
Conditional Linear Regression

Diego Calderon Brendan Juba Sirui Li Zongyi Li Lisa Ruan
UIUC Washington U. St. Louis MIT Caltech Harvard

Abstract

Work in machine learning and statistics com-
monly focuses on building models that cap-
ture the vast majority of data, possibly ignor-
ing a segment of the population as outliers.
However, there may not exist a good, sim-
ple model for the distribution, so we seek to
find a small subset where there exists such
a model. We give a computationally effi-
cient algorithm with theoretical analysis for
the conditional linear regression task, which
is the joint task of identifying a significant
portion of the data distribution, described by
a k-DNF, along with a linear predictor on
that portion with a small loss. In contrast to
work in robust statistics on small subsets, our
loss bounds do not feature a dependence on
the density of the portion we fit, and com-
pared to previous work on conditional lin-
ear regression, our algorithm’s running time
scales polynomially with the sparsity of the
linear predictor. We also demonstrate em-
pirically that our algorithm can leverage this
advantage to obtain a k-DNF with a better
linear predictor in practice.

1 Introduction

Linear regression is a standard tool of statistical anal-
ysis. While the standard linear regression task seeks
to model the majority of the data, we consider prob-
lems where a linear predictor can only be accurate for
a small portion of the data distribution. We will con-
sider cases in which the linear predictor is accurate
on a conditional distribution described by some sim-
ple condition. Note that neither the condition nor the
linear rule is known in advance. To illustrate our prob-
lem, consider a set of patient data from a hospital that

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

includes multiple continuous factors, such as rate of
smoking, radiation exposure, etc. Assume we want to
predict risk of developing lung cancer. There may be
no linear rules that can model, e.g., the risk of develop-
ing lung cancer for the majority of the data. However,
there may be some linear model that fits a specific
subset of the data well, such as adult city-dwellers. If
such a model exists, we aim to find it together with
the description of the corresponding condition. Our
focus is on identifying the portions of the population
for which such simply structured models succeed in
making accurate predictions, even when such models
do not exist for most of the population. This prob-
lem was introduced by Juba (2017), who gave an al-
gorithm for conditional linear regression under the ℓ∞
loss where the predictor factors are sparse (i.e., its time
and data requirements are exponential in the number
of regression factors), and an algorithm for the gen-
eral case that only identifies a condition describing a
small fraction of the optimal condition. The former,
sparse algorithm was extended to general ℓp losses by
Hainline et al. (2019).

Our contribution We give an algorithm for the ℓ2
loss that, under some mild regularity assumptions,

1. Only uses polynomial time and data in the dimen-
sion and number of factors.

2. Recovers a condition that covers as much of the
distribution as the optimal condition.

3. Approximates an optimal t-term k-DNF with a
Õ(t log log n)-factor blow-up of the loss.

4. Is faster, especially for non-sparse problems, com-
pared to the previous algorithm by Hainline et al.

Our algorithm builds on the list-learning algorithms
due to Charikar et al. (2017). That work aimed to
learn about arbitrary small subsets of the data by pro-
ducing a list of parameter values containing estimates
of the parameters for any small subset. Charikar et
al. could only address tasks such as mean estimation,
and as they discuss, could not obtain sufficient accu-
racy to use their framework for linear regression—their
algorithm returns uninformative estimates of the re-
gression parameters. Our algorithm, like theirs, it-

Conditional Linear Regression

eratively computes local estimates for the regression
parameters with consideration of their neighbors, and
then (re)clusters the terms using their corresponding
parameters. Our primary innovation lies in using a
fixed family of subsets (“terms”) as the basic units of
data as opposed to individual points, which we lever-
age to obtain adequate estimates of the regression pa-
rameters. Specially, our improvements upon the work
of Charikar et al. (2017) are:

1. We modify Charikar et al’s algorithm and analysis
to operate on sets instead of points, by introducing
weights and modifying the definition of neighbors.

2. In our algorithm, we show that it does not lose
good sets in any iteration, in contrast to Charikar
et al’s algorithm which indeed may lose a small
fraction of good points. Consequently, whereas
the original algorithm may need to terminate with
a inaccurate estimate of the parameters, we can
potentially reach any accuracy.

3. We introduce a covering algorithm in the end to
extract a small k-DNF condition.

We stress that Charikar et al. (and subsequent works
such as (Diakonikolas et al., 2018)) cannot obtain a
linear predictor with loss that scales with the loss of
the best linear predictor on the data on account of
a difference in the formulation: Charikar et al. and
Diakonikolas et al. consider arbitrary subsets of the
data, whereas we only consider subsets described by k-
DNFs. Diakonikolas et al. show that even for the sim-
pler problem of mean estimation, one can only guaran-
tee loss that scales polylogarithmically with the den-
sity of the set for which we estimate the mean. Some
very recent works (Karmalkar et al., 2019; Raghaven-
dra and Yau, 2020) solve a list-learning linear regres-
sion task, that could be used to solve our problem, but
these algorithms have a running time that is exponen-
tial in a high-order polynomial of 1/µ, where µ is the
size (fraction) of target subset in the whole data set.
Even for µ = 1/2, these algorithms are essentially in-
feasible to run in practice. By contrast, our algorithms
have a running time that only depends polynomially
on 1/µ, and we demonstrate their feasibility on some
standard benchmark data sets.

