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Maintenance optimization has been extensively studied in the past decades. However, most of the existing
maintenance models focus on single-component systems and are not applicable for complex systems consisting
of multiple components, due to various interactions between the components. Multi-component maintenance
optimization problem, which joins the stochastic processes regarding the failures of the components with the
combinatorial problems regarding the grouping of maintenance activities, is challenging in both modeling
and solution techniques, and has remained an open issue in the literature. In this paper, we study the
multi-component maintenance problem over a finite planning horizon and formulate the problem as a multi-
stage stochastic integer program with decision-dependent uncertainty. There is a lack of general efficient
methods to solve this type of problem. To address this challenge, we use an alternative approach to model
the underlying failure process and develop a novel two-stage model without decision-dependent uncertainty.
Structural properties of the two-stage problem are investigated, and a progressive-hedging-based heuristic is
developed based on the structural properties. Our heuristic algorithm demonstrates a significantly improved
capacity in handling practically large-size two-stage problems comparing to three conventional methods
for stochastic integer programming, and solving the two-stage model by our heuristic in a rolling horizon
provides a good approximation of the multi-stage problem. The heuristic is further benchmarked with a
dynamic programming approach and a structural policy, which are two commonly adopted approaches in
the literature. Numerical results show that our heuristic can lead to significant cost savings compared with

the benchmark approaches.
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1. Introduction
Effective maintenance plays an important role in maintaining high levels of productivity
and safety in many capital-intensive industries, especially those that operate complex,

hazardous systems, such as offshore oil and gas drilling systems, nuclear power plants,
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petrochemical plants, and space transport systems. A number of catastrophic failures, e.g.,
the space shuttle Challenger accident and the loss of Piper Alpha oil platform (Cowing
et al. 2004), have occurred in part because of inadequate maintenance. Moreover, the
downtime cost caused by either planned or unplanned maintenance shutdown in these
industries is often significant. The production losses can range from $5,000 to $100,000 per
hour during the shutdown in chemical plants and millions of dollars per day in offshore
drilling/refineries (Amaran et al. 2016). As the demand for high reliability increases, it is
more imperative to develop efficient maintenance schedules for complex systems.
Maintenance optimization has been extensively studied in the literature. However, most
of the existing maintenance models focus on single-component systems, and are not appli-
cable for complex systems consisting of multiple components, due to various interactions
between the components. In general, there are three different types of interactions, eco-
nomic, structural, and stochastic dependence (Thomas 1986). Economic dependence is the
most common one among these three types of interactions. Systems with the economic
dependence typically incur a common system-level cost, often referred to as setup cost, due
to mobilizing repair crew, safety provisions, disassembling machines, special transporta-
tion, and the downtime loss. These costs are shared by all maintenance activities performed
simultaneously. Considerable cost savings can be obtained by jointly maintaining several
components instead of separately, especially when the setup cost is high.
Multi-component maintenance optimization problem, which joins the stochastic pro-
cesses regarding the failures of the components with the combinatorial problems regarding
the grouping of maintenance activities (Dekker et al. 1997, Scarf 1997, Dekker and Scarf
1998, Van Horenbeek and Pintelon 2013), is challenging in both modeling and solution
techniques, and has remained an open issue in the literature. The problem can quickly end
in complex models and explicit analytical expressions for optimal maintenance costs and
the corresponding decisions are sometimes impossible to obtain. One often has to make
special system assumptions (Tian and Liao 2011, Huynh et al. 2014), impose restrictions
on maintenance grouping activities (Wildeman and Dekker 1997, Ding and Tian 2012,
Van Horenbeek and Pintelon 2013), and/or resort to simulation tools (Barata et al. 2002,
Laggoune et al. 2009) so that the decision problem can be formulated with less mathemat-

ical difficulty.
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In this paper, we study the maintenance optimization problem for multi-component
systems with economic dependence over a finite planning horizon. We aim to minimize
the total maintenance cost by optimally determining maintenance decisions for all compo-
nents at each decision period. We first formulate this problem as a multi-stage stochastic
integer program. The system state transition probabilities at each stage are determined
by not only the underlying failure processes but also maintenance decisions, and thus are
decision-dependent. Such decision-dependent uncertainty is also referred to as endogenous
uncertainty, and there is a lack of efficient methods to handle this type of problem (Peeta
et al. 2010, Zhan et al. 2016, Apap and Grossmann 2017). We approximate the multi-stage
model with a novel two-stage stochastic linear integer model in a rolling horizon. In both
models, we do not restrict the types of maintenance activities that can be grouped or when
the grouping can occur. In other words, joint execution of any combination of maintenance
activities can occur anytime. A progressive-hedging-based heuristic is designed to solve
practically large-size two-stage problems. Computational studies are performed to assess
the performance of the heuristic. We further compare the results of the two-stage model
with those of a direct-grouping model using a dynamic-programming approach (Van Horen-
beek and Pintelon 2013) and a structural (¢;,7;) policy (Wijnmalen and Hontelez 1997)
over the rolling horizon. The main contributions of this paper are as follows.

(1) From a modeling perspective, the proposed multi-stage model and the two-stage
model are sufficiently general, permitting grouping of any maintenance activities at any
time and allowing general failure distributions. This work extends the multi-component
maintenance literature by using a stochastic programming approach. Stochastic program-
ming is a powerful modeling technique and facilitates the derivation of analytical expres-
sions of the total cost function and maintenance decisions, which are difficult to obtain
using commonly adopted approaches for the multi-component problem, such as dynamic
programming.

(2) Formulating the multi-component maintenance problem as a stochastic program
further enables the use of stochastic optimization tools. We design an efficient heuristic
algorithm in the progressive hedging framework based on the problem structural proper-
ties of the two-stage model. Our heuristic algorithm demonstrates a significantly improved
capacity in handling practically large-size two-stage problems comparing to three conven-

tional methods for stochastic integer programming, and solving the two-stage model by
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our heuristic in a rolling horizon provides a good approximation of the multi-stage prob-
lem. Using a rolling horizon scheme, we further assess the performance of our heuristic by
comparing it with a dynamic programming approach and a structural (¢;,7;) policy widely
adopted in the literature. Numerical results show that the two-stage maintenance model
and the designed heuristic can lead to substantial cost savings.

The remainder of this paper is organized as follows. Section 2 reviews multi-component
maintenance and important solution methods in stochastic programming. In Section 3,
we develop a multi-stage model stochastic maintenance model and approximate it with
a two-stage model. Section 4 describes the progressive-hedging-based heuristic and three
conventional algorithms in detail. Computational studies are presented in Section 5. We

conclude this study and discuss future research directions in Section 6.

2. Literature review
We review two streams of literature that are relevant to our work: literature on multi-

component maintenance and literature on solution methods in stochastic programming.

