

Using crystallographic models to experimentally measure partial atomic charges with comparison to quantum calculations

Taylor M. Keller¹, Prabhat Prakash², Alex Byrne¹, Michael J. Zdilla¹ ¹Temple University, Philadelphia PA 19122 and ²Indian Institute of Science Education & Research, Pune

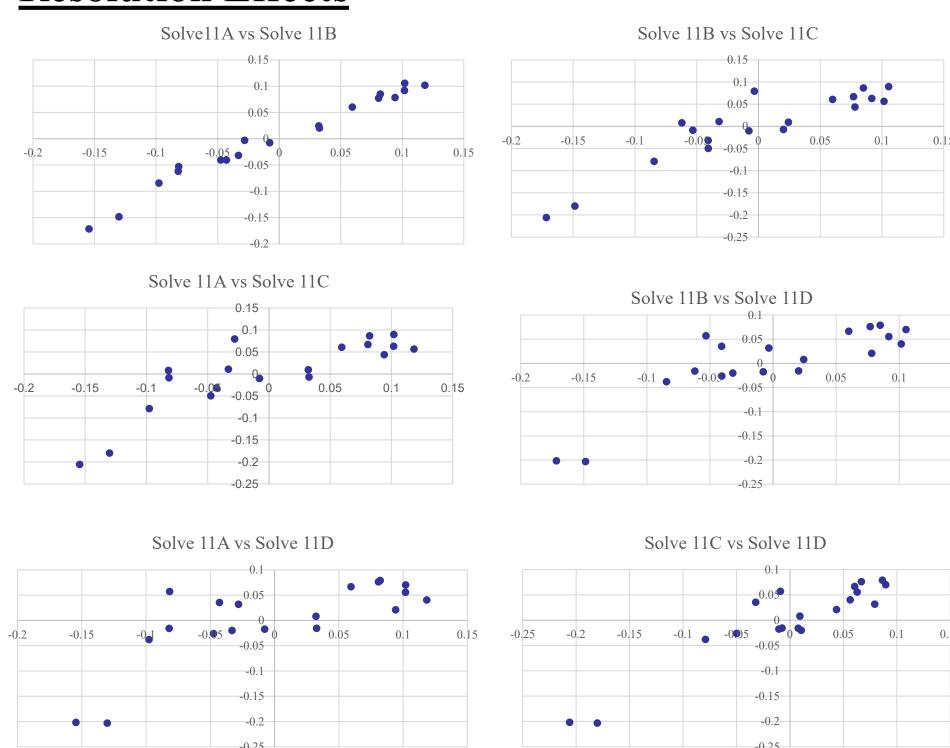
Introduction

Atoms are typically represented in a neutral state. However bonded atoms exhibit partial charge arising from intramolecular forces. These partial atomic charges are an essential component to understanding molecular electronics and bulk molecular properties. Current spectroscopic methods like IR and Raman lack the detail to focus individual atoms and determine partial charge. X-Ray crystallography allows us to target individual atoms. Current crystallographic refinement techniques treat atoms spherically. By refining individual parameters, we can experimentally model partial atomic charge.

Experimental

Samples were taken on a Bruker KAPPA APEX II DUO with a molybdenum radiation source and equipped with a CCD area detector. COSMO (Bruker AXS) was used for strategy determination. SAINT (Bruker AXS) was used for integration and refinement. SADABS (AXS) was used for scaling and absorption correction. XPREP (Sheldrick) was used to determine the space group. XL (Sheldrick, 2008) was used for computing structure refinement and XS (Sheldrick, 2008) was used for computing the structure solution. XL refinement used least squares minimization with a minimum of 128 cycles. APEX3 and OLEX2 were used as interfaces to run the aforementioned software. Crystals were solved as normal before any analysis took place. Once solved, atom positions were fixed and occupancy values were allowed to float. This allowed for the electron density in the covalent bond to not be perfectly distributed between the atoms, resulting in partial charges on the atoms. Other parameters such as hydrogen distances, thermal parameters, anisotropic/isotropic refinement were considered when doing the analyses.