Related Work Our problem is similar in spirit to
work in robust statistics (Huber, 1981; Rousseeuw and
Leroy, 1987), with the key distinction that apart from
the list-learning works discussed above, robust statis-
tics assumes that the outliers comprise a minority
of the data. By contrast here, the majority of the
data may be “outliers.” Another setting in this vein
is learning with rejection in which the predictor has
the option to “abstain” from making a prediction.
In most cases, the strategy for deciding when to ab-

stain is based on some measure of “confidence” of
the prediction—for example, this is how El-Yaniv and
Wiener (2012) addressed a linear regression task. The
difference is that these methods do not generally pro-
duce a “nice” description of the region on which they
will make a prediction. On the other hand, Cortes
et al. (2016) considered a version of the task in which
the prediction region is constrained to come from a
fixed family of nice rules, like us. The difference is
that Cortes et al. do not seek to achieve given rates
of coverage or error, but rather posit that abstain-
ing from prediction has a known, fixed cost relative to
the cost of an error, and seek to minimize this overall
cost. Finally, algorithms such as RANSAC (Fischler
and Bolles, 1981) similarly find a dense linear rela-
tion among a subset of the points when one exists, but
these algorithms scale exponentially with the dimen-
sion, and like learning with rejection, do not obtain
a rule characterizing which points will satisfy the lin-
ear relationship. There are many other works that
fit the data using multiple linear rules, such as lin-
ear mixed models (McCulloch and Searle, 2001; Jiang,
2007), segmented regression, regression trees (Quin-
lan, 1992), cluster-wise linear regression (Park et al.,
2017), or piecewise linear regression. These methods
are similar in that the portion of the data fit by an
individual linear rule may be small. The distinction is
generally that they seek to model the entire data dis-
tribution with linear rules, i.e., they cluster the data
and minimize the total loss over all clusters. By con-
trast, we only seek a small fraction (say, 10%) of the
data where a good linear rule exists. We also stress
that unlike some of these methods, we find a formula
describing the portion of the distribution we fit.

2 Problem Formulation and Results

We suppose we have data consisting of N examples,
where each example has three kinds of attributes: a
vector of n Boolean attributes x, a vector of d real-
valued attributes y, and a real-valued attribute z that
we wish to predict. For example, in our cancer predic-
tion setting, we have an example (x,y, z)(i) for each
ith patient in which:

• x(i) is a vector of Boolean demographic properties
that describe patient i (e.g., adult, city dweller)
• y(i) is vector of continuous risk factors for patient
i, (e.g., rate of smoking, radiation exposure)
• z(i) might be the probability of developing a cer-
tain kind of cancer in the next ten years.

When there is no confusion, we will use x(i) to denote
the whole point (x,y, z)(i). Note that we can obtain
Boolean attributes x from continuous attributes y by
using binning and splits, similar to decision trees. For

Diego Calderon, Brendan Juba, Sirui Li, Zongyi Li, Lisa Ruan

example, we can define a new Boolean attribute like
x = “whether y ≤ a ” for some quantile of the data a,
which we use in the experiments. Similarly, Boolean
variables can also be used as regression factors.

We wish to find a linear rule 〈w,y〉 to predict z. We
would typically achieve this by minimizing the loss
‖〈w,y〉 − z‖2 averaged over the data. But, it’s com-
mon that there doesn’t exist a good linear rule for the
whole data set. We propose to find a subset of the
data (i.e. a condition c), such that there exists a good
fit on c. Of course, if we just pick any subset that
fits some linear rule well, this is unlikely to be predic-
tive. Instead, we will pick out a subset described by
some simple conditions which will use the Boolean x
attributes. Following the previous work (Juba, 2017),
we will only consider conditions represented by k-DNF
(Disjunctive normal form) formulas, which are an “or”
of terms, where each term is an “and” of at most k
attributes (which we permit to be negated). Thus:
c = t1 ∨ . . . ∨ ts for some s, where ti = ℓi,1 ∧ . . . ∧ ℓi,k,
and where ℓi,j is either xi,j or ¬xi,j , for some attribute
xi,j . And, when we say a t-term DNF, we mean s ≤ t.
For example, a term could be “patients who are adult
and female”; a DNF could be “patients who are ei-
ther (adult and female) or (not smokers and male)”.
We focus on k-DNF conditions since the use of other
natural representations results in an intractable prob-
lem (Juba, 2017). So, we want to find such a k-DNF
condition that there exists an accurate linear predictor
in its conditional distribution, and that is true some-
what often. We will demand that data satisfies it with
probability at least µ. Since the task is thus to choose
an appropriate set of terms (defining a k-DNF), we
can view the terms as m atomic sets of data.1 A table
of notation is included in the supplemental material.

Definition 2.1 (Conditional Linear Regression)

Given data {(x(i)
1 , . . . , x

(i)
n , y

(i)
1 , . . . , y

(i)
d , z(i))}Ni=1

drawn i.i.d. from a distribution D, the task is to find a
k-DNF condition c and parameters w = (w1, . . . , wd),
such that the loss ‖〈w,y〉 − z‖ is bounded on D|c and
Pr[c(x) = 1] ≥ µ.