2.1. Multi-component maintenance

Common approaches to coordinating maintenance activities of multi-components include
direct-grouping, indirect-grouping and opportunistic maintenance. Direct-grouping par-
titions the components into a number of fixed groups and then always maintain the
components in a group jointly (van Dijkhuizen and van Harten 1996). The problem for-
mulated with this approach is an NP-complete set-partitioning problem. The optimal
grouping decision can be found for only a small number of components due to the com-
putational complexity. There are some efforts that reduce the set-partitioning problem for
multi-component maintenance to a dynamic-programming problem with a quadratic time
complexity under some special assumptions (Dekker et al. 1996, Wildeman et al. 1997).
Van Horenbeek and Pintelon (2013) and Vu et al. (2014) extend Dekker et al. (1996) and
Wildeman et al. (1997) by considering dynamic information, e.g., usage of components and
environmental conditions. A major deficiency of this approach is that grouping activity
iteratively takes place within a time window that is often determined by the maximum indi-
vidual maintenance interval among all components. Within this window, each component
is preventively maintained only one time. This assumption is not relevant since a system
may be composed of different components with different lifetime cycles, and maintenance

intervals of components can be significantly different (Laggoune et al. 2009).
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Unlike the direct-grouping that yields a fixed group structure, indirect grouping usu-
ally groups preventive maintenance (PM) activities by making the PM interval a multiple
of a basis interval, so the maintenance of different components can coincide (Goyal and
Gunasekaran 1992, Schouten et al. 1998). An alternative indirect grouping strategy per-
forms major PM on all components jointly at the end of a common interval and allows
minor or major PM within this interval. Indirect grouping model of this type is sometimes
formulated as a mixed integer programming (MIP) problem (Epstein and Wilamowsky
1985, Hariga 1994). Because of the simplified policy structure, the MIP model can be
separated by components, which greatly reduces the computational complexity.

Both direct- and indirect-grouping focus on grouping PM activities, and ignore mainte-
nance opportunities generated by corrective maintenance (CM) at failures. To take advan-
tage of the time window of CM and use it as opportunities for PM of other functioning
components, many opportunistic maintenance (OM) models have been proposed. Ding and
Tian (2012) and Koochaki et al. (2012) use a simulation-based optimization method to
find optimal OM policies. Shafiee and Finkelstein (2015) consider a simplified OM pol-
icy that preventively replaces all non-failed components when there is a failure. More
recently, Patriksson et al. (2015) use a stochastic programming approach in OM. However,
the integer L-shaped method proposed in Patriksson et al. (2015) cannot solve large-scale
problems. Castanier et al. (2005) consider a condition-based OM policy and formulate it
as a semi-regenerative process. This approach also suffers the computational intractability,
because the problem size grows exponentially as the number of components increases. As
a result, their analysis is limited to a two-component system. For more details regarding
the multi-component maintenance problem, the readers are referred to review papers by

Dekker et al. (1997), and Nicolai and Dekker (2008).

2.2. Solution methods in stochastic programming

In this paper, we formulate the multi-component maintenance optimization problem as a
stochastic integer program. Various decomposition methods have been developed to solve
stochastic integer programs. Benders decomposition (Birge and Louveaux 2011, Bodur
et al. 2017) and progressive hedging algorithm (PHA) (Rockafellar and Wets 1991, Watson
and Woodruff 2011, Gade et al. 2016) are two important decomposition methods for solving
stochastic integer programming problems. Benders decomposition vertically decomposes a

problem into a master problem that only concerns first-stage decisions and subproblems
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that include second-stage decisions of all scenarios. Benders cut and integer L-shaped cut
are two major types of cuts that are added within Benders decomposition framework.
However, Benders cut may become useless since strong duality does not hold in an integer
program, and integer L-shaped cut is typically inefficient because every feasible solution
may need an integer L-shaped cut in the worst-case scenario. The PHA decomposes the
extensive form according to scenario, and iteratively solving penalized versions of the sub-
problems to gradually enforce non-anticipativity. The performance of PHA, to a great
extent, depends on how efficient each subproblem is solved in a stochastic integer pro-
gram. In our problem, each scenario subproblem with deterministic individuals’ lifetimes is
essentially an NP-complete set-partitioning problem. Efficient heuristic algorithm for each
subproblem is needed.

Our review of the literature shows that few research has considered grouping at both
preventive and corrective maintenance occasions under practical assumptions, which signif-
icantly affects the optimality of the solutions because of the simplified models and reduced
solution space. There is also a lack of efficient algorithms that can provide satisfactory

results for practically large-scale multi-component maintenance problems.

3. Model development

3.1. Problem statement

In this paper, we consider maintenance optimization for a multi-component system that
consists of N'=1{1,2,...,n} components with economic dependence. The objective is to
minimize total expected maintenance cost in a finite planning horizon. We consider two
types of maintenance, preventive replacement (PR) and corrective replacement (CR). At
each decision period, maintenance decisions need to be made for all components. Any
maintenance activities of any components can be performed together to save the setup
cost and improve the system performance. Note that any failed component is correctively
replaced. Both CR and PR use a new component and are therefore perfect. Components’

failure models can be any failure distribution.

3.2. Multi-stage stochastic maintenance model
We consider a discretized finite planning horizon 7 = {0,1,...,T}, where the length of
a decision period is 0. Each component in the system is considered as a different type

of component regardless of its physical type. To distinguish the component type and the
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component itself, we use component only when referring to its type and refer to physical
components as individuals. For example, individual I;, is the individual used for the r'"
maintenance replacement of type ¢ component. We denote the set of individuals by R =
{1,2,...,q}, where ¢ is the maximum number of individuals replaced for all components.
Denote the PR cost and CR cost for each component by c;, and c; . respectively, and
assume ¢; ;< ¢ o for all ¢ € N. The system setup cost is d at any maintenance occasion.
If n individuals are replaced at the same time, the total savings from executing these n
maintenance activities jointly is d(n—1).

This problem is naturally a multi-stage stochastic programming problem. Denote the
state for the operating individual of component 7 € N at stage t € T by &, i.e., & = 1 if the
operating individual fails and 0 otherwise. Let a;; be the age of the operating individual
of component ¢ prior to the maintenance decision at stage t, and a; = (ay, o, - - -, Ane)
be the age vector of all operating individuals. At each decision stage t, after observing
the states & = (£14,&ot, - - -, &ne) Of all operating individuals, we first correctively replace all
failed individuals and then select a group of individuals for PR if desired.