Results & Discussion


4-(dimethylamino)pyridine C4 C3 H5_____C5 Nomenclature

Numbers refer to which dataset Letters refer to the resolution cutoff. 11- crystal 1, dataset 1 A- 0.55 Angstroms 12- crystal 1, dataset 2 B- 0.70 Angstroms

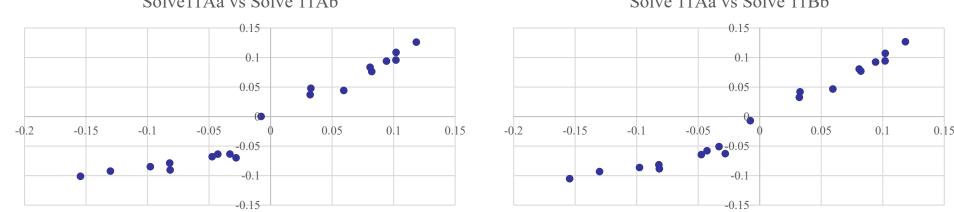
21- crystal 2, dataset 1 C-0.85 Angstroms 22- crystal 2, dataset 2 D-1.00 Angstroms

From Left to Right atoms are C1, C2, C3, C4, C5, C6, C7, N1, N2, H1, H2, H3, H4, H5, H6A-c, & H7A-C

Resolution Effects

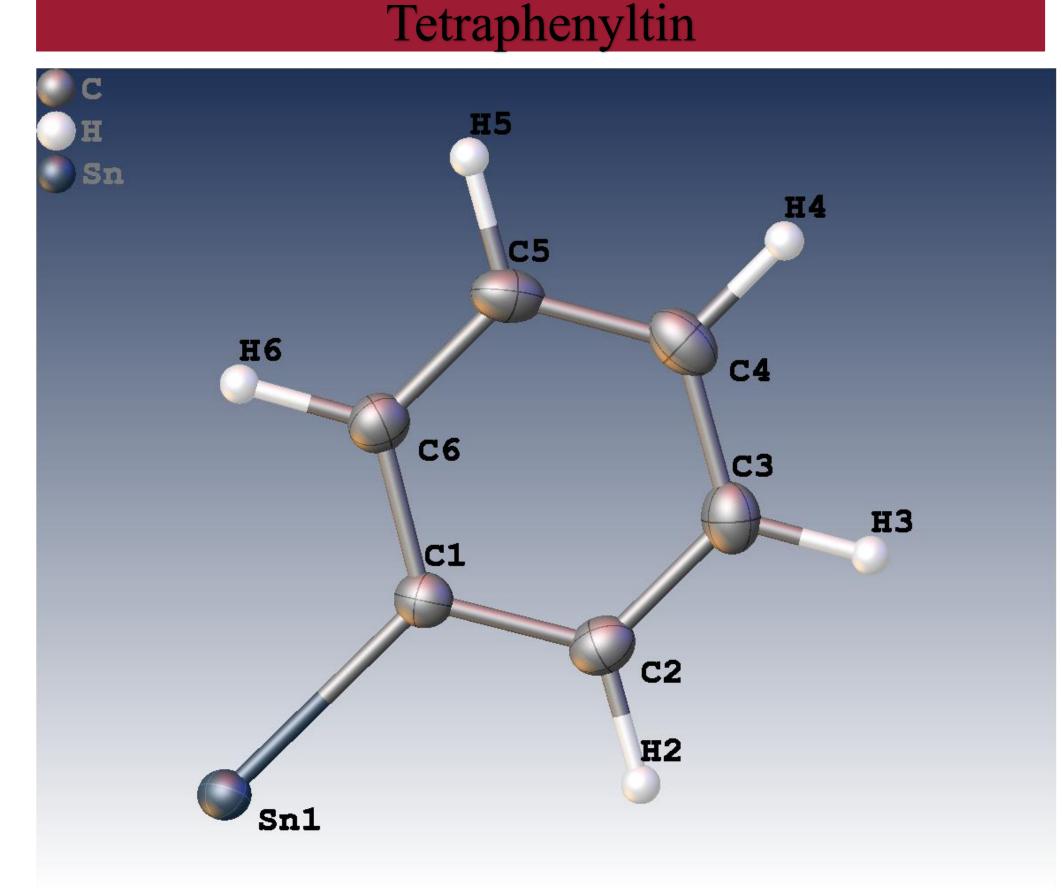
Correlation is seen at all resolutions analyzed, but is best below 0.85 Angstroms. This indicates the normal 0.76 Angstrom used during a molybdenum collection is sufficient.

