DeepFuzzSL: Generating Simulink Models with Deep Learning
to Find Bugs in the Simulink Toolchain

Sohil Lal Shrestha
Computer Science & Eng. Dept.
University of Texas at Arlington

Arlington, Texas, USA

ABSTRACT

Testing cyber-physical system (CPS) development tools such as
MathWorks’ Simulink is very important as they are widely used
in design, simulation, and verification of CPS models. Existing
randomized differential testing frameworks such as SLforge lever-
ages semi-formal Simulink specifications to guide random model
generation. This approach requires significant research and engi-
neering investment along with the need to manually update the
tool, whenever MathWorks updates model validity rules. To address
the limitations, we propose to learn validity rules automatically by
learning a language model using our framework DeepFuzzSL from
a existing corpus of Simulink models. In our experiments DeepFuz-
zSL consistently generated over 90% valid Simulink models and also
found 2 bugs in Simulink version R2017b and R2018b confirmed by
MathWorks Support.

ACM Reference Format:

Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner. 2020.
DeepFuzzSL: Generating Simulink Models with Deep Learning to Find Bugs
in the Simulink Toolchain. In Proceedings of 2nd Workshop on Testing for
Deep Learning and Deep Learning for Testing (DeepTest *20). ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Cyber-physical systems (CPS) are integration of cyberspace and
physical world through a network of interconnected components
such as actuators and sensors. Engineers typically prototype CPS
with graphical block diagram using commercial development tools
such as MathWorks Simulink [29] (a de-facto industry standard),
which enable them to model, simulate and analyze their system.
Furthermore, these toolchain can automatically generate embedded
code that are often deployed in target hardware of safety critical
systems. It is thus very important to find and remove bugs in such
development toolchains.

In software engineering, there are a number of ways to find bugs.
Ideally one can formally verify the entire Simulink toolchain, but
it is not feasible due to its large and complex code base and lack
of complete formal specification, which can be partly attributed
to its commercial nature [11]. Like many other software systems,
toolchain testing suffers from the test oracle problem [2].

An alternative is fuzzing, or random test case generation which
is an effective way to identify bugs [6, 7]. State-of-the-art Simulink-
testing tool SLforge combined randomized fuzzing with differential
testing and found 8 new bugs in Simulink [11]. Since Simulink does

DeepTest °20, May 25, 2020, Seoul, Republic of Korea
2020. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Shafiul Azam Chowdhury

Computer Science & Eng. Dept.

University of Texas at Arlington
Arlington, Texas, USA

Christoph Csallner
Computer Science & Eng. Dept.
University of Texas at Arlington

Arlington, Texas, USA

not have complete publicly available language specification, Chowd-
hury et al. [11] parsed semi-formal specifications from Simulink’s
web page automatically and rigorously incorporated them in SLforge’s
random model generator. While SLforge is proven effective, it in-
herently relies on documented specification to update it’s random
model generator.

To overcome the engineering effort of maintaining the tool with
respect to subtle specification changes and adding new features
while also preserving reasonable fidelity to the real world Simulink
models, we propose to build a neural network model that can au-
tomatically generate Simulink models by learning directly from
third-party Simulink models. We hypothesize that a neural net-
work model should be able to capture undocumented Simulink
specifications that is missed by earlier approach. The hypothesis
is motivated by recent development in deep learning and natural
language processing research that have constructed probabilistic
language models of how humans write code. Such approach have
shown efficacy of random program generation without the need of
rigorously defining rules or grammar in a random program genera-
tor [15, 25]. For e.g., DeepSmith [15], a deep learning based fuzzer,
have reported 50+ bugs in OpenCL compiler such as LLVM and
claimed that it can be easily extensible to other programming lan-
guages with minimum engineering efforts.

Earlier work on applying deep learning to compiler fuzzing have
mostly focused on programming languages (such as C, OpenCL)
whose complete specifications are publicly available. In contrast,
we focus on Simulink that lacks complete specification making
it a better candidate to validate language agnostic deep learning
framework that earlier work claims [15].

In this work, we portray random Simulink model generation
task as a language modeling problem (Section 2.1). Traditional
statistical language model approach like n-grams fails to capture
semantic relations, thus is not useful in our work. In contrast, neural
language model (Section 2.1) captures the semantic and syntactic
structure of a given language. While there are different types of
neural network architecture (such as feed forward, convolutional,
recurrent etc), we chose Long Short Term Memory(LSTM) [18], a
variant of recurrent neural network, which has proven effective in
language modeling [32].