Denote the decision variables by

1 ,if an individual of component i is replaced at stage t
Ty = ,1 € N, te T

0 ,otherwise

and
1 ,if any maintenance occurs at stage t

Zt = ,t c T
0 ,otherwise
The multi-stage stochastic model (P1) is defined as follows:
folao, &) = minz Ci,prTi0 + Z(Ci,cr — Cipr)&io + d2zo + Vo(2o, ao) (1)
ieN ieN

subject to

Ee,, .\ [fir1(ai1,&41)] ,t € T\{T'}

V;f(xtyat) = (2)
0 =T
arp1=ai(l—x)+6,t € T\{T'} (3)

thxit,iEN,tGT (5)
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zy €{0,1}ie N, teT (6)
2z €{0,1},teT (7)

Objective function (1) includes maintenance cost at the first stage and the expected
minimum cost at the second stage. The expected minimum second-stage cost is given by
Constraints (2). Constraints (3) provide the age of each work individual at each decision
stage. Constraints (4) ensure that the indicator of replacement x;; is 1 when an individ-
ual failed. Constraints (5) force that setup cost is incurred whenever a replacement is
performed. Constraints (6) and (7) are integrality constraints.

The maintenance decision at each decision stage influences the system state transi-
tion probability. Scenario tree in Figure 1 illustrates the interactions between mainte-
nance decision and the underlying stochastic failure process of a two-component system.
Model P1 is therefore a stochastic integer

program with decision-dependent uncer- ((a10+6,0).(6,0))

O O
tainty (i.e., endogenous uncertainty). This (@10+6,0).(5,1)) :
type of problem is difficult to solve. First, — o

P ((a10%6,1),(5,0)) e
general efficient method for stochastic AT B 0
- _ _ N (an0+3,1).(6.1)
integer programs is lacking. Second, the %. O O
V -0
problem size grows exponentially as the Q o
. ((a1,0,0),(a2,0,1)) ((9,0),(0,0)) O
number of components and/or decision O 0
((3,0).(5,1))
stages increases. Third, there is a lack ,0 O
of general efficient algorithms to solve xio=1, xz,o: (((5’15’0))
a stochastic program with endogenous @nen A
uncertainty. Next, we use a novel two- —o - t

stage model to approximate P1 and design . . .
Figure 1 Decision-dependent scenario tree

an efficient heuristic to find high-quality

solutions.

3.3. Two-stage stochastic maintenance model

A common approach to approximating a multi-stage stochastic program is to utilize a two-
stage model in a rolling horizon. The two-stage approximation model is usually obtained
by combining all future periods together as a second stage problem with all future’s non-

anticipativity constraints removed (Beraldi et al. 2011).
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In this two-stage model, instead of using failure probability as the underlying stochastic
element to generate scenarios, we use the random lifetimes as the equivalent stochastic
element to capture the uncertainty. Specifically, let 772 be the lifetime of individual I;, that
is drawn from its failure distribution. A scenario w € Q is a lifetime combination of all
individuals of all components, i.e., (Tf’l, s I ,Tf{’q), where 0 is the collection
of all possible scenarios. Note that the endogenous uncertainty is removed by using this
alternative approach to describe the uncertainty.

The two-stage model can be represented by

where z is the vector of decision variables and X is the feasible region. Function F'(z,w)
is the total maintenance cost given the lifetime combination in scenario w € Q, and p(w)is
the probability of scenario w. Since the realization of lifetime 77 is infinite for the majority
of lifetime distributions, e.g., Weibull distribution, the total number of scenarios Q] is
infinite. We therefore use the sample average approximation (SAA) method (Kleywegt
et al. 2002) to approximate the two-stage model. Specifically, we have

Y P F(z,w)~ ) pw)F(,w),

we weN

~ 1
where Q C Q and p(w) = Ik

Before presenting function F'(z,w), we first introduce decision variables in the two-stage

model. Let

1 ,if an individual of component i is replaced at the first stage
xTr; = S N,

0 ,otherwise

1 ,if I, is replaced at stage t in scenario w
Fre — ir 15 TEP & GENteT.re Rweq,

0 , otherwise

and
" 1 ,if maintenance occurs at staget in scenario w
2y = JteT,well
0 , otherwise

To facilitate the model development, we introduce two auxiliary binary variables Y, and

wly based on z7;°. The variable Y;"“ is an indicator of the maintenance type. More details
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regarding these auxiliary variables will be discussed in Section 3.3.1. The deterministic
extensive form (DEF) of the two-stage model, which explicitly describes the second-stage

decision variables for all scenarios (Birge and Louveaux 2011), is formulated as follows.
Model DEF:

miny" (pw ( (im,mm * i@ma Y- el ) + Zd)

we ieN — —_—
Ci,pr Cicr Cs
subject to

Ty <7, eN,te T\{Thre RweQ 9)
i <a e N, te T\{T},r e R\{q¢},weQ (10)
Y @y —ay )<z ieN te T\{0LweQ (11)
reR

T8 <z ieN,weQ (12)
az;f;vggz;“jj;w LieNtef0,..., T =T, },r € R\{g},we® (13)
]17%—126{]6/\/1 L <T}Hwe (14)
T5=0ieN,re R\{1},we (15)
z =%, i €N, weQ (16)
r; >&ieN (17)
Y =1-wie, i €N we (18)

T+T
(D" |+ S0 W)
er_ r
L 2
Y = ff—w:tlT“’w,ze./\/'reR\{l} te{Te, ... TV weQ

wi =Ty =T e N, re Rite T\{0},we

ieN,re R\{1},weQ

(19)

(20)

(21)
wio = Tip,i €N, r€ R,weQ (22)
wi=0ieN,reRte{T+1,....T'},we (23)
i e{0,1},ie N,re RiteT,weN (24)
z; €{0,1},i e N (25)
20 €{0,1},teT,we (26)
wi’ €{0,1},ie N,re R,te€{0,...,T'},weQ (27)
Y“e{0,1},ie N,re RjweN (28)
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Function (8) is the objective function. Decision variables z; and z concern maintenance
decisions at the first stage, and z;” and z;’ are the second-stage decisions for scenario w.
We provide detailed derivation of the objective function in Section 3.3.1 and explain the

constraints in Section 3.3.2.

3.3.1. Derivation of the objective function
In objective function (8), the total cost includes: (1) sum of the PR and CR costs incurred
by individuals of component ¢ in the planning horizon, denoted by C; . and C;., respec-
tively, and (2) total system setup cost Cs. We break the derivation of the total cost function
into the calculations of these cost elements.

e Derivation of C, .

For component 7, the total cost of individuals preventively replaced over the planning
horizon is given by C; ,, => 7, ¢; Y™ , where Y, is defined in constraints (18) and (19).

