
INFORMS JOURNAL ON COMPUTING
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0899-1499 |eissn 1526-5528 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Multi-component Maintenance Optimization: A
Stochastic Programming Approach

Zhicheng Zhu
Department of Industrial, Manufacturing & Systems Engineering, Texas Tech University, Lubbock, TX 79409

Yisha Xiang
Department of Industrial, Manufacturing & Systems Engineering, Texas Tech University, Lubbock, TX 79409

Bo Zeng
Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261

Maintenance optimization has been extensively studied in the past decades. However, most of the existing

maintenance models focus on single-component systems and are not applicable for complex systems consisting

of multiple components, due to various interactions between the components. Multi-component maintenance

optimization problem, which joins the stochastic processes regarding the failures of the components with the

combinatorial problems regarding the grouping of maintenance activities, is challenging in both modeling

and solution techniques, and has remained an open issue in the literature. In this paper, we study the

multi-component maintenance problem over a finite planning horizon and formulate the problem as a multi-

stage stochastic integer program with decision-dependent uncertainty. There is a lack of general efficient

methods to solve this type of problem. To address this challenge, we use an alternative approach to model

the underlying failure process and develop a novel two-stage model without decision-dependent uncertainty.

Structural properties of the two-stage problem are investigated, and a progressive-hedging-based heuristic is

developed based on the structural properties. Our heuristic algorithm demonstrates a significantly improved

capacity in handling practically large-size two-stage problems comparing to three conventional methods

for stochastic integer programming, and solving the two-stage model by our heuristic in a rolling horizon

provides a good approximation of the multi-stage problem. The heuristic is further benchmarked with a

dynamic programming approach and a structural policy, which are two commonly adopted approaches in

the literature. Numerical results show that our heuristic can lead to significant cost savings compared with

the benchmark approaches.

Key words : maintenance optimization, multi-component system, stochastic programming, progressive

hedging algorithm, heuristic

1. Introduction

Effective maintenance plays an important role in maintaining high levels of productivity

and safety in many capital-intensive industries, especially those that operate complex,

hazardous systems, such as offshore oil and gas drilling systems, nuclear power plants,
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petrochemical plants, and space transport systems. A number of catastrophic failures, e.g.,

the space shuttle Challenger accident and the loss of Piper Alpha oil platform (Cowing

et al. 2004), have occurred in part because of inadequate maintenance. Moreover, the

downtime cost caused by either planned or unplanned maintenance shutdown in these

industries is often significant. The production losses can range from $5,000 to $100,000 per

hour during the shutdown in chemical plants and millions of dollars per day in offshore

drilling/refineries (Amaran et al. 2016). As the demand for high reliability increases, it is

more imperative to develop efficient maintenance schedules for complex systems.

Maintenance optimization has been extensively studied in the literature. However, most

of the existing maintenance models focus on single-component systems, and are not appli-

cable for complex systems consisting of multiple components, due to various interactions

between the components. In general, there are three different types of interactions, eco-

nomic, structural, and stochastic dependence (Thomas 1986). Economic dependence is the

most common one among these three types of interactions. Systems with the economic

dependence typically incur a common system-level cost, often referred to as setup cost, due

to mobilizing repair crew, safety provisions, disassembling machines, special transporta-

tion, and the downtime loss. These costs are shared by all maintenance activities performed

simultaneously. Considerable cost savings can be obtained by jointly maintaining several

components instead of separately, especially when the setup cost is high.

Multi-component maintenance optimization problem, which joins the stochastic pro-

cesses regarding the failures of the components with the combinatorial problems regarding

the grouping of maintenance activities (Dekker et al. 1997, Scarf 1997, Dekker and Scarf

1998, Van Horenbeek and Pintelon 2013), is challenging in both modeling and solution

techniques, and has remained an open issue in the literature. The problem can quickly end

in complex models and explicit analytical expressions for optimal maintenance costs and

the corresponding decisions are sometimes impossible to obtain. One often has to make

special system assumptions (Tian and Liao 2011, Huynh et al. 2014), impose restrictions

on maintenance grouping activities (Wildeman and Dekker 1997, Ding and Tian 2012,

Van Horenbeek and Pintelon 2013), and/or resort to simulation tools (Barata et al. 2002,

Laggoune et al. 2009) so that the decision problem can be formulated with less mathemat-

ical difficulty.
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In this paper, we study the maintenance optimization problem for multi-component

systems with economic dependence over a finite planning horizon. We aim to minimize

the total maintenance cost by optimally determining maintenance decisions for all compo-

nents at each decision period. We first formulate this problem as a multi-stage stochastic

integer program. The system state transition probabilities at each stage are determined

by not only the underlying failure processes but also maintenance decisions, and thus are

decision-dependent. Such decision-dependent uncertainty is also referred to as endogenous

uncertainty, and there is a lack of efficient methods to handle this type of problem (Peeta

et al. 2010, Zhan et al. 2016, Apap and Grossmann 2017). We approximate the multi-stage

model with a novel two-stage stochastic linear integer model in a rolling horizon. In both

models, we do not restrict the types of maintenance activities that can be grouped or when

the grouping can occur. In other words, joint execution of any combination of maintenance

activities can occur anytime. A progressive-hedging-based heuristic is designed to solve

practically large-size two-stage problems. Computational studies are performed to assess

the performance of the heuristic. We further compare the results of the two-stage model

with those of a direct-grouping model using a dynamic-programming approach (Van Horen-

beek and Pintelon 2013) and a structural (ti, Ti) policy (Wijnmalen and Hontelez 1997)

over the rolling horizon. The main contributions of this paper are as follows.

(1) From a modeling perspective, the proposed multi-stage model and the two-stage

model are sufficiently general, permitting grouping of any maintenance activities at any

time and allowing general failure distributions. This work extends the multi-component

maintenance literature by using a stochastic programming approach. Stochastic program-

ming is a powerful modeling technique and facilitates the derivation of analytical expres-

sions of the total cost function and maintenance decisions, which are difficult to obtain

using commonly adopted approaches for the multi-component problem, such as dynamic

programming.

(2) Formulating the multi-component maintenance problem as a stochastic program

further enables the use of stochastic optimization tools. We design an efficient heuristic

algorithm in the progressive hedging framework based on the problem structural proper-

ties of the two-stage model. Our heuristic algorithm demonstrates a significantly improved

capacity in handling practically large-size two-stage problems comparing to three conven-

tional methods for stochastic integer programming, and solving the two-stage model by



Zhicheng, Yisha, and Bo: Multi-component Maintenance
4 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

our heuristic in a rolling horizon provides a good approximation of the multi-stage prob-

lem. Using a rolling horizon scheme, we further assess the performance of our heuristic by

comparing it with a dynamic programming approach and a structural (ti, Ti) policy widely

adopted in the literature. Numerical results show that the two-stage maintenance model

and the designed heuristic can lead to substantial cost savings.

The remainder of this paper is organized as follows. Section 2 reviews multi-component

maintenance and important solution methods in stochastic programming. In Section 3,

we develop a multi-stage model stochastic maintenance model and approximate it with

a two-stage model. Section 4 describes the progressive-hedging-based heuristic and three

conventional algorithms in detail. Computational studies are presented in Section 5. We

conclude this study and discuss future research directions in Section 6.

