSTM.

Networks (FNN) with ReLU activation and Convolutional Neural Networks (CNN), in terms of
the (temporal) cosine similarity between the prediction and the ground truth at each location over
2017-2018. For most locations, their cosine similarities are either negative or close to zero. In
addition, we evaluate 10 ML models with suitable hyper-parameter tuning using another metric
called relative R? (see formal definition in Appendix A), which compares the predictive skill of a
model to the best constant prediction based on climatology, the 30 year average from historical
training data. Most of the models do not get even positive relative R? (details are presented in
Appendix A), indicating that they perform no better than the long term average. Such results are
another good indication that accurate SSF is hard to achieve.

4 Methods

Notation. Let ¢ denote a date and g denote a location. The target variable at time ¢ is denoted as
y: € RE, where G represents the number of target locations. More specifically, Yg,¢ is the normalized
average temperature over time t + 15 to t + 28, i.e., weeks 3 & 4 (details on normalization can be
found in Section 5). X,; € RP denotes the p-dimensional covariates designed for time ¢ and location
g, which is also denoted as X; if the covariates are shared by all locations g € G.

ML (non-DL) models. We compare the following ML (non-DL) models with DL models.

e MultiLLR [26]. MultiLLR introduces a multitask feature selection algorithm to remove the
irrelevant predictors and integrates the remaining predictors linearly. For a location g and target
date t*, its coefficient 3, is estimated by Bg = argming Y ;e Wi g(Ygt — BT X,+)?, where D is the
temporal span around the target date’s day of the year and wy 4 is the corresponding weight. In
[26], an equal data point weighting (w4 = 1) has been employed.

e AutoKNN [26]. An auto-regression model with weighted temporally local samples where the
auto-regression lags are selected via a multitask k-nearest neighbor criterion. The method only
takes historical measurements of the target variables as input. The nearest neighbors of each
target date are selected based on an average of spatial cosine similarity computed over a history
of M = 60 days, starting one year prior to a target date t* (lag | = 365). More precisely, the
similarity between the target date t* and a date ¢ in the corresponding training set is formulated as



sim; = - Z%;& cOS(Yt—1—m, Yt —1—m), Where cos(yy, , Yi,) computes the (spatial) cosine similarity
(see formal definition in Section 5), evaluated over G locations, between two given dates ¢1 and ts.

e Multitask Lasso [50, 27]. It assumes y; = X;0* + ¢, where ¢ € RY is a Gaussian noise vector
and ©* € RP*C is the coefficient matrix for all locations. With n samples, ©* is estimated by
O, = argmingeppxc 5= ||Y — XO3 + A\n[|O]|21 with X € R™P and Y € R"*Y. ), is a penalty

parameter and the corresponding penalty term is computed as |[O]|21 = >_,(3_; @?j)l/ 2,

e Gradient Boosted Trees (XGBoost) [15, 6]. A functional gradient boosting algorithm using
regression tree as its weak learner. The algorithm starts with one weak learner and iteratively adds
new weak learners to approximate functional gradients. The final ensemble model is constructed by
a weighted summation of all weak learners. It is implemented using the Python package XGBoost.

e State-of-the-art Climate Baseline. We consider two baselines from climate science perspective,
both are Least Square (LS) linear regression models [59]. The first model has predictors as climate
indices, such as NAO index and Nifio indices, which are used to monitor ocean conditions. The
predictor of the second model is the most recent anomaly of the target variable, i.e., anomaly
temperature of week -2 & -1, with which the model, also known as damped persistence |52] in
climate science, is essentially a first-order autoregressive model.

DL models. As shown in Figure 1(c), it is hard for vanilla deep learning models like FNN and CNN
to achieve high prediction accuracy. Therefore, we design two variants of DL models to improve the
performance, namely Encoder (LSTM)-Decoder (FNN) and CNN-LSTM.

e Encoder (LSTM)-Decoder (FNN). Inspired by Autoencoder widely used in sequential mod-
eling [48], we design the Encoder (LSTM)-Decoder (FNN) model, of which the architecture is
shown in Figure 2(a). Input of the model is features extracted spatially from covariates using
unsupervised methods like Principal Component Analysis (PCA). The temporal components of
covariates are handled by feeding features of each historical date into an LSTM Encoder recurrently.
Then, the output of each date from LSTM is sent jointly to a two-layer FNN network using RelLU
as an activation function. The output of the FNN Decoder is the predicted average temperature
of week 3 & 4 over all target locations.

e CNN-LSTM. The proposed CNN-LSTM model directly learns the representations from the
spatial-temporal data using CNN components [31]. Shown in Figure 2(b), CNN extracts features
for each climate variable at all historical dates separately. Then, the extracted features from the
same date are collected and fed into an LSTM model recurrently. The temperature prediction for
all target locations is done by an FNN layer taking the output of the LSTM’s last layer from the
latest input.

5 Data and Experimental Setup

Data description. Climate agencies across the world maintain multiple datasets with different
formats and resolutions. Climate variables (Table 1) have been collected from diverse data sources
and converted into a consistent format. Temporal variables, e.g., Nino indices, are interpolated to a
daily resolution, and spatial-temporal variables are interpolated to a spatial resolution of 0.5° by
0.5°.