Next, we explain why Y, can be used to identify the replacement type and this deter-
mination is a key element of the model development. We drop the superscript w in the
following discussions for notational convenience. It is obvious that the decision variables
Z}, and w}, only concern when a placement is performed and have no indication on the
type of replacement. For an individual [;., one way to determine its replacement type is to
examine the time interval between the replacements of individuals I;,_; and I;.. Suppose
that individuals [;,_; and I are replaced at times ¢, and ¢, (i.e., w; t_ll =1 and w; ;21 =1),
respectively. If the difference between ¢, and t; equals to the lifetime of I;,., namely T;,, then
I;,. is replaced at the end of its lifetime and the replacement type is CR. The replacement
is PR otherwise. Therefore, if CR is performed on this individual, we have wj, — wZ;}TiT =0

Vt € T, which leads to 3"/, [yh| = 31 [wl, — w! ;7. | =0 (Figure 2(a)). If PR is performed

on this individual, then wf, — w[’t’;TiT =1, w1, — w{;l =—1,and wi,, 1 — w7t =0
for all t € {t|t € T,t # t1,t # to} (Figure 2(b)), and consequently, S |y5| =2 . This

T | r
tho |yit|
2

makes the value of a good indicator for determining the replacement type, and

ZtT:o lyh| is calculated as follows:

T T
Dl =D lwh —wily, (29)
t=0 t=0
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However, there are two boundary issues

yirtl = Wirtl - Wl?:t_ll_Tin 0 yirlz = Wirfz - Wir.t_zlfTir =0
n Equatlon (29) Individual 7; e, O—> ¢
T
(1) Decision times of w}, need to be
.. Individual /; -1 :,‘/—/\/—C"l' O—>t
extended beyond 7. This is because Equa- 0 n-T, T
tion (29) does not count the mainte-
nance decisions made for individual I;,_; . . o
’ }’ir,tz = Wirtz - ertzl Tir —. =1 Vit 4T = Wity 41 — Wity = -1
at times {T-Tj,,...,T}. To include these | .. = \ s
0 =Ty - n+Tr T
decisions, the planning horizon for wyj, g
. ivi Y S — —O—> 1
needs to extend to 7" =T + max{T}.,i € Individual f;r1 ) Lr_- T

N, re R}, and let w;’t =0 for t >T. See % replacement

O no replacement

the region labeled “Not Defined” in Fig-
(b) PR

ure 3 for an illustration.
X . . Figure 2 Illustration of distinguishing CR and PR
(2) In Equation (29), the decision times
considered for individual I;. implicitly
start from T;,., and all decisions made before T;,. are excluded (illustrated in the region
labeled “Excluded”). To recover decisions made for individual I;. at times {0,...,T;. — 1},

we add 3./ wl, to Equation (29). Equation (29) is now rewritten as follows,

THTr

=D Iyl + Z wiy i €N,r € R,we .

=T

The absolute function, |yj”| , can be linearized by a pair of deviation variables (Rardin

1998).

Excluded Not Defined

Individual Z;- L—%@L /—’V—Q—/\/—ﬂ—’\/—o—\iﬂ\/—u—»{

tl+Tu ,/' T

Individual ;1 CFA- Ty DN S Ny
0 f 6L-T, T-T, T-T,+1 T T

8 replacement O no replacement

Figure 3  lllustration of the boundary issue of Equation (29)

e Derivation of (., and Cj
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For component ¢, the total cost of individuals correctively replaced over the planning

q

! (cioa(1=Y)—Cier(1—21%)). As explained in the derivation

horizon is given by C; ., =
of C; ,r, the expression Y;"” = 0 implies a CR for individual I;,. However, for any component
type, the number of individuals used for replacement is unknown due to the unknown
maintenance decisions, and therefore the maximum number of individuals needed for any
component is considered in the optimization model. It is likely that some individuals are
not used in the planning horizon. If neither individual I, ,_; nor I;, is used for replacement
during the planning horizon, the value of Y;“ is also zero. We need to distinguish these
two scenarios that both have Y = 0. This can be done by examining the value of 23 . If
an individual is not used, we have z}7 =0 and Z}7 =1 otherwise. The false corrective cost

caused by an individual that is not used is ¢; (1 — Z}¥), and needs to be subtracted from

the total cost, C; ;. Lastly, the total setup cost over the planning horizon is Cs =), dz’.

3.3.2. Constraints
Constraints (9) are the definition of Zl’, which ensure that individual I;, is replaced at
or before ¢t + 1 when it is replaced at or before ¢. Constraints (10) imply that individual
I; .11 can only be replaced after I, is replaced. Constraints (11) and (12) ensure that
maintenance cost d incurs when any component is replaced at time ¢. Constraints (13) and
(14) ensure that individual I, is replaced at the latest when it has been inside the system
for T time units. In other words, I;, has to be replaced before or at the end of its lifetime.
Constraints (15) imply that only the first individual can be replaced at time 1. Constraints
(16) impose the non-anticipativity constraint, forcing the decisions at the first stage to be
the same. The constraints (17) force all failed components at the first stage to be replaced.
Constraints (18) and (19) define the auxiliary variable Y;"“. Constraints (20) provide the
definition of variable y!*. Constraints (21) — (23) are the definition of variable w[;’. The

remaining constraints (24) — (28) are binary constraints.

4. Optimization algorithms

All decision variables in DEF are binary. Properties of stochastic integer programs are
scarce, and general efficient methods are lacking. We therefore design a heuristic algorithm
under the framework of PHA to solve practical-size problems within moderate CPU time.
To assess the performance of the proposed heuristic algorithm in solving DEF, we compare

the performance of the proposed algorithms with three conventional algorithms, namely,



Zhicheng, Yisha, and Bo: Multi-component Maintenance
14 INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS

basic Benders decomposition (Algorithm 1), integer L-shaped method with Benders cuts
(Algorithm 2) and standard PHA (Algorithm 3). The basic Benders decomposition and
integer L-shaped method with Benders cuts are considered because of LP relaxation and
branch-and-cut are common methods for solving integer programs. Standard PHA, which
decomposes a problem by scenarios, provides a flexible framework for stochastic integer

problem, and is also considered for comparison.

4.1. The benchmark algorithms

4.1.1. Basic Benders decomposition algorithm
The basic Benders algorithm first solves the Benders master integer problem, and then
solves the LP relaxation of subproblems to generate cuts which are added back to Benders
master problem (Birge and Louveaux 2011). The procedure is repeated until no cuts found.

We first define the initial master problem (MP) as
MP: mindz + Z CiprTi + Z(Ci,cr — Cipr)i + Zp(w)@w
ieN ieN weN

subject to

0, > Qz,w),z; > &, z>x,i EN,weQ

z;, 2z €40,1},i €N,

where Q(x,w) is the objective value of the second-stage problem with respect to scenario

w, given by

Q(xv W) = min Z(Ci,pr + C’i,pr + Ci,cr - Ci,prxi - (Ci,cr - Ci,pr)gi) + C15 —dz
ieN

and subject to constraints (9) to (28) except (12), (17), and (25). Note that all decision
variables should be LP-relaxed. Constraints (12), (17) and (25) are excluded from the
subproblem since they only concern the decision variables in the first stage. For each

scenario w, Benders cut can be written as

0,>6 v —ems,me{l,... M}, weQ, (30)

mw

where ¢ = — e,,, can be viewed as the dual objective function of problem Q(z,w) with
dual solutions obtained and unknown first-stage decisions x at iteration m for scenario w,

and M denotes the maximum iterations.
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Algorithm 1 Basic Benders decomposition

1: Initialization: 6, + —oo, Vw € Q, €<+ 1072, and assign an integer feasible z to the subproblem.
2: Solve the LP relaxation of the subproblem, Q(z,w), for each w € Q.