2. Literature review

We review two streams of literature that are relevant to our work: literature on multi-

component maintenance and literature on solution methods in stochastic programming.

2.1. Multi-component maintenance

Common approaches to coordinating maintenance activities of multi-components include

direct-grouping, indirect-grouping and opportunistic maintenance. Direct-grouping par-

titions the components into a number of fixed groups and then always maintain the

components in a group jointly (van Dijkhuizen and van Harten 1996). The problem for-

mulated with this approach is an NP-complete set-partitioning problem. The optimal

grouping decision can be found for only a small number of components due to the com-

putational complexity. There are some efforts that reduce the set-partitioning problem for

multi-component maintenance to a dynamic-programming problem with a quadratic time

complexity under some special assumptions (Dekker et al. 1996, Wildeman et al. 1997).

Van Horenbeek and Pintelon (2013) and Vu et al. (2014) extend Dekker et al. (1996) and

Wildeman et al. (1997) by considering dynamic information, e.g., usage of components and

environmental conditions. A major deficiency of this approach is that grouping activity

iteratively takes place within a time window that is often determined by the maximum indi-

vidual maintenance interval among all components. Within this window, each component

is preventively maintained only one time. This assumption is not relevant since a system

may be composed of different components with different lifetime cycles, and maintenance

intervals of components can be significantly different (Laggoune et al. 2009).
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Unlike the direct-grouping that yields a fixed group structure, indirect grouping usu-

ally groups preventive maintenance (PM) activities by making the PM interval a multiple

of a basis interval, so the maintenance of different components can coincide (Goyal and

Gunasekaran 1992, Schouten et al. 1998). An alternative indirect grouping strategy per-

forms major PM on all components jointly at the end of a common interval and allows

minor or major PM within this interval. Indirect grouping model of this type is sometimes

formulated as a mixed integer programming (MIP) problem (Epstein and Wilamowsky

1985, Hariga 1994). Because of the simplified policy structure, the MIP model can be

separated by components, which greatly reduces the computational complexity.

Both direct- and indirect-grouping focus on grouping PM activities, and ignore mainte-

nance opportunities generated by corrective maintenance (CM) at failures. To take advan-

tage of the time window of CM and use it as opportunities for PM of other functioning

components, many opportunistic maintenance (OM) models have been proposed. Ding and

Tian (2012) and Koochaki et al. (2012) use a simulation-based optimization method to

find optimal OM policies. Shafiee and Finkelstein (2015) consider a simplified OM pol-

icy that preventively replaces all non-failed components when there is a failure. More

recently, Patriksson et al. (2015) use a stochastic programming approach in OM. However,

the integer L-shaped method proposed in Patriksson et al. (2015) cannot solve large-scale

problems. Castanier et al. (2005) consider a condition-based OM policy and formulate it

as a semi-regenerative process. This approach also suffers the computational intractability,

because the problem size grows exponentially as the number of components increases. As

a result, their analysis is limited to a two-component system. For more details regarding

the multi-component maintenance problem, the readers are referred to review papers by

Dekker et al. (1997), and Nicolai and Dekker (2008).

2.2. Solution methods in stochastic programming

In this paper, we formulate the multi-component maintenance optimization problem as a

stochastic integer program. Various decomposition methods have been developed to solve

stochastic integer programs. Benders decomposition (Birge and Louveaux 2011, Bodur

et al. 2017) and progressive hedging algorithm (PHA) (Rockafellar and Wets 1991, Watson

and Woodruff 2011, Gade et al. 2016) are two important decomposition methods for solving

stochastic integer programming problems. Benders decomposition vertically decomposes a

problem into a master problem that only concerns first-stage decisions and subproblems
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that include second-stage decisions of all scenarios. Benders cut and integer L-shaped cut

are two major types of cuts that are added within Benders decomposition framework.

However, Benders cut may become useless since strong duality does not hold in an integer

program, and integer L-shaped cut is typically inefficient because every feasible solution

may need an integer L-shaped cut in the worst-case scenario. The PHA decomposes the

extensive form according to scenario, and iteratively solving penalized versions of the sub-

problems to gradually enforce non-anticipativity. The performance of PHA, to a great

extent, depends on how efficient each subproblem is solved in a stochastic integer pro-

gram. In our problem, each scenario subproblem with deterministic individuals’ lifetimes is

essentially an NP-complete set-partitioning problem. Efficient heuristic algorithm for each

subproblem is needed.

Our review of the literature shows that few research has considered grouping at both

preventive and corrective maintenance occasions under practical assumptions, which signif-

icantly affects the optimality of the solutions because of the simplified models and reduced

solution space. There is also a lack of efficient algorithms that can provide satisfactory

results for practically large-scale multi-component maintenance problems.

3. Model development
3.1. Problem statement

In this paper, we consider maintenance optimization for a multi-component system that

consists of N = {1,2, . . . , n} components with economic dependence. The objective is to

minimize total expected maintenance cost in a finite planning horizon. We consider two

types of maintenance, preventive replacement (PR) and corrective replacement (CR). At

each decision period, maintenance decisions need to be made for all components. Any

maintenance activities of any components can be performed together to save the setup

cost and improve the system performance. Note that any failed component is correctively

replaced. Both CR and PR use a new component and are therefore perfect. Components’

failure models can be any failure distribution.

3.2. Multi-stage stochastic maintenance model

We consider a discretized finite planning horizon T = {0,1, . . . , T}, where the length of

a decision period is δ. Each component in the system is considered as a different type

of component regardless of its physical type. To distinguish the component type and the
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component itself, we use component only when referring to its type and refer to physical

components as individuals. For example, individual Iir is the individual used for the rth

maintenance replacement of type i component. We denote the set of individuals by R =

{1,2, . . . , q}, where q is the maximum number of individuals replaced for all components.

Denote the PR cost and CR cost for each component by ci,pr and ci,cr respectively, and

assume ci,pr < ci,cr for all i ∈N . The system setup cost is d at any maintenance occasion.

If n individuals are replaced at the same time, the total savings from executing these n

maintenance activities jointly is d(n–1).

This problem is naturally a multi-stage stochastic programming problem. Denote the

state for the operating individual of component i∈N at stage t∈ T by ξit, i.e., ξit = 1 if the

operating individual fails and 0 otherwise. Let ait be the age of the operating individual

of component i prior to the maintenance decision at stage t, and at = (a1t, a2t, . . . , ant)

be the age vector of all operating individuals. At each decision stage t, after observing

the states ξt = (ξ1t, ξ2t, . . . , ξnt) of all operating individuals, we first correctively replace all

failed individuals and then select a group of individuals for PR if desired.

Denote the decision variables by

xit =

 1 , if an individual of component i is replaced at stage t

0 ,otherwise
, i∈N , t∈ T

and

zt =

 1 , if any maintenance occurs at stage t

0 ,otherwise
, t∈ T

The multi-stage stochastic model (P1) is defined as follows:

f0(a0, ξ0) = min
∑
i∈N

ci,prxi,0 +
∑
i∈N

(ci,cr− ci,pr)ξi,0 + dz0 +V0(x0, a0) (1)

subject to

Vt(xt, at) =

Eξt+1 [ft+1(at+1, ξt+1)] , t∈ T \{T}

0 , t= T
(2)

at+1 = at(1−xt) + δ, t∈ T \{T} (3)

xit ≥ ξit, i∈N , t∈ T (4)

zt ≥ xit, i∈N , t∈ T (5)
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xit ∈ {0,1}, i∈N , t∈ T (6)

zt ∈ {0,1}, t∈ T (7)

Objective function (1) includes maintenance cost at the first stage and the expected

minimum cost at the second stage. The expected minimum second-stage cost is given by

Constraints (2). Constraints (3) provide the age of each work individual at each decision

stage. Constraints (4) ensure that the indicator of replacement xit is 1 when an individ-

ual failed. Constraints (5) force that setup cost is incurred whenever a replacement is

performed. Constraints (6) and (7) are integrality constraints.