Reproducibility


Solve 11A vs Solve 12A	Solve 11Aa vs Solve21Aa					
0.15	0.15					
0.1	0.1					
0.05	0.05					
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15	-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.					
-0.1 -0.15 -0.2	-0.05 -0.1 -0.15					
Correlation is seen between	Solve 11A vs Solve22A					
repeated integration of an	0.15					
identical crystal as well as	0.1 0.05					
data collected on a different	-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.					
crystal of the same	-0.1					

Additional Conclusions

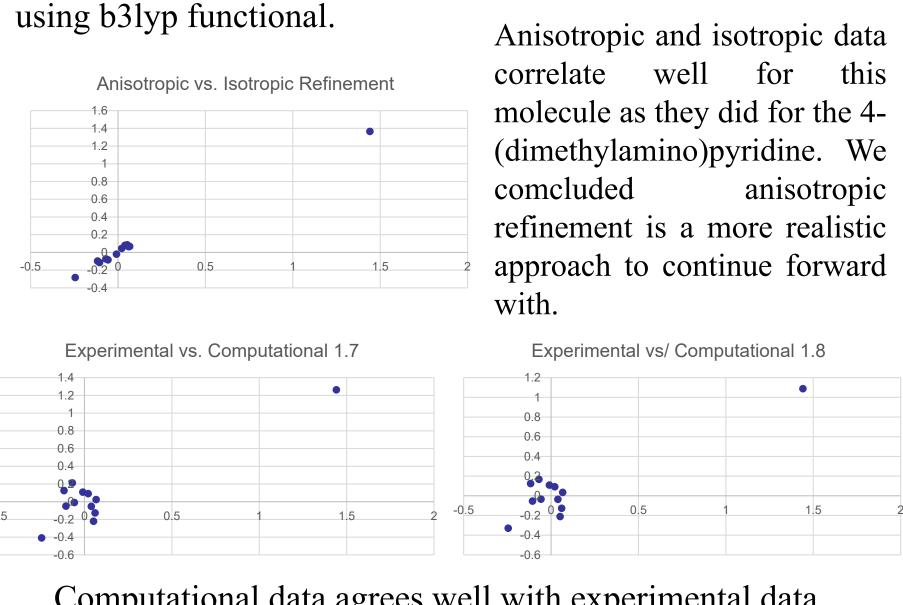
compound.


There was a slight change in correlation when the thermal parameters were fixed as noted by the bend. However, results were inconclusive as to why for this molecule.

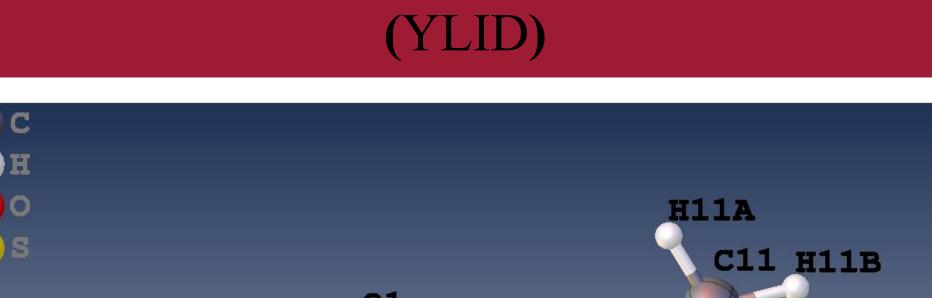
(a- thermals refined normally & b- thermals fixed)

Anisotropic refinement correlated well with isotropic refinement. (a- isotropic refinement & b- anisotropic refinement)