3 if 0, — Q(z,w) < € Yw € £ then return Optimal solution:(z*,0%) < (z,0,). end if

4: Add Benders cuts using Equation (30) into the MP.

5: Solve the MP to get new (x,0,,) Yw € Q. Go to step 2.

4.1.2. Integer L-shaped method with Benders cuts
In Algorithm 2, we initialize Benders master problem with Benders cuts. More specifically,
the root node is obtained by solving the LP relaxation of the master problem via Benders
decomposition and keeping the cuts. In the branch-and-cut process, at each node, if the
solution is integer feasible, the subproblem is solved to generate integer optimality cuts

which are defined as follows (Laporte and Louveaux 1993):

02 Q) -1 Y o Y @ |SE))+ Q) (31)

ieS(a*) i¢S(x*)
where Q(z) = .o p(w)Q(z,w), L is a lower bound of Q(z), and S(z*) := {i|z] =1} given
a first-stage solution z* € {0,1}".

In addition to the integer optimality cuts, Benders cuts are also generated and added
into the MP if violated by the candidate solution, in order to improve the performance of
the Integer L-shaped method. Therefore, for each node in the branch-and-cut search tree,
if the candidate solution is integer feasible, both Benders cuts and integer optimality cuts
are added via lazy constraint callback routine, otherwise only Benders cuts are added by

using user-cut callback routine.

4.1.3. Standard progressive hedging algorithm
We also examine the performance of the standard PHA on our problem. The PHA mitigates
the computational difficulty associated with large problem instances by decomposing the
extensive form according to scenario, and iteratively solving penalized versions of the sub-
problems to gradually enforce non-anticipativity (Aydin 2012). Solving individual scenario
subproblems separately is generally much less computationally challenging and may allow
a solver to exploit any special combinatorial structure that may be present. Moreover, the
time expended for each iteration can be dramatically reduced by a very straightforward

parallelization.
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Algorithm 2 Integer L-shaped method with Benders cuts

1: Imitialization: 6* < +o0;

Initialize the MP by solving the LP relaxation via Benders, and keep cuts = (z,6).
2: Branch and Cut:
3: At each node in the search tree:

4:  Solve LP relaxation = (x,0).

5:  if LP bound exceeds known incumbent 8* then Prune. end if
6: if x is integer feasible then
T Solve subproblem Q(z) to generate integer optimality cuts using Equation (31).
8: Solve LP relaxation of the subproblem @Q(x) to generate Benders cuts.
9: if (x,0) violates any Benders cut or integer optimality cut then
10: Add cut to LP relaxation of the MP and resolve.
11: else Update the incumbent, 6* <+ 6. end if
12:  end if

13:  if x is not integer feasible then

14: Solve LP relaxation of the subproblem Q(z) to generate Benders cuts.

15: if (x,0) violates any Benders cut then Add cut to LP relaxation and resolve.
16: else Branch to create new nodes. end if

17:  end if

Specifically, the PHA proceeds by relaxing the non-anticipativity constraints using
augmented Lagrangian relaxation and the problem becomes separable by each scenario.
The scenario subproblems have augmented objective functions which include Lagrangian
penalty functions corresponding to the relaxed non-anticipativity constraints. At each
iteration of the PHA algorithm, these scenario subproblems are solved as deterministic
problems. Solutions from all scenario subproblems are then collected and averaged accord-
ing to their non-anticipativity constraints and scenario probabilities. The deviation of
each scenario subproblem solution from these averages is used to update the Lagrangian
multipliers. Next, the scenario subproblems are re-solved with the updated augmented
Lagrangian objective function. This iterative process continues until the Lagrangian dual
problem converges to a solution satisfying the non-anticipativity constraints.

Details of the PHA are described in Algorithm 3. A different form of the objective
function, cx + E(Q(z,w)) is used for a concise presentation of the algorithm (Gade et al.

2016).
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Algorithm 3 The standard PHA
1: Initialization: Let v < 0, 1072, 2, - argmin, (cz + Q(z,w)), % > .o P(w)xy, and W2 « p(xf —
zv), Yw e Q.

Update the iteration counter:v < v+ 1.

Decomposition: z, - argmin, (cx + W2 'z + 2|z — z°7[*) + Q(z,w),Yw € Q.
Aggregation: 7" <) _,p(w)xy.

Update price: W? < W2 4 p(a? — 2¥),Vw € Q.

Calculate converge distance: g" <, p(w)||zl, —2"||,Vw € Q.

Termination: if g” < € then return Optimal solution z". else Go to step 2. end if

4.2. Progressive-hedging-based heuristic algorithm

Algorithm 1 cannot provide meaningful results due to the LP relaxation employed, and
becomes more difficult and time-consuming as more cuts are added. Algorithm 2 is also
computationally intensive as the number of binary variables and constraints increases.
Standard PHA similarly suffers the computational intractability, since even for a small-
scale multi-component maintenance problem, the scenario subproblem in the DEF can
have a large number of decision variables and constraints, beyond what commercial solvers
can handle. However, PHA provides a flexible framework for solving stochastic integer
problems. To address the bottleneck in solving the scenario subproblem using the standard
PHA, i.e., step 3 in Algorithm 3, we develop an efficient heuristic algorithm based on
the problem structure for the scenario subproblems, and use the PHA framework as a
“wrapper” to force non-anticaptivity constraints.

The basic idea of our heuristic algorithm is as follows. Given a scenario subproblem,
the heuristic iteratively groups maintenance activities of operating individuals to reduce
the setup costs and ultimately reduce the total maintenance costs. At each iteration it
first obtains tentative replacement schedules for all operating individuals without consid-
ering economic dependence, and then considers a shifting window and groups maintenance
activities within the shifting window. The tentative replacement schedule and the shift
window are optimized to find the lowest total maintenance cost. The time complexity of
the heuristic algorithm is polynomial (see Online Supplement OS2 for proof).

Before describing the details of the heuristic, we first present two properties regarding

the optimal solution.

THEOREM 1. For each scenario subproblem, there exists an optimal solution such that

at each decision period t € T, if there is any group of individuals (including one-individual
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group) that is maintained, there is at least one individual in the group that is replaced at
one time unit before its failure or at its failure, except for all types of components’ last

individuals that are replaced in the planning horizon. (Proof is in Online Supplement OS3).

THEOREM 2. Given a set of operating individuals sorted according to their failure times,
there exists an optimal solution for this set such that maintenance activities are erecuted

following the same order. (Proof is shown in Online Supplement OS/).

