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Determination of partial atomic charges for
molecular simulation

* Drug Design (source: autodock)

* Molecular dynamics simulation
* Materials (source, Zdilla group)
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* Biology (Source, Klein group, Temple)
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How are partial atomic charges determined
and verified

 Theoretical methods describe electronic structure
« DFT (B3LYP)
« MP2

* Various approaches to determine atomic charges
* CHELPG (calculation of charge at surface points)
* NBO (natural bonding orbitals: orbital description of electron density surrounding an atom)

* Mulliken Charges (use of atomic orbital basis sets and coefficients describing the population
of those basis sets)

* Lowdin Charges
 Verified by comparison of physical properties
* Melting point
* Boiling Point
* Dipole Moment

* Direct experimental approach to measure individual atomic charges is desired.



X-ray crystallography can see sub-electron
charge densities.

Visible H atoms One-electron misassignments

463




A simpler approach

e Use spherical atomic
models

e “Polarize” bonds by
refining occupancy
rather than distorting
orbitals

e Occ*Z = polarized
electron count

e Z—0cc*Z = charge.

* Spherical

Dirac atoms

e Overlapped

atoms (normal
X-ray model)

e Refined

occupancy
(polar
sphereical
atom model




Could XRD see bond polarization?

0
NH
e VValence-shell structure \ /K
factor refinement N 0
H

e Subtract FT of core
electrons from data to
generate an Fmap.

* FS the difference map to
get valence electron
density.

refine

occ.
—_—

* Refine using valence-
only structure factors

Stewart, R. F. J. Chem. Phys. 1970, 53, 205.

Corfield et al. J. Am. Chem. Soc. 1973, 95, 5, 1480 FC ale » F obs ~ F calc



Could XRD see bond orbital distortion?

e Valence-shell structure
factor refinement
* Fix 1s, 2s orbitals

* Refine size of p orbitals 0

* Refine atomic occupancy
: HO
* Requires careful \H\OH
treatement of theoretical 0
guantum models
* Challenge: orbital refine

stretching correlates with
vibrational parameters.
Need vibrational
parameters from neutron
data.

sphef icity,
—).

Coppens et al., Science. 1970, 167, 1126.



Could XRD see valence electronic structure?

e What has been done in
the past:

e Subtract FT of core
electrons from data to
generate an Fmap.

* FS the difference map to
get valence electron
density.

* Powerful, but requires
specialization
sophistication

Gianopoulos et al., IUCrJ (2019). 6, 895-908



A simpler approach

e Can we take advantage
of superior modern
technology to simplify
the process

* Better, more sensitive
detectors

e Software that makes
occupancy refinement
simple and shows
unnacounted for
electron density
automatically.

e Use thermal parameters
to account for orbital
smearing

* Spherical
Dirac atoms

e Overlapped
atoms (normal
X-ray model)

* Refined
occupancy
(polar
sphereical
atom model




First Test: p-dimethylaminopyridine

* Plan:
» Refine a structural model for an excellent data set
* Fix atom locations and refine atomic occupancies

* Presumptions and potential pitfalls
* Presumably, higher resolution is better
* Want an isotropic crystal
 Want low temperature (we can do 100 K)
* Do we want to lengthen the C-H bonds?
* Do we want to fix thermal parameters of non-H

atoms?
] test .
* Do we want to refine hydrogen thermal parameters? T — T TN

a = 6.0255(5) a=90° Z=4

b = 7.4529(6) B=93939(4) Z'=1

c=146544(11) vy =90° V = 656.54(
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Do we want to lengthen C-H bonds?

* We typically model X-H bonds as ~0.1 A
short (e polarized into the bond)

* C-H bonds very slightly polar, H atoms
slightly positive.

* Force realistic X-H distance?




Fix thermal parameters of non-H atoms?

* Two ways to fit the electron density curve

* Occupancy (increases height and width)
e U (decreases height and increases width)

Refine Occupancy Refine U

Distance Distance



Fix thermal parameters of hydrogen atoms?

* Refining H thermal parameter could better fit the electron density
curve, but could cause correlation.

Refine only occupancy Refine occupancy and U.

