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Derivation of partial charges 1n small and large scale molecular systems 1s
important for modeling of various experimental and theoretical properties like
dipole moments, auto-correlation functions, charge disparity, understanding of
dispersion, benchmark of classical MD simulations and electrostatic potential

energy surface mapping. A correspondence between theoretical calculations 12 . Li
(based on single/small number of molecules) 1s usually established with 1 08
macroscopic IR/Raman spectra or dipole moment measurements. Such 22

comparisons are indirect and lack a fine mapping of electrostatic potential from 0.4

theory to experiment. In a new approach developed as the experimental part of 07
this work, partial charges are calculated from crystallographic model

refinement. The experimental method exhibits a satisfactory correspondence
with partial charges obtained wusing quantum chemistry calculations.
gas phase partial charges from CHELPG method and condensed phase Lowdin
charges correlate well and validate this experimental method.
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Case 1. Tetraphenyl tin
a=12.0052 A, b=12.0052 A, c=6.4372 A
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» A simple method to derive partial charges for small organic
molecules from their single-crystal structure.

» Understanding correlation of atomistic charges derived from
experiments to theoretical methods 1n gas and condensed phase.

» Partial atomic charges for gas phase geometries using methods like
CHarges from Electrostatic Potential Grid (CHELPG), natural bond
orbital analysis!.

» Plane-wave periodic DFT using PBE projector augmented-wave-
based pseudopotentials to derive Lowdin charges in the condensed
phase”.

» Development of force-fields, dipole moments using these

correlations.

Experimental and Theoretical Details

» Samples were taken on a Bruker KAPPA APEX II DUO with a
molybdenum radiation source and equipped with a CCD area
detector. COSMO (Bruker AXS) was used for strategy
determination. SAINT (Bruker AXS) was used for integration and

Packing 1n a unit cell, Sn atom occupies the center and the edges

Charges from gas phase calculations:
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Condensed phase charges obtained from pwdit calculations:

» PWDFT predicts a Lowdin charge of 1.08 on Sn atom and charge on
Cl to be - 0.22.

»> It fails to predict accurate charges for light H atoms and also nature
of polarization on ortho C atoms.

» Since these charges from SCF only, a detailed analysis of relaxed
and variable cell relaxed geometry 1s required.

Conclusions and Future

» A simple method is presented here to extract reliable atomic partial
charges using single-crystal XRD data.

» For heavy atoms like Tin, the agreement 1s good.

» For light atoms like H, more accurate modeling is required.

» Solid state charges from plane-wave DFT which can provide better

. . Charges anisotropic charge distributions and includes effect of intermolecular
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. L. . Energy, Office of Science, Basic Energy Sciences, under Award #
XRD unit cell was extracted for geometry optimization and partial H4 0.039693  0.079153  -0.00799  -0.00702 0.003592 -0.05303 -0.03634 . ,
R DESCO0012575. For additional computational resources, we acknowledge
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- T 1T 1 Temple University's HPC resources, which were supported in part by the
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> For plane-wave periodic DFT calculations, a unit cell was used to National Science Foundation through major research instrumentation
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» Higher k-mesh (depending upon the unit cell dimensions in each
case) were used for final SCF calculations to derive charges.

Exp1-4 are various data sets obtained by varying refinement/structural

constraints/ thermal schemes. These are in detailed discussed 1n poster
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» Since CHELPG scheme uses a vdW radius for atoms to compute
partial charges via fitting them to electrostatic potential, a variational
value of radii for Sn atom was used from 1.6 A to 1.9 A. Results for
r(Sn) = 1.7 A and 1.8 A are used here for comparison with
experiments.

» For MP2 derived charges on optimized geometries, B3LYP was used
for optimization.

» Effective core potential was used for Sn atom, while People’s basis
was used for other atoms with polarized and diffused functions.

PS2-7 by Taylor Keller et. al. from our group.

Theor1: MP2/ECP&6-31++G* SCF with r(Sn) = 1.7 A

Theor2: MP2/ECP&6-31++G* SCF with r(Sn) = 1.8 A

Theor3: B3LYP/MP2/ECP&6-31++G* Opt. with r(Sn) = 1.7 A.
Theor4: B3LYP/MP2/ECP&6-31++G* Opt. with r(Sn) = 1.8 A.
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