Theorem 1 helps determine tentative replacement schedules for each individual. Based on
Theorem 1, we only need to consider two tentative replacement schedules for individuals,
i.e., replacing onetime unit before a failure or at the failure. Theorem 2 further ensures
that it is optimal to execute the replacement activities for all operating individuals in the
order they are tentatively planned according to Theorem 1. Theorems 1 and 2 significantly
decrease the number of possible feasible solutions needed to be considered in the heuristic,
and thus substantially reduce the algorithm complexity.

The details of the heuristic are described as follows. Let K denote the set of all operating
individuals at the current iteration of the heuristic. Let 8;; and 3;; denote the tentative
and actual replacement times of individual I;;, respectively. Let K’ represent the sorted
set of K according to f3;;, and K'[i] represent the individual in the ith position in set
K'. For example, consider a four-component system, and the tentative replacement times
of four individuals at one iteration are provided in Figure 4. In this example, we have

K={6Lys 153,132,144} and K'={ls3,11 5,144,135}

D3 I

“J;H

1.5 4 32
o . 0+ 00>
16 17 18 19 20 21 !

Figure 4 Operating individuals at one iteration

Given a shifting window ¢ and an operating individual set K, the Grouping Rule
constructs candidate grouping options and selects the one with the minimum weighted
PHA replacement cost cumulated till the current iteration. Specifically, the first candi-
date grouping option starts from K'[1] and groups all current operating individuals with
a tentative replacement time between [x/y) and Brpy + ¢ Let K'[v] represent the last

individual grouped with K’[1]. The next shifting window starts from K'[v + 1] and ends
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at K'[v + 1] + ¢. operating individuals with a tentative replacement time in this window
are grouped together. When moving an individual of a component to an earlier time for
maintenance so that it can be grouped with an individual(s) of other component(s), it
is possible that one or more new individuals of that component are needed to cover the
planning horizon. Therefore, we consider a penalty cost: If individual I;,. is grouped with
L;; (Bir > Bjr), then the penalty cost is 7;(¢;,r +d), where r; is the number of new indi-
viduals needed to cover the planning horizon due to this shift. The grouping process of
the first option continues until v = |K’|, implying no more individual can be grouped.
The second grouping option starts from K’'[2] and the same grouping process is repeated.
The total number of group options is |K’|-1. The replacement time of any group in the
optimal grouping option for set K becomes actual replacement time of individuals within
this group. These individuals are replaced with their immediate successors. Note that
if the new individual has a tentative replacement schedule beyond the planning hori-
zon, it is removed from set K. Now we have a new set of operating individuals and the
Grouping Rule is applied for the new set. The heuristic stops when set K is empty.

We use the same four-component sys-

tem considered earlier to illustrate the L, I L, I,
grouping process using the Grouping L( , : —— ~ 1
19 i ™~ o 1 r'
Rule. Suppose the shifting window ¢ = 6 1718 19 20 21
3. The three candidate group options are (a) Group option 1
illustrated in Figure 5. Among all three 0 = 5= >
;
options, group option 2 has the minimum e 1820 21
weighted PHA cost cumulated. Therefore, (b) Group option 2
the actual replacement time for I3 is o) o) b—0 I
o 16 17 18 19 20 21 d
16 and 18 for the other individuals. The
c e . . . G ion 3
heuristic is summarized in Algorithm 4 (¢) Group option
and the Grouping Rule. Figure 5 Group options at one iteration

Our modeling and solution approach
can be easily extended to incorporate several other modeling aspects, such as cost dis-
counts depending on the number of components maintained, restriction on the number of
components replaced together, and nonlinear operation costs. It can also be easily adapted

to solve opportunistic maintenance (OM). We can find the optimal OM policy that groups
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Algorithm 4 Heuristic algorithm for one scenario

1: Initialization:
Not-used-residual lifetime A < {0,1}, and determine a set of values for ¢, ¢ ={¢1,¢2,... }.
2: For all combinations of A and ¢, select the one that has the minimum total weighted PHA replacement
cost and return the corresponding optimal solution.
2.1 Initialization: Assign tentative replacement times for the first individual of each component
K+ {li1,1Is1,....,0,1}, and B;1 < T;1-A, VieN.
2.2 Apply Grouping Rule to obtain the optimal group option W.
2.3 Update set K.
VI, e W:
Replace I;;in set K with I, ;41;
Assign tentative replacement schedule to I; 11, B ;41 < B, + (15 j41-A);
vI;; € K, if §;; > T, then Remove I;; from set K. end if
if K is empty, then Stop. else Go to step 2.2. end if

The Grouping Rule

1: Sort K in ascending order based on 3;; = sorted set K'.
2: Select the option m that has the lowest cost of weighted PHA replacement cost cumulated and penalty
cost = W.
Group option m: m from 1 to |K'|-1.
2.1: Initialize the last individual grouped as K'[v]: v + m.
2.2: Let t + B(K'[v]). Group individuals in set K" if the actual replacement times of their
predecessors are before ¢t until S(K'[V']) >t 4+, v/ =v+1,v+2,....
2.3: Let ¥ denote the position of the last individual grouped in step 2.2, and update actual
replacement times: 7/ (K'[V]) < t, v/ =v+1,v+2,...,9, v 1+ 1.
2.4: if v > |K'|, then Compute the weighted PHA replacement cost cumulated.
else Go to step 2.2. end if
3: if K'[1]¢ W then W «+ W U{(K'[1])}. end if

4: return set W.

maintenance only at CM by restricting the not-used-residual lifetime in our heuristic to
A =0, and find the optimal OM policy that only groups maintenance at PM by only allow-
ing A = 1. More structured policies can be derived based on the patterns of results from
our general model. For example, fixed groups in direct-grouping can be obtained based
on how frequent some components are grouped for maintenance in our results. Indirect

grouping policy can be derived based on the individual PM replacement intervals.
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5. Computational study

In this computational study, we first introduce an analytical approach to determining the
minimum number of scenarios needed for a given accuracy, then examine the performance
of all four algorithms, and assess the approximation performance of the multi-stage model
by using proposed heuristic algorithm (Algorithm 4) in a rolling horizon. We perform our
computational study on a computer with a CPU of Intel i7-6700, 3.4G Hz and a RAM
of 16G. A python based package Pyomo (Hart et al. 2011, 2017) is used to implement
the algorithms with the solver of CPLEX v12.7.1. All input parameters, data sets and the

source code used for the computational study can be found in our online repository !

5.1. Scenario sampling
Consider a stochastic programming problem V* = min,cx{f(x) := E[F (x ¢€)]} and its sam-

|Z‘Q' F(z,8)}

where X is the feasible region of decision variable z, and ) is a sample of the random

ple average approximation (SAA) problem VIQ\ = mingex{ f|w|(x) :

vector £ . Denote the e-optimal solution sets of the stochastic program and SAA problem
by S¢:={x e X: f(zr) <V*+¢} and STQI ={reX: f|Q|(:U) < Vig| + €} respectively. To
guarantee that the optimal solution of SAA problem is the e-optimal solution of the true
stochastic programming problem with probability 1-a, Shapiro et al. (2009) provide an
analytical expression of the minimum sample size required. Theorem 3 summarizes the

main result in their study.