The maintenance decision at each decision stage influences the system state transi-

tion probability. Scenario tree in Figure 1 illustrates the interactions between mainte-

nance decision and the underlying stochastic failure process of a two-component system.

Figure 1 Decision-dependent scenario tree

Model P1 is therefore a stochastic integer

program with decision-dependent uncer-

tainty (i.e., endogenous uncertainty). This

type of problem is difficult to solve. First,

general efficient method for stochastic

integer programs is lacking. Second, the

problem size grows exponentially as the

number of components and/or decision

stages increases. Third, there is a lack

of general efficient algorithms to solve

a stochastic program with endogenous

uncertainty. Next, we use a novel two-

stage model to approximate P1 and design

an efficient heuristic to find high-quality

solutions.

3.3. Two-stage stochastic maintenance model

A common approach to approximating a multi-stage stochastic program is to utilize a two-

stage model in a rolling horizon. The two-stage approximation model is usually obtained

by combining all future periods together as a second stage problem with all future’s non-

anticipativity constraints removed (Beraldi et al. 2011).
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In this two-stage model, instead of using failure probability as the underlying stochastic

element to generate scenarios, we use the random lifetimes as the equivalent stochastic

element to capture the uncertainty. Specifically, let T ωir be the lifetime of individual Iir that

is drawn from its failure distribution. A scenario ω ∈ Ω̃ is a lifetime combination of all

individuals of all components, i.e., (T ω1,1, . . . , T
ω
1,q, . . . , T

ω
n,1, . . . , T

ω
nq), where Ω̃ is the collection

of all possible scenarios. Note that the endogenous uncertainty is removed by using this

alternative approach to describe the uncertainty.

The two-stage model can be represented by

min
x∈X

∑
ω∈Ω̃

p(ω)F (x,ω),

where x is the vector of decision variables and X is the feasible region. Function F (x,ω)

is the total maintenance cost given the lifetime combination in scenario ω ∈ Ω̃, and p(ω)is

the probability of scenario ω. Since the realization of lifetime T ωir is infinite for the majority

of lifetime distributions, e.g., Weibull distribution, the total number of scenarios |Ω̃| is

infinite. We therefore use the sample average approximation (SAA) method (Kleywegt

et al. 2002) to approximate the two-stage model. Specifically, we have∑
ω∈Ω̃

p(ω)F (x,ω)≈
∑
ω∈Ω

p(ω)F (x,ω),

where Ω⊂ Ω̃ and p(ω) =
1

|Ω|
.

Before presenting function F (x,ω), we first introduce decision variables in the two-stage

model. Let

xi =

 1 , if an individual of component i is replaced at the first stage

0 ,otherwise
, i∈N ,

x̃rωit =

 1 , if Iir is replaced at stage t in scenario ω

0 ,otherwise
, i∈N , t∈ T , r ∈R,ω ∈Ω,

and

zωt =

 1 , if maintenance occurs at staget in scenario ω

0 ,otherwise
, t∈ T , ω ∈Ω.

To facilitate the model development, we introduce two auxiliary binary variables Y rω
i and

wrω
it based on x̃rωit . The variable Y rω

i is an indicator of the maintenance type. More details
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regarding these auxiliary variables will be discussed in Section 3.3.1. The deterministic

extensive form (DEF) of the two-stage model, which explicitly describes the second-stage

decision variables for all scenarios (Birge and Louveaux 2011), is formulated as follows.

Model DEF:

min
∑
ω∈Ω

(
p(ω)

(∑
i∈N

( q∑
r=1

(ci,prY
rω
i )︸ ︷︷ ︸

Ci,pr

+

q∑
r=1

(ci,cr(1−Y rω
i ))− ci,cr(1− x̃rωiT )︸ ︷︷ ︸
Ci,cr

))
+

T∑
t=0

dzωt︸ ︷︷ ︸
Cs

)
(8)

subject to

x̃rωit ≤ x̃rωi,t+1, i∈N , t∈ T \{T}, r ∈R,ω ∈Ω (9)

x̃r+1,ω
i,t+1 ≤ x̃rωit , i∈N , t∈ T \{T}, r ∈R\{q}, ω ∈Ω (10)∑
r∈R

(x̃rωit − x̃rωi,t−1)≤ zωt , i∈N , t∈ T \{0}, ω ∈Ω (11)

x̃1,ω
i,0 ≤ zω0 , i∈N , ω ∈Ω (12)

x̃rωit ≤ x̃
r+1,ω
i,t+Tωi,r+1

, i∈N , t∈ {0, . . . , T −T ωi,r+1}, r ∈R\{q}, ω ∈Ω (13)

x̃1,ω
i,Tωi,1

= 1, i∈ {j ∈N|T ωj,1 ≤ T}, ω ∈Ω (14)

x̃rωi,0 = 0, i∈N , r ∈R\{1}, ω ∈Ω (15)

xi = x̃1,ω
i,0 , i∈N , ω ∈Ω (16)

xi ≥ ξi, i∈N (17)

Y 1,ω
i = 1−w1,ω

i,Tωi,1
, i∈N , ω ∈Ω (18)

Y rω
i =

(
∑T+Tωir

t=Tωir
|yrωit |+

∑Tωir−1
t=0 wrω

it )

2
, i∈N , r ∈R\{1}, ω ∈Ω (19)

yrωit =wrω
it −w

r−1,ω
i,t−Tωir

, i∈N , r ∈R\{1}, t∈ {T ωir , . . . , T ′}, ω ∈Ω (20)

wrω
it = x̃rωit − x̃

r,ω
i,t−1, i∈N , r ∈R, t∈ T \{0}, ω ∈Ω (21)

wrω
i,0 = x̃rωi,0, i∈N , r ∈R,ω ∈Ω (22)

wrω
it = 0, i∈N , r ∈R, t∈ {T + 1, . . . , T ′}, ω ∈Ω (23)

x̃rωit ∈ {0,1}, i∈N , r ∈R, t∈ T , ω ∈Ω (24)

xi ∈ {0,1}, i∈N (25)

zωt ∈ {0,1}, t∈ T , ω ∈Ω (26)

wrω
it ∈ {0,1}, i∈N , r ∈R, t∈ {0, . . . , T ′}, ω ∈Ω (27)

Y rω
i ∈ {0,1}, i∈N , r ∈R,ω ∈Ω (28)
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Function (8) is the objective function. Decision variables xi and z concern maintenance

decisions at the first stage, and x̃rωit and zωt are the second-stage decisions for scenario ω.

We provide detailed derivation of the objective function in Section 3.3.1 and explain the

constraints in Section 3.3.2.

