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ABSTRACT

We propose a game-theoretic approach to generalizing the classical
Schelling model. At the core of our model are two features that did
not receive much attention before. First, we allow multiple individ-
uals to occupy the same location. Second, each individual’s choice
of location is influenced by their social network neighbors that also
choose the same location. In addition, an individual’s choice is influ-
enced by others in the adjacent locations in a network-structured
way, which captures the main spirit of the classical Schelling model
and its numerous extensions. Our solution concept is a stable con-
figuration represented as a pure-strategy Nash equilibrium (PSNE).
We show that even for various special cases of the problem, com-
puting or counting PSNE is provably hard. We give algorithms for
computing PSNE, including efficient algorithms for several special
cases. We highlight some of the attractive features of our model,
such as predicting very few PSNE, through experiments.
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1 INTRODUCTION

Residential segregation by race has been historically well docu-
mented in areas with diverse populations. Even the most recent
studies show that urban living is segregated with respect to race,
ethnicity, and social status. For example, the 2010 U.S. census data
gives clear evidence of segregation by race in major metropolitan
areas like Chicago, Washington, D.C., and Houston.! The 2011 UK.
census data also shows a similar pattern in major cities.?
Although early work in mathematical social sciences focused on
how individual choices lead to a segregated collective outcomes [8,
23-25], recent studies driven by census data show broader impli-
cations of segregation. For example, the Chicago Reader reports

“HC and MTI contributed equally and are co-first authors.
!https://www.washingtonpost.com/graphics/2018/national/segregation-us-cities/
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Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9-13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Mohammad T. Irfan*
Bowdoin College
Brunswick, Maine

mirfan@bowdoin.edu

240

Cuong Viet Than
University of Nebraska-Lincoln
Lincoln, Nebraska
cthan2@huskers.unl.edu

findings by the Social Impact Research Center that economic op-
portunities in Chicago are very much correlated with the racial
composition of a community.® There are examples of Chicago neigh-
borhoods with over 90% black population where the unemployment
rates are about nine times that of some of the majority white neigh-
borhoods. To effectively address issues like poverty and violence
that are intertwined with segregation, there is a need for more so-
phisticated models that generalize the classical Schelling model [23-
25] and its extensions. This paper presents work in this direction.

Any study of segregation must begin with the seminal work by
Noble prize-winning economist Thomas Schelling [24, 25]. Aimed
with the goal of understanding and modeling the process of segre-
gation through the lens of individual choices, Schelling introduced
a dynamic model of segregation over time with two types of individ-
uals. Here, types may represent race or other homophily criteria [8].
The model starts with initial locations of individuals within set of
stylized locations like a grid. An individual i is happy or satisfied
if at least t; fraction of i’s neighbors are of the same type as i. At
each time-step of the dynamic process, unsatisfied individuals from
the previous time step move to different locations (via an algorithm
or some random process) where they can be satisfied. The model
enforces the rule that no two individuals can be in the same loca-
tion at any time. Furthermore, individual i’s threshold #; should not
be interpreted as i’s penchant to move to a neighborhood where
i can be among the majority. In contrast, t; in Schelling’s model
has the connotation of i’s desire to avoid being an extreme minor-
ity. Schelling’s model shows that segregation happens even when
individuals do not desire to be in a majority neighborhood.

Although there has been a continuous stream of multidisci-
plinary research on Schelling’s model [7, 12, 20, 27], the topic only
started gaining traction within computer science fairly recently
[1-3, 10, 13]. To our knowledge, Chauhan et al. were the first to give
a strictly game-theoretic model of segregation where individuals
have preferences over networked locations and choose a location
strategically [3]. Their focus is on the convergence properties when
the locations are connected in the form of a ring or a regular graph.
In this paper, we call the graph connecting locations the location
graph. Chauhan et al’s consideration of very specific types of lo-
cation graphs can be attributed to the complexity of their model.
They allow thresholds in the spirit of the classical Schelling models.
They also allow individual preferences over locations.