Preprocessing. For spatial-temporal variables, we first extract the top 10 principal components
(PCs) as features based on PC loadings from 1986 to 2016 (for details, refer to Appendix B). Next,
we normalize the data by z-scoring at each location and each date with the corresponding mean
and standard deviation of the corresponding day of the year over 1986-2016 separately. Note that
both training and test sets are z-scored using the mean and standard deviations of the same 30-year
historical data. Temporal variables, e.g., Nifio indices, are directly used without normalization.

Feature set construction. We combine the PCs of spatial-temporal covariates with temporal
covariates into a sequential feature set, which consists not only covariates of the target date, but
also covariates of the 7", 14" and 28" day previous from the target date, as well as the day of the
year of the target date in the past 2 years and both the historical past and future dates around the
day of the year of the target date in the past 2 years (see Appendix B for a detailed example).

Evaluation pipeline. Predictive models are created independently for each month in 2017 and
2018. To mimic a live system, we generate 105 test dates during 2017-2018, one for each week, and
group them into 24 test sets by their month of the year. Given a test set, our evaluation pipeline
consists of two parts: (1) “5-fold” training-validation pairs for hyper-parameter tuning, based on a
“sliding-window” strategy designed for time-series data. Each validation set uses the data from the
same month of the year as the test set, and we create 5 such set from dates in the past 5 years. Their
corresponding training sets contain 10 years of data before each validation set; (2) the training-test
pair, where the training set, including 30-year data in the past, ends 28 days before the first date in
the test set. We share more explanations, including a pictorial example, in Appendix B.

Evaluation metrics. Forecasts are evaluated by cosine similarity, a widely used metric in weather
forecasting, between y, a vector of predicted values, and y*, the corresponding ground truth. It
is computed as m, where (y,y*) denotes the inner product between the two vectors. If y
represents the predicted values for a period of time at one location, it becomes temporal cosine
similarity which assesses the prediction skill at a specific location. Whereas, if ¥ contains the
predicted values for all target locations at one date, it becomes spatial cosine similarity measuring
the prediction skill at that date. To get a better intuition, one can view spatial and temporal cosine
similarity as spatial and temporal correlation respectively, measured between two centered vectors.

6 Experimental Results

We compare the predictive skills of 10 ML models on SSF over the US mainland. In addition, we
discuss a few aspects that impact the ML models the most, and the evolution of our DL models.

6.1 Results of all methods

Temporal results. Table 2 lists the mean, the median, the 0.25 quantile, the 0.75 quantile, and
their corresponding standard errors of spatial cosine similarity of all methods. Additional results
based on relative R? can be found in Appendix C. XGBoost, Encoder (LSTM)-+Decoder (FNN)
and Lasso accomplish higher predictive skills than other presented methods, and can outperform
climatology and two climate baseline models, i.e., LS with NAO & Nino, and damped persistence.
Overall, XGBoost achieves the highest predictive skill in terms of both the mean and the median,
demonstrating its predictive power. Surprisingly, linear regression with a proper feature set has
good predictive performance. Even though DL models are not the obvious winner, with careful
architectural selections, they still show promising results.



Table 2: Comparison of spatial cosine similarity of tmp2m forecasting for test sets over 2017-2018.
XGBoost and Encoder (LSTM)-Decoder (FNN) have the best performance. Models achieve better
performance using temporally global set compared to temporally local set.

Model ‘ Mean(se) Median (se)  0.25 quantile (se) 0.75 quantile (se)
Temporally Global Dataset
XGBoost - one day 0.3044(0.03) 0.3447(0.05)  0.0252(0.05) 0.5905(0.04)
Lasso - one day 0.2499(0.04)  0.2554(0.06)  -0.0224(0.05) 0.5604(0.06)
Encoder (LSTM)-Decoder (FNN) | 0.2616 (0.04) 0.2995 (0.07) -0.0719 (0.06) _ 0.6310 (0.05)
FNN 0.0792(0.01) 0.0920(0.02) 0.0085(0.02) 0.1655(0.02)
CNN 0.1688(0.04)  0.2324(0.06)  -0.0662(0.06) 0.4768(0.04)
CNN-LSTM 0.1743(0.04)  0.2867(0.06)  -0.1225(0.07) 0.5148(0.04)
LS with NAO & Niiio 0.2415(0.03)  0.3169(0.04)  0.0454(0.05)  0.4624(0.03)
Damped persistence 0.2009(0.04) 0.2310(0.06) -0.0884(0.06) 0.5335(0.05))
MultiLLR 0.0684 (0.03) 0.1046 (0.05) -0.1764 (0.06) 0.3156 (0.04)
AutoKNN 0.1457 (0.03)  0.1744 (0.05)  -0.1018 (0.06) 0.4000 (0.04)
Temporally Local Dataset
XGBoost - one day 0.1965(0.04) 0.2345(0.05) -0.0636(0.06) 0.5178(0.05)
Lasso - one day 0.1631(0.04)  0.2087(0.06)  -0.1178(0.05) 0.5059(0.05)
Encoder (LSTM)-Decoder (FNN) 0.1277 (0.04) 0.1272 (0.06) -0.1558 (0.06) 0.4971 (0.06)