3.3.1. Derivation of the objective function

In objective function (8), the total cost includes: (1) sum of the PR and CR costs incurred

by individuals of component i in the planning horizon, denoted by Ci,pr and Ci,cr respec-

tively, and (2) total system setup cost Cs. We break the derivation of the total cost function

into the calculations of these cost elements.

• Derivation of Ci,pr

For component i, the total cost of individuals preventively replaced over the planning

horizon is given by Ci,pr =
∑q

r=1 ci,prY
rω
i , where Y rω

i is defined in constraints (18) and (19).

Next, we explain why Y rω
i can be used to identify the replacement type and this deter-

mination is a key element of the model development. We drop the superscript ω in the

following discussions for notational convenience. It is obvious that the decision variables

x̃rit and wr
it only concern when a placement is performed and have no indication on the

type of replacement. For an individual Iir, one way to determine its replacement type is to

examine the time interval between the replacements of individuals Ii,r−1 and Iir. Suppose

that individuals Ii,r−1 and Iir are replaced at times t1 and t2 (i.e., wr−1
i,t1

= 1 and wr−1
i,t2

= 1),

respectively. If the difference between t2 and t1 equals to the lifetime of Iir, namely Tir, then

Iir is replaced at the end of its lifetime and the replacement type is CR. The replacement

is PR otherwise. Therefore, if CR is performed on this individual, we have wr
it−wr−1

i,t−Tir = 0

∀t∈ T , which leads to
∑T

t=0 |yrit|=
∑T

t=0 |wr
it−wr−1

i,t−Tir |= 0 (Figure 2(a)). If PR is performed

on this individual, then wr
i,t2
−wr−1

i,t2−Tir = 1, wr
i,t1+Tir

−wr−1
i,t1

=−1 , and wr
i,t+Tir

−wr−1
it = 0

for all t ∈ {t|t ∈ T , t 6= t1, t 6= t2} (Figure 2(b)), and consequently,
∑T

t=0 |yrit| = 2 . This

makes the value of

∑T
t=0 |yrit|

2
a good indicator for determining the replacement type, and∑T

t=0 |yrit| is calculated as follows:

T∑
t=0

|yrit|=
T∑
t=0

|wr
it−wr−1

i,t−Tir | (29)
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(a) CR

(b) PR

Figure 2 Illustration of distinguishing CR and PR

However, there are two boundary issues

in Equation (29).

(1) Decision times of wr
it need to be

extended beyond T . This is because Equa-

tion (29) does not count the mainte-

nance decisions made for individual Ii,r−1

at times {T–Tir, . . . , T}. To include these

decisions, the planning horizon for wr
it

needs to extend to T ′ = T + max{Tir, i ∈

N , r ∈ R}, and let wr
it = 0 for t > T . See

the region labeled “Not Defined” in Fig-

ure 3 for an illustration.

(2) In Equation (29), the decision times

considered for individual Iir implicitly

start from Tir, and all decisions made before Tir are excluded (illustrated in the region

labeled “Excluded”). To recover decisions made for individual Iir at times {0, . . . , Tir− 1},

we add
∑Tir−1

t=0 wr
it to Equation (29). Equation (29) is now rewritten as follows,

Y rω
i =

T+Tir∑
t=Tωir

|yrωit |+
Tωir−1∑
t=0

wrω
it , i∈N , r ∈R,ω ∈Ω.

The absolute function, |yrωit | , can be linearized by a pair of deviation variables (Rardin

1998).

Figure 3 Illustration of the boundary issue of Equation (29)

• Derivation of Ci,cr and Cs
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For component i, the total cost of individuals correctively replaced over the planning

horizon is given by Ci,cr =
∑q

r=1(ci,cr(1−Y rω
i )−ci,cr(1− x̃rωiT )). As explained in the derivation

of Ci,pr, the expression Y rω
i = 0 implies a CR for individual Iir. However, for any component

type, the number of individuals used for replacement is unknown due to the unknown

maintenance decisions, and therefore the maximum number of individuals needed for any

component is considered in the optimization model. It is likely that some individuals are

not used in the planning horizon. If neither individual Ii,r−1 nor Iir is used for replacement

during the planning horizon, the value of Y rω
i is also zero. We need to distinguish these

two scenarios that both have Y rω
i = 0. This can be done by examining the value of x̃rωiT . If

an individual is not used, we have x̃rωiT = 0 and x̃rωiT = 1 otherwise. The false corrective cost

caused by an individual that is not used is ci,cr(1− x̃rωiT ), and needs to be subtracted from

the total cost, Ci,cr. Lastly, the total setup cost over the planning horizon is Cs =
∑

t∈T dz
ω
t .

3.3.2. Constraints

Constraints (9) are the definition of x̃rωit , which ensure that individual Iir is replaced at

or before t+ 1 when it is replaced at or before t. Constraints (10) imply that individual

Ii,r+1 can only be replaced after Iir is replaced. Constraints (11) and (12) ensure that

maintenance cost d incurs when any component is replaced at time t. Constraints (13) and

(14) ensure that individual Iir is replaced at the latest when it has been inside the system

for T ωir time units. In other words, Iir has to be replaced before or at the end of its lifetime.

Constraints (15) imply that only the first individual can be replaced at time 1. Constraints

(16) impose the non-anticipativity constraint, forcing the decisions at the first stage to be

the same. The constraints (17) force all failed components at the first stage to be replaced.

Constraints (18) and (19) define the auxiliary variable Y rω
i . Constraints (20) provide the

definition of variable yrωit . Constraints (21) – (23) are the definition of variable wrω
it . The

remaining constraints (24) – (28) are binary constraints.

4. Optimization algorithms

All decision variables in DEF are binary. Properties of stochastic integer programs are

scarce, and general efficient methods are lacking. We therefore design a heuristic algorithm

under the framework of PHA to solve practical-size problems within moderate CPU time.

To assess the performance of the proposed heuristic algorithm in solving DEF, we compare

the performance of the proposed algorithms with three conventional algorithms, namely,
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basic Benders decomposition (Algorithm 1), integer L-shaped method with Benders cuts

(Algorithm 2) and standard PHA (Algorithm 3). The basic Benders decomposition and

integer L-shaped method with Benders cuts are considered because of LP relaxation and

branch-and-cut are common methods for solving integer programs. Standard PHA, which

decomposes a problem by scenarios, provides a flexible framework for stochastic integer

problem, and is also considered for comparison.

4.1. The benchmark algorithms

4.1.1. Basic Benders decomposition algorithm

The basic Benders algorithm first solves the Benders master integer problem, and then

solves the LP relaxation of subproblems to generate cuts which are added back to Benders

master problem (Birge and Louveaux 2011). The procedure is repeated until no cuts found.

We first define the initial master problem (MP) as

MP: mindz+
∑
i∈N

ci,prxi +
∑
i∈N

(ci,cr− ci,pr)ξi +
∑
ω∈Ω

p(ω)θω

subject to

θω ≥Q(x,ω), xi ≥ ξi, z ≥ xi, i∈N , ω ∈Ω

xi, z ∈ {0,1}, i∈N ,

where Q(x,ω) is the objective value of the second-stage problem with respect to scenario

ω, given by

Q(x,ω) = min
∑
i∈N

(Ci,pr +Ci,pr +Ci,cr− ci,prxi− (ci,cr− ci,pr)ξi) +Cs− dz

and subject to constraints (9) to (28) except (12), (17), and (25). Note that all decision

variables should be LP-relaxed. Constraints (12), (17) and (25) are excluded from the

subproblem since they only concern the decision variables in the first stage. For each

scenario ω, Benders cut can be written as

θω ≥ ẽT
mωx− emω,m∈ {1, . . . ,M}, ω ∈Ω, (30)

where ẽT
mωx− emω can be viewed as the dual objective function of problem Q(x,ω) with

dual solutions obtained and unknown first-stage decisions x at iteration m for scenario ω,

and M denotes the maximum iterations.
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Algorithm 1 Basic Benders decomposition

1: Initialization: θω←−∞, ∀ω ∈Ω, ε̃← 10−2, and assign an integer feasible x to the subproblem.