In our DeepFuzzSL framework, we extend DeepSmith architec-
ture to generate random Simulink models. In doing so, we verify
their earlier claim and validate our hypothesis. In our preliminary
evaluation, our trained DeepFuzzSL model is able to generate over
90% valid Simulink models and have found 2 bugs in Simulink
versions R2017b and R2018b confirmed by MathWorks Support.

To summarize, this paper makes the following major contribu-
tions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DeepTest "20, May 25, 2020, Seoul, Republic of Korea

o To best of our knowledge, this is the first work that employs
LSTM to automatically generate Simulink models to test the
Simulink toolchain.

e In our experiment, DeepFuzzSL found 2 confirmed bugs
in the widely used CPS development tool Simulink, one of
which is missed by previous state-of-the-art.

e Our DeepFuzzSL prototype implementation and evaluation
data are open source at GitHub [37].

2 BACKGROUND

This section provides necessary information on neural language
model, CPS models and commercial CPS tool chain Simulink.

2.1 Neural Language Model

Language modeling is the task of predicting the next word in a
sequence based on the words already observed in the sequence.
In essence, a language model assigns probability to a sequence of
words, which is expressed as a joint probability over the words as:

n
P(wi,wa,...,wp) = P(w1)]_[P(wilwi-1, wi-2,...,w1),
=2

where w; is the i-th word in a sentence of length n. So given a arbi-
trary word sequence (x1, x2, . . ., X¢), a language model can compute
the probability distribution of the next word x;41 as P(xz4+1|xs . . . x1),
where x¢4+1 can be any word in a vocabulary V = {w1,..., wy|}.

Conventional language models such as n-grams look at fixed
consecutive context window (or finite window of consecutive pre-
vious words) to predict the next word. These kinds of language
model couldn’t be conditioned over large context window without
running into out of memory issue [33].

On the other hand, a neural language model uses a neural net-
work architecture to learn a language model as a distributed repre-
sentation of words [4, 39]. Further improvement on neural language
model gave rise to recurrent neural networks that can retain a state
that can represent information from an arbitrarily long context
window achieving state-of-the-art result in language modeling as
well as other sequential learning task [22].

Using a language model, one can generate sequence of words
conditioned on previous words. This is relevant to textual program-
ming languages such as C, where, for example, a variable use never
comes before variable definition. Although Simulink models are
designed using graphical block diagrams, textual representation of
the model follow the norm, where a block information never comes
before the connection (or line) information making language model
a good fit for this work.

Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner

2.2 CPS Model and Simulink

Model{...
g

Block {
BlockT: Constant
Constant1 ockType Constan

Add Name "Constantl"... }
2 Scope
Line {
Constant2 SrcBlock "Constant1”
Figure 1: Example mini- DstBlock "Add" ...}
mal toy Simulink model "

adding two constants, en-

coded in Listing 1. Listing 1: Figure 1 model as text

file (excerpt).

A CPS model is typically designed as a set of graphical models as
seen in Figure 1. A model contains blocks that accepts data through
the input ports. Block performs some operation on the data and can
pass output to other blocks through output ports, using connection
lines.

Simulink is a powerful, flexible, and de-facto standard com-
mercial toolchain for CPS that supports various programming
paradigms including data-flow and object oriented programming [40].
To design a CPS model, Simulink has support for various built-in
block libraries [28]. Users can also create custom-blocks whose func-
tionality can be defined through custom “native” code. Users can
then compile and simulate a model. After compilation, Simulink
offers different simulation modes [26]. In depth descriptions of CPS
and Simulink can be found elsewhere [11, 30].

When a user attempts to open a Simulink model in Simulink,
first the Simulink parser checks the model, possibly rejecting it and
preventing the model from opening in Simulink. Once the model is
opened, the user can compile and then simulate the model, which
triggers different simulation phases [27]. In this paper, we consider
a Simulink model to be valid if Simulink can open and compile the
model without errors.

3 OVERVIEW AND DESIGN

DeepFuzzSL needs as input a set of seed Simulink models (“cor-
pus”). Based on these seed models, DeepFuzzSL proceeds in five
main processing phases, as shown in Figure 2, to encode the seed
models and use the encoded seeds to train a generative ML model,
sample from the trained ML model, and decode the samples back
to Simulink.