Spatial results. Figure 3 shows the temporal cosine similarity of all methods evaluated on test
sets described in Section 5. Among all methods, XGBoost and the Encoder (LSTM)-Decoder (FNN)
achieve the overall best performance, regarding the number of locations with positive temporal
cosine similarity. Qualitatively, coastal and south regions, in general, are easier to predict compared
to inland regions (e.g., Midwest). Such a phenomenon might be explained by the influence of
the slow-moving component, i.e., Pacific and Atlantic Ocean. Such component exhibits inertia or
memory, in which anomalous condition can take relatively long period of time to decay. However,
each model has its own favorable and disadvantageous regions. For example, XGBoost and Lasso do
poorly in Montana, Wyoming, and Idaho, while Encoder (LSTM)-Decoder (FNN) performs much
better on those regions. The observations naturally imply that the ensemble of multiple models is a
promising future direction.

Comparison with the state-of-the-art methods. MultiLLR and AutoKNN are two state-of-
the-art methods designed for SSF on western US [26]. Both methods have shown good forecasting
performance on the original target region. However, over the inland region (Midwest), Northeast,
and South region, the methods do not perform so well (Figure 3). To be fair, even though a similar
set of climate variables have been used in our work compared to the original paper [26], how we
prepossess the data and construct the feature set are slightly different. Such differences may lead to
relatively poor performance for these two methods, especially for MultiLLR.

6.2 Analysis and exploration

We analyze and explore several important aspects that could influence the performance of ML
models.

Temporally “local” vs. “global” dataset. Our training set consists of all calendar months over
the past 30 years, which we refer to as the temporally “global” dataset. Another way to construct
the training set is to consider calendar months only within the temporal neighborhood of the test



»—Ei/\_‘gﬁlj s '-0.5

— [TZ 234

- ¥ y.
. .—k‘,:’ ;«/j;/'jt -00
. [ LT
Nl pARS

I——05

Figure 3: Temporal cosine similarity over the US mainland of ML models discussed in Section
4 for temperature prediction over 2017-2018. Large positive values (green) closer to 1 indicates
better predictive skills. Overall, XGBoost and Encoder (LSTM)-Decoder (FNN) perform the best.
Qualitatively, coastal and south regions are easier to predict than inland regions (e.g., Midwest).

date. For instance, to build a predictive model to forecast June in 2017, the training set can only
contains dates in June (from earlier years), and months that are close to June, e.g., April, May, July,
and August, over the past 30 years. Such a construction account for the seasonal dependence of
predictive relations, for example summer predictions are not trained with winter data. We name such
dataset as a temporally “local” dataset. A comparison between the “global” and “local” datasets has
been listed in Table 2 where a significant drop in cosine similarity can be noticed when using “local”
dataset for all of our best predictors, including XGBoost, Lasso, and Encoder (LSTM)-Decoder
(FNN). We suspect such performance drop from “global” to “local” dataset may come from the
reduction in the number of effective samples.

Feature importance. At sub-seasonal time scales, it is widely believed [49, 11] that land and
ocean are the important sources of predictability, while the impact of atmosphere is limited (Figure 1
(a)). We study which covariate(s) are important, considered by ML models, based on the feature
importance score. In particular, we compute the feature importance score from 2 ML models,
XGBoost and Lasso (Figure 4). For XGBoost, the importance score is computed using the average
information gain across all tree nodes a feature/covariate splits, while for Lasso, we simply count
the non-zero coefficients of each model. The reported feature importance score is the average over
24 models (one per month in 2017-2018). In addition, we also provide measurement of feature
importance based on Shapley value (Figure 5), a concept from game theory [32]. To determine the
Shapley value of a given feature, we compute the prediction difference between a model trained with
and without that feature. Since the effect of suppressing a feature also depends on other features, we
have to consider all possible subsets of other features, and compute the Shapley values as a weighted
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Figure 4: Feature importance scores computed from (a) XGBoost and (b) Lasso. Darker color means
a covariate is of the higher importance. The first 8 rows contains the top 10 principal components
(PCs) extracted from 8 spatial-temporal covariates respectively, and the last row includes all the
temporal indices. Land component, e.g., soil moisture (3" row from the top) and ocean components,
e.g., sst (Pacific and Atlantic) and some climate indices are the most commonly selected covariates.

average of all possible differences. As shown in Figure 4 and 5, among all covariates, soil moisture
(37 row from the top) is the variable that has been constantly selected by both models. Another
set of important covariates is the family of Nifio indices. A LS model using those indices alone as
predictors performs fairly well (Table 2). Sea surface temperatures (of Pacific and Atlantic) are
also commonly selected. Such observations indicate that ML models pick up ocean-based covariates,
some land-based covariates, and almost entirely ignore the atmosphere-related covariates, which are
well aligned with domain knowledge [49, 11].