We will describe an algorithm that finds a pair (ĉ, ŵ)
that is close to the optimal solution (c∗,w∗), given
that the data distribution on c∗ is sufficiently nice in
the following sense. We assume first that w∗ gives a
predictor with subgaussian residuals on c∗. Second,
that our loss function is Lipschitz. Third, that how
much the covariances of the desired conditional dis-
tribution on c∗ varies across its significant terms is

1Indeed, we will not use the structure of the terms and
we could work instead with an arbitrary family of m such
atomic subsets of the data, as long as we can collect enough
data relative to the number of subsets.

bounded in a spectral sense, captured by the param-
eter Sβ0 (defined later). If the distribution on this
subset is independent of which term of c∗ is satisfied,
then Sβ0 is 0. If the distribution across these terms is
very different from one another, it will be harder for
our algorithm to identify that they should be fit by a
common linear rule. We will need that this quantity
is sufficiently small relative to the degree of (strong)
convexity κ of the loss function. (Note that we will
see at least that our algorithm succeeds on some stan-
dard benchmark data sets in practice.) Generally, for
the squared error loss on a bounded space, the convex-
ity coefficient can be viewed as a constant, when the
bound ‖y‖2 ≤ B is fixed. Our main theorem is:

Theorem 2.2 Suppose D is a joint distribution over
x ∈ {0, 1}n,y ∈ B ⊂ R

d and z ∈ R. If there exists
a (ideal) t-term condition c∗ out of m possible terms
and parameters w∗ ∈ H ⊂ R

d, where B has l2 radius
B and H has l2 radius r, such that:

1. ED[(〈w∗,y〉 − z)2|c∗(x) = 1] ≤ ǫ.
2. Pr[c∗(x) = 1] ≥ µ,

and we have the regularities:

1. the error (〈w∗,y〉−z) follows a σ-subgaussian dis-
tribution on D|c∗

2. the loss function f(w, (y, z)) = (〈w,y〉 − z)2

is L-lipschitz and κ-strongly convex, where κ ≥
Ω
(

tS γ
t
0 log

1
µ/
√
µ
)

,

then for any δ, γ ∈ (0, 1), using N =

O(B6d3σ2L2t2

µγ4 log(m/δ)) examples, we can find a

O(t logµN)-term condition ĉ and parameters ŵ in
polynomial time, such that with probability (1− δ):

1. ED[(〈ŵ,y〉 − z)2|ĉ(x) = 1] ≤ O(t log(µN)(ǫ+ γ))
2. Pr[ĉ(x) = 1] ≥ (1− γ)µ.

The Lipschitz condition follows from the bound on y
and w, L ≤ rB2, and the number of good terms t
is always at most the total number of possible terms
m ≤ nk, so O(t log(µN)ǫ) ≤ Õ(nkǫ) (suppressing the
other parameters). Also, we will be able to enforce
that our loss function is at least κ-strongly convex by
adding a regularization term, κ

2 ‖w‖22, at some possible
cost to solution quality.

We note that some dependence on the number of
terms/Boolean attributes in the error seems unavoid-
able for polynomial-time algorithms. Juba (2017)
showed that algorithms for conditional linear regres-
sion (w.r.t. ℓp losses) yield algorithms for agnostic
learning of the family of rules used for conditions with
respect to a particular model that treats false-positives
and false-negatives differently. The current state of the
art for learning this model achieves roughly a O(nk/2)
blow-up for general k-DNFs (Zhang et al., 2017), or a

Conditional Linear Regression

O(t log log n) blow-up for t-term k-DNFs (Juba et al.,
2018). Indeed, we adapt the approach of Juba et al.
(2018) to obtain the analogous guarantee here. (We
note that for the standard error model, the state of
the art is essentially a O(nk/3) blow-up (Awasthi et al.,
2010).) Note that for interpretabilty, cases where the
DNF is small are of the most interest.

3 Algorithm

Our algorithm works primarily on terms: we consider
the terms {tj}mj=1 to be atomic sets of data, whose
weights |tj | are the number of points (or probabil-
ity mass) satisfying the terms. The ideal condition
{x : c∗(x) = 1} is denoted by Igood; we also use
Igood to denote the collection of terms of the DNF
c∗: {ti : ti is a term of c∗}, so the number of terms
in Igood is t. From the perspective of Charikar et al.
(2017), we treat Igood as our “good data,” with the
other points being arbitrary bad data. The algorithm
computes regression parameters wj for each term tj ,
and clusters the wj . The parameters are iteratively re-
computed in a space centered on each of the clusters,
improving the quality of our estimates. Eventually,
our algorithm suggests a list of candidate parameters
ŵ, with one of them approximating w∗. Using the
residuals of each ŵ as labels, we learn a correspond-
ing ĉ and evaluate its quality. Towards realizing this
strategy, we need to compute approximations to the
regression parameters that are not too impacted by
the presence of terms outside the desired DNF. A ta-
ble of notation, some illustrations, and all proofs are
included in the supplemental material.

3.1 Reformulation in term-wise losses

Our algorithms will assume the terms are disjoint and
that we have an adequate number of examples to es-
timate the loss on each term. We will ensure these
properties by introducing duplicate points and delet-
ing terms that are satisfied by too few examples.

GivenN data points andm terms t1, . . . , tm, if we view
terms as sets, our analysis will require these terms to
be disjoint. A simple method is to duplicate the points
for each term they are contained in. After duplication,
the terms are disjoint, and there will be at most Nm
points. We denote the resulting number of points by
N ′. The size of Igood, changing from |⋃Igood

ti| to
∑

Igood
|ti|, may also blow up with a factor ranging

from 1 to t. Note that the proportion of good points
Ngood/N decreases by at most a factor of 1/m since
N ′

good/N
′ ≥ Ngood/mN . This double counting process

may skew the empirical distribution of Igood by up to
a factor of t. For convenience, we will use the same
notation N , Igood, and µ for both before and after

duplication when there is no confusion.