Distance Distance



Reproducibility test — same crystal

All atoms fixed Atom SolvellAa
: o c1 -0.097641294
Resolution =0.55 A o S
' 0.15
C-H bonds lengthened to c3 eSS 2_1 o
1.1 A C4 -0.130108158 R%=1 .
’ _ cs -0.042781395 0.1 P
Non-H U’s refined c6 10.08192369 Iy
(anisotropically) c7 -0.033010993 0.05 ‘
, : N1 -0.027963623 s
HUS refm?ld N2 10.081559235
(isotropically) H1 0.101911907 @ 09
: : =
Experiment done twice H2 0.094235162 -0.2 -0.1 0 0.1 0.2
from scratch H4 0.032244691 -0.05
H5 0.080904531 ¢
Reproducible HEA 0.082269959 ry
Occupancy/thermal e nls RS -
pancy H6C 0.059512811
parameters not H7A -0.007615718 -0.15
Correlatlng H7B 0.102073735 Trial 1
H7C 0.032800977 SolvellAa P2, /n

C:\Users\user\Documents\MullikenProject\Taylor\SolvellAa.res

C7H1oN2 & R/ &S E] o)
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Reproducibility tests: Short vs. Long C-H

All atoms fixed

Resolution = 0.55 A

Non-H U’s refined (anisotropically)
H U’s tied to connected atom

Lenghtened hydrogens (vertical)
compared to shorter (0.9) hydrogens
(horizontal)

Same trend with some scatter.
Overall C-H charges move closer to O

Nitrogen charges become more
negative

Atom
C1
C2
Cc3
Cc4
C5
C6
c7
N1
N2
H1
H2
H4
H5

H6A
H6B
H6C
H7A
H7B
H7C

Long C-H
-0.097641294
-0.154443136
-0.047393511
-0.130108158
-0.042781395

-0.08192369
-0.033010993
-0.027963623
-0.081559235

0.101911907
0.094235162
0.032244691
0.080904531
0.082269959
0.118489225
0.059512811
-0.007615718
0.102073735
0.032800977

Short C-H

-0.066170798
-0.096486252
-0.005298331
-0.081690861
-0.017738537
-0.023898251

0.064270203

-0.037674433
-0.092558289

0.057050463
0.044227791
0.045365124
0.030922004

0.03219018
0.095095755
0.049109263
-0.00879406
0.049330691
-0.03724751

Short C-H

-0.2

Effect of C-H distance
0.15

R?=0.7290"1 ¢
005 | o o. &

®
0@ &0 0.1 0.2




Reproducibility tests, Resolution effects

One sample

All atoms fixed
Resolution varied

C-H bonds lengthened to

1.1 A

Non-H U’s refined
(anisotropically)

H U’s refined

0.55vs.0.7A 0.55 A vs. 0.85 A
0.15 0.15
RZ=0.9734 , R? = 0.6946
0.1 FL 3 oo
_... o 05 ...... °
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Reproducibility tests, fix or float H U

0.1

One sample .
R? = 0.2081 . .

All atoms fixed

Resolution = 0.55 A o °

C-H bonds lengthened to . "

L1A ¢ 0. P

(anisotropically) P .

H U’s refined vs U’s fixed -0.05

H U refinement appears ’

to introduce random 0

scatter -0.1

-0.15



Reproducibility tests, two samples,

Compare two crystals
All atoms fixed
Resolution = 0.55 A

C-H bonds lengthened to
1.1A

Non-H U’s refined
(anisotropically)

H U’s refined
(isotropically)

Reasonably reproducible

R?=0.8866

Sample 1

-0.1

0.15
0.1

0.05 i

o’ 0 0.1 0.2

-0.15

-0.2
Sample 2

floating H U




Reproducibility tests, two samples — Fixed H U

0.15
Compare two crystals s 5
All atoms fixed 0.1 . o
Resolution = 0.55 A
C-H bonds lengthened to 0.05 o
1.1A
Non-H U’s refined gl "
(anisotropically) 0.15 0.1 -0.05 o 0.05 0.1 0.15
H U’s tied to neighbor o
Improved reproduciblity e
.
L 0.1

-0.15



Theoretical calculations

MP2 6-31 Chelp vs. DFT 6-31 Chelp

* Compared MP2 1
and DFT (6- R?=09974 -.
3187) %
* Considered . 05 05
* CHELPG (surface e
charge) 1

 NBO (natural
bond orbital)

e Mulliken (atomic R = 0.9009
orbital basis set
polarization)
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B
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-0.4
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MP2 6-31 NBO vs. DFT 6-31 NBO

R?=0.9703

-0.4

MP2 6-31 Mul vs. DFT 6-31 Mul

0.2

0.4

0.4

0.2

-0.2
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Theoretical methods vs. theoretical method

R . 6-31g* NBO vs. 6-31g* Chel
e Different theoretical R

methods disagree
with one another



R? =

Experiment Vs. Theory

Exp vs. DFT CHELPG

0.15

0.1

0.0365
0.05

-0.05

. -0.15

-0.2

Fit

0.5

Exp vs. DFT NBO

0.15

0.1
R?=0.542

0.05

° -0.1

. -0.15

-0.2
Linear (Fit) e C o N H

Fit Linear (Fit)

Exp vs. DFT Mulliken

R*=0.2338

o (C

N

0.15

0.1

0.05

-0.1

-0.15

-0.2

Fit

0.2 0.4

Linear (Fit)



Why are the nitrogens low in charge?