2: Solve the LP relaxation of the subproblem, Q(x,ω), for each ω ∈Ω.

3: if θω −Q(x,ω)≤ ε̃ ∀ω ∈Ω then return Optimal solution:(x∗, θ∗ω)← (x, θω). end if

4: Add Benders cuts using Equation (30) into the MP.

5: Solve the MP to get new (x, θω) ∀ω ∈Ω. Go to step 2.

4.1.2. Integer L-shaped method with Benders cuts

In Algorithm 2, we initialize Benders master problem with Benders cuts. More specifically,

the root node is obtained by solving the LP relaxation of the master problem via Benders

decomposition and keeping the cuts. In the branch-and-cut process, at each node, if the

solution is integer feasible, the subproblem is solved to generate integer optimality cuts

which are defined as follows (Laporte and Louveaux 1993):

θ≥ (Q(x∗)−L)(
∑

i∈S(x∗)

xi−
∑

i/∈S(x∗)

xi− |S(x∗)|) +Q(x∗) (31)

where Q(x) =
∑

ω∈Ω p(ω)Q(x,ω), L is a lower bound of Q(x), and S(x∗) := {i|x∗i = 1} given

a first-stage solution x∗ ∈ {0,1}n.

In addition to the integer optimality cuts, Benders cuts are also generated and added

into the MP if violated by the candidate solution, in order to improve the performance of

the Integer L-shaped method. Therefore, for each node in the branch-and-cut search tree,

if the candidate solution is integer feasible, both Benders cuts and integer optimality cuts

are added via lazy constraint callback routine, otherwise only Benders cuts are added by

using user-cut callback routine.

4.1.3. Standard progressive hedging algorithm

We also examine the performance of the standard PHA on our problem. The PHA mitigates

the computational difficulty associated with large problem instances by decomposing the

extensive form according to scenario, and iteratively solving penalized versions of the sub-

problems to gradually enforce non-anticipativity (Aydin 2012). Solving individual scenario

subproblems separately is generally much less computationally challenging and may allow

a solver to exploit any special combinatorial structure that may be present. Moreover, the

time expended for each iteration can be dramatically reduced by a very straightforward

parallelization.
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Algorithm 2 Integer L-shaped method with Benders cuts

1: Initialization: θ∗←+∞;

Initialize the MP by solving the LP relaxation via Benders, and keep cuts ⇒ (x, θ).

2: Branch and Cut:

3: At each node in the search tree:

4: Solve LP relaxation ⇒ (x, θ).

5: if LP bound exceeds known incumbent θ∗ then Prune. end if

6: if x is integer feasible then

7: Solve subproblem Q(x) to generate integer optimality cuts using Equation (31).

8: Solve LP relaxation of the subproblem Q(x) to generate Benders cuts.

9: if (x, θ) violates any Benders cut or integer optimality cut then

10: Add cut to LP relaxation of the MP and resolve.

11: else Update the incumbent, θ∗← θ. end if

12: end if

13: if x is not integer feasible then

14: Solve LP relaxation of the subproblem Q(x) to generate Benders cuts.

15: if (x, θ) violates any Benders cut then Add cut to LP relaxation and resolve.

16: else Branch to create new nodes. end if

17: end if

Specifically, the PHA proceeds by relaxing the non-anticipativity constraints using

augmented Lagrangian relaxation and the problem becomes separable by each scenario.

The scenario subproblems have augmented objective functions which include Lagrangian

penalty functions corresponding to the relaxed non-anticipativity constraints. At each

iteration of the PHA algorithm, these scenario subproblems are solved as deterministic

problems. Solutions from all scenario subproblems are then collected and averaged accord-

ing to their non-anticipativity constraints and scenario probabilities. The deviation of

each scenario subproblem solution from these averages is used to update the Lagrangian

multipliers. Next, the scenario subproblems are re-solved with the updated augmented

Lagrangian objective function. This iterative process continues until the Lagrangian dual

problem converges to a solution satisfying the non-anticipativity constraints.

Details of the PHA are described in Algorithm 3. A different form of the objective

function, cx+E(Q(x,ω)) is used for a concise presentation of the algorithm (Gade et al.

2016).



Zhicheng, Yisha, and Bo: Multi-component Maintenance
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 17

Algorithm 3 The standard PHA

1: Initialization: Let v← 0, ε̃← 10−2, xvω← arg minx(cx+Q(x,ω)), x̄v←
∑

ω∈Ω p(ω)xvω, and W v
ω ← ρ(xvω−

x̄v), ∀ω ∈Ω.

2: Update the iteration counter:v← v+ 1.

3: Decomposition: xvω← arg minx(cx+W v−1
ω x+ ρ

2
||x− x̄v−1||2) +Q(x,ω),∀ω ∈Ω.

4: Aggregation: x̄v←
∑

ω∈Ω p(ω)xvω.

5: Update price: W v
ω ←W v−1

ω + ρ(xvω − x̄v),∀ω ∈Ω.

6: Calculate converge distance: gv←
∑

ω∈Ω p(ω)||xvω − x̄v||,∀ω ∈Ω.

7: Termination: if gv < ε̃ then return Optimal solution x̄v. else Go to step 2. end if

4.2. Progressive-hedging-based heuristic algorithm

Algorithm 1 cannot provide meaningful results due to the LP relaxation employed, and

becomes more difficult and time-consuming as more cuts are added. Algorithm 2 is also

computationally intensive as the number of binary variables and constraints increases.

Standard PHA similarly suffers the computational intractability, since even for a small-

scale multi-component maintenance problem, the scenario subproblem in the DEF can

have a large number of decision variables and constraints, beyond what commercial solvers

can handle. However, PHA provides a flexible framework for solving stochastic integer

problems. To address the bottleneck in solving the scenario subproblem using the standard

PHA, i.e., step 3 in Algorithm 3, we develop an efficient heuristic algorithm based on

the problem structure for the scenario subproblems, and use the PHA framework as a

“wrapper” to force non-anticaptivity constraints.

The basic idea of our heuristic algorithm is as follows. Given a scenario subproblem,

the heuristic iteratively groups maintenance activities of operating individuals to reduce

the setup costs and ultimately reduce the total maintenance costs. At each iteration it

first obtains tentative replacement schedules for all operating individuals without consid-

ering economic dependence, and then considers a shifting window and groups maintenance

activities within the shifting window. The tentative replacement schedule and the shift

window are optimized to find the lowest total maintenance cost. The time complexity of

the heuristic algorithm is polynomial (see Online Supplement OS2 for proof).

Before describing the details of the heuristic, we first present two properties regarding

the optimal solution.