The approach of Charikar et al. (2017) can only guar-
antee satisfactory estimates of the parameters for suf-
ficiently large subsets of the data. Intuitively, this is
not a significant limitation as if a term has very small
size, it will not contribute much to our empirical esti-
mates. Indeed, with high probability, the small terms
(terms with size < βµN for β ≤ γ/t) only comprise a
γ fraction of Igood. Based on this motivation, if a term
has size less than βµN , then we just delete it at the
beginning. As before, we use t and m for the number
of terms when there is no confusion.

Given N data points and m disjoint sets (terms)
t1, . . . , tm with sizes (weights) |t1|, . . . , |tm|, we can de-
fine a loss function for each point in the space of pa-
rameters. For each ith point, define f (i) : H → R by
f (i)(w) = (z(i) − 〈w,y(i)〉)2, which is a function of w:
z(i) and y(i) are fixed. Similarly, we define a loss func-
tion for each of the terms tj , fj : H → R, as the aver-
age loss over these data points {x(i) = (x(i),y(i), z(i))}
in the term tj (beware we abuse the notation to let x(i)

denote the ith point (x,y, z)(i)). Note these loss func-
tions are stochastic, depending on the sample from the
distribution x ∼ D.

The expected loss for a fixed term tj is:
E[fj(w)] = E

x(i) [(z(i) − 〈w,y(i)〉)2|tj]. Sim-
ilarly, for Igood, we define the loss function
fIgood(w) = 1

|Igood|
∑

x(i)∈Igood
f (i)(w). Let f̄ de-

note the expected loss function for points averaged
over Igood, f̄ = E[fIgood]. Then the optimal w∗ is
defined as w∗ := argmin

w
f̄(w). Our ultimate goal is

to find ŵ that minimizes f̄ , but the difficulty is that
f̄ is unknown (since Igood is unknown). To overcome
this barrier, instead of directly minimizing f̄ , we try
to find parameters ŵ such that f̄(ŵ)− f̄(w∗) is small.
Once we get a close approximation ŵ, we can use the
covering algorithm of Juba et al. (2018) to find a good
corresponding condition ĉ.

Definition 3.1 (Reformulation of the problem)
Given D a distribution over points {x(i) :=
(x(i),y(i), z(i))}N(i)=1, and {tj}mj=1 predefined dis-

joint subsets (terms), let Igood be the (unknown)
target collection corresponding to c∗ =

⋃

tj∈c∗ tj with

probability mass Pr[x ∈ Igood] ≥ µ, and f̄ be the
regression loss over Igood. If there exists a linear pre-
dictor w∗ such that f̄(w∗) ≤ ǫ. Then we want to find
ŵ that approximates w∗ such that f̄(ŵ) ≤ ǫ+ error.

3.2 Main Optimization Algorithm

The main algorithm is an alternating-minimization al-
gorithm: we assign “local” regression parameters wi

for each term ti, and use a semi-definite program

Diego Calderon, Brendan Juba, Sirui Li, Zongyi Li, Lisa Ruan

(SDP) to minimize the total loss
∑ |ti|fi(wi) with reg-

ularization to force these parameters to be close to
each other. Following each iteration, we use SDP (2)
to remove outliers, by decreasing the weight factors ci
for those terms without enough neighbors. Intuitively,
if there is a good linear rule w∗ on Igood, then for each
term ti ⊂ Igood, fi(w

∗) should be small. Therefore,
we can find a small ellipse Y bounding all parameters
{wi} for the terms in Igood. We shift the parameters
so that the ellipse is centered at 0. SDP (1) finds such
an ellipse while minimizing the weighted total loss.

Algorithm 1: Soft regression algorithm

Input: terms t1:m. Output: parameters ŵ1:m

and a matrix Ŷ
Initialize c1:m ← (1, . . . , 1), λ← √8µNtS/r
repeat
Let ŵ1:m, Ŷ be the solution to the SDP:

minimize
w1,...,wm,Y

∑m
i=1 ci|ti|fi(wi) + λtr(Y)

s.t. wiw
⊤
i � Y for i = 1, . . . ,m.

(1)

if tr(Ŷ) > 6r2/µ then
for i = 1 to m do

Let w̃i be the solution to the SDP:

minimize
w̃i,ai1,...,aim

fi(w̃i) s.t.

I :w̃i =
∑m

j=1 aijŵj , II :
∑m

j=1 aij = 1,

III :0 ≤ aij ≤ 2
µN |tj | ∀j

(2)
zi ← fi(w̃i)− fi(ŵi)

end for
zmax ← max{ zi

∣

∣ ci 6= 0}, for i = 1 to n do:
c′i ← ci.

zmax−zi
zmax

.
end if

until tr(Ŷ) ≤ 6r2

µ

Return ŵ1:m, Ŷ

We solve SDP (2) for each term ti to find its best µN
neighbor points and compute the “average” parameter
w̃i over the neighborhood. w̃i is a linear combination
of its neighbors’ parameters: w̃i =

∑m
j=1 aijŵj , min-

imizing the term’s loss fi(w̃i). Intuitively, if a term
is a good term, i.e. ti ⊂ Igood, then its parameter
ŵi should be close to the average of parameters of all

terms in Igood, wi ≈
∑

Igood

|tj |
|Igood|wj . In the SDP

for ti, we define coefficients aij to play the role of
|tj |

|Igood| . These coefficients {aij} are required to sum

to 1, i.e.
∑m

j=1 aij = 1, and each should not be larger

than
|tj |

|Igood| ∼ 2
|tj |
µN . At a high level, the SDP computes

the best neighbors for ti by assigning {aij}, so that the
average parameter w̃i over the neighbors minimizes fi.
If a term is bad, it is hard to find such good neighbors,

so if the loss fi(w̃i) is much larger than the original
loss, then we consider the term to be an outlier, and
down-weight its weight factor ci.