3.1 Seed Models: Simulink Model Corpus

We identified two main options for representing Simulink models
in files, mdl and slx. While the main format since 2012 has been slx,
this format has several drawbacks for our purposes. Specifically, slx
stores a given model as a sequence of XML files, which is verbose
and requires reasoning about a set of files.

In contrast, the earlier mdl format is also text based but more
compact and thus easier to parse and generate for a deep learner.
Each model is contained in a single mdl file and there is tool support
for conversion between mdl and slx. DeepFuzzSL thus uses mdi.

While more compact than slx, mdl is still much too verbose
for state-of-the-art deep learning systems. For example, the mdl
representation of the Figure 1 toy example consists of over 1 KLOC

DeepFuzzSL: Generating Simulink Models with Deep Learning to Find Bugs in the Simulink Toolchain

DeepTest "20, May 25, 2020, Seoul, Republic of Korea

imulink Model

> Preprocess}::>{ Encoder }

Deep

Learner

Valid Simulink

M Sampler]::>{ Filter

Corpus

Models

Figure 2: Overview of DeepFuzzSL’s main processing phases.

with over 1,000 keywords and parameters following the structure
shown in Listing 2. Before using a model as a seed for deep learning,
we thus transform it as follows.

We remove BlockDefaults {...} and AnnotationDefaults {...} as such
mdl file can be compiled without any issue. We also observed in-
formation of model component desgined by user in Simulink are
stored inside System{...}. Thus we stripped down all other model
parameter such as configuration defaults, graphical interface de-
faults ensuring that the model can be compiled (aka valid).

Model {
<Model Param_ Name> <Model Param_ val>

BlockDefaults {
<Block Param_Name> <Block Param_ val>

}
AnnotationDefaults {
<Annotation Param_Name> <Annotation Param_ val>

+
System {
<System Param_Name> <System Param_val>

Block {
<Block Param_Name> <Block Param_ val>

}
Line {
<Line Param_Name> <Line Param_ val>

Branch {
<Branch Param_ Name> <Branch Param_ val>

}
}
Annotation {
<Annotation Param_Name> <Annotation Param_ val>

Listing 2: Typical mdl file format representation

3.2 DeepFuzzSL Processing Phases

Following are DeepFuzzSL’s five main processing phases.

Pre-processing: Before feeding the seed corpus of Simulink mod-
els to the neural network for training, we perform pre-processing
steps so that we don’t overburden the neural network to learn un-
necessary rules that do not contribute to generate a valid Simulink
model. We carry basic pre-processing steps such as white space
removal, converting long block name to shorter ones, removing
any annotations and location information as they are not required
for its validity.

The mdl representation lists all "Blocks{ ... }" first and then the
connection between them later in the file. During our initial experi-
ments, our trained deep neural net model was only able to generate

Simulink models containing just blocks without any connection
between them. To mitigate this issue, we interleave block and con-
nection (or line) information in the mdl file such that every pair
of connected blocks are defined first followed by their connection
information.

Encoder: Neural network requires numeric sequences as inputs.
Hence all seed models are converted to a sequence of fixed size
feature vectors, where each integer is an index of predetermined
vocabulary. We also studied different ways source code is encoded.
In [25], character level encoding of source code is adopted. This
minimizes the vocabulary size but leads to very long sequences. On
the contrary, token level encoding leads to shorter sequences but
increases vocabulary size as every literal is uniquely represented.
To demonstrate the two extremes, we ran an experiment with 30
unmodified Simulink models’ mdl files, each consisting of 5 to 15
blocks and then extracted the number of tokens and vocabulary
size in Table 1, with and without removing duplicate white space.
To limit the size of the resulting feature vector, we encode Simulink
models using a hybrid scheme that maps a few common keywords
and parameters to tokens and the rest to characters.

Preprocess Encoding Tokens Vocabulary
n/a character 1,056,673 87
DWR character 846,075 87
n/a token 466,000 1,063
DWR token 168,000 1,063

Table 1: Token count and vocabulary size of 30 Simulink
models based on character and token level encoding;
DWR = duplicate whitespace removal.