Theorem 1. For each scenario subproblem, there exists an optimal solution such that

at each decision period t∈ T , if there is any group of individuals (including one-individual
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group) that is maintained, there is at least one individual in the group that is replaced at

one time unit before its failure or at its failure, except for all types of components’ last

individuals that are replaced in the planning horizon. (Proof is in Online Supplement OS3).

Theorem 2. Given a set of operating individuals sorted according to their failure times,

there exists an optimal solution for this set such that maintenance activities are executed

following the same order. (Proof is shown in Online Supplement OS4).

Theorem 1 helps determine tentative replacement schedules for each individual. Based on

Theorem 1, we only need to consider two tentative replacement schedules for individuals,

i.e., replacing onetime unit before a failure or at the failure. Theorem 2 further ensures

that it is optimal to execute the replacement activities for all operating individuals in the

order they are tentatively planned according to Theorem 1. Theorems 1 and 2 significantly

decrease the number of possible feasible solutions needed to be considered in the heuristic,

and thus substantially reduce the algorithm complexity.

The details of the heuristic are described as follows. Let K denote the set of all operating

individuals at the current iteration of the heuristic. Let βij and β′ij denote the tentative

and actual replacement times of individual Iij, respectively. Let K ′ represent the sorted

set of K according to βij, and K ′[i] represent the individual in the ith position in set

K ′. For example, consider a four-component system, and the tentative replacement times

of four individuals at one iteration are provided in Figure 4. In this example, we have

K = {I1,5, I2,3, I3,2, I4,4} and K ′ = {I2,3, I1,5, I4,4, I3,2}.

Figure 4 Operating individuals at one iteration

Given a shifting window ι and an operating individual set K, the Grouping Rule

constructs candidate grouping options and selects the one with the minimum weighted

PHA replacement cost cumulated till the current iteration. Specifically, the first candi-

date grouping option starts from K ′[1] and groups all current operating individuals with

a tentative replacement time between βK′[1] and βK′[1] + ι. Let K ′[ν] represent the last

individual grouped with K ′[1]. The next shifting window starts from K ′[ν + 1] and ends
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at K ′[ν + 1] + ι. operating individuals with a tentative replacement time in this window

are grouped together. When moving an individual of a component to an earlier time for

maintenance so that it can be grouped with an individual(s) of other component(s), it

is possible that one or more new individuals of that component are needed to cover the

planning horizon. Therefore, we consider a penalty cost: If individual Iir is grouped with

Ijr (βir > βjr), then the penalty cost is ri(ci,pr + d), where ri is the number of new indi-

viduals needed to cover the planning horizon due to this shift. The grouping process of

the first option continues until ν = |K ′|, implying no more individual can be grouped.

The second grouping option starts from K ′[2] and the same grouping process is repeated.

The total number of group options is |K ′|–1. The replacement time of any group in the

optimal grouping option for set K becomes actual replacement time of individuals within

this group. These individuals are replaced with their immediate successors. Note that

if the new individual has a tentative replacement schedule beyond the planning hori-

zon, it is removed from set K. Now we have a new set of operating individuals and the

Grouping Rule is applied for the new set. The heuristic stops when set K is empty.

(a) Group option 1

(b) Group option 2

(c) Group option 3

Figure 5 Group options at one iteration

We use the same four-component sys-

tem considered earlier to illustrate the

grouping process using the Grouping

Rule. Suppose the shifting window ι =

3. The three candidate group options are

illustrated in Figure 5. Among all three

options, group option 2 has the minimum

weighted PHA cost cumulated. Therefore,

the actual replacement time for I2,3 is

16 and 18 for the other individuals. The

heuristic is summarized in Algorithm 4

and the Grouping Rule.

Our modeling and solution approach

can be easily extended to incorporate several other modeling aspects, such as cost dis-

counts depending on the number of components maintained, restriction on the number of

components replaced together, and nonlinear operation costs. It can also be easily adapted

to solve opportunistic maintenance (OM). We can find the optimal OM policy that groups
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Algorithm 4 Heuristic algorithm for one scenario

1: Initialization:

Not-used-residual lifetime ∆←{0,1}, and determine a set of values for ι, ι= {ι1, ι2, . . .}.

2: For all combinations of ∆ and ι, select the one that has the minimum total weighted PHA replacement

cost and return the corresponding optimal solution.

2.1 Initialization: Assign tentative replacement times for the first individual of each component

K←{I1,1, I2,1, . . . , In,1}, and βi,1← Ti,1–∆, ∀i∈N .

2.2 Apply Grouping Rule to obtain the optimal group option W .

2.3 Update set K.

∀Iij ∈W :

Replace Iij in set K with Ii,j+1;

Assign tentative replacement schedule to Ii,j+1, βi,j+1← β′ij + (Ti,j+1–∆);

∀Iij ∈K, if βij >T , then Remove Iij from set K. end if

if K is empty, then Stop. else Go to step 2.2. end if

The Grouping Rule

1: Sort K in ascending order based on βij⇒ sorted set K ′.

2: Select the option m that has the lowest cost of weighted PHA replacement cost cumulated and penalty

cost ⇒W .

Group option m: m from 1 to |K ′|–1.

2.1: Initialize the last individual grouped as K ′[ν] : ν←m.

2.2: Let t← β(K ′[ν]). Group individuals in set K ′ if the actual replacement times of their

predecessors are before t until β(K ′[ν′])> t+ ι, ν′ = ν+ 1, ν+ 2, . . . .

2.3: Let ϑ denote the position of the last individual grouped in step 2.2, and update actual

replacement times: τ ′(K ′[ν′])← t, ν′ = ν+ 1, ν+ 2, . . . , ϑ, ν← ϑ+ 1.

2.4: if ν ≥ |K ′|, then Compute the weighted PHA replacement cost cumulated.

else Go to step 2.2. end if

3: if K ′[1] /∈W then W ←W ∪{(K ′[1])}. end if

4: return set W .

maintenance only at CM by restricting the not-used-residual lifetime in our heuristic to

∆ = 0, and find the optimal OM policy that only groups maintenance at PM by only allow-

ing ∆ = 1. More structured policies can be derived based on the patterns of results from

our general model. For example, fixed groups in direct-grouping can be obtained based

on how frequent some components are grouped for maintenance in our results. Indirect

grouping policy can be derived based on the individual PM replacement intervals.
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5. Computational study

In this computational study, we first introduce an analytical approach to determining the

minimum number of scenarios needed for a given accuracy, then examine the performance

of all four algorithms, and assess the approximation performance of the multi-stage model

by using proposed heuristic algorithm (Algorithm 4) in a rolling horizon. We perform our

computational study on a computer with a CPU of Intel i7-6700, 3.4G Hz and a RAM

of 16G. A python based package Pyomo (Hart et al. 2011, 2017) is used to implement

the algorithms with the solver of CPLEX v12.7.1. All input parameters, data sets and the

source code used for the computational study can be found in our online repository 1.