3.3 A Linear Bound on the Loss

Based on a spectral norm analysis, we will show the
bound will shrink linearly with the radius as long as
we have enough data. First, to estimate the losses
by their inputs, we introduce the gradient ∇f . By the
convexity of f , we have (f(w)−f(w∗)) ≤ 〈∇f(w),w−
w∗〉. Note that ‖w − w∗‖ is bounded by 2r, where
r := max ‖w‖2. To bound the gradients, we use the
spectral norm:

S := max
w∈H

1√
t
‖
[

∇fj(w)−∇f̄(w)
]

j∈Igood
‖op

It is the 2-norm of the matrix whose rows are gra-
dients of loss functions of terms in Igood: (∇fi(w) −
∇f̄(w))i∈Igood . S measures the difference between the
gradient of loss functions of terms in Igood: ∇fi(w)
and gradient of average loss on Igood: ∇f̄(w). At a
high level, this bound tells us how bad these loss func-
tions could be. We will show S shrinks as the radius
of parameters r decreases.

For linear regression, fj(w) := 1
|tj |

∑

i∈tj
f (i)(w), and

∇fj(w) = 1
|tj |

∑

i∈tj
∇f (i)(w), where for each point

∇f (i)(w) = 2(w⊤y(i) − z(i))y(i). If we assume z(i) =
w∗⊤y(i) + ǫ(i), and the residual ǫ(i) (a subgaussian,
e.g., from N (0, σ2

ǫ)) is independent of y(i), then we
can write (∇fj(w)−∇f̄(w)) as

2(w⊤ −w∗⊤)
(

∑

i∈tj

y(i)y(i)⊤

|tj |
− E[yy⊤]

)

+
∑

i∈tj

ǫ(i)y(i)

|tj |

where the first part is going to shrink as (w⊤ −w∗⊤)
decreases and the second part approaches zero as we
draw more data, 1

|tj |
∑

tj
ǫ(i)y(i) → 0. More con-

cretely, we define

S0 := ‖
[1

|tj |
∑

tj

y(i)y(i)⊤ − E[yy⊤]
]

Igood
‖op.

Note, S0 is fixed given the data, and thus remains con-
stant across iterations. Furthermore, S0 concentrates
around ‖

[

E[y(i)y(i)⊤|tj]−E[yy⊤]
]

Igood
‖op and can thus

be bounded. The bound on S we can guarantee will
decrease when we take more points. We obtain

Lemma 3.2 For N = O(σ2
ǫ log(m/δ)/βµr2)) points,

with probability 1−δ the spectral norm of the gradients
S is bounded by a linear function of the radius r :=
maxw ‖w‖2, i.e., S = O(rS0).

Conditional Linear Regression

3.4 List-regression Algorithm

We now introduce the recentering algorithm. Follow-
ing Charikar et al. (2017), we initially use Algorithm 1
to assign a parameter ŵi for each term. In each itera-
tion, we check if the termination condition r ≤ 1

2rfinal
is met. If not, we repeatedly find Padded Decomposi-
tions Ph (Fakcharoenphol et al., 2003) to cluster the
terms by their parameters ŵi and reuse Algorithm 1 on
each cluster to get estimates w̄i(h). Finally we pick a
central w̄i(h0) and update ŵi. In each iteration the ŵ
of good terms will get closer, so we can decrease the ra-
dius of the ellipse containing Igood by half. Eventually,
the algorithm will be able to constrain the parameters
for all of the good terms in a very small ellipse. The
algorithm then outputs a list of candidate parameters,
with one approximating w∗.

Algorithm 2: List-regression algorithm

Input: m terms, target radius rfinal. Output:
candidate solutions {u1, ...,us} and ŵ1:m.

Initialize r(1) ← r, ŵ
(1)
1:m ← Algorithm 1 with

center 0 and radius r.
for ℓ = 1, 2, . . . do

W ← {ŵ(ℓ)
i | ŵ

(ℓ)
i is assigned}

if r(ℓ) < 1
2rfinal then

Greedily find maximal sets {u1, ...,us} s.t.
I: |B(uj ; 2rfinal) ∩W| ≥ (1− β)µN, ∀j.
II: ‖uj − uj′‖2 > 4rfinal, ∀j 6= j′.

Return U = {u1, ...,us}, ŵ(ℓ)
1:m.

end if
for h = 1 to 112 log(ℓ(ℓ+ 1)/δ) do
w̄1:m(h)← unassigned
Let Ph be a (ρ, 2r(ℓ), 7

8)-padded decomposition

of W with ρ = O(r(ℓ) log(2µ)).
for T ∈ Ph do

Let B(u, ρ) be a ball containing T . Run
Algorithm 1 on H ∩B(u, ρ), with radius
r = ρ and center shifted to u. For each
ŵi ∈ T assign w̄i(h) as the outputs of
Algorithm 1.

end for
end for
for i = 1 to m do
Find a h0 such that ‖w̄i(h0)− w̄i(h)‖2 ≤ 1

3r
(ℓ)

for at least 1
2 of the h’s.