THEOREM 3. (Theorem 5.17 (Shapiro et al. 2009)) Suppose there exists a constant o > 0
such that for any x € X\S¢ the moment generating function M,(t) of the random variable
H(x,€) — E[H(z,8)] satisfies M,(t) < el?/? for all t € R, then for e >0, 0< 7 < ¢ and

a€(0,1), and sample size || satisfying

207 . mﬁ) (32)

(e—1) a

it follows that Pr(ST, o) CS) =1—a, where H(z,{) := F(u(z),§) — F(z,§), € X\5 and
mapping u:x € X\S — X satisfies f(u(x)) < f(x) — € for some €* > .

Q| >

To determine constant o, Shapiro et al. (2009) show that if H(z,&) —E[H(x,£)] <b is

satisfied with some b > 0 for all x € X, then o2 := b?. If €* is small compared to max, F(z, &),
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then in DEF, an upper bound b can be estimated by considering CR for all individuals

over the planning horizon, i.e.,
H(z,§) —E[H(2,8)] < [H(z,8)| + [E[H (2,8)]| = |H(2,)|

< [F(u(x), )|+ [F(2,6)| < 2F(2,6) <2T(Y . e +d) =b
ieN

(33)

5.2. Performance of algorithms in solving DEF

In this section, we compare the computational times and cost errors of the four algorithms
in solving DEF. For standard PHA (Algorithm 3), we run our experiments in a stochastic
programming package PySP inside Pyomo. Assume that all components’ lifetimes follow
Weibull distributions. For each component, we draw the shape and scale parameters from
uniform distributions U(4,7) and U(1,8), respectively. The cost of CR (¢;¢) is drawn
from a uniform distribution U(6,16). Parameter values that are randomly drawn and used
in Section 5.2 are provided in Table OS5 in Online Supplement. Given the number of
components in a test case, we use the parameters of the first n components in Table OS5.
Without loss of generality, the cost of PR (¢;,,) is assumed to be 1. Suppose that setup
cost d is 5, the initial ages of all first individuals are 2, and the individual of component 1
is assumed to be failed at the first stage.

The number of scenarios needed for each test case in Table 1 is determined using Equa-
tions (32) and (33) by choosing € = 0.10, 7 = 0.1e¢ and o = 0.1. This parameter setting
guarantees the optimal solution of SAA problem is an 0.1co-optimal solution of the true
stochastic programming problem with probability 0.9. We use the same parameter setting
to determine the number of scenarios throughout the paper.

We compare the performance of Algorithms 1 — 4 for 18 cases. Table 1 summarizes the
performance of the four algorithms. NA is reported if the computational time is longer
than one day or out of memory, or if the true objective of DEF cannot be obtained for
computing objective percentage error. From Table 1, we can see that Algorithms 1 — 3
can only solve small problems (e.g., n <4) and Algorithm 4 is the only algorithm that
can solve all test cases efficiently. We further examine the performance of Algorithm 4. We
compute the percentage error between the objective values obtained from using Algorithm
4 and solving DEF exactly by CPLEX. We can see that the performance of Algorithm 4 is
very good for small-scale problems with a maximum percentage error of 9.89%. Based on
our computational studies, the proposed heuristic algorithm (Algorithm 4) performs well

and is capable of solving practically large-scale problems.
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We further investigate the performance of the grouping heuristic by comparing it with the
optimal solution (i.e., solving DEF of one scenario subproblem using the solver CPLEX).
We use the same parameter settings used for computational studies summarized in Table 1.
For each test case, we generate 100 scenarios. Each scenario is solved using both the solver

and the grouping heuristic. The comparison of average costs obtained from the solver and

the heuristic is summarized in Table 2.

Table 2  Average performance of Algorithm 4 over 100 scenarios
n T | optimal avg. cost | avg. cost of Alg. 4 | avg. percentage gap
9 31.91 32.04 0.38%
2 29 67.48 69.95 4.80%
49 104.23 107.17 2.80%
9 33.35 34.06 2.18%
3 29 73.94 78.18 5.67%
49 114.46 122.19 6.67%
9 38.12 39.54 3.44%
4 29 90.13 99.11 9.58%
49 142.21 158.64 11.43%

From Table 2, we can see that the average percentage gap is 5.2%. We believe that the

grouping heuristic performs well for the scenario subproblem.

5.3. Performance in approximating the multi-stage model using a rolling horizon

approach
In this section, we compare our heuristic in a rolling horizon two benchmark policies. We
also compare the performances using our approach in a rolling horizon with the results
from solving the multi-stage model using an exact method, and assess the performance of
the proposed approximation method.

Benchmark 1 is a widely used direct-grouping model (Van Horenbeek and Pintelon 2013)
which uses a dynamic-programming algorithm that first finds the optimal replacement
schedule for each component without considering economic dependence and then sort the
components based on that. At iteration j, the algorithm identifies two groups that cover
all maintenance activities of components 1 to j and provide the best savings for these
components. The best grouping structure can be found by backtracking. This algorithm
has in the worst case a time complexity of o(n?). However, the limitation of this algorithm

is that it only considers the group structure of two groups at each iteration and ignores
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all other options (e.g., partition all maintenance activities into three or more groups).
Benchmark 2 is a structural policy known as (¢;,T;) policy which works as follows: At each
decision period, if the age of component i exceeds T}, preventive maintenance is performed;
if the age of component ¢ is between ¢; and T; (¢; <T;) and there is one or more other
component’s age exceed their respective T;, preventive maintenance is also performed on
component i. We adopt the method in (Wijnmalen and Hontelez 1997) which extends
the decomposition and aggregation approach used in multi-unit inventory control problem
Federgruen et al. (1984) to our multi-component maintenance optimization problem.

We conduct a sensitivity analysis to assess the performance of Algorithm 4. Suppose the
length of a decision period d equals to 1. At each decision period, we consider a two-stage
stochastic maintenance optimization problem (DEF) where the second stage combines deci-
sions of the remaining periods. We repeat this procedure five times to obtain the average
total maintenance cost because five replicates can provide the acceptable precision and
computational efficiency. The PR cost is assumed to be 1 for each type of component, and
the CR costs are drawn from two different uniform distributions, U(6,16) and U(17,27).
The lifetime of each individual is assumed to follow a Weibull distribution. To introduce
more heterogeneity to the system, the shape parameter (1) of the Weibull distribution is
drawn from two uniform distributions U(1,3) and U(4,7), and the scale parameter (\) of
the Weibull distributions is drawn from two different distributions, U(1,5) and U(5,10).
Two levels of setup costs are considered. Assume all operating individuals are functioning
and have an age of 0 at the first decision period. Different levels of parameters are provided
in Table 3. Parameter values that are randomly drawn and used for the comparison are

summarized in Table OS6 in Online Supplement.