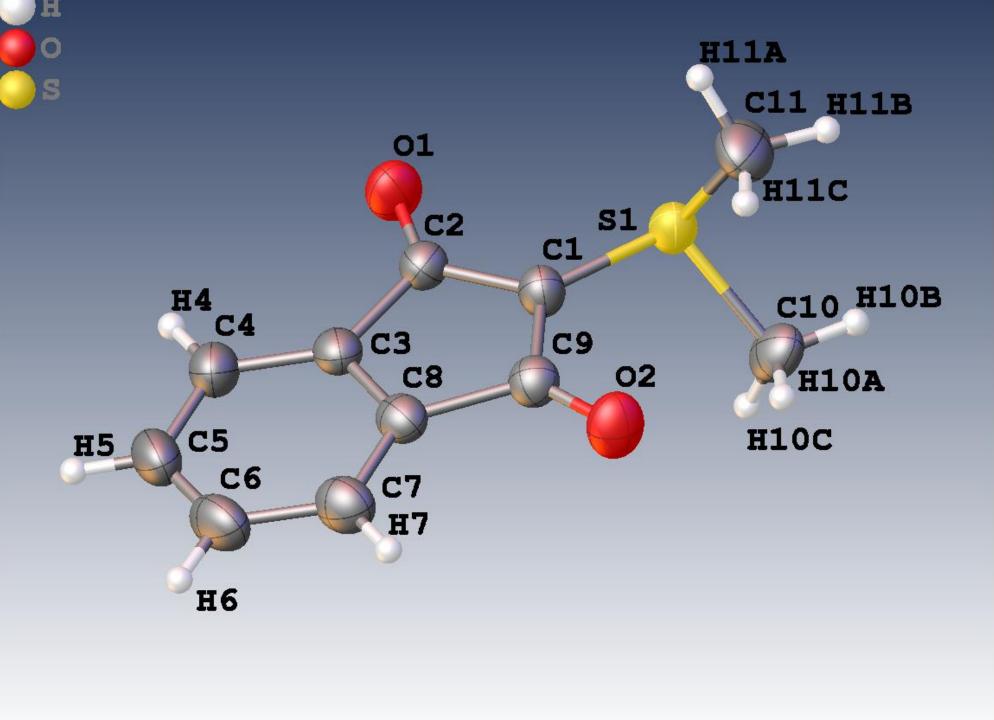
SolveIIAa vs Solve IIAb				Solve 21Ba vs Solve21Bb								
		0.15							0.15			
		0.1	•	800					0.1		• • •	
		0.05							0.05			
-0.2	-0.15 -0.1	-0.05	0.05	0.1	0.15				0			
0.2	0.13	-0.05	0.03	0.1	0.15	-0.2	-0.15	-0.1	-0.05	0.05	0.1	0.15
		-0.1							-0.1			
	•	-0.15					•		-0.15			
		0.2										


Atom	Charge	Atom	Charge
Sn1	1.441333409	Sn1	-0.50038182
C1	-0.244736994	C1	-0.207159677
C2	-0.069043229	C2	-0.113519671
H2	0.052578296	H2	0.24825689
C3	-0.105621711	C3	-0.207706569
Н3	0.060937698	Н3	0.252196536
C4	-0.057221063	C4	-0.17744523
H4	0.039692916	H4	0.226502755
C5	-0.116507467	C5	-0.180422751
H5	0.02159876	H5	0.188676081
C6	-0.008878941	C6	-0.114431157
Н6	0.06686829	Н6	0.210146643

Left: Anisotropically refined data with elongated realistic hydrogen distances and floating thermal parameters. Right: Anisotropically refined data with elongated realistic hydrogen distances and fixed thermal parameters.


Unlike the 4-(dimethylamino)pyridine, fixing the thermal parameters completely changed the charge on tin. We concluded floating the thermals allows for the maximum amount of electron density to be accounted for.

Atom	Charge	MP2/ECP(Sn)+6-31+G*		
Sn1	1.363822115	r(Sn) = 1.7	1.8	
C1	-0.284604655	1.261736	1.087364	
C2	-0.074378551	-0.408836	-0.330187	
H2	0.084922869	0.210764	0.166374	
C3	-0.115743163	-0.221417	-0.211096	
		-0.050401	-0.054076	
H3	0.064113438	-0.127769	-0.127314	
C4	-0.085409114	-0.010199	-0.035299	
H4	0.079153337	-0.053032	-0.036336	
C5	-0.098727932	0.124587	0.123219	
H5	0.044252557	0.090138	0.091113	
C6	-0.021220625	0.107094	0.107949	
Н6	0.066665723	0.023638	0.033814	


Left: Isotropically refined data with elongated realistic hydrogen distances and floating thermal parameters. Right: Computational Data with optimized geometry

Computational data agrees well with experimental data.

2-dimethylsufuranylidene-1,3-indanedione

A 4 a	E anima and al Changa	Change
Atom	Experimental Charge	Charge
<u>C1</u>	-0.109404375	-0.59851
C2	0.04222339	0.49869
C3	-0.106329241	-0.09822
C4	-0.105146497	-0.20521
C5	0.013187028	-0.23293
C6	-0.048682304	-0.23293
C7	-0.105737869	-0.20521
C8	-0.04754687	-0.09822
C9	0.008870013	0.49869
C10	-0.204437846	-0.83039
C11	-0.249086427	-0.83039
H4	0.01992914	0.25761
H5	0.003232739	0.24395
Н6	0.077065526	0.24395
H7	0.080909443	0.25761
H10a	0.065218374	0.26144
H10b	0.120620069	0.31058
H10c	0.087020287	0.26622
H11a	0.018155024	0.31058
H11b	-0.040134537	0.26144
H11c	-0.069101906	0.26622
S 1	0.569607943	0.91015
O1	0.012378631	-0.63208
O2	-0.032802185	-0.63208