ŵ
(ℓ+1)
i ← w̄i(h0) (or “unassigned” if no such

h0 exists)
end for
r(ℓ+1) ← 1

2r
(ℓ)

end for

The analysis uses a “local” spectral norm bound for
any β fraction of points. We get good estimates of

w for any sufficiently large subset larger than β. A
key observation is that in contrast to Charikar et al.,
we do not “lose” points from our clusters across itera-
tions since our terms are all large enough that they are
preserved. This enables a potentially arbitrarily-close
approximation of w∗ given enough data.

For β < 1, we define a local spectral norm bound Sβ

on arbitrary subsets T in Igood, such that T takes up
at least a β fraction of Igood (NT ≥ βN). Denote the
number of points in T by NT and the number of terms
by mT . We define

Sβ := max
w∈H, T⊂Igood
s.t. NT≥βN

1√
mT
‖[∇fj(w)−∇f̄(w)]j∈T ‖op.

Similar to the analysis of S, Sβ = O(rSβ0), where if
we abuse notation to let a DNF t also denote a set of
terms (thus, |t| denotes the number of terms in t),

Sβ0 := max
t⊆c s.t.

Pr[t(x)|c]≥β

1
√

|t|

∥

∥

∥

[

E[yy⊤|tj]−E[yy⊤|c]
]

tj∈t

∥

∥

∥

op
.

Sβ0 describes the inherent distribution of the data on
the terms. When there exists a solution where the
terms have similar covariances, then Sβ0 will be small,
e.g., if the data distribution is (nearly) independent
of which of the terms are satisfied. Unfortunately, al-
though Sβ converges to Sβ0 as N increases, Sβ0 is an
intrinsic property of the distribution that does not de-
crease with N . We denote the value of Sβ in the ℓth

iteration by S
(ℓ)
β , where S

(ℓ)
β = O(r(ℓ)Sβ0).

As we deleted all terms of size smaller than βµN ,
all the remaining terms have at least βµ probability-
weight (or βµN empirical size). Then, we can
show that every term will satisfy ‖ŵi − ŵavg‖22 ≤
10
κ (

√

tr(Ŷ)+r)tSβ . Using this observation we can show

that for each iteration, the ŵi for terms in Igood are

within O(r
(ℓ)tS

(ℓ)
β

κ
√
µ) of w∗. Finally, we show the radius

r(ℓ) (used in the ℓth iteration) can then be decreased
by half at each iteration. In conclusion we obtain:

Theorem 3.3 Let any rfinal and δ, β ≤ 1
2 be given.

Suppose that the loss functions fi are κ-strongly con-

vex and Sβ0 ≤ O(
κ
√
µ

t log(1/µ)) for all i ∈ Igood. For

N = O(σ2
ǫ log(m/δ)/βµr2final)) points, let U , ŵ1:m

be the output of Algorithm 2. Then with probabil-
ity at least 1 − δ, U has size at most

⌊

1
(1−β)µ

⌋

, and

minu∈U ‖u − w∗‖2 ≤ O(rfinal). Moreover, ‖ŵi −
w∗‖2 ≤ O(rfinal) for every term i ∈ Igood.

3.5 Obtaining a k-DNF Condition

Once we get outputs {u1, ...,us} from Algorithm 2,
we switch from the parameter space {w} back to the

Diego Calderon, Brendan Juba, Sirui Li, Zongyi Li, Lisa Ruan

Boolean data space {x}, to search for corresponding
conditions c for each candidate parameter u. If we find
a pair (u, c) such that c contains enough points and
the loss fc(u) is small, we return this pair as the final
solution. Suppose u is the candidate that ‖u−w∗‖ <
O(rfinal) =: γ, then |f̄(u) − f̄(w∗)| ≤ γL = O(γ) for
some Lipschitz constant L. Recalling f̄ is nonnegative,
if f̄(w∗) ≤ ǫ, then f̄(u) ≤ γ + ǫ.

We now address the effect of our duplication of points.
We added a copy of a point for each term it satisfied.
On Igood, which contains t terms, each point has at
most t copies. We thus obtain:

Lemma 3.4 Let u be such that ‖u−w∗‖ < γ. Then
|f̄(u)| ≤ t(γ + ǫ).

We have obtained a parameter vector u such that the
loss for each term fi(u) is close to fi(w

∗). We can
now use a greedy set-cover algorithm to find the corre-
sponding conditions c, following the approach of Juba
et al. (2018). At a high level, given regression param-
eters u, we compute the loss f(u) for each point, and
then use the covering algorithm to find a collection
of terms that cover enough points while minimizing
the loss. Specifically, the algorithm greedily chooses
terms tj satisfying

∑

i∈tj
f (i)(u) ≤ (1+γ)µǫN to max-

imize the number of additional points (x,y, z)(i) with
tj(x

(i)) = 1 that did not satisfy previously chosen
terms. It continues choosing terms this way until at
least (1 − γ/2)µN examples satisfy the collection of
chosen terms.

Lemma 3.5 If there exists an optimal k-DNF c∗ that
is satisfied by a µ-fraction of the points with total loss
ǫ, then, the weighted greedy set cover algorithm can
find a k-DNF ĉ, that is satisfied by a (1−γ)µ-fraction
of the points with total loss O(t log(µN)ǫ)

We can bound the generalization error of linear regres-
sion on each possible k-DNF using the Rademacher
generalization bound for linear predictors (Kakade
et al., 2009), and then take a union bound to prove
the main theorem. In short, the process will blow
up the complexity by d3B6t/γ, where d is the di-
mension of the feature space. Overall we achieve a
O(t log(µN)(γ+ ǫ)) approximation as claimed in The-

orem 2.2 withN = O(B6d3σ2L2t2

µγ4 log(m/δ))) examples.