5.1. Scenario sampling

Consider a stochastic programming problem V ∗ = minx∈X{f(x) := E[F (x, ξ)]} and its sam-

ple average approximation (SAA) problem V̂|Ω| = minx∈X{f̂|ω|(x) :=
1

|Ω|
∑|Ω|

i=1F (x, ξi)} ,

where X is the feasible region of decision variable x, and Ω is a sample of the random

vector ξ . Denote the ε-optimal solution sets of the stochastic program and SAA problem

by Sε := {x ∈ X : f(x) ≤ V ∗ + ε} and Ŝε|Ω| := {x ∈ X : f̂|Ω|(x) ≤ V|Ω| + ε} respectively. To

guarantee that the optimal solution of SAA problem is the ε-optimal solution of the true

stochastic programming problem with probability 1–α, Shapiro et al. (2009) provide an

analytical expression of the minimum sample size required. Theorem 3 summarizes the

main result in their study.

Theorem 3. (Theorem 5.17 (Shapiro et al. 2009)) Suppose there exists a constant σ > 0

such that for any x∈X\Sε the moment generating function Mx(t) of the random variable

H(x, ξ)− E[H(x, ξ)] satisfies Mx(t) ≤ e(σ2t2/2) for all t ∈ R, then for ε > 0, 0 ≤ τ < ε and

α∈ (0,1), and sample size |Ω| satisfying

|Ω| ≥ 2σ2

(ε− τ)2
ln(
|X|
α

) (32)

it follows that Pr(Ŝτ|Ω| ⊂ Sε)≥ 1− α, where H(x, ξ) := F (u(x), ξ)− F (x, ξ), x ∈X\Sε and

mapping u : x∈X\Sε→X satisfies f(u(x))≤ f(x)− ε∗ for some ε∗ ≥ ε.

To determine constant σ, Shapiro et al. (2009) show that if H(x, ξ)−E[H(x, ξ)]< b is

satisfied with some b > 0 for all x∈X, then σ2 := b2. If ε∗ is small compared to maxxF (x, ξ),
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then in DEF, an upper bound b can be estimated by considering CR for all individuals

over the planning horizon, i.e.,

H(x, ξ)−E[H(x, ξ)]≤ |H(x, ξ)|+ |E[H(x, ξ)]| ≈ |H(x, ξ)|

≤ |F (u(x), ξ)|+ |F (x, ξ)| ≤ 2F (x, ξ)≤ 2T (
∑
i∈N

ci,cr + d) = b
(33)

5.2. Performance of algorithms in solving DEF

In this section, we compare the computational times and cost errors of the four algorithms

in solving DEF. For standard PHA (Algorithm 3), we run our experiments in a stochastic

programming package PySP inside Pyomo. Assume that all components’ lifetimes follow

Weibull distributions. For each component, we draw the shape and scale parameters from

uniform distributions U(4,7) and U(1,8), respectively. The cost of CR (ci,cr) is drawn

from a uniform distribution U(6,16). Parameter values that are randomly drawn and used

in Section 5.2 are provided in Table OS5 in Online Supplement. Given the number of

components in a test case, we use the parameters of the first n components in Table OS5.

Without loss of generality, the cost of PR (ci,pr) is assumed to be 1. Suppose that setup

cost d is 5, the initial ages of all first individuals are 2, and the individual of component 1

is assumed to be failed at the first stage.

The number of scenarios needed for each test case in Table 1 is determined using Equa-

tions (32) and (33) by choosing ε = 0.1σ, τ = 0.1ε and α = 0.1. This parameter setting

guarantees the optimal solution of SAA problem is an 0.1σ-optimal solution of the true

stochastic programming problem with probability 0.9. We use the same parameter setting

to determine the number of scenarios throughout the paper.

We compare the performance of Algorithms 1 – 4 for 18 cases. Table 1 summarizes the

performance of the four algorithms. NA is reported if the computational time is longer

than one day or out of memory, or if the true objective of DEF cannot be obtained for

computing objective percentage error. From Table 1, we can see that Algorithms 1 – 3

can only solve small problems (e.g., n ≤ 4) and Algorithm 4 is the only algorithm that

can solve all test cases efficiently. We further examine the performance of Algorithm 4. We

compute the percentage error between the objective values obtained from using Algorithm

4 and solving DEF exactly by CPLEX. We can see that the performance of Algorithm 4 is

very good for small-scale problems with a maximum percentage error of 9.89%. Based on

our computational studies, the proposed heuristic algorithm (Algorithm 4) performs well

and is capable of solving practically large-scale problems.
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We further investigate the performance of the grouping heuristic by comparing it with the

optimal solution (i.e., solving DEF of one scenario subproblem using the solver CPLEX).

We use the same parameter settings used for computational studies summarized in Table 1.

For each test case, we generate 100 scenarios. Each scenario is solved using both the solver

and the grouping heuristic. The comparison of average costs obtained from the solver and

the heuristic is summarized in Table 2.

Table 2 Average performance of Algorithm 4 over 100 scenarios

n T optimal avg. cost avg. cost of Alg. 4 avg. percentage gap

2

9 31.91 32.04 0.38%

29 67.48 69.95 4.80%

49 104.23 107.17 2.80%

3

9 33.35 34.06 2.18%

29 73.94 78.18 5.67%

49 114.46 122.19 6.67%

4

9 38.12 39.54 3.44%

29 90.13 99.11 9.58%

49 142.21 158.64 11.43%

From Table 2, we can see that the average percentage gap is 5.2%. We believe that the

grouping heuristic performs well for the scenario subproblem.

5.3. Performance in approximating the multi-stage model using a rolling horizon
approach

In this section, we compare our heuristic in a rolling horizon two benchmark policies. We

also compare the performances using our approach in a rolling horizon with the results

from solving the multi-stage model using an exact method, and assess the performance of

the proposed approximation method.

Benchmark 1 is a widely used direct-grouping model (Van Horenbeek and Pintelon 2013)

which uses a dynamic-programming algorithm that first finds the optimal replacement

schedule for each component without considering economic dependence and then sort the

components based on that. At iteration j, the algorithm identifies two groups that cover

all maintenance activities of components 1 to j and provide the best savings for these

components. The best grouping structure can be found by backtracking. This algorithm

has in the worst case a time complexity of o(n2). However, the limitation of this algorithm

is that it only considers the group structure of two groups at each iteration and ignores
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all other options (e.g., partition all maintenance activities into three or more groups).

Benchmark 2 is a structural policy known as (ti, Ti) policy which works as follows: At each

decision period, if the age of component i exceeds Ti, preventive maintenance is performed;

if the age of component i is between ti and Ti (ti ≤ Ti) and there is one or more other

component’s age exceed their respective Ti, preventive maintenance is also performed on

component i. We adopt the method in (Wijnmalen and Hontelez 1997) which extends

the decomposition and aggregation approach used in multi-unit inventory control problem

Federgruen et al. (1984) to our multi-component maintenance optimization problem.

We conduct a sensitivity analysis to assess the performance of Algorithm 4. Suppose the

length of a decision period δ equals to 1. At each decision period, we consider a two-stage

stochastic maintenance optimization problem (DEF) where the second stage combines deci-

sions of the remaining periods. We repeat this procedure five times to obtain the average

total maintenance cost because five replicates can provide the acceptable precision and

computational efficiency. The PR cost is assumed to be 1 for each type of component, and

the CR costs are drawn from two different uniform distributions, U(6,16) and U(17,27).

The lifetime of each individual is assumed to follow a Weibull distribution. To introduce

more heterogeneity to the system, the shape parameter (η) of the Weibull distribution is

drawn from two uniform distributions U(1,3) and U(4,7), and the scale parameter (λ) of

the Weibull distributions is drawn from two different distributions, U(1,5) and U(5,10).