Deep Learner: We use a Long Short Term Memory (LSTM) net-
work, a variant of recurrent neural networks following the success
of many recent works [15, 24, 34]. We use a two layer LSTM net-
work with 512 nodes per layer, which strikes a balance between the
size of the neural net and the closeness of the learned distribution
to the true distribution. This, in turn, yields a practical training
time of the neural network. We defined the model using Keras [9]
and Tensorflow [1] and open sourced the project on Github! for
other researchers to train on their own corpus.

Sampler: After the training is complete, we seed the trained
neural net with "Model {" tokens since every mdl file starts with
it. Then we sample token-by-token to generate Simulink models.
We halt the sampling when the opening and closing bracket counts
become balanced or it reaches the maximum number of allowed
tokens. Finally we decode the generated sequence back to text,
which represents a Simulink model. Since we want to maximize
the number of variations of generated models, we chose the next
token from a randomized learned distribution, by performing a
multinominal experiment.

!https://github.com/50417/DeepFuzzSL/releases

DeepTest "20, May 25, 2020, Seoul, Republic of Korea

Filter: Lastly we filter out the generated Simulink models by
opening and compiling them in Simulink. The valid Simulink mod-
els can then be used to test Simulink for crashes or be used for
differential testing.

4 PRELIMINARY EVALUATION

Deep learning requires a large number of seed models. While there
is existing work on a public corpus of third-party open-source
Simulink models [13], these third-party models are quite diverse. It
would have taken us significant work to normalize these existing
models, to bring them into a unified shape useful for our deep
learning setup. To side-step these issues, we instead trained our
LSTM network on 1,000 SLforge-generated models.

We performed the training remotely in the high performance
Texas Advanced Computing Center (TACC) [38]. Specifically, we
used TACC’s Maverick 2 cluster, which has support for GPU accel-
erated deep learning research workloads. We ran our experiments
on a single Maverick 2 GTX node?, which has 128 GB RAM, two
8-core 2.1 Ghz Intel Xeon processors and 4 NVidia 1080-TI GPUs.

Using the Adam optimizer [20], we trained the network for
400 epochs using gradient descent with a learning rate of 0.002,
decaying 5% every epoch with mini-batch size 64. We selected these
hyper-parameters (epochs, learning rate, decay, batch size) based
on the best result after multiple experiment runs. On TACC’s Mav-
erick2 GTX nodes, training the neural network took some 2 hours.

As a preliminary evaluation, at this stage we focus on if it is pos-
sible to build on LSTM-based deep learning an effective approach
for finding bugs in the Simulink toolchain. Specifically, we explore
the following two research questions.

RQ1 Can a LSTM-based deep learning approach generate valid
Simulink models?

RQ2 Can a LSTM-based deep learning approach find bugs in
the Simulink toolchain?

4.1 Generating Valid Simulink Models (RQ1)

To evaluate our approach, we sampled 1,024 Simulink models from
our trained LSTM network, limiting the maximum number of tokens
in each generated sample to 5,000 (since the largest seed model also
had 5k tokens) and reported the ratio of valid Simulink models (i.e.,
models Simulink compiles without warning).

To encourage variation in the generated sample Simulink models,
we adapted the following three sampling strategies [19]. These
strategies either re-scale the probability or restrict the set of tokens
to be sampled from.

1. Sampling with Randomization (“Temperature Sampling”): Tem-
perature sampling allows to control the variability of the next gen-
erated token while preserving the fidelity of the corpus to the
learned distribution. In temperature sampling, we increase or de-
crease the probability of the most likely next token before sampling
it. Basically the probability of the next token is controlled by a
hyper-parameter called temperature (T) as:

P(xf+1|xl‘.“x1) _ P(xt+1|xt...x1)1/T
Sy P(xtlxt .xl)l/T

Zhttps://portal.tacc.utexas.edu/user-guides/maverick2

Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner

A low temperature (less randomization) makes the language model
increasingly confident in its top choices while infinite temperature
(full randomization) corresponds to uniform sampling.

2. Top-k Sampling: In top-k sampling we order the tokens by prob-
ability and select the top k tokens. With p” = ¥, _y, P(x™ 1kt .. xh),
the original distribution is re-scaled as

P(xlxt . .xl/p ifx eV

0 otherwise

Pt xY) = {

3. Top-p or Nucleus Sampling: Similar to top-k sampling, we select
the highest probability tokens whose cumulative probability mass
is greater than p. Specifically, the top-p tokens form the smallest
set such that

Z P(x"xt xY) >=p

x=V,

The probability distribution is re-scaled similar to Equation 1.