4 Experiments

We now present experiments showing that on real data
sets, our algorithm can scale up to large, moderately
high dimensional data (unlike the previous, sparse al-
gorithms) and that we obtain loss that is consistently
similar to or significantly smaller than that of the

Figure 1: Linear regression on LIBSVM datasets
Top: Space data: N = 1025, dim(x) = dim(y) = 6.
Bot: Cpu data: N = 2703, dim(x) = dim(y) = 12.

sparse ℓ2 regression algorithm (Hainline et al., 2019).
Our prototype code is written in Matlab using the
Yalmip library (Löfberg, 2004), with Mosek (mos) as
our SDP solver. We first test our algorithm on two
of the larger benchmark data sets from the LIBSVM
repository (Chang and Lin, 2011), Space and Cpus-
mall, used previously by Hainline et al. (2019), and
compared the loss achieved for several target frac-
tions. These data sets contain only real-valued at-
tributes. Following Hainline et al’s strategy, we gener-
ate Boolean attributes using indicators for member-
ship in the empirical 50%-quantile of each real at-
tributes. We randomly selected 1/3 of the data to
use for training and the other 2/3 for testing. Simi-
lar to Hainline et al., we use the algorithm to find a
(list of) 2-DNFs on the training data, compute a linear
rule on the corresponding subset on the training data,
and then test the loss of the rule on the correspond-
ing subset of the testing data. To cope with instabil-
ity we observed in the SDP solver, we decreased the
number of padded decompositions (in Algorithm 2)

Conditional Linear Regression

from 112 log(l(l + 1)/δ) to 12, and instead repeated
the algorithm 50 times to produce a list of candidates.
We compute the linear rule and training loss for each
candidate DNF, and then use the DNF with lowest
training loss as our final output to test on the testing
data. We repeated the experiments using different val-
ues of µ (0.2, 0.4, 0.6, 0.8, 1.0) and set the parameters
S = µ · 10, γ = 0.1, rfinal = S · dim(y), where dim(y)
is the dimension of the real features. As shown in Fig-
ure 1, our error is lower than or comparable to that of
the baseline algorithm in all cases. Remarkably, our
running time is much better than the baseline. Their
algorithm required a few days of cloud computing time,
while our algorithm only required a few hours.

On Cpusmall, the loss at µ = 0.8 is much smaller than
at µ = 0.6. Usually we expect the loss to decrease with
µ: since our problem allows solutions on which the
condition comprises 80% of the data when we are only
seeking 60%, it is strictly easier to fit a smaller subset.
This difference is not caused by the double-counting
of points; the algorithm does not obtain such accurate
estimates of the parameters on µ = 0.6. The value of
µ enters Algorithm 1 in several places, and the guar-
antees we can provide feature a 1/

√
µ factor blow-up

in the error (see supplemental material; notice, The-
orem 2.2 requires a stronger condition for smaller µ).
Indeed, in the soft regression/outlier detection proce-
dure, we might expect that as the proportion of “sig-
nal” decreases, we’d get less accurate estimates. Thus,
in practice, we advise running the algorithm several
times using µ = (1 − ∆)i for some number of itera-
tions (∆ ∈ (0, 1)) down to a desired minimum, and
taking the output with the smallest loss.

One may worry about overfitting for small µ. This is
not an issue as long as we use enough data and runs.
We observe that for µ = 0.2, 10 out of the 50 runs
do have much larger testing error than training error,
which implies overfitting. But when we pick the candi-
date with minimum training error, overfitting doesn’t
impact our output. To prevent overfitting, we suggest
using larger data sets and more trials so that even
small subsets have lower variance. We also caution
that our algorithm requires enough data to be stable.
On some smaller data sets that have only about 100 ex-
amples, we found that the SDP solver could not solve
instances in which the radius of the parameter space
decreased below 1. Thus, the final parameters we ob-
tained for this data provided poor estimates that were
not competitive with the algorithm of Hainline et al.

To further demonstrate the scalability of our algo-
rithm, we consider the Physicochemical Protein Struc-
ture data set (Rana, 2013) from the UCI repository,
which consists of 45730 data points with 9 real fea-
tures. (Additional synthetic data experiments illus-

Figure 2: Scalability and effect of different quantiles.
MSE vs. coverage for Protein data:
N = 36584, dim(y) = 9, dim(x) = {9, 18, 27}

trating the scalability can be found in the supplemen-
tal material.) Instead of just using 50%-quantiles as
the Boolean attributes as before, we considered sets of
quantiles: {50%}, {25%, 75%}, or {25%, 50%, 75%},
resulting in 9, 18, and 27 Boolean attributes, respec-
tively. Since 20% of the data will give an adequately
large testing set, we can use 80% of the data as our
training set. Notice, since the running time of Hain-
line et al’s algorithm has a linear dependence on the
data set size in the dominant term, it is not feasible
run on such a large data set. The algorithm is more
stable on this larger data set: we observed each run
gets similar results. Thus, unlike the previous exper-
iments, we can just report the results of a single run.
We also noticed that the max iteration of Algorithm 1
can be constrained to around 10 and the radius r(1) in
Algorithm 2 can be initialized close to rfinal to reduce
the number of iterations, with similar quality.