The influence of feature sequence length. To adapt the usage of LSTM, we construct a
sequential feature set, which consists not only the target date, but also 17 other dates preceding the
target date. However, other ML models, e.g., XGBoost and Lasso, which are not designed to handle
sequential data, experience a drastic performance drop when we include more information from
the past. More precisely, by including covariates from the full historical sequence, the performance
of XGBoost drops approximately 50% compared to the XGBoost model using covariates from the
most recent date only. A possible explanation for such performance degradation, as we increase the
feature sequence length, is that both models weight covariates from different dates exactly the same
without considering temporal information, thus some irrelevant historical information might mislead
the model. In Appendix C, we provide a more detailed comparison among results obtained from
various sequence lengths.

6.3 What happened with DL models?

As discussed in Section 3, applying black-box DL models naively does not work well for SSF. The
improvement (Table 2), as we evolve from FNN to CNN-LSTM, and finally to Encoder (LSTM)-
Decoder (FNN), demonstrates how the network architecture plays an important role, and leaves us
plenty of space for further advancement. Below we focus on the discussion of feature representation,
and the architecture design for sequence modeling. More discussion is included in Appendix C.
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Figure 5: Shapley values computed from (a) XGBoost and (b) Lasso. Darker color means a covariate
is of the higher importance. The observation that the most commonly selected covariates are from
land and ocean are consistent with Figure 4.

Feature representation: CNN vs. PCA. Since SSF can be considered as a spatial-temporal
prediction problem, CNN [31] is a natural choice to handle the spatial aspect of each climate covariate
by viewing it as a map, and can be applied as a “supervised” way for learning feature representation.
However, our results imply that models with CNN has limited predictive skills regarding both
spatial and temporal cosine similarity. CNN, while doing convolution using a small kernel, mainly
focus on spatially localized regions. However, the strong spatial correlation of climate variables
restricts the effectiveness of CNN kernels on feature extraction. Meanwhile, PCA, termed Empirical
Orthogonal Functions (EOF) [34, 57] in climate science, is a commonly used “unsupervised” feature
representation method, which focuses on low-rank modeling of spatial covariance structure revealing
spatial connection. Our results (Table 2) illustrate that PCA-based models have higher predictive
skills than CNN-based models, verifying that PCA is a better technique for feature extraction in
SSFE.

Sequential modeling: Encoder-Decoder. With features extracted by PCA, we formulate SSF
as a sequential modeling problem [48], where the input is the covariates sequence described in
Section 5, and the output is the target variable. Due to its immense success in sequential modeling
[46, 55], the standard Encoder-Decoder, where both Encoder and Decoder are LSTM [24], is the
first architecture we investigate. Unfortunately, the model does not perform well and suffers from
over-fitting, possibly caused by overly complex architecture. To reduce the model complexity, we
replace the LSTM Decoder with an FNN Decoder which takes only the last step of the output
sequence from the Encoder. Such change leads to an immediate boost of predictive performance.
However, the input of the FNN Decoder mainly contains information encoded from the latest day
in the input sequence and can only embed limited amount of historical information owing to the
recurrent architecture of LSTM. To further improve the performance, we adjust the connection
between Encoder and Decoder, such that FNN Decoder takes every step of the output sequence from
LSTM Encoder, which makes a better use of historical information. Eventually, this architecture
achieves the best performance among all investigated Encoder-Decoder variants (see a detailed
comparisons in Appendix C).
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7 Conclusion

In this paper, we investigate the great potential to advance sub-seasonal climate forecasting using
ML techniques. SSF, the skillful forecasts of temperature on the time range between 2-8 weeks,
is a challenging task, since it is beyond the limit of atmospheric predictability commonly used in
short-term weather forecasting. Besides, SSF is typically a high-dimensional problem with limited
effective samples due to strong spatial-temporal correlation within climate data. We conduct a
comprehensive analysis of 10 different ML models, including a few DL models. Empirical results
show the gradient boosting model XGBoost, the DL model Encoder (LSTM)-Decoder (FNN), and
linear models, such as Lasso, consistently outperform state-of-the-art forecasts. XGBoost has the
highest skill over all models, and demonstrates its predictive power. ML models are capable of
picking the climate variables from important sources of predictability in SSF, identified by climate
scientists. In addition, DL models, with demonstrated improvements from careful architectural
choices, are great potentials for future research.

8 Broader Impact

Skillful (i.e., accurate) climate forecasts on sub-seasonal time scales would have immense societal
value. For instance, sub-seasonal forecasts of temperature and precipitation could be used to assist
farmers in determining planting dates, irrigation needs, expected market conditions, anticipating
pests and disease, and assessing the need for insurance. Emergency and disaster-relief supplies can
take weeks or months to pre-stage, so skillful forecasts of areas that are likely to experience extreme
weather a few weeks in advance could save lives. More generally, skillful sub-seasonal forecasts
also would have beneficial impacts on agricultural productivity, hydrology and water resource
management, transportation and aviation systems, emergency planning for extreme climate such as
Atlantic hurricanes and midwestern tornadoes, among others [37, 29]. Inaccurate spatial-temporal
forecasts associated with extreme weather events and associated disaster relief planning can be
expensive both in terms of loss of human lives as well as financial impact. On a more steady state
basis, water resource management and planning agricultural activities can be made considerably
more precise and cost effective with skillful sub-seasonal climate forecasts.
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A Difficulty of the Problem

A.1 Dependence between historical data and forecasting target

In section 3, the dependence between the most recent historical data (the normalized average
temperature of week -2 & -1) and the forecasting target (the normalized average temperature of
week 3 & 4) is measured by maximum information coefficient (MIC). Here we show the results
measured by Pearson correlation coefficient [58], and Spearman’s rank correlation coefficient [58]
(Figure 6). Small values (<0.2) of Pearson correlation and Spearman’s rank correlation at a majority
of locations, which verify that there is little information shared between the most recent date and
the forecasting target, once again, demonstrate how difficult SSF is.

Pearson correlation - mean Rank correlation - mean MIC - mean

- 02

Pearson correlation - marginal Rank correlation - marginal MIC - marginal

0o 01 02 0.3 04 0.0 01 02 03 04 0.08 0.10 0.12 014 016

Figure 6: Pearson correlation, Spearman’s rank correlation and MIC between 2m temperature of
week -2 & -1 and week 3 & 4. Small values (<0.2) of Pearson correlation and Spearman’s rank
correlation at a majority of locations verify the fact, as we illustrate in the main paper using MIC,
that there is little information shared between the most recent date and the forecasting target.

A.2 Relative R2

In the main paper, we introduce cosine similarity, which is widely used in weather prediction
evaluation, as an evaluation metric. Here we formally define the other evaluation metric, namely
relative R? as

* _5l)2
Relative R? = 1 — Relative MSE = 1 — 2 lYi _yz) 5 (1)
ZZ 1(}’Z Ytrain)

where y denotes a vector of predicted values, and y* be the corresponding ground truth. We use
relative R? to evaluate the relative predictive skill of a given prediction 9 compared to the best
constant predictor ¥rain, the long-term average of target variable at each date and each target
location computed from training set. A model which achieves a positive relative R? is, at least, able
to predict the sign of y* accurately. The results of temporal and spatial relative R? over the US
mainland of ML models discussed in section 4 are shown in Table 3 and Figure 8 respectively.
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B Data and experimental setup

B.1 Data sources

The data described in Table 1 were downloaded from the following sources:

e Temperature (tmp2m): https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.
html

e Soil moisture (sm): https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
e Sea surface temperature (sst): https://www.ncdc.noaa.gov/oisst

e Relative humidity (rhum), sea level pressure (slp), and geopotential height (hgt): ftp://ftp.cdc.
noaa.gov/Datasets/ncep.reanalysis/surface/

e Multivariate ENSO index (MEI): https://psl.noaa.gov/enso/mei/
e Nino indices: https://www.cpc.ncep.noaa.gov/data/indices/wksst8110.for

e North Atlantic Oscillation (NAO) index: ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.
nao.index.b500101.current.ascii

e Madden Julian Oscillation (MJO) phase & amplitude: http://www.bom.gov.au/climate/mjo/
graphics/rmm.74toRealtime.txt

B.2 PCA prepossessing

As mentioned in section 5 of the main paper, one way for feature extraction is to apply PCA to
spatial-temporal variables. To do so, let’s consider sst of Pacific ocean as an example. Daily sst
of Pacific ocean is originally stored in a matrix, of which each element represents the sea surface
temperature at each grid point of Pacific ocean. The covariance matrix can be computed by flattening
each matrix into a 1-D vector, viewing each element in the matrix as a feature and each date as one
observation. Such covariance matrix captures spatial connection among grid points of Pacific ocean.
By considering all dates from 1986 to 2016, we can extract the top 10 principal components (PCs)
as features based on PC loadings computed from the corresponding covariance.

B.3 Feature set construction

To better utilize historical information, we construct a sequential feature set by including not only
covariates of the target date, but also covariates of the 7", 14*" and 28" day previous from the
target date, as well as the day of the year of the target date in the past 2 years and both the
historical past and future dates around the day of the year of the target date in the past 2 years.
Such selection of historical dates mainly bases on the temporal correlation. Figure 7(a) provides a
detailed example on how to construct feature set for Mar 1, 2018: we concatenate covariates from
Mar. 1 in 2018, 2017, and 2016, their corresponding 7", 14" and 28" days in the past, and 7%,
14t and 28" “future” days in 2017 and 2016. In total, we include H = 18 historical days in our
feature set for each date.
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Figure 7: (a) Sequential feature set: to construct feature set at Mar. 1, 2018, we concatenate
covariates from Mar. 1 in 2018, 2017, and 2016, their corresponding 7t 14" and 28" days in the
past, and 7" 14%" and 28" “future” days in 2017 and 2016. (b) Evaluation pipeline: to test SSF in
Jan 2017, the training set covers historical 30 year ends at Dec 4, 2016 (the last available date). 5
validation sets include dates from each Jan between 2012 to 2016, with the corresponding training
sets generated by applying a moving window of 10 years and a stride of 365 days on data start from
2000.

B.4 Evaluation pipeline

Predictive models are created independently for each month in 2017 and 2018. To mimic a live
forecasting system, we generate 105 test dates during 2017-2018, one for each week, and group them
into 24 test sets by their month of the year. Given a test set, our evaluation pipeline consists of two
parts (Figure 7(b)):

e “5-fold” training-validation pairs for hyper-parameter tuning, based on a “sliding-window” strategy
designed for time-series data. Each validation set uses the data from the same month of the year
as the test set. For instance, if the test set is Jan 2017, the corresponding 5 validation sets are Jan
2012, Jan 2013, Jan 2014, Jan 2015, and Jan 2016 respectively. Each validation set corresponds to
a training set containing 10 years of data and ending 28 days before the first date in the validation
set. Specifically, if the validation set starting from Jan 1, 2016, the training set is from Dec 4,
2005 to Dec 4, 2015. Such construction is equivalent to apply a sliding-window of 10-year with a
stride of 365 days on data from 2002.

e The training-test pair, where the training set, including 30-year data in the past, ends 28 days
before the first date in the test set. For example, to test SSF in Jan 2017, i.e., Jan 1, Jan 8, Jan
15, Jan 22, and Jan 29, the training set starts from Dec 4, 1986 and ends at Dec 4, 2016, which is
the 28" day before Jan 1, and the last date we have the ground truth for the target variable.

C Additional Results

C.1 Temporal and spatial results of relative R?2

Table 3 lists the mean, the median, the 0.25 quantile, the 0.75 quantile, and their corresponding
standard errors of relative R? for all models. A positive relative R? indicates a model can at least
predict the sign of the target variable correctly. Again, XGBoost achieves the highest predictive skill
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Table 3: Comparison of relative R? of tmp2m forecasting for test sets over 2017-2018. A positive
relative R? indicates a model predicting the sign of the target variable correctly. XGBoost achieves

the highest relative R2.
Model \

Mean(se) Median (se)
Temporally Global Set
0.0760(0.03)  0.0974(0.03)

0.25 quantile (se) 0.75 quantile (se)

XGBoost - one day -0.0449(0.03) 0.2434(0.03)

Lasso - one day

0.0552(0.02)

0.0321(0.02)

-0.0309(0.01)

0.1295(0.02)

Encoder (LSTM)-Decoder (FNN)

FNN
CNN
CNN-LSTM

-0.0353 (0.05) 0.0596(0.05)

-0.5777(0.29)
-0.0564(0.03)
-0.1164(0.05)

-0.0183(0.15)
0.0284(0.02)
0.0263(0.03)

-0.2409 (0.06)
-0.0794(0.13)
-0.0266(0.02)
-0.0862(0.03)

0.2426 (0.05)
0.0213(0.13)
0.0570(0.02)
0.0698(0.03)

LS with NAO & all nino - daily
Damped persistence

0.0418(0.01)
0.0266(0.01)

0.0535(0.01)
0.0414(0.02)

-0.0078(0.01)
-0.0542(0.02)

0.0949(0.01)
0.1354(0.02)

MultiLLR
AutoKNN

-0.0571 (0.02)
0.0181 (0.01)

0.0034 (0.02)
0.0260 (0.02)

-0.1156 (0.03)
-0.0531 (0.02)

0.0797 (0.02)
0.1041 (0.01)

Temporally Local Set

XGBoost - one day

Lasso - one day

Encoder (LSTM)-Decoder (FNN)

-0.0337(0.03)
-0.0028(0.02)
-0.2333 (0.06)

0.0396(0.03)
0.0327(0.02)
-0.1116 (0.06)

-0.1310(0.04)
-0.0613(0.02)
-0.4694 (0.09)

0.1873(0.03)
0.0996(0.02)
0.1808 (0.06)

in terms of both the mean and the median, demonstrating its predictive power. Linear regression,
like Lasso, with a proper feature set has good predictive performance. Both XGBoost and Lasso
have larger positive relative R? in terms of the mean, and can still outperform climatology and two
climate baseline models, i.e., LS with NAO & Nifio, and damped persistence. Even though Encoder
(LSTM)-Decoder (FNN) has a slightly negative mean relative R?, it has the second largest median
and 0.75 quantile among all models, showing its potential for further improvement.

Figure 8 shows the spatial relative R? of all methods. XGBoost and Lasso are able to achieve positive
relative R? for most of the target locations. Encoder (LSTM)-Decoder (FNN) shows better predictive
skill over the southern US compared to other regions. MultiLLR and AutoKNN manages to obtain
non-negative relative R? for the coastal area in the western US but their predictive performance
drops in the rest of locations. All other baseline methods struggle to reach positive relative R? for
most of the target locations.

C.2 Analysis on feature importance

To emphasis the importance of the land-based covariates, e.g., soil moisture and the ocean-based
covariates, e.g., NAO and Nifo indices, we compare the prediction performance among (1) the model
trained with all covariates, (2) the model trained without soil moisture, and (3) the model trained
without NAO and Nino indices (Table 4 and Table 5). Most models experience a performance
deterioration when we exclude certain “important” covariates.

C.3 The influence of feature sequence length

We compare the prediction performance under 3 different settings, referred to as “one day”, “four
days", and “all days” respectively. For feature set construction, “one day” includes covariates at the
target date only, “four days” also covers the 7" 14" and 28" days previous to the target date, and
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Figure 8: Temporal relative R? over the US mainland of ML models discussed in section 4 for
temperature prediction over 2017-2018. Large positive values (green) closer to 1 indicates better
predictive skills.