Sampling type Valid model %
Sampling with randomization(T), T = 0.8 92.8

Top-k, k=10 92.5

Top-p,p=0.9 94.4

Table 2: Ratio of valid Simulink models generated via vari-
ous sampling strategies. The randomization, k, and p values
were chosen based on experiments with best results; p = cu-
mulative probability.

In all three sampling strategies, we sample the next token based
on a multinomial experiment with the given probability distribution.
In our experiment, the sampling time for each sampling strategy
took around 13 minutes.

Table 2 summarizes our results. Overall, in all cases we observed
over 90% valid generated Simulink models. In other words, Simulink
could compile over 90% of the DeepFuzzSL-generated models with-
out warning. Nucleus sampling performed better than the other
two, which aligns with earlier results [19].

4.2 DeepFuzzSL Found Bugs in Simulink (RQ2)

We encountered six Simulink crashes (triggered by six DeepFuzzSL-
generated models), of which five crashes occurred while Simulink
opened a model and one crash occurred while Simulink compiled a
model (after successfully opening it). So far we have reported the
latter issue plus one representative of the five “crash while opening”
cases to MathWorks via its bug report website>.

For each reported issue we received email from a MathWorks
Support person who investigated the issue and tried to the find the
crash’s root cause. Unlike open source projects, MathWorks does
not list all issue reports or even all confirmed bugs on its website.
The bugs listed on their web site do not show their corresponding
Technical Support case (TSC) number.

Table 3 summarizes the two issues we have reported. MathWorks
Support has confirmed both issues as bugs. Following are the details
of these two bugs.

3https://www.mathworks.com/support/bugreports/

DeepFuzzSL: Generating Simulink Models with Deep Learning to Find Bugs in the Simulink Toolchain

DeepTest "20, May 25, 2020, Seoul, Republic of Korea

TSC Summary

Kind MW

03322011

Simulink’s parser fails to reject ill-formed model and crashes (¢} K

03632450 Simulink’s parser fails to reject model with ill-configured signal generator block S N

Table 3: Summary of issue reports; TSC = Technical Support Case number from MathWorks; O = issue when opening model;
S = issue when simulating model; MW = feedback from MathWorks; K = known bug; N = likely new bug.

oooo ER=R=R=
oo oo D

(a) (b)
Figure 3: Signal Generator Block (a) DeepFuzzSL generated
(b) from Simulink library

TSC 03322011: Invalid Input Model (Known Bug). This DeepFuzzSL-
generated model consists of 3 discrete transfer function blocks.
When trying to open this model Simulink crashes. Upon investi-
gation, MathWorks Support determined that the generated model
misses a certain parameter (OutputPortMap). MathWorks Support
confirmed that this is a known bug. Instead of crashing, Simulink
was supposed to produce an error and terminate normally.

TSC 03632450: Valid Input Model (Likely New Bug). This model
generated by DeepFuzzSL consists of 25 blocks and 12 connections
between them. Simulink could open this model normally without
warning or errors. Simulink crashed when we tried to compile
or simulate this model. In other words, DeepFuzzSL can generate
models that pass Simulink’s frontend parser.

Upon investigation, MathWorks Support provided as a reason
that a signal generator block had a missing output port, which
caused the crash. Figure 3(a) shows the signal generator block
generated by DeepFuzzSL as opposed to one in Simulink library in
Figure 3(b). MathWorks Support confirmed that this is a likely new
bug. Instead of crashing Simulink should either produce an error
or autofix the model. While the bug itself may be of low severity,
it is an interesting one that validated our hypothesis "DeepFuzzSL
can find bugs missed by SLforge". SLforge build a random model
using Simulink block library, thus can not build Simulink models
with such Signal Generator block.

5 RELATED WORK

Fuzzing is a well established testing and validation approach. Many
test case generators use programming language’s grammar to sys-
tematically generate syntactically valid programs. Textual pro-
gramming language such as Java, C, Rust have random program
generator that aimed at finding bugs in their respective compil-
ers 3, 14, 16, 31].