As shown in Figure 2, at coverage below 100% we again
get a significantly reduced MSE compared to regres-
sion on the entire data set. As the coverage decreases
the MSE also decreases, for all sets of quantiles. Using
more quantiles can slightly improve the performance,
at the cost of more Boolean attributes. Similar to
Rosenfeld et al. (2015), we found the “extreme” quan-
tiles were more useful, in that the MSE was not sig-
nificantly reduced by the addition of the 50% quantile
compared with just using 25% and 75%.

In conclusion, our algorithm is better than the pre-
vious algorithm for the larger benchmark data sets
(N ≥ 1000). Since it collapses the data points into
loss matrices for terms, and the corresponding pre- and
post-processing can be done in roughly linear time, it
can scale up to very large data sets.

Diego Calderon, Brendan Juba, Sirui Li, Zongyi Li, Lisa Ruan

Acknowledgements

Brendan Juba was supported by an AFOSR Young In-
vestigator Award and NSF award CCF-1718380; part
of this work was performed while visiting the Simons
Institute for Theory of Computing. Part of this work
was performed as an REU at Washington University
in St. Louis, when Diego Calderon was supported by
WUSEF and Lisa Ruan was supported by the NSF
Big Data Analytics REU Site, award IIS-1560191.

References

Mosek. https://www.mosek.com/.

P. Awasthi, A. Blum, and O. Sheffet. Improved guar-
antees for agnostic learning of disjunctions. In Proc.
23rd COLT, pages 359–367, 2010.

C.-C. Chang and C.-J. Lin. Libsvm: a library for sup-
port vector machines. ACM Transactions on Intelli-
gent Systems and Technology (TIST), 2(3):27, 2011.

M. Charikar, J. Steinhardt, and G. Valiant. Learning
from untrusted data. In Proc. 49th STOC, pages 47–
60, 2017. Full version arXiv:1611.02315v2 [cs.LG].

C. Cortes, G. DeSalvo, and M. Mohri. Learning with
rejection. In ALT 2016, volume 9925 of LNAI, pages
67–82. 2016.

I. Diakonikolas, D. M. Kane, and A. Stewart. List-
decodable robust mean estimation and learning mix-
tures of spherical Gaussians. In Proc. 50th STOC,
pages 1047–1060, 2018.

R. El-Yaniv and Y. Wiener. Pointwise tracking the op-
timal regression function. In Advances in Neural In-
formation Processing Systems 25, pages 2042–2050,
2012.

J. Fakcharoenphol, S. Rao, and K. Talwar. A tight
bound on approximating arbitrary metrics by tree
metrics. In Proc. 35th STOC, pages 448–455, 2003.

M. A. Fischler and R. C. Bolles. Random sample con-
sensus: A paradigm for model fitting with applica-
tions to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

J. Hainline, B. Juba, H. S. Le, and D. P. Woodruff.
Conditional sparse ℓp regression with optimal proba-
bility. In Proc. 22nd AISTATS, volume 89 of PMLR,
pages 369–382, 2019.

P. J. Huber. Robust Statistics. John Wiley & Sons,
New York, NY, 1981.

J. Jiang. Linear and Generalized Linear Mixed Models
and Their Applications. Springer, Berlin, 2007.

B. Juba. Conditional sparse linear regression. In Proc.
8th ITCS, pages 45:1–45:14, 2017.

B. Juba, Z. Li, and E. Miller. Learning abduction
under partial observability. In Proc. 32nd AAAI,
pages 1888–1896, 2018.

S. M. Kakade, K. Sridharan, and A. Tewari. On the
complexity of linear prediction: Risk bounds, mar-
gin bounds, and regularization. In Advances in Neu-
ral Information Processing Systems 21, pages 793–
800, 2009.

S. Karmalkar, P. Kothari, and A. Klivans. List-
decodable linear regression. In Advances in Neu-
ral Information Processing Systems 32, pages 7423–
7432. 2019.

J. Löfberg. Yalmip : A toolbox for modeling and opti-
mization in matlab. In In Proceedings of the CACSD
Conference, Taipei, Taiwan, 2004.

C. E. McCulloch and S. R. Searle. Generalized, Linear,
and Mixed Models. John Wiley & Sons, New York,
NY, 2001.

Y. W. Park, Y. Jiang, D. Klabjan, and L. Williams.
Algorithms for generalized cluster-wise linear regres-
sion. INFORMS Journal on Computing, 29(2):301–
317, 2017.

J. R. Quinlan. Learning with continuous classes. In
5th Australian Joint Conference on Artificial Intel-
ligence, volume 92, pages 343–348. Singapore, 1992.

P. Raghavendra and M. Yau. List decodable learning
via sum of squares. In Proc. 31st SODA, pages 161–
180, 2020.

P. Rana. Physicochemical properties of protein ter-
tiary structure data set, 2013.

A. Rosenfeld, D. G. Graham, R. Hamoudi,
R. Butawan, V. Eneh, S. Kahn, H. Miah, M. Ni-
ranjan, and L. B. Lovat. MIAT: A novel attribute
selection approach to better predict upper gas-
trointestinal cancer. In Proc. IEEE International
Conference on Data Science and Advanced Analyt-
ics (DSAA), pages 1–7, 2015.

P. J. Rousseeuw and A. M. Leroy. Robust Regression
and Outlier Detection. John Wiley & Sons, New
York, NY, 1987.

M. Zhang, T. Mathew, and B. Juba. An improved
algorithm for learning to perform exception-tolerant
abduction. In Proc. 31st AAAI, pages 1257–1265,
2017.