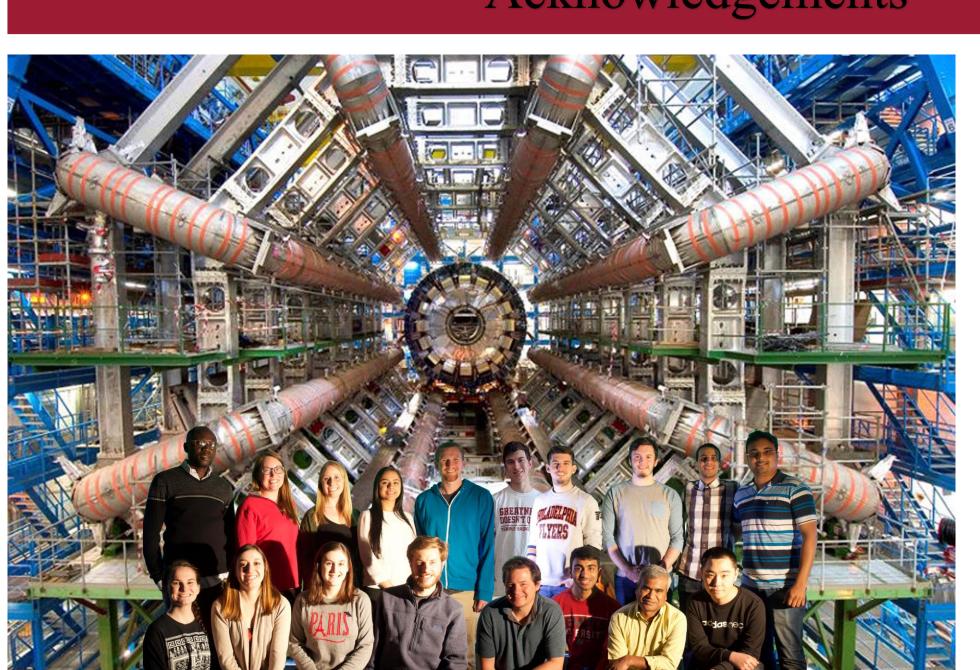
The Bruker test crystal is a perfectly spherical crystal that exhibits a formal positively charged sulfur and a formal negatively charged carbon atom. Those atoms are bolded and their charges are as expected. In this dataset, the experimental hydrogens were elongated to realistic bond lengths and all thermals except for the hydrogens were floated. Current analyses are being directed toward the effects of floating the hydrogen thermal parameters and understanding how the occupancies values change with those values.

2,5-di(pyridin-2-yl)pyrrolidine					
C H N					
H4 C6 C4 C5 N1 C2 C1 H2	H7' H4' H3' C7' C3' C6' C5' C2' H2' N1' N2 H2A C1' H1'				

		Computational
Experimental Partial Charge	Atom	Charge
0.072863636	C1	0.35
-0.033101795	C2	-0.34
-0.022679953	C3	0.158
-0.038342837	C4	-0.437
-0.027619786	C5	0.596
-0.080572381	C6	-0.199
-0.123826036	C7	-0.122
0.018525479	C1'	0.326
-0.081957944	C2'	-0.324
-0.0086436	C3'	0.152
-0.036234372	C4'	-0.423
0.039489646	C5'	0.577
-0.12846466	C6'	-0.183
-0.125211599	C7'	-0.146
0.0261814	N1	-0.599
0.037918522	N1'	-0.588
-0.03144998	N2	0.07
0.006089632	H1	0.021
0.047084218	H2	0.132
0.042184547	Н3	0.06
0.026220454	H4	0.173
0.07596015	H7	0.107
0.032736615	H1'	0.029
-0.021360575	H2'	0.129
0.065066413	H3'	0.059
0.056180739	H4'	0.17
0.050266996	H7'	0.115
0.16277871	H2A	0.132

Experimental and theoretical data disagree when it comes to the aromatic Nitrogen atoms. This could be due to the very covalent nonpolar nature of those bond

Conclusions & Future Direction


Our methods work for small organic based molecules, zwitter ions, and compounds with metals. We would like to look into the effects of heavy atoms and their scattering. Not included in this data are samples where the calculated charges of heavy atoms were positive when hypothesized to be negative. We would also like to understand the effects the hydrogen thermal parameters have on the datasets. Preliminary analysis has been started.

References

- Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 64, 112–122 (2008).
- Breneman, C. M. & Wiberg, K. B. Determining atom centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990).

Acknowledgements

Temple University Department of Chemistry

Temple University **EFRC**

The Zdilla group

NSF grant award 1800105