While earlier work have largely focused on generating textual
program (such as C, Java), limited work have been done for CPS
models. CyFuzz [10] is perhaps the first tool to systematically gener-
ate Simulink models. As discussed throughout the paper, SLforge is
the most closely related to our work. SLforge builds upon CyFuzz’s
limitations by incorporating informal Simulink specification into
their random model generation. A subsequent work SLEMI [12]
uses SLforge generated models to generate mutant of the seed
model and found 9 confirmed bugs in Simulink. All of these work

are tightly coupled with a particular CPS modeling language cov-
ering a subset of language specification and incurs high porting
cost to other modeling language. In contrast, our work is loosely
coupled with Simulink and has potential to cover undocumented
specification.

Researchers are increasingly applying deep learning for software
testing. Learn&Fuzz [17] learned from a corpus of PDF files to fuzz
Microsoft Edge renderer. Closely related work DeepSmith [15] and
DeepFuzz [25] learned probabilistic language model from a corpus
of OpenCL and C programs and found multiple bugs in respective
compilers. Both of the work target languages which have complete
specification. On the contrary, although our work is built upon
DeepSmith framework, we target CPS modeling language that does
not have complete specification.

Similarly, while this paper looks for bugs in CPS tools such as
Simulink using deep learning, a complementary line of work fuzz
CPS models using machine learning and deep learning [5, 8, 21, 23,
35]. Liu et al. [23] use decision tree algorithm to stop test suite gen-
eration for fault localization of Simulink models. Chen et al. [8] use
LSTM and Support Vector Regression to systematically guide gen-
eration of test suites for CPS network attacks. Their smart fuzzing
system fuzzes actuator to drive CPS into unsafe state to diagnose cy-
ber attacks. Kravchik et al. [21] study the use of convolutional and
recurrent neural networks for detecting cyber-attacks in industrial
control systems.

A summary of this work will also appear as a 2-page abstract
in ICSE 2020’s ACM Student Research Competition (SRC) [36]. In
addition to the SRC summary, this paper adds details on sampling
from the trained DeepFuzzSL model in Section 4.1 along with results
in Table 2. Furthermore, this paper adds a description of the need for
a hybrid encoding scheme with the results shown in Table 1. This
paper also adds a mdl file structure and leverages the information
while pre-processing that aid in training DeepFuzzSL in Section 3.1.
This paper also includes details of the bug summary along with
how we reported issues with MathWorks Support in Section 4.2.

6 CONCLUSIONS AND FUTURE WORK

Testing cyber-physical system (CPS) development tools such as
MathWorks’ Simulink is very important as they are widely used
in design, simulation, and verification of CPS models. Existing ran-
domized differential testing frameworks such as SLforge leveraged
semi-formal Simulink specifications to guide random model gener-
ation which required significant research and engineering invest-
ment along with the need to manually update the tool, whenever
MathWorks updates model validity rules.

To address the limitations, we proposed to learn validity rules au-
tomatically by learning a language model. Our framework DeepFuz-
zSL learned from existing corpus of Simulink models and generated
valid Simulink models. In our experiments DeepFuzzSL consistently

DeepTest "20, May 25, 2020, Seoul, Republic of Korea

generated over 90% valid Simulink models and also found 2 bugs
confirmed by MathWorks Support.

Future work includes gathering a large Simulink model collec-
tion from public repositories such as Github and MathWorks File
Exchange? and training the generative model on such a corpus as
well as verifying the pre-processing heuristics.

ACKNOWLEDGMENTS

The authors acknowledge the Texas Advanced Computing Center
(TACC) at The University of Texas at Austin for providing HPC
resources that have contributed to the research results reported
within this paper. Christoph Csallner has a potential research con-
flict of interest due to a financial interest with Microsoft and The
Trade Desk. A management plan has been created to preserve ob-
jectivity in research in accordance with UTA policy. This material
is based upon work supported by the National Science Founda-
tion (NSF) under Grant No. 1527398 and 1911017 and a gift from
MathWorks.

REFERENCES

(1]
(2]

[5

=

6]

[9
[10]

[11

[12

[13

[14]

Martin Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. http://tensorflow.org/ Software available from tensorflow.org.
Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Trans. Software
Eng. 41, 5 (2015), 507-525.

Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2016. Synthesizing
Program Input Grammars. CoRR abs/1608.01723 (2016). arXiv:1608.01723 http:
//arxiv.org/abs/1608.01723

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. 2001. A Neural Probabilis-
tic Language Model. In Advances in Neural Information Processing Systems 13,
T. K. Leen, T. G. Dietterich, and V. Tresp (Eds.). MIT Press, 932-938.

Anatolij Bezemskij, George Loukas, Diane Gan, and Richard J. Anthony. 2017.
Detecting Cyber-Physical Threats in an Autonomous Robotic Vehicle Using
Bayesian Networks. In 2017 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).
Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An empirical comparison of compiler testing techniques. In
Proceedings of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016. 180-190.

Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Z. Fern, Eric
Eide, and John Regehr. 2013. Taming compiler fuzzers. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013. 197-208.

Yuqi Chen, Christopher M. Poskitt, Jun Sun, Sridhar Adepu, and Fan Zhang,. 2019.
Learning-guided network fuzzing for testing cyber-physical system defences. In
Proc. 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 962-973.

Francois Chollet et al. 2015. Keras. https://keras.io.

Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner. 2016.
CyFuzz: A differential testing framework for cyber-physical systems development
environments. In Proc. 6th Workshop on Design, Modeling and Evaluation of Cyber
Physical Systems (CyPhy). Springer, 46—60.

Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T. Johnson, and Christoph Csallner. 2018. Automatically finding bugs in a
commercial cyber-physical system development tool chain with SLforge. In Proc.
40th ACM/IEEE International Conference on Software Engineering (ICSE). ACM.
Shafiul Azam Chowdhury, Sohil L Shrestha, Taylor T. Johnson, and Christoph
Csallner. 2020. SLEMI: Equivalence Modulo Input (EMI) Based Mutation of
CPS Models for Finding Compiler Bugs in Simulink. In Proc. 42nd ACM/IEEE
International Conference on Software Engineering (ICSE). To appear.

Shafiul Azam Chowdhury, Lina Sera Varghese, Soumik Mohian, Taylor T. John-
son, and Christoph Csallner. 2018. A curated corpus of Simulink models for
model-based empirical studies. In Proc. 4th International Workshop on Software
Engineering for Smart Cyber-Physical Systems (SEsCPS). ACM, 45-48.

Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: An automatic
robustness tester for Java. Software—Practice & Experience 34, 11 (Sept. 2004).

“https://www.mathworks.com/matlabcentral/fileexchange/

[15]

[16

(17

(18

[20

[21]

[22

[23

S
=)

[25

[26

[27

[28

[30

[31

(32]

[33

[34

[35

[36

[37

&
&,

[39

[40

Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner

Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018.
Compiler fuzzing through deep learning. In ISSTA 2018.

Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the Rust Type-
checker Using CLP (T). In 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 482-493.
Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: machine
learning for input fuzzing. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. 2019. The Curious
Case of Neural Text Degeneration. CoRR (2019). arXiv:1904.09751 http://arxiv.
org/abs/1904.09751

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In Proc. 3rd International Conference on Learning Representations (ICLR).
Moshe Kravchik and Asaf Shabtai. 2018. Detecting Cyber Attacks in Industrial
Control Systems Using Convolutional Neural Networks. In Proceedings of the
2018 Workshop on Cyber-Physical Systems Security and PrivaCy, CPS-SPC@CCS
2018, Toronto, ON, Canada, October 19, 2018. 72-83.

Zachary Chase Lipton. 2015. A Critical Review of Recurrent Neural Networks
for Sequence Learning. ArXiv abs/1506.00019 (2015).

Bing Liu, Lucia, Shiva Nejati, and Lionel C. Briand. 2017. Improving fault local-
ization for Simulink models using search-based testing and prediction models. In
IEEE 24th International Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2017, Klagenfurt, Austria, February 20-24, 2017. 359-370.

Xuan Liu, Di Cao, and Kai Yu. 2018. Binarized LSTM Language Model. In Proceed-
ings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics(ACL): Human Language Technologies, Volume 1 (Long
Papers). ACL, 2113-2121.

Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. DeepFuzz:
Automatic Generation of Syntax Valid C Programs for Fuzz Testing. In The
Thirty-Third AAAI Conference on Artificial Intelligence. 1044-1051.

MathWorks Inc. [n.d.]. How Accelerator Model Works Documenta-
tion. https://www.mathworks.com/help/simulink/ug/how-the-acceleration-
modes-work.htm. Accessed Jan 2020.