Soon afterwards, Elkind et al. gave a static game-theoretic model
of the Schelling segregation (a.k.a. Schelling Games) that relaxes
Chauhan et al’s model by completely getting rid of thresholds and
to some extent also getting rid of location preferences [10]. Given a

Shttps://www.chicagoreader.com/chicago/still- separate-unequal-and-ignored/
Content?0id=16347785
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location graph, every strategic agent in their model simultaneously
and strategically chooses where to live based on a location-wise
quantification of where they can be “happiest” Given a strategy
profile, the utility of agent i is defined to be the fraction of i’s neigh-
bors in the location graph that are of the same type as i over the
total number of neighbors of i. Our paper generalizes Elkind et al’s
model in several ways. We allow multiple occupants in a location
and consider capacity constraints on the locations, whereas Elkind
et al. [10], Chauhan et al. [3], and not surprisingly, Schelling’s origi-
nal models [24, 25] allowed at most one agent in each location. More
importantly, we consider a weighted and directed social network
among the agents, where an individual can be influenced by others
in varying magnitude and polarity. This social network component
got brief attention in Elkind et al’s work, where they modeled the
social network as an unweighted graph [10]. However, its full ex-
ploration has remained open, especially when the social network
is a directed, weighted graph. This is one of our main goals.

Very recently, Echzell et al. presented some very interesting
results on the convergence of best response dynamics in Schelling
games [9]. They showed “knife-edge” properties of threshold values
between convergence and non-convergence. In this paper, however,
we do not deal with dynamics.

In sum, in previous models, the happiness or utility of the agents
is defined to be some (weighted) cardinal values of the types of other
agents living in the surrounding areas. We call this the location effect,
which is rooted in the classical Schelling models. However, agents
living in the same location did not get any attention, primarily
because the previous models implicitly set a capacity of 1 for each
location. We address this by allowing multiple occupants in each
location and accounting for the influence that an agent’s social
network neighbors living in the same location have on that agent.
We call this the localized social influence. This is one of our major
conceptual contributions in this paper. We address the following
fundamental question that did not receive any attention before.

How should we model the utility of an agent when in
addition to the location effect, the agent takes into
account the localized social influence among those
agents that are living in the same location?

We argue that when an agent makes a strategic decision like
choosing where to live, the agent’s choice depends on other agents
in their social circles or networks. Several research has illustrated
such phenomena, ranging from health and behavioral choices [5, 6,
11] to voting [14-16] to economic decision making [19, 26]. Roughly
speaking, an agent tends to make the same decision as their peers
who have the most influence on them. In our context, if many of
the agent’s influential peers live in a particular location, the agent
would also have a lot of incentive to live in the same location. Thus,
when an agent makes a decision on where to live, the agent is
influenced (with varying influence levels) by the decisions of other
agents in her social circle. We view this mutual interdependency
among the agents in a game-theoretic way. Motivating examples of
this framework can be found in people’s choices of school districts,
parks, and other shared public spaces, where both social influence
and location effect play a role.? Fig. 1 provides an illustration.

4We sincerely thank an anonymous reviewer for suggesting these examples.
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Figure 1: Illustration of our model: There are two graphs.
The first one is the location graph with four location
nodes (big, gray nodes) and the black undirected edges
among them. The location graph is inspired by the classical
Schelling model and its recent extensions [3, 10]. The sec-
ond graph represents the social network among the agents.
It consists of the green nodes (much smaller in size com-
pared to the location nodes) and red and black directed edges.
The black solid edges represent positive influence. The red
dashed edges represent negative influence. The thickness of
the directed edges stands for the magnitude of influence.
The placement of the agents inside the location nodes sig-
nifies the choices made by the agents. Allowing multiple
agents within a location and accounting for the localized so-
cial influence among the agents sharing the same location
are novel contributions of this paper.

Table 1: Summary of Results

Problem in SG-LSI
Is there a PSNE?
Is there a socially optimal PSNE?
Is there a locally optimal PSNE?
How many PSNE?
Finding a PSNE in 2-location tree SG-LSI
Finding a PSNE in weighted-structured SG-LSI

Complexity

NP-complete
NP-complete
NP-complete
#P-complete
O(nA)
O(nm)

To model localized social influence in our setting, we use a
class of succinctly representable graphical game of parametric form
called influence games [15, 16]. Influence games can represent vary-
ing positive and negative influence weights among individuals us-
ing potentially asymmetric edges. They also allow varying levels of
tolerance to influence (or threshold values) across individuals. Un-
like the widely studied influence maximization problem [4, 18, 21],
influence games model collective outcomes as Nash equilibria in
a strictly game-theoretic fashion. This not only makes influence
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games attractive to our case but also has potential to broaden recent
computational works on Schelling games [1, 3, 10].

Contributions. In this paper, we study the game-theoretic model-
ing and computational aspects of (1) the location effect as studied in
the classical Schelling model and its extensions, and (2) the localized
social influence, which we introduce here. In our model, agents
make simultaneous and strategic decisions of selecting a location to
live. We first introduce a general game-theoretic framework to cap-
ture (1) and (2). The framework encompasses the existing Schelling
Games [10] and Influence Games [16] to model the location effect
in Schelling settings and the localized social influence to capture
network effects, respectively. By virtue of modeling localized social
influence, unlike the previous models, our framework allows more
than one agent to occupy the same location simultaneously, subject
to capacity constraints. We show the hardness of the problem for
multiple variants. We design algorithms for special cases like a tree-
structured social network with two locations. For this tree case, we
give a polynomial-time algorithm, whereas the standard TreeNash
algorithm runs in exponential time [17]. Through experiments, we
show that incorporating localized social influence leads to a more
predictive model by reducing the number of PSNE.

Organization. In Section 2, we present our model, including the
two features that differentiates our model from previous ones —
localized social influence and allowing multiple agents within the
same location. We also connect our study to various prior studies
at a technical level. In Section 3, we establish hardness results for
various special cases of our problem. This clearly shows that the
computational problem in its general form is intractable unless P
= NP. Section 4 deals with algorithmic results, where we focus on
special cases of the problem due to the hardness of the general
case. In Section 5, we present some interesting experimental results
that clearly show the value of modeling localized social influence.
It should be noted here that experimental work did not get much
attention in recent research within computer science [2, 3, 10, 13].
Section 6 concludes the paper by outlining some open problems on
the inefficiency of equilibria.

2 A GAME-THEORETIC FRAMEWORK

In this section, we introduce our game-theoretic model of Schelling
Games with Localized Social Influence (SG-LSI). As discussed ear-
lier, SG-LSI consists of two major components: localized social influ-
ence and location effect. The localized social influence component
describes how an agent will be affected by other agents in his/her
social circles living in the same location. The location effect com-
ponent measures how an agent will be affected by other agents
living in different locations. We begin by discussing each of these
components. We then discuss how we can combine the components
together to define the utility functions of the agents.

Localized Social Influence. To model localized social influence,
we use a social network in the form a weighted, directed graph
to define the relationship strengths or ties between any pair of
agents. In particular, let N = {1,..., n} be the set of n agents. Let
G = (N, E, w) be a directed social network or graph with the edge
set E and the weight function w : N X N — R specifying the

242

AAMAS 2020, May 9-13, Auckland, New Zealand

“influence” weights. That is, w(i, j) # 0 if and only if (i, j) € E.>
We allow the weights to be arbitrarily positive, negative, or zero.
A positive weight from i to j (i.e., w(i, j) > 0) indicates a positive
influence from i to j. That is, if agent i partakes a certain action,
then agent j is also influenced to partake the same action. On the
other hand, if w(i, j) < 0, then agent j would have a less desire to
partake the same action of i. In our setting, an agent should have
more incentive to select a location in which many of its positively
influenced neighbors in G have also selected the same location. On
the other hand, agent i would want to stay away from selecting the
locations of those of negatively influencing neighbors in G. We use
P>i) ={j € N:w(j,i) # 0} to denote the set of parents of i.

Location Effect. In the standard Schelling setting, each agent
selects a location from a set of possible locations. Let L = {1, ..., m}
be the set of m possible locations. The locations can be connected
via some (undirected) graph structure GL = (L, EL) where j, j’ € L
are adjacent to each other if and only if {j, j’} € EL. For each
location j € L, there is a capacity c¢j > 1 specifying the maximum
number of agents that can live in location j € L. In the standard
Schelling model, ¢; = 1 for all location j € L. The location effect
on an agent in the standard Schelling setting is defined to be some
cardinal value of other agents in the neighboring locations of the
agent’s selected location. For a location j € L, we define N(j) =
{j" € L: {j,j'} € EL} to be the set of j’s neighboring locations.
We assume that the total capacity can accommodate all of the n
agents in the system (i.e., Xl jer ¢j 2 n).

Schelling Games with Localized Social Influence (SG-LSI). Now
that we have defined the two main components of SG-LSI, we are
ready to define the SG-LSI formally. We represent an SG-LSI with
the tuple G = (G,GL, {cj}jer. S. {ei}ien {Ai}ien: {bij }ien jeLs
£, {ui}ien), where the influence network G, location network G,
and capacities cj are defined above. We next define rest of the
terms. Let S = {1,..., m} be the action/strategy set of each agent
i € N. In other words, the set of actions for any agent is the same
as the set of locations L. We let S™ to be the set of (pure) action
profiles and a = (ay, ..., ay) € S™ be a (pure) action profile. We
denote (a;,a;) (or (a;, ap(;))) to specify the action of i given the
action profile of other agents beside i (or the parents of i). Let
A(a, j) = {i € N : a; = j} be the set of agents selecting location j.
Given an action profile a, agent i’s utility is defined as

—00
ui(ai,a—;) = ai(ZkeA(a,ai) w(k, i) +bia,)+
Aifi(N(ai), a)

if |A(a, a;)| > cq;

if |A(a, a;)| < cq;.
1)

When agent i’s selected location cannot accommodate all of the
agents that also select i’s location (i.e., |A(a, a;)| > cg;), the util-
ity of agent i is extremely negative.® When the i’s selected loca-
tion can accommodate all of the agents that select i’s location (i.e.,

SWe use a tuple when referring to a directed edge and an unordered set when referring
to an undirected edge.

®The utility in this case is consistent with the standard Schelling model [24, 25] and
Schelling games [10] when more than one agent selects the same location. We could
also define the utility function based on some tie-breaking ordering to determine
which of the |A(a, a;)| > cq; agents the location a; will accommodate.
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|[A(a, a;)| < cg;), the utility of agent i depends on localized social
influence and location effect.

The localized social influence term for i is defined to be the sum
of the influences from i’s parents who select the same location as
i and i’s intrinsic threshold, b; 4;, for a location a;. This threshold
term models an agent’s location preferences, which is an important
feature of our model.

The location effect term is defined to be some computable func-
tion f;, which is a function of agents that select the adjacent loca-
tions of the agent’s location under the location graph GL. Similar
location effect term is considered in the classical Schelling model
as well as almost all variants of it [3, 10, 24, 25].

The a; > 0 and A; > 0 terms serve as a trade off between
localized social influence and location effect.

Given an instance G of SG-LSI, we are interested in the question
of computing a pure-strategy Nash equilibrium (PSNE).

Definition 2.1. Given any SG-LSI instance G, a pure-strategy
profile a* € S” is a pure-strategy Nash equilibrium (PSNE) of G if
and only if u;(a},a;) > u;(a;,a’;) foralli € N and a; € S.

Connection to Schelling Games. Below, we show how we can
transform the SG-LSI to the Schelling Game (SG) [10]. In a SG,
there is an undirected location graph L = (V, E). The agents are
divided into multiple battling factions (or types), where agents of the
same type are friends and different types are enemies. Furthermore,
the agents are partitioned into stubborn agents S and strategic
agent R where the stubborn agents always want to select some
fixed locations. Given a feasible assignment vector (or action profile
in our terminology) v = (v1, .., v,) € V", the utility of agent i is

fitv)

Jiv)+ei(v)”
that select some adjacent location of i in the location graph G

and e;(v) is the number of enemies of i that select some adjacent
location of i. If f;(v) = 0, then @;(v;, v—;) = 0. (Note that we use
the term f; to denote the location effect in our model, whereas
Elkind et al. use f; to count the number of friends of i in adjacent
locations. Furthermore, we use L to denote the set of locations, not
the location graph.)

It is easy to see that we can construct an SG-LSI instance with n
agents for any instance of SG with n strategic agents (we do not
model stubborn agents). In particular, consider

G = (G,GL, S, {cj}jer. {ai}ien {Aiiens (bij Yien jeL. f {ti}ien),

where GL = (L,EL), ci=1,f=0;,A=1anda; =0forallie N
and j € L. The types of the agents can be defined with respect to G.

1 (vj, v_i) = where f;(v) is the number of i’s friends

Connection to Linear Influence Games. We now establish a con-
nection between SG-LSI and Linear Influence games (LIG) [15, 16].
LIG is used to model the adoption behavior among strategic agents
in complex social networks where agents influence each other in
varying magnitudes and polarities. In an LIG, we have n agents.
Agent i’ action is denoted by x; € {—1, 1}. The influence function of
each individual i is defined as fi(x-;) = X j4; wjix;j — bi where for
any other individual j, wj; € R is a weight parameter quantifying
the “influence factor” that j has on i, and b; € R is a threshold
parameter for i’s level of “tolerance” for negative effect. The utility
function u; : {-1,1}" — R as u;(xj,x—;) = x;fj(x—;), where x_;
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denotes the joint-action of all players except i. (Note that we use f;
to denote location effect.)

It is easy to see that we can construct an SG-LSI instance with n
agent for any instance of LIG with n agents. In particular, consider

G = (G,GL, S, {¢j}jer, {ai}ien. {AiYiens (i) Yien jeL. f {ti}ien),

where G = (L = {1,2}, EL), cj=nA;=0,anda; =1forallie N
and j € L. Since A; = 0, the location graph and the function f can
be defined arbitrarily. The utility function of each player i in G can
be defined accordingly (see Section 3).

3 COMPUTATIONAL COMPLEXITY OF
COMPUTING A PSNE OF SG-LSI

In this section, we discus the complexity of computing a PSNE of

an SG-LSI. We will show that computing a PSNE is NP-complete

and counting the number of PSNE is #P-complete via a reduction

from LIG. We will also show that computing a PSNE that maximizes

some social welfare measure is NP-hard.

3.1 Computing a General PSNE of SG-LSI

In this section, we prove the following hardness results.

THEOREM 3.1. It is NP-complete to decide whether there exists a
PSNE in an SG-LSI even with two locations, no location effect, and a
bipartite social network.

THEOREM 3.2. It is #P-complete to count the number of PSNE in
an SG-LSI even with two locations, no location effect, and a bipartite
or star social network.

Let LG be any n-agent {—1, 1}-action LIG with the influence
weights w and threshold values b. We will slightly abuse the no-
tation here by treating influence weight wj; in LIG the same as
w(Jj, i) in SG-LSI. We show a polynomial-time reduction from any
LIG instance LG to an instance G of SG-LSI such that there exists a
PSNE in LG if and only if there exists a PSNE in G. The following
two definitions are in the context of an LIG.

Definition 3.3 (Best-Response Correspondence [16]). Given x_; €
{=1,1}""1, the best-response correspondence BRiLg A{-1,13 1 5
211} of o player i of an LIG LG is defined as follows.

BRiLg(x_i) = arg maxxie{_l,l}ui(xi,X—i)-

Definition 3.4 (Pure-Strategy Nash Equilibrium [16]). A pure-
strategy Nash equilibrium (PSNE) of an LIG LG is an action assign-
ment x* € {—1,1}" that satisfies the following condition. Every
agent i’s action x} is a simultaneous best-response to the actions
x*; of the rest.

The utility of agent i of LIG LG is u; (xi, x—i) = x; (X ; wjixj—bi).
Here, we assume w;; = 0 for all i. This does not change the above
hardness results on LIGs. Let x* € {—1,1}" be a PSNE of LG. It
must be the case that for every agent i,

X7 Z wjix;f —-bi|=0. (2)
J

Otherwise, i would have incentive to unilaterally switch to —x7.
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Given LG, we construct an instance G of SG-LSI as follows.

First, let a; = 1 and A; = 0 for all agents i. We have two locations 1
and 2 in G, each with a capacity of n. The agents in G and LG are
the same. The network structure and the weight function in G are
also the same as in LG. Corresponding to each agent i’s threshold
b; in LG, we define thresholds b; ; = _Tb’ and b = % Finally, we
assume that the actions 1 and —1 in LG correspond to the locations
land 2in G.

LEMMA 3.5. There exists a PSNE in the LIG instance LG if and
only if there exists a PSNE in the SG-LSI G.

Proor. Let x* € {—1,1}" be a PSNE of LG and let a* € {1,2}"
be the corresponding joint action in G, where a} = 1 if and only if
x} = 1. Using (2), we obtain the following sequence of equivalences.
Here, 1[.] stands for the boolean indicator function.

x*(z Wjixﬂf —b;) > 0.

j—xi*(ﬁ—_—bi)ZO
2 2

ZWJ, [x e Zwﬂ [t # ] et (- %) 20

®3)

We will now translate the PSNE x* of £G to the joint action a* of

G and show that a* is a PSNE of G. For this, note that x} (—h - %)
translates to Tb - % = bi1 — bip when x] = 1 (ie,af = 1). It

translates to b;2 — b;; when x} =

general, x} (Tb - bi) translates to b; o+ — b;

-1 (e, a:f = 2). Therefore, in
& Where a;.“ denotes
i

the complement of the action a}. We obtain from (3):

ijll[a —a] Zwﬂ]l[a ¢a]+blal big, >0
Zwﬂ [a —a]+bla*>2wﬂ [a ;&a] b
Z Wji+bi,aj2 Z

jeSa(a’;) jESu}f‘a*.(aZ;)
1 -1

Wﬁ+bi,a_;'

Therefore, a* is a PSNE of the SG-LSI instance G. We can reverse
the above argument and show that if a* is a PSNE of G then the
corresponding joint action x* is a PSNE of £G. O

Lemma 3.5 leads us to Theorems 3.1 and 3.2 by noting that it is NP-
complete to decide whether there exists a PSNE and #P-complete
to count the number of PSNE in an LIG [16].

3.2 Computing a Specific PSNE of SG-LSI

In this section, we show that the problem of computing a PSNE of
SG-LSI that maximizes social welfare is NP-hard. The social welfare
of a PSNE a* € S" is defined to be SW(a*) = };cn ui(a®). Thus,
we want to find a; , € argmax,: i, psNeSW (2").

To show that the problem is NP-hard, we reduce from the k-
colorable problem. The k-colorable problem is known to be NP-hard
for k > 3. In an instance of k-colorable problem C = (G, k), we are
giving an undirected graph G = (V, E) and an integer k > 3. We
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want to know if the graph G is k-colorable. That is, is there exist a
way to color the vertex of G with k colors so that no two adjacent
vertices have the same color. More formally, is there a function
x:V — {1,.., k} such that y(v) # y(v”) for any {v,0’} € E.

Given an instance of C = (G, V) with n nodes, we reduce it to an
instance of SG-LSI with n agents. The social graph in the reduced SG-
LSl is the same undirected graph, but the weight function w(v,0”) <
0 is strictly negative for any {v,0”} € E. The number of locations is
set to k where L = {1, ...,k}. The a; = 1, A; = 0, and b; j = 0 for any
i € Nand j € L. Since A; = 0, the structure of the locations and the
f function can be defined arbitrarily. Finally, c; = n for any j € L.
In the following, we show that C is k-colorable if and only if there
a PSNE a* with SW(a*) > 0.

LEMMA 3.6. The k-colorable problem instance C is k-colorable if
and only if there is a PSNE a* in the corresponding SG-LSI instance
G such that SW(a*) > 0.

Proor. We first show that if C is k-colorable, then the k-colorable
solution can be used to construct a PSNE a* with SW(a*) > 0in G.

Let y be a solution that maps V to one of the k colors. We create
a strategy profile a* = (ay, ..., an) where a; = y(i) for each i €
V in the corresponding graph. Because there is no pair of two
vertices that have same color (i.e., y(v) # y(v’) for any {v,0’} € E),
the agents are in different locations than their neighbors, and the
capacity of location j is always large enough for any subset of
agents, the utility of agent i is u;(a},a* ;) = 2reA(arar) Wt i) =0.
Since the influence weights are negative u;(a},a*,) > u;(aj,a*;)
for any a; € Sand i € N. As a result, a* is a PSNE and SW(a*) > 0.

Now, suppose that we have a PSNE a* with SW(a*) > 0. It is
not hard to see that u;(a},a”;) = 0 for any i € N since all of the
edges in the graph have negative edges and u;(a},a”;) < 0. Thus,
in any PSNE a* with SW(a*) > 0, a; # ay for any w(i,i’) < 0. We
can construct a k-colorable solution for C by defining y (i) = a; for
eachi e N.

Using the above two arguments, we have proved our lemma. O

From Lemma 3.6, we have the following.

THEOREM 3.7. It is NP-hard to compute a PSNE that maximizes the
social welfare in an SG-LSI even on social network with only negative
edges and no location effect for more than three locations.

Our next question concerns with computing a PSNE that max-
imizes the social welfare of a particular location. Let SW(a*) =
2jer SWj(a*) = ¥ jer Yiea(ar,)) ui(a}, a’;) where SWj(a*) is de-
fined to be the social welfare of location j € L (which is the sum
of the utilities of the agents in location j). For a given location
Jj € L, we want to find a:;ptj arg max: is , psNgS Wj(a*). Theorem
3.7 shows it is NP-hard to maximize social welfare of a particular lo-
cation with only negative edges. Our below result complementaries
the above result by showing it is still hold for positive edges.

THEOREM 3.8. It is NP-hard to compute a PSNE that maximizes
the social welfare of a location in an SG-LSI even on a social network
with positive unit-weighted edges and no location effect.

Proor. We prove the claim by reducing from the k-clique prob-
lem, which is known to be NP-complete. In the k-clique problem,
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we are given a graph G = (V, E) and an integer k. We want to know
if there is a clique (or a complete graph) of size k in G.

Given a k-clique instance C, we can construct an SG-LSI instance
G with the same social network as G of uniform positive weight of
1 (i.e., w(i,i”) = 1 for {i,i’} € E). The number of locations is set to
n—k+1whereL ={1,..,n—k+1}. Thea; =1,4; =0,and b; j = 0
forany i € N and j € L. Since A; = 0, the structure of the locations
and the f function can be defined arbitrarily. Finally, ¢c; = k and
c¢j = 1for j € L\ {1}. Our goal is to show that C has a clique of size
k if and only if there is a PSNE a* such that SWj(a*) > k(k — 1).

It is not hard to see that if there is a k clique, we can place all of
the k agents into location 1 (which has the capacity of k) and the
other agents in the other locations with capacity 1. The agents have
no incentive to deviate (i.e., a* is a PSNE) and SW;(a*) > k(k — 1).

If there is a PSNE a* such that SWj (a*) > k(k — 1), the agents in
1 must form a clique of size k since the graph has a unit (positive)
weight and the maximize social welfare of location 1 with capacity
k is k(k — 1). Thus, we have a clique of size k. O

4 ALGORITHMS FOR COMPUTING A PSNE
OF SG-LSI IN RESTRICTED SETTINGS

As discussed in the previous section, determining whether there
is a PSNE in general is NP-complete. Our goal in this section is to
develop efficient algorithms for computing a PSNE, if there exists
one, in SG-LSI under some restricted settings.

4.1 Message-Passing Algorithms on Tree
SG-LSI

We begin by developing a message-passing based algorithm for Tree
SG-LSI when the underlying social network is a tree, regardless of
the structure of the location graph. For the sake of simplicity, we
first consider the case in which the capacity of each location is at
least n.

More formally, we consider the following tree instance of SG-LSI

6l = (T, GE {cj}jer S. {aitien: {Ai}ien: {bijYien jeL - {ui}ieN) ,

where the social network among the agents is a tree T = (N, E, w)
rooted at r € N. Although in our general model, f; can be any
general function of the agents in locations adjacent to i’s, for the
purpose of applying dynamic programming here, we will assume
that f; depends only on those agents in adjacent locations that
influence i. We assume c; = n for all j € L. For any agent i # r, we
use pa(i) to denote i’s unique parent and ch(i) to denote the set
of i’s children.” We next apply the Tree-Nash algorithm given by
Kearns et al. [17] to our problem.

The message-passing algorithm has two phases: the upstream
phase and the downstream phase. In the upstream phase, each
non-root node i sends a message T;j(a;,aj) € 0,1 to its par-
ent j = pa(i), for each possible combination of location choices
(ai,aj). Ti—j(ai, aj) = 1if and only if there exists a witness vector
{ak}kech(s) such that the following two conditions are satisfied.

(1) Ty, ;(ag, ai) = 1 for all k € ch(i), and

(2) aj is i’s best response to parent j choosing a; and each child
k choosing a.

"We previously used (i) to denote the set of i’s parents in the general social network.
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The upstream phase begins with the leaf nodes and propagates
upward to the root. Each leaf node I sends the following table to
its parent j = pa(l): T, j(a;, aj) = 1if and only if, for each a; €S,
uy(ap, aj) > ul(aZ, aj). Note that the leaf nodes’ messages are easy
to compute due to the absence witness vectors.

Each internal node i # r gathers messages Ti_,;(ax, a;) from
all k € ch(i) and constructs messages T;—;(a;, aj) to send to
the parent j. The main computational bottleneck comes from de-
termining a witness vector {ay }rech(i)- For general location ef-
fect function f;(N(g;),a), we can go through all mlch(@)] possi-
ble combinations of actions {ay}recn(;) to verify the two con-
ditions for T;;(a;j,a;) = 1 stated two paragraphs ago. For any
Ti—j(ai, aj) = 1, it is sufficient for i to save just one witness vector
corresponding to T;— j(a;, a;) (all witness vectors need to be saved
if we wish to compute all PSNE).

The downstream phase begins after the root node receives mes-
sages from its children. The root node r tries to find an action a,
for which there is a witness vector {ay }rech(r). If r cannot find any
such action a, then there exists no PSNE. Otherwise, r chooses a,
and commands its children to choose actions according to the wit-
ness vector {ag }xech(r)- Subsequently, each internal node i chooses
the action a; commanded by its parent and then commands its chil-
dren to choose an action according to some witness vector for a;.
The process continues until all the leaf nodes have received mes-
sages from their parents. The choice of actions in the downstream
phase constitutes a PSNE, if it exists. Like the original Tree-Nash
algorithm, the running time of this algorithm is also exponential
due to the exponential time spent on finding a witness vector at
each internal node.

4.2 Efficient Message-Passing Algorithm on
Tree SG-LSI with Additive Location Effect

We next present an efficient algorithm for finding a PSNE in a tree-
structured SG-LSI when we have two locations and the locaiton
effect can be decomposed in an additive fashion as follows.

fi(N(ai),a) = D

Jj:(i,j) €E and (a;,a;) €E-

gi,j(ai, aj).

Here, g; ; is a function that depends on the location choices a; and
a;j of agents i and j, respectively. We do not assume any particular
functional form for g; j. The only assumption is that g; ; additively
contributes to the location effect on i whenever j has an influence
on i and j chooses a location in the neighborhood of i’s location.
We apply the same Tree-Nash framework here. However, adapt-
ing a technique used for 2-action tree influence games [16], we can
now find a witness vector much more efficiently. For this, let us con-
sider any internal node i # r during the upstream phase. As usual,
i gathers messages Tr_,;(ag, a;) from all k € ch(i) and constructs
messages T;— j(a;, aj) to send to its parent j. Now, instead of going
through all ml¢h| possible combinations of actions {ay. }x ech(i)s
we can find a witness vector more smartly. There are three cases.

Case I. There is some k € ch(i) such that Ty _,;(ag, a;) = 0 for all
ag € S.In this case, there is no PSNE in the “subgame” downstream
from i if i chooses a;. As a result, i sends T;— j(a;, a;) = 0, for all
aj € S.
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Case II. For every k € ch(i), there is a unique action a; such
that Ty._,;(ag, aj) = 1. In this case there is just one candidate for
a witness vector, which is {ay }xecn(s)- To make sure that it is in
fact a witness vector, i verifies that a; is a best response to par-
ent j choosing aj and each child k choosing ai. In that case, i
sends Ti—j(ai, a;) = 1 and saves {ag }recp(;) as the witness vector.
Otherwise, i sends T;— j(a;, aj) = 0.

Case III. The set of children of i, ch(i) can be partitioned into two
subsets: (1) S, containing those children k that have a unique action
ag such that Ty._,;(ay, a;) = 1, and (2) S, having those children k
that have multiple values of aj such that Ty _,; (ag, a;) = 1. For each
k € S, among those ay that make Tj_,;(ay, a;) = 1, we choose one
particular g that maximizes the following expression.

aiw(k, 1)1 [ai = ag] + higi(ar. a) 1| (ar. ap) € .

Equation 1 shows that the choosing aj in this way bumps up i’s
utility the most. Note that for any child k € S, we do not have any
choice other than to pick the unique ay that makes Ty _,;(ag, a;) = 1.
Next, we verify that g; is i’s best response to parent j choosing a;
and each child k choosing a according to the above procedure.
On successful verification, i sends T;—, j (a;, a;) = 1 and saves the
chosen {ag}rech(i) as the witness vector. On failure, we can be
certain that there is no other choice of actions for any of i’s chil-
dren that would lead to a greater utility for i, and as a result, i
sends T;—j(aj,aj) = 0. The rest of the algorithm, including the
downstream pass, is similar to the Tree-Nash algorithm described
above. We obtain the following result.

THEOREM 4.1. For any tree-structured SG-LSI with an additive
location effect, two locations, and maximum indegree A, there exists
an O(nA) algorithm for finding a PSNE or deciding there exists none.

As a remark, to extend the above algorithm to more than two
locations, it is not enough to maximize i’s utility at a; in Case
IIT above. We also need to simultaneously minimize i’s utilities at
other locations, because depending on {a }, c§,» @ may or may not
become i’s best response. This does not happen in the two location
case, because any k € S, can be either in a; or the other location.

Algorithm 1: An Algorithm to Compute A PSNE
Input: SG-LSI with p; > ... > pp
Output: A PSNE profile a*
1 Leta=0
2 fori=1,...ndo
3 Let BR;i(a_;) = arg maxaiesui(ai, a_j).
4 Select j € BR;(a_;), seta; = j.
5 end

# Set a to be a zero vector

4.2.1 Special Case: Unlimited and Limited Capacity with no Loca-
tion Effect. In this subsection, we study special cases of SