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Abstract—The Von Neumann bottleneck is a persistent prob-
lem in computer architecture, causing stalls and wasted CPU
cycles. The Van Neumann bottleneck is particularly relevant for
memory-intensive workloads whose working set does not fit into
the microprocessor’s cache and hence memory accesses suffer
the high access latency of DRAM. One technique to address
this bottleneck is to prefetch data from memory into on-chip
caches. While prefetching has proven successful, for simple access
patterns such as strides, existing prefetchers are incapable of
providing benefit for applications with complex, irregular access
patterns. A neural network-based prefetcher shows promise for
these challenging workloads.

We provide a better understanding of what type of memory
access patterns an LSTM neural network can learn by training
individual models on microbenchmarks with well-characterized
memory access patterns. We explore a range of model parameters
and provide a better understanding of what model is ideal to use.
We achieve over 95% accuracy on the microbenchmarks and find
a strong relationship between lookback (history window) size and
the ability of the model to learn the pattern. We find also an
upper limit on the number of concurrent distinct memory access
streams that can be learned by a model of a given size.

I. INTRODUCTION

The Von Neumann performance bottleneck is a well-known
and persistent problem within computer architecture. The
latency of an access to DRAM can cause the processor to stall
for many cycles, a significant inefficiency. Many techniques
have been implemented to address this problem, with the
most important being the use of small, fast caches close to
the processor. The caches exploit the spatial and temporal
memory access locality exhibited by most programs to reduce
the latency of an access. A data prefetcher can improve the
utility of caches, by predicting what data will be used in the
near future, fetching it from DRAM into the cache. Existing
mechanisms such as the stride or GHB prefetcher are unable to
perform well to prefetch complex memory access patterns such
as those that are irregular. This includes memory-intensive
applications such as graph processing, applications that spend
a significant amount traversing pointer based data structures
as well as datacenter applications that exhibit large working
sets exceeding the processor caches [1].

Previous work [3] has found promise for the use of a long
short term memory (LSTM) deep neural network (DNN) for
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prediction of memory accesses in complex memory-intensive
workloads. While the work has shown good prediction accu-
racy on the Spec2006 benchmark suite [5], it fails to provide
an in-depth analysis of how well DNNs can predict different
types of access patterns. To address this knowledge gap we
develop the following methodology. We first determine a set
of microbenchmarks which cover common memory access
patterns. Next, we execute the microbenchmarks, tracing their
memory access patterns. We then train LSTM based DNN
models for each of the microbenchmark traces, to gain an
in-depths understanding of the types of memory accesses that
can be predicted with good performance. As part of this work,
we make the observation that a key technique for achieving
high accuracy is proper data preparation. Finally, we evaluate
a range of DNN hyperparameters to determine the effect of
model complexity on prediction accuracy. We find that our
DNN model achieves high accuracy for next-element predic-
tion in all of our microbenchmarks, given generous enough
hyperparameters. We find also that appropriate selection of
window size of previous loads (lookback) plays a key role in
allowing the model to capture and identify local patterns, and
that the size of the DNN model can be substantially decreased
for moderately complex access patterns.

II. BACKGROUND
A. Microarchitectural Prefetchers

Data prefetchers are used to prefetch data that is expected
to be used soon from DRAM into caches. When the prediction
is correct then the latency of that memory access can be
dramatically decreased. A typical access time can be 200 CPU
cycles for DRAM and 40 cycles for the L3 cache, providing
a potential latency reduction of 5x. When prefetching into
the L1 cache directly this can increase to up to 100x. Most
popular prefetchers such as GHB [9] and stride use recent
memory accesses to predict future accesses. These prefetchers
are hardware-based and generally follow simple heuristics or
algorithms. A typical stride prefetcher can identify a fixed
number, e.g. 16 separate streams. In the case workloads
concurrently utilize a greater number of streams, prefetcher
performance starts to decline as the many streams compete for
resources such as memory access history tables. This defines
a limit on the complexity of the memory access patterns



that can be handled. More sophisticated prefetchers have the
potential to be able to capture more complex patterns, however,
generally only work well for a subset of applications. The
main issue with these prefetchers is that they generally apply
a single workload-independent technique that needs to work
well in average. Machine learning approaches that can train
application specific models show promise in addressing this
limitation.