Two levels of setup costs are considered. Assume all operating individuals are functioning

and have an age of 0 at the first decision period. Different levels of parameters are provided

in Table 3. Parameter values that are randomly drawn and used for the comparison are

summarized in Table OS6 in Online Supplement.

Table 3 Different levels of parameters

Level

shape

parameter

η

scale

parameter

λ

d CR cost

High U(4,7) U(5,10) 100 U(17,27)

Low U(1,3) U(1,5) 5 U(6,16)

Table 4 summarizes the comparison results under different parameter settings. The opti-

mal expected costs (in column multi-stage (P1)) are obtained by enumeration. We enumer-

ate all possible combinations of the maintenance decisions and node states at all decision
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periods. Expected cost for each decision policy can be computed accordingly. The optimal

cost is the minimum of the expected costs of all decision policies. Note that the optimal

expected costs using benchmark algorithms and the proposed algorithm are obtained using

a rolling horizon approach. In each rolling horizon step, we simulate the (remaining) life-

times to determine the failure status of all individuals at the next decision period. From

Table 4, we can see that all percentage gaps of Algorithm 4 are below 10%, compared to the

optimal costs obtained by enumeration, and Algorithm 4 outperforms the two benchmarks

in the majority of the test cases.

We further compare the performance of Algorithm 4 and the benchmark algorithms on

large-scale problems. The results are summarized in Tables 5 and 6. Note that exact method

cannot solve the problem instances in Tables 5 and 6 and are therefore not included. From

Tables 5 and 6, we can see that Algorithm 4 provides significant better overall results than

the two benchmark algorithms for large-scale problems.
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Table 5 Performance of Algorithm 4 for large-scale multi-stage problems (n = 4, T = 19, |Ω| = 1250)

# η λ d
CR

cost

Benchmark 1 Benchmark 2 Algorithm 4

mean var. mean var. mean var.

%

saving

v.s.

Bench-

mark 1

%

saving

v.s.

Bench-

mark 2

1 H H H H 434.5 617 349.3 5002 306 3362.2 41.98% 14.16%

2 H H H L 329.3 1261 331.1 4145 289.9 4207.2 13.60% 14.23%

3 H H L H 41.61 129.9 86.63 429.3 36.08 123.33 15.33% 140.11%

4 H H L L 34.8 83.44 51.43 132.1 31.88 21.77 9.16% 61.32%

5 H L H H 961 592.7 805.3 4543 722.9 2173.2 32.93% 11.39%

6 H L H L 947 212.3 726.4 3088 634.5 2103 49.25% 14.48%

7 H L L H 136.3 506.6 199.2 1403 99.68 131.45 36.75% 99.81%

8 H L L L 111.8 103.3 120.3 338.1 88.68 26.81 26.04% 35.62%

9 L H H H 1002 4434 565.6 23024 485.8 3089.4 106.25% 16.43%

10 L H H L 689 5240 517.2 20262 440.8 3016.7 58.33% 17.32%

11 L H L H 120.4 870.6 141.9 1471 100.4 173.21 19.89% 41.34%

12 L H L L 84.26 391.4 85.82 632.1 59 565.8 42.81% 45.46%

13 L L H H 2005 5618 1179 28140 906.8 12645 121.06% 30.03%

14 L L H L 1945 3059 1045 23242 749 4364.6 159.64% 39.53%

15 L L L H 287 2240 324.1 2119 228.2 587.12 25.78% 42.04%

16 L L L L 237.2 407.1 229.1 689.8 181.4 340.75 30.75% 26.29%

average 49.35% 40.60%
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Table 6 Performance of Algorithm 4 for large-scale multi-stage problems (n = 8, T = 19, |Ω| = 1940)

# η λ d
CR

cost

Benchmark 1 Benchmark 2 Algorithm 4

mean var. mean var. mean var.

%

saving

v.s.

Bench-

mark 1

%

saving

v.s.

Bench-

mark 2

1 H H H H 481.3 3993 508.04 1972 389.12 192.45 23.69% 30.56%

2 H H H L 453.0 1338 455.24 1878 383.6 287.1 18.08% 18.68%

3 H H L H 78.47 691.1 147.04 267.6 67.4 466.9 16.42% 118.16%

4 H H L L 72.6 180.3 94.24 90.14 57.5 72.4 26.26% 63.90%

5 H L H H 1996 450.2 1276.28 2498 1137.7 304.4 75.47% 12.18%

6 H L H L 1952 101.3 1150.7 1551 975.64 1615 100.10% 17.94%

7 H L L H 240.6 579.2 345.28 2000 208.5 244.5 15.41% 65.60%

8 H L L L 220.2 247.5 219.68 393.2 185.3 200.1 18.84% 18.55%

9 L H H H 1265 4709 1100.5 1691 936.43 4795.7 35.12% 17.52%

10 L H H L 1018 5146 1034.2 11094 865.32 9781.3 17.59% 19.52%

11 L H L H 296.3 535.1 321.5 338.6 180.25 406.5 64.39% 78.36%

12 L H L L 202.8 641.9 198.2 166.1 150.18 197.33 35.00% 31.97%

13 L L H H 2443 3831 2166.4 1033 1962.6 5380.3 24.49% 10.38%

14 L L H L 2212 1928 1992.3 2844 1794.4 3413.8 23.26% 11.03%

15 L L L H 666.7 2750 741.38 1911 599.1 944.4 11.29% 23.75%

16 L L L L 448.7 406 469.2 177.3 406.9 300.2 10.27% 15.31%

average 32.23% 34.59%

6. Conclusion and future research

In this paper, we consider the problem of multi-component maintenance optimization over

the finite planning horizon. We formulate the problem as a multi-stage decision-dependent

stochastic integer program, and approximate it with a novel two-stage stochastic linear

integer model in a rolling horizon. The proposed models are general with no restrictions on

maintenance grouping. A progressive-hedging-based heuristic is designed to solve practi-

cally large-size two-stage problems. To assess the performance of the heuristic, we compare

it with three conventional algorithms and our computational studies show that the pro-

posed heuristic provides satisfying results and is capable of solving practically large-scale

problems. We also evaluate the performance of the heuristic in a rolling horizon relative

to the true global optimal for small problems. Results show that solving our two-stage

model by the proposed heuristic in a rolling horizon provides a good approximation of

the multi-stage problem. The proposed heuristic in a rolling horizon is further bench-
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marked with a widely studied dynamic-programming-based algorithm and a commonly

adopted structural policy. Our heuristic significantly outperforms the benchmark algo-

rithms based on our numerical experiments. Our work has extended the available literature

in multi-component maintenance by using stochastic programming approach. The model-

ing and solution techniques developed in this paper opens new research and implementation

opportunities. Future research will consider a different widely used maintenance policy,

condition-based maintenance (CBM). CBM leverages sensor information on components’

health status through inspection or real-time monitoring and aims to perform maintenance

just in time by setting optimal control thresholds. Capturing these complexities requires

a different problem formulation and different optimization algorithms. Moreover, main-

tenance activities are often subject to a pre-determined budget with a requirement on a

system’s reliability or availability. Future work will incorporate these constraints into the

decision model. Lastly, it is worth extending the problem for more complex systems with

stochastic and structural dependences, in addition to the economic dependence.
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