MathWorks Inc. [n.d.]. Simulation Phases in Dynamic Systems. https://www.
mathworks.com/help/simulink/ug/simulating-dynamic- systems.html. Accessed
Jan 2020.

MathWorks Inc. [n.d.]. Simulink Block Libraries Documentation. https://www.
mathworks.com/help/simulink/block-libraries.html. Accessed Jan 2020.
MathWorks Inc. 2019. MATLAB & Simulink. https://www.mathworks.com/
products/simulink.html/. Accessed Jan 2020.

MathWorks Inc. 2019. Simulink Documentation. https://www.mathworks.com/
help/simulink/. Accessed Jan 2020.

William M. McKeeman. 1998. Differential Testing for Software. Digital Technical
Journal 10, 1 (1998), 100-107. http://www.hplhp.com/hpjournal/dtj/vol10num1/
voll0num1lart9.pdf

Ngoc-Quan Pham, German Kruszewski, and Gemma Boleda. 2016. Convolutional
Neural Network Language Models. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016. 1153-1162.

Raul Puri, Robert Kirby, Nikolai Yakovenko, and Bryan Catanzaro. 2018. Large
Scale Language Modeling: Converging on 40GB of Text in Four Hours. In 30th
International Symposium on Computer Architecture and High Performance Com-
puting. 290-297.

Alec Radford, Rafal Jézefowicz, and Ilya Sutskever. 2017. Learning to Generate
Reviews and Discovering Sentiment. (2017). arXiv:1704.01444 http://arxiv.org/
abs/1704.01444

Sunny Raj, Sumit Kumar Jha, Arvind Ramanathan, and Laura L. Pullum. 2017.
Testing autonomous cyber-physical systems using fuzzing features from con-
volutional neural networks: work-in-progress. In Proc. 13th ACM International
Conference on Embedded Software (EMSOFT) Companion. 1:1-1:2.

Sohil L Shrestha. 2020. Automatic generation of Simulink models to find bugs in
cyber-physical system tool chain using deep learning. In Proc. 42nd ACM/IEEE
International Conference on Software Engineering (ICSE), Student Research Com-
petiton (SRC). To appear.

Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner. 2020.
50417/DeepFuzzSL: DeepFuzzSL First Release. https://doi.org/10.5281/zenodo.
3712482

TACC at The University of Texas at Austin. 2018. Texas Advanced Computing
Center - Homepage. https://www.tacc.utexas.edu/. Accessed Jan 2020.

Kai Chen Gregory S. Corrado Jeffrey Dean Tomas Mikolov, Ilya Sutskever. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
In Advances in Neural Information Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013. 3111-3119.

Marilyn Wolf and Eric Feron. 2015. What don’t we know about CPS architectures?.
In Proceedings of the 52nd Annual Design Automation Conference. 80:1-80:4.

http://tensorflow.org/
https://arxiv.org/abs/1608.01723
http://arxiv.org/abs/1608.01723
http://arxiv.org/abs/1608.01723
https://keras.io
https://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://www.mathworks.com/help/simulink/ug/how-the-acceleration-modes-work.htm
https://www.mathworks.com/help/simulink/ug/how-the-acceleration-modes-work.htm
https://www.mathworks.com/help/simulink/ug/simulating-dynamic-systems.html
https://www.mathworks.com/help/simulink/ug/simulating-dynamic-systems.html
 https://www.mathworks.com/help/simulink/block-libraries.html
 https://www.mathworks.com/help/simulink/block-libraries.html
https://www.mathworks.com/products/simulink.html/
https://www.mathworks.com/products/simulink.html/
https://www.mathworks.com/help/simulink/
https://www.mathworks.com/help/simulink/
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://arxiv.org/abs/1704.01444
http://arxiv.org/abs/1704.01444
http://arxiv.org/abs/1704.01444
https://doi.org/10.5281/zenodo.3712482
https://doi.org/10.5281/zenodo.3712482
https://www.tacc.utexas.edu/

	Abstract
	1 Introduction
	2 Background
	2.1 Neural Language Model
	2.2 CPS Model and Simulink

	3 Overview and Design
	3.1 Seed Models: Simulink Model Corpus
	3.2 DeepFuzzSL Processing Phases

	4 Preliminary Evaluation
	4.1 Generating Valid Simulink Models (RQ1)
	4.2 DeepFuzzSL Found Bugs in Simulink (RQ2)

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