Table 3 Different levels of parameters

shape scale
Level parameter parameter d CR cost
n A
High U(4,7) U(5,10) 100 U(17,27)
Low U(1,3) U(1,5) 5 U(6,16)

Table 4 summarizes the comparison results under different parameter settings. The opti-
mal expected costs (in column multi-stage (P1)) are obtained by enumeration. We enumer-

ate all possible combinations of the maintenance decisions and node states at all decision
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periods. Expected cost for each decision policy can be computed accordingly. The optimal
cost is the minimum of the expected costs of all decision policies. Note that the optimal
expected costs using benchmark algorithms and the proposed algorithm are obtained using
a rolling horizon approach. In each rolling horizon step, we simulate the (remaining) life-
times to determine the failure status of all individuals at the next decision period. From
Table 4, we can see that all percentage gaps of Algorithm 4 are below 10%, compared to the
optimal costs obtained by enumeration, and Algorithm 4 outperforms the two benchmarks
in the majority of the test cases.

We further compare the performance of Algorithm 4 and the benchmark algorithms on
large-scale problems. The results are summarized in Tables 5 and 6. Note that exact method
cannot solve the problem instances in Tables 5 and 6 and are therefore not included. From
Tables 5 and 6, we can see that Algorithm 4 provides significant better overall results than

the two benchmark algorithms for large-scale problems.
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Table 5 Performance of Algorithm 4 for large-scale multi-stage problems (n=4,7 =19, |Q| = 1250)
CR Benchmark 1  Benchmark 2 Algorithm 4

oA cost % %
saving  saving

mean var. mean var. mean  var. V.S. V.S.
Bench-  Bench-
mark 1  mark 2
1 HHH H 4345 617 349.3 5002 306 3362.2 41.98% 14.16%
2 HHH L 3293 1261 331.1 4145 289.9 4207.2 13.60% 14.23%
3 HH L H 41.61 1299 86.63 429.3 36.08 123.33 15.33% 140.11%
4 HHL L 348 8344 5143 1321 31.88 21.77 9.16% 61.32%
5> HL H H 961 5927 805.3 4543 722.9 2173.2 32.93% 11.39%
6 H L H L 947 2123 726.4 3088 634.5 2103 49.25% 14.48%
7T HL L H 1363 506.6 199.2 1403 99.68 131.45 36.75% 99.81%
8 HL L L 111.8 103.3 120.3 338.1 88.68 26.81 26.04% 35.62%
9 L HH H 1002 4434 565.6 23024  485.8 3089.4 106.25% 16.43%
10 L HH L 689 5240 517.2 20262 440.8 3016.7 58.33% 17.32%
11 L HL H 1204 870.6 141.9 1471 100.4 173.21 19.89% 41.34%
12 L HL L 8426 391.4 8582 632.1 59  565.8 42.81% 45.46%
13 L L H H 2005 5618 1179 28140 906.8 12645 121.06% 30.03%
14 L L H L 1945 3059 1045 23242 749  4364.6 159.64% 39.53%
15 L L L H 287 2240 324.1 2119 228.2 587.12 25.78%  42.04%
16 L L L L 2372 4071 229.1 689.8 181.4 340.75 30.75% 26.29%
average 49.35%  40.60%
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Table 6  Performance of Algorithm 4 for large-scale multi-stage problems (n =8,7 =19, |Q| = 1940)

CR Benchmark 1  Benchmark 2 Algorithm 4
*on oA cost % %
saving  saving
mean var. mean  var. mean  var. V.S. V.S.
Bench- Bench-
mark 1 mark 2
1 HH H H 481.3 3993 508.04 1972  389.12 192.45 23.69% 30.56%
2 HHH L 4530 1338 455.24 1878 383.6 287.1 18.08% 18.68%
3 HH L H 7847 691.1 147.04 267.6 67.4 466.9 16.42% 118.16%
4 HHL L 726 180.3 94.24 90.14 57.5 724  26.26% 63.90%
5 HL H H 1996 450.2 1276.28 2498  1137.7 304.4 75.47% 12.18%
6 HL H L 1952 101.3 1150.7 1551  975.64 1615 100.10% 17.94%
7T HL L H 240.6 579.2 345.28 2000 208.5 244.5 15.41% 65.60%
8 HL L L 2202 247.5 219.68 393.2 185.3 200.1 18.84% 18.55%
9 L HH H 1265 4709 1100.5 1691  936.43 4795.7 35.12% 17.52%
10 L HH L 1018 5146 1034.2 11094 865.32 9781.3 17.59% 19.52%
11 L HL H 29.3 535.1 321.5 338.6 180.25 406.5 64.39% 78.36%
12 L HL L 2028 641.9 198.2 166.1  150.18 197.33 35.00% 31.97%
13 L L H H 2443 3831 2166.4 1033  1962.6 5380.3 24.49% 10.38%
14 L L H L 2212 1928 1992.3 2844  1794.4 3413.8 23.26% 11.03%
15 L L L H 6667 2750 741.38 1911 599.1 944.4 11.29% 23.75%
16 L L L L 4487 406 469.2 177.3  406.9 300.2 10.27% 15.31%

average 32.23% 34.59%

6. Conclusion and future research

In this paper, we consider the problem of multi-component maintenance optimization over
the finite planning horizon. We formulate the problem as a multi-stage decision-dependent
stochastic integer program, and approximate it with a novel two-stage stochastic linear
integer model in a rolling horizon. The proposed models are general with no restrictions on
maintenance grouping. A progressive-hedging-based heuristic is designed to solve practi-
cally large-size two-stage problems. To assess the performance of the heuristic, we compare
it with three conventional algorithms and our computational studies show that the pro-
posed heuristic provides satisfying results and is capable of solving practically large-scale
problems. We also evaluate the performance of the heuristic in a rolling horizon relative
to the true global optimal for small problems. Results show that solving our two-stage
model by the proposed heuristic in a rolling horizon provides a good approximation of

the multi-stage problem. The proposed heuristic in a rolling horizon is further bench-
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marked with a widely studied dynamic-programming-based algorithm and a commonly
adopted structural policy. Our heuristic significantly outperforms the benchmark algo-
rithms based on our numerical experiments. Our work has extended the available literature
in multi-component maintenance by using stochastic programming approach. The model-
ing and solution techniques developed in this paper opens new research and implementation
opportunities. Future research will consider a different widely used maintenance policy,
condition-based maintenance (CBM). CBM leverages sensor information on components’
health status through inspection or real-time monitoring and aims to perform maintenance
just in time by setting optimal control thresholds. Capturing these complexities requires
a different problem formulation and different optimization algorithms. Moreover, main-
tenance activities are often subject to a pre-determined budget with a requirement on a
system’s reliability or availability. Future work will incorporate these constraints into the
decision model. Lastly, it is worth extending the problem for more complex systems with

stochastic and structural dependences, in addition to the economic dependence.
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