B. Deep Neural Networks

Recent advances in deep neural networks have driven their
success in fields such as natural language processing, artificial
language processing and image recognition. DNNs are now
being explored for a wide range of problems. Their strength
lies in the backpropagation algorithm that enables convergence
to local optima efficiently. DNNs obtain their prediction by
taking a numeric input feature vector and computing across
layers of “neurons” to provide an output vector which is
interpreted to provide the prediction. The approach can be
smaller in terms of space and computation compared to
manually designed rule-based models [2].

The NLP problem of predicting the next word in a sentence
seems like a particularly interesting problem related to the
prefetching challenge. The task is, given a sequence of N
most recent words, predict the subsequent word. In NLP
sequence prediction, there also exist complex patterns and
interrelationships between words in the sentence, similarly as
there exist relations between the memory accesses emitted by
an application.

A successful type of DNN used for this problem is the
LSTM long short-term memory network [8]. The LSTM
is a type of recurrent neural net, designed for time-series
sequences, and provides the benefits of smaller model size due
to weight sharing. LSTMs contain memory elements storing
information of the past, controlled by a forget gate whose
weights are also learned as part of the training process. This
has the potential for better capturing longer term relationships
between inputs. A DNN generally consists of multiple layers,
whereas the number of layers is defined as the depth of the
network. Each layer has a certain width, defined by its tensor
that can be tuned by the model developer. Finally, LSTMs
define a lookback parameter which, in the scope of this work,
defines the number of past accesses the model considers to
predict the next.

III. PROBLEM FORMULATION

The prefetching problem can be formulated as a prediction
problem. Given the past N memory accesses, predict the next
access. Common features used by current prefetchers are the
sequence of the N recent memory addresses as well as their
associated instructions defined by the program counter (PCs)
address. Each PC is uniquely associated with a particular
instruction. A given load instruction will often have a more
predictable sequence of memory accesses, so knowing the PC
can help distinguish separate patterns or streams.

More specifically, data prefetching can be seen as a classifi-
cation problem. From a pool of the £ most common memory
addresses, choose the most likely address to occur next. The
drawback of this approach is that the number of memory
addresses accessed can be very large, prompting the question
of whether there is a way of decreasing the size of the state
space. A second option is be to use the memory address deltas,
defined as the difference between address N and address
N + 1. Typical memory access patterns including array or
immutable list traversals, contain far fewer deltas than distinct
memory addresses. Contemporary stride and GHB prefetchers
exploit this characteristic for the same reason, increasing
prediction accuracy.

IV. MICROBENCHMARK MOTIVATION

Little is understood about how well DNNs predict certain
access patterns and finding performance on a full program
obscures what the DNN is able to learn. To better under-
stand this we created a suite of microbenchmarks each one
designed to exhibit a particular memory access pattern that
mimics small parts of a real world program. The key patterns
chosen are ’strided’, ’periodic’, and linked-list traversals. A
strided pattern has a single recurring delta between successive
memory addresses. An example of this is an array traversal. A
periodic pattern has a repeating period, a sequence of deltas
that repeats. This type of access pattern can be created when
accessing fields within elements of a data structure. The last
pattern is the linked-list traversal. When the linked-list is not
modified often this pattern can be thought of a sub-type of
the periodic pattern: during each traversal nodes are accessed
beginning from the first and deltas between each successive
node may be arbitrary. The ubiquity of linked-lists within
many applications make this an essential target for prefetching
prediction.

To better understand the limitations of the DNN model for
memory access prediction, it is evaluated with these funda-
mental patterns and progressively more complex compositions
of these patterns.

V. METHODOLOGY

In this section we describe our methodology of developing
microbenchmarks, generating memory traces as well as cache
miss profiles. Furthermore, we show how traces are prepro-
cessed and how we train our predictive DNN models.

A. Microbenchmarks

We generated a suite of microbenchmarks written in C++,
representing the different memory access patterns discussed in
the previous section. In particular, we developed the following
applications:

o Array traversal (sequential memory accesses)

o Array of structs (strided memory access with configurable

distance)

o Traversal of a fixed length immutable list (periodic ac-

cesses)

« Compositions of multiple access patterns



The strided patterns continually accessed a memory location
that was n bytes away. A multiple of 64 bytes was chosen to
prevent successive accesses to the same cache line and create a
more interesting pattern to predict. The periodic patterns each
had a fixed sequence of 5-7 deltas that was repeated, each
again multiples of 64 bytes.

The first 3 patterns are 2 simple patterns that are interleaved:
2 strided, 1 strided and 1 periodic, and 2 periodic. The program
switches to the next pattern after 40 data accesses. The next
are variations of 4 interleaved periodic patterns that switch pat-
terns every 20 accesses. In the first, the switch is regular, e.g.
patternl, pattern2, pattern3, pattern4, patternl, ... In the next,
the next access pattern is chosen randomly. For these with the
random switch, a variable amount of labelled noise was added,
a second PC that performed random memory accesses. The
next microbenchmarks increase the complexity of the trace by
scaling up the number of interleaved periodic patterns to up
to 1000 separate streams. The last microbenchmark consists
of pointer-chasing, linked list traversals where elements are
looked up. This access pattern would manifest similarly to the
periodic pattern: the deltas between each node start address
could be random, but the pattern is repeated continuously.

B. Trace Generation

To obtain the input for model training, we execute the
microbenchmarks and obtain memory access traces via Dy-
namorio’s memtrace [6]. Memtrace captures the instruction
program counters (PC) of all executed basic blocks (BBLs)
as well as the effective addresses of all loads and stores. In
combination with the binary executable, traces can accurately
replay all instructions and memory accesses executed by the
program. We then feed the obtained traces to the zsim [7]
microarchitectural simulator to perform cache simulation. In
particular, we capture all L1 cache accesses as well as all
L3 misses simultaneously. Tracking L3 misses provides infor-
mation about the memory accesses which are most valuable
to prefetch, while capturing L1 accesses carries precise in-
formation about memory accesses which would be lost if we
were only focusing on L3 misses. The output of this step is
a sequence of 3-tuples containing the memory address, PC of
the load/store instruction as well as L3 miss information. This
obtained sequence is further pre-processed before feeding it to
DNN training.

C. Data Preprocessing

As shown by [3] predicting absolute memory addresses is
difficult due to the size and sparsity of the 64-bit memory
address space. A promising technique, therefore, is to compute
memory address deltas of the absolute addresses. As the
number of deltas, e.g. for a stride access pattern, is much lower
than the number of absolute addresses, prediction accuracy can
be improved. Prior work computed deltas between consecutive
memory accesses [3] [4]. While this technique works well
for individual, isolated memory access streams, such as a
single stride, we observe that when interleaving streams this
is no longer a functional approach. Instead, we propose to

compute per-PC memory address deltas which maintain the
delta pattern for each PC.

Due to the sheer number of memory addresses that are
accessed and the fact that related memory accesses are usually
spatially close to each other, using memory address deltas
significantly decreased the state space of values to predict.

D. DNN Model

We cast the challenge of predicting future memory accesses
as a sequence learning problem. To enable capturing the
recent access history as well as longer trends we utilize an
LSTM RNN model. Instead of utilizing a regression model we
perform classification as we want to predict cache line aligned
memory deltas. The input to the model is a sequence of PCs
and memory address deltas and the output is a memory address
delta relative to the absolute address that was used to compute
the input delta. More specifically, the output is a probability
distribution over the different classes, the most common deltas
for the PCs being studied. The number of deltas is taken to
be the minimum needed for 99.95% coverage of all deltas
for these PCs, up to a maximum of 100. The delta with the
highest probability is taken as the model’s prediction. The
prediction is considered correct if the next access is identical
to the one that is predicted. Our model includes a single LSTM
layer whose width is determined by a hyperparameter and a
single dense layer that produces the output class predictions.
As part of this work we vary a set of different Hyperparameters
including the width of the LSTM layer and the lookback size
of the LSTM. The model was trained in batches of 64 with
the ADAM optimizer. We utilize Tensorflow [10] to describe
our model and the Keras CuDNNLSTM layer to perform rapid
hyperparameter tuning.

VI. EXPERIMENTS

LSTM models were trained on compositions of the previ-
ously described memory access patterns and their accuracy is
shown in Figure 1. Each model’s LSTM layer had a width of
128 cells and used a lookback sequence size of 64. The first
four patterns include compositions of 2-4 strided and periodic
accesses. The periodic accesses which, for instance, model the
traversal of an immutable list use a periodicity of 5-7. It can
be seen that the LSTM performs well obtaining close to 100%
prediction accuracy. In the first four patterns the interleaving
of the different patterns is fixed as well, in particular, there
exists a periodic sequence of individual patterns. In the case
of the 4 periodic (random) microbenchmark, the patterns
individually follow a periodic sequence, however, patterns are
alternated randomly. This models an application where there
exist multiple independent streams of data accesses. We can
observe that accuracy drops by 3.5% in this case.

For the last three microbenchmarks we add noise by insert-
ing random accesses at random times into the regular access
streams. While the address of perfectly random accesses can-
not be predicted by an ML system, this experiment provides
insight on how random noise affects the ability of the LSTM
to predict the regular access patterns. As can be seen from
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Fig. 1. Accuracy of LSTM model with microbenchmarks. Each microbench-
mark is an interleaving of multiple patterns. The 4 interleaved periodic have
one which has a regular predictable switch between patterns (e.g. patternl,
pattern2, pattern3, pattern4, patternl, ...), and the rest have their next pattern
chosen randomly (r). Of those a certain percentage of labelled noise is added.

Figure 1, adding noise created a drop in accuracy. To separate
noise from signal, we added a separate ’Noise’ or 'no predict’
class to the model. This enables the model to distinguish
noise from predictable accesses. To prevent the model training
always predicting ’noise’ for noiser traces, the importance of
this "no predict’ class was lowered by decreasing its effect on
the loss function using Keras class_weight. Since the ’noise’
accesses happen randomly, the DNN understandably is unable
to predict them and greater noise leads to lower accuracy. We
also evaluated prediction accuracy for the regular (periodic)
accesses only. In particular, we computed accuracy as the
fraction of correctly predicted labels of all regular accesses
in contrast to all regular and noisy accesses. The accuracy
was found to be over 96% for all amounts of noise (96.3%,
97.6%, 98.2% for 20%, 40%, 80% noise respectively). These
results show that the presence of labelled noise does not affect
learning of separate patterns within the data access sequence.

In the following experiments, we analyze how LSTM model
complexity affects the prediction accuracy. In particular, we
are interested to understand the correlation between lookback
size and its ability to learn streams that exhibit a long period,
due to other unpredictable loads. In Figure 2 lookback size
was varied to determine the impact of its choice on a model’s
accuracy. It was found to play an important role, where if the
lookback size was too low the model was unable to learn the
pattern. As soon as it reached some threshold size the model
was able to achieve full expected accuracy. The threshold for
the 0%, 20%, and 40% traces was between 48 and 64. For the
80% trace the threshold was between 92 and 128 accesses. The
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Fig. 2. Lookback size was found to have a dramatic nonlinear impact on the
ability of the model to learn a pattern within the data. There appears to be
some threshold lookback size below which the model is just guessing. Above
this size, the model rapidly picks up the pattern. The 4 periodic patterns with
varied percentage noise were used, trained on a model. An LSTM layer width
of 8 cells was used; the trends were identical for larger layers.

pattern was switched every 20 accesses, so 48 accesses for the
no noise case is more than enough to include the full accesses
from 2 patterns. It appears that the lookback size has to be
much larger than the periodicity of a pattern, and larger than
the number of accesses before switching to another pattern.
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Fig. 3. Accuracy decreases as the number of interleaved streams (periodic
patterns) increases.

For the microbenchmarks explored so far, a small model
with LSTM layer width of 8 was sufficient to capture the
pattern. To explore limits of this smaller model, the number
of unique streams (interleaved patterns) was increased.

As the number of interleaved streams increases, it becomes
increasingly difficult to rapidly identify the stream a particular
memory access belongs to, causing an expected drop in
accuracy as seen in Figure 3. The threshold for effective
lookback size is unaffected by the number of streams as can
be seen by the identical trend in both Figs 2 and 5. However,
our experiments suggest that lookback size is related to the
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Fig. 4. Maximum accuracy for interleaved periodic streams increases as
the width of the LSTM layer is increased. The importance of larger model
becomes much more important as the number of distinct streams to learn is
increased.
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Fig. 5. For the multiple periodic streams, accuracy dramatically increases
once the window size (lookback) is increased past a threshold. The same
relationship holds regardless of the number of separate streams.

window size needed to capture the pattern. As predicted, the
size of the model (number of parameters) becomes important
as the information it must learn increases. In Figure 4, it
can be seen that a larger model size is required to capture
applications with 1000 or more streams. Figure 4 also shows
that DNNs enable compression as the model size scales
sublinear compared to the number of streams. For instance,
a model width of 120 is sufficient to learn an application with
1000 streams where as conventional prefetchers that store per
stream scale linearly in terms of storage resources.

For the last microbenchmark, linked list lookups were
performed on lists with varied sizes providing a maximum
accuracy of 99%. Interestingly, increasing lookback from 32 to
64 only increased the accuracy by about 10 percentage points
as seen in Figure 6. The same dramatic “threshold” observed
for the periodic microbenchmarks is not seen here. The

number of deltas required to achieve near-complete coverage
was much smaller than the number of nodes, probably since
nodes were allocated adjacently on cache lines. This made
the access pattern simpler and potentially easier to learn with
a smaller window of recent memory accesses. This view is
supported by the finding that increasing the model size did
not provide any benefit.

Accuracy vs Lookback for Linked List Lookups with model size 128

100 —&— 50 nedes
100 nodes
#— 500 nodes
% 1 —s~ 1000 nodes
=
W4
g
590
b
=
=
b
& 85
80
5 40 45 50 55 (1] 65
Lookback

Fig. 6. Higher lookback captures the local pattern and is able to provide
higher accuracy. There is not a significant difference between linked list sizes
since a small number of deltas provides almost complete coverage.

VII. RELATED WORK

Here we highlight several threads of interaction of machine
learning with computer architecture.

Prior work has used a perceptron to predict whether a branch
is taken or not taken [11]. The perceptron learns in an online
fashion by incrementing or decrementing weights analogous
to the commonly used two-bit counters.

A naive Bayesian model has been used to predict microar-
chitectural power and performance for more efficient design
space exploration [12].

Other research also looks at learning methods to improve
system performance. One system is designed to be able
to manage itself, noticing changes in its environment and
working to achieve global system goals such as low network
latency, higher reliability, power efficiency and adaptability
[14]. Another learning algorithm addresses the existence prob-
lem in a multiple-WBAN environment using a naive Bayesian
classifier [13].

The explosion of interest in DNNs and machine learning
has spurred parallel efforts in accelerating these models. The
specialized hardware research may be typified by the TPU
[16], a specialized hardware accelerator for neural network
training and inference. Another interesting direction looks at
eliminating spurious computations during NN prediction [13],
using this in conjunction with specialized hardware to improve
speed and efficiency.

VIII. CONCLUSION AND FUTURE WORK

The recent increase in deep learning research exposes tools
that have promise for being applied to microarchitectural



problems such as the pattern prediction problem of data
prefetching. These applications have been minimally explored
and information on how best to apply these techniques to the
data prefetching problem is lacking.

We identified a starting point for evaluation of data prefetch-
ers on simpler memory access traces that can represent compo-
nents of more complex workloads. Through exploration of the
model parameters, we found that lookback size must be chosen
carefully to be able to capture local patterns. We found that
for fewer interleaved patterns increasing model size provided
no benefit, but that for many unique streams providing a larger
model played a large role. We demonstrated the ability of the
LSTM model to learn compositions of strided and periodic
patterns, with and without added noise, and to be able to learn
the patterns in a linked list traversal.

The impact of lookback window size on prediction accuracy
suggests that the local patterns can be identified with just
a sufficient history of memory accesses and that the long
short-term memory of an LSTM may play a smaller role.
Future work may explore other DNN architectures such as
CNNs. Two features were used in these experiments: program
counter and distance between successive memory accesses.
Future work may explore the addition of more features such
as previously loaded data to make it possible to maintain
performance on a rapidly changing linked list as well as
instructions executed preceding a memory load.
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