* The use of spherical atoms results in residual electron density peaks

* In bonds

* “lone pairs”



This introduces a low-electron bias on
“terminal” atoms with lone pairs.

* Bonding residuals can
be ighored because
the overlap of
adjacent atoms
compensates for
each other

* Lone pair residuals
cannot be ignored
because they are not
integrated at all.




Modern ShelX GUlIs make it easy to quantity
(Q-peaks)

e Q peaks are e”/A3 (a hydrogen is about 0.9 A3)

* Lone pair Q peak represents an approximation of the missing charge
from a terminal atom.




Experiment Vs. Theory (with lone pair correction)

Exp vs. NBO

R*=0.6155
0.15

0.1

0.05

-0.6 -0.4 -0.2

-0.05

-0.1

° -0.15

-0.2

-0.25

-0.3

-0.35

fit

Linear (fit) fit

Exp vs. CHELPG

R?2=0.2494 0.15

0.1

0.05

0.4
-0.05

-0.1

e0.15

-0.2

-0.25

-0.3

-0.35
o C e N

Linear (fit)

H

Linear (fit)

-0.4

Exp vs. Mulliken

-0.2

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.35

R?=0.1681

fit

( J
0.2

Linear (fit)

0.4



Shorten the bonds?

Exp vs. DFT CHELPG
0.15

0.1

R?=0.0365
0.05

-0.05 i
-0.1 o
[ '0.15

-0.2
e C e N H Fit

Linear (Fit)

Exp vs. DFT NBO
0.15

0.1
R?=0.542

0.05

0.4

e C o N H Fit Linear (Fit)

0\9 A




Experiment Vs. Theory (“long” vs. “short” C-H)

R? = 0.2494
3
[ ]
e (C e N
R2 =0.327
08 %06
[ ]
o (C

-0.5

Exp vs. CHELPG
0.2
0.2
0 o P

0.1 0 0.5

-0.2
-0.3
-0.4

H fit Linear (fit) Linear (fit)

Exp Vs. CHELPG
0.2

0.1 i

e N H fit Linear (fit)

-0.6

-0.6

Exp vs. NBO

R?=0.6155

0.4 ¢ -0.2

o (C e N
Exp Vs. NBO

R*=0.3362

-0.4 8 -0.2

0.2
0.1

O—re °

01 0° 0.2

-0.2
-0.3
-0.4

H fit Linear (fit)

0.2

)
0 0.2

-0.4;¢ Linear (fit)

0.4

0.4



A molecule with very polar bonds and no
terminal heteroatoms: Ph,Sn

* Thermal paramaters refined on
non-H atoms

* Hydrogen thermal parameters
fixed

* C-H bonds lengthened to 1.09 A
* No Q-peak corrections

A test of charge calculations for
large K-shells!




Good correlation

Triphenyl Tin
R? = 0.9558,

1.5 .

e C e H ¢ Sn fit Linear (fit)



Good correlation also with solid-state charges

Exp. vs. solid state Lowdin Charges
1.6
R®=0.9532 1.4 ¢

1.2

1
0.8
0.6
0.4

0.2

o0 ?
3
-0.5 02 0 0.5 1
-04

e C e H = Sn fit Linear (fit)




TOl Nd ftate _ 3.824%

9.32 %

* Active ingredient in
Tinactin

* Terminal negative heavy
atom

Ho et al., Acta Cryst C. 2018, 74, 1495
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Conclusions from Studies of p-

dimethylaminiopyridine

* Calculated atomic charges consistent from crystal to crystal and from test
to test

* Higher resolution is best: idealy in the 0.7 A range

* We can refine the occupancy and the thermal parameters of non-H atoms
without correlation problems

* Probably best to tie the H U’s to neighbors

* Lengthening the C-H bonds to a more realistic distance has a minor effect
on the charges; it increases their magnitude, and suppresses heteroatom
charge, but gives better correlations.

* Terminal heteroatoms charge are underestimated without inclusion of
Fourier difference “lone pair” electron density

* Qualitatively, charges are similar to theory (at least as similar as theories
are to each other).
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