“all days” uses the exact feature sequence we use for LSTM-based models. Comparison of predictive
skills under each setting, measured by both cosine similarity and relative R?, can be found in Table 6
and Table 7. Both XGBoost and Lasso enjoy a performance boost using “one day” values. Especially
for XGBoost, the performance of “one day” is approximately 50% better than using “all days”. A
possible explanation for such performance degradation as we increase the feature sequence length
is that both models weight covariates from different dates exactly the same without considering
temporal information, thus more noise has been introduced.

C.4 Discussion on deep learning models

Results of DL models. Table 8 and Table 9 compare the predictive skills of 5 DL models discussed
in section 6.3, measured by both cosine similarity and relative R?. Significant improvements can
been observed as we evolve from the standard Encoder (LSTM)-Decoder (LSTM), to Encoder
(LSTM)-Decoder (FNN)-last step, where “last step” indicates that FNN Decoder only uses the last
step of the output sequence from LSTM Encoder, and finally to Encoder (LSTM)-Decoder (FNN)
with FNN Decoder uses every step of the output sequence from LSTM Encoder.

One issue with Encoder (LSTM)-Decoder (FNN) is that the input features are shared by all target
locations, which requires the model to identify the useful information for each locations without any
help from the input.

Autoregressive (AR) component. Currently, the Encoder(LSTM)-Decoder(FNN) clearly con-
siders climate covariates on a global scale, which are shared by all target locations. Nevertheless,
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Table 4: Comparison of cosine similarity of tmp2m forecasting for test sets over 2017-2018 using
different feature set. Excluding soil moisture or climate indices (NAO & Nifo) leads to a deterioration

in the predictive performance.

Model

Mean(se)

Median (se)

0.25 quantile (se)

0.75 quantile (se)

XGBoost - one day
XGBoost - one day (w/o soil moisture)

0.3044(0.03)
0.2685(0.03)

0.3447(0.05)
0.2797(0.05)

0.0252(0.05)
0.0703(0.04)

0.5905(0.04)
0.5492(0.05)

XGBoost - one day (w/o nao & all nino) 0.2081(0.03) 0.1640(0.05) -0.0588(0.04) 0.5246(0.05)
Lasso - one day 0.2499(0.04) 0.2554(0.06) -0.0224(0.05) 0.5604(0.06)

Lasso - one day (w/o soil moisture) 0.2638(0.04) 0.2912(0.05) 0.0032(0.06) 0.5655(0.05)

Lasso - one day (w/o nao & all nino) 0.1956(0.04)  0.2573(0.07)  -0.1657(0.06) 0.5533(0.05)
Encoder (LSTM)-Decoder (FNN) 0.2616 (0.04)  0.2995 (0.07) -0.0719 (0.06) 0.6310 (0.05)

Encoder (LSTM)-Decoder (FNN)(w/o soil moisture) 0.2157 (0.04)  0.2909 (0.07) -0.1106 (0.07) 0.5443 (0.07)
0.2236 (0.04)  0.2395 (0.06)  -0.1527 (0.07) 0.5989 (0.06)

Encoder (LSTM)-Decoder (FNN)(w/o nao & all nino)

Table 5: Comparison of relative R? of tmp2m forecasting for test sets over 2017-2018. Excluding soil
moisture or climate indices (NAO & Nifio) leads to a smaller or even negative relative R?, showing
that it becomes harder for the model to predict the sign of the target variable correctly.

Model Mean(se) Median (se)  0.25 quantile (se) 0.75 quantile (se)
XGBoost - one day 0.0760(0.03) 0.0974(0.03) -0.0449(0.03)  0.2434(0.03)
XGBoost - one day (w/o soil moisture) 0.0370(0.03) 0.0322(0.03) -0.0564(0.03) 0.2225(0.03)
XGBoost - one day (w/o nao & all nino) -0.0161(0.03)  -0.0079(0.04) -0.1618(0.03) 0.2426(0.04)
Lasso - one day 0.0552(0.02)  0.0321(0.02)  -0.0309(0.01) 0.1205(0.02)
Lasso - one day (w/o soil moisture) -0.0161(0.03)  -0.0079(0.04) -0.1618(0.03) 0.2426(0.04)
Lasso - one day (w/o nao & all nino) 0.0003(0.02) 0.0457(0.02) -0.1113(0.03) 0.1641(0.02)
Encoder (LSTM)-Decoder (FNN) 20.0353 (0.05)  0.0596(0.05) _ -0.2409 (0.06) 0.2426 (0.05)
Encoder (LSTM)-Decoder (FNN)(w/o soil moisture) | -0.1083 (0.05)  0.0314 (0.05) -0.3022 (0.08) 0.2252 (0.05)
Encoder (LSTM)-Decoder (FNN)(w/o nao & all nino) | -0.0802 (0.04)  0.0124 (0.05)  -0.3032 (0.06) 0.2446 (0.05)

SSE depends on not only global climate condition but also local weather change. Therefore, we seek
a way to improve the model by adding an autoregressive (AR) component to capture the “local”
information from historical data. We consider two variants of Encoder (LSTM)-Decoder (FNN).
The first variant contains an AR component with the input as historical temperature at each target
location, denoted as Encoder (LSTM)-Decoder (FNN)+AR. The second one includes both historical
temperature and historical temporal climate variables, i.e., climate indices, as input features, denoted
as Encoder (LSTM)-Decoder (FNN)+AR (CI). For both models, the final forecast is computed as a
linear combination of the prediction from Encoder (LSTM)-Decoder (FNN) and the prediction from
AR component for each location. Unexpectedly, as shown in Table 8 and Table 9, simply adding the
AR component to our Encoder(LSTM)-Decoder(FNN) does not help the model to perform better.
However, we believe there is a better way to involve local information, and such modification is a
promising direction that worth investigation in the future.
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Table 6: Comparison of spatial cosine similarity for tmp2m forecasting over 2017-2018 using various
length of feature sequence. Including longer historical sequence leads to a deterioration in the

predictive performance of XGBoost and Lasso.

Model

Mean(se) Median (se)  0.25 quantile (se)

0.75 quantile

(se)
0.5383(0.05)

XGBoost - all days
XGBoost - four days
XGBoost - one day

-0.0466(0.05)
0.0561(0.04)
0.0252(0.05)

0.2080(0.03)  0.1582(0.05)
0.2433(0.03)  0.2203(0.05)
0.3044(0.03) 0.3447(0.05)

0.5168(0.06)
0.5905(0.04)

Lasso - all days
Lasso - four days

Lasso - one day

-0.1381(0.06)
0.0572(0.06)
-0.0224(0.05)

0.2160(0.04)  0.2258(0.07)
0.2247(0.04)  0.1952(0.07)
0.2499(0.04)  0.2554(0.06)

0.5384(0.06)
-0.5700(0.06)
0.5604(0.06)

Table 7: Comparison of relative R? (with training set mean) for tmp2m prediction for test set over
2017-2019 using different length of feature sequence. Including longer historical sequence leads to a
smaller or even negative relative R? for both XGBoost and Lasso.

Model

Mean(se) Median (se)

0.25 quantile (se)

0.75 quantile (se)

XGBoost - all days
XGBoost - four days
XGBoost - one day

-0.1499(0.04)
-0.0786(0.03)
-0.0449(0.03)

-0.0010(0.04)
0.0193(0.03)
0.0974(0.03)

-0.0200(0.03)
0.0242(0.03)
0.0760(0.03)

0.2304(0.04)
0.1882(0.04)
0.2434(0.03)

Lasso - all days
Lasso - four days
Lasso - one day

-0.0639(0.02)
-0.0542(0.02)
-0.0309(0.01)

0.0367(0.03)
0.0266(0.02)
0.0321(0.02)

-0.0167(0.03)
0.0518(0.02)
0.0552(0.02)

0.1588(0.03)
0.1653(0.03)
0.1295(0.02)

Table 8: Comparison of cosine similarity of tmp2m forecasting for test sets over 2017-2018 using

different deep learning architectures.

Model

Mean(se) Median (se)

0.25 quantile (se)

0.75 quantile (se)
0.2584(0.04)

Encoder (LSTM)-Decoder (LSTM)
Encoder (LSTM)-Decoder (FNN)-last step
Encoder (LSTM)-Decoder (FNN)
Encoder (LSTM)-Decoder (FNN)+AR
Encoder (LSTM)-Decoder (FNN)-+AR (CI)

0.0358(0.04)
0.2061 (0.08)
0.2995 (0.07)
0.1922 (0.06)
0.1986 (0.05)

0.0740(0.03)
0.1614 (0.05)
0.2616 (0.04)
0.1733 (0.04)
0.1852 (0.04)

-0.1569(0.03)
-0.2590 (0.08)
-0.0719 (0.06)
-0.0863 (0.07)
-0.0838 (0.06)

0.5720 (0.08)
0.6310 (0.05)
0.5225 (0.06)
0.5164 (0.05)

Table 9: Comparison of relative R? of tmp2m forecasting for test sets over 2017-2018. A positive

relative R? indicates a model predicting the sign of the target variable correctly.

0.75 quantile (se)

Model

Mean(se) Median (se)

0.25 quantile (se)

-0.6606(0.08)

-0.0537(0.05)

Encoder (LSTM)-Decoder (LSTM)
Encoder (LSTM)-Decoder (FNN)-last step
Encoder (LSTM)-Decoder (FNN)
Encoder (LSTM)-Decoder (FNN)+AR
Encoder (LSTM)-Decoder (FNN)+AR (CI)

-0.3947(0.05)  -0.2999(0.05)
-0.1709 (0.06)  0.0217 (0.06)
-0.0353 (0.05) 0.0596(0.05)
-0.0414 (0.04)  -0.0041 (0.05)
-0.0563 (0.03)  -0.0380 (0.05)

-0.4569 (0.11)
-0.2409 (0.06)
-0.3027 (0.07)
-0.2365 (0.05)

0.2278 (0.06)
0.2426 (0.05)
0.2309 (0.05))
0.1951 (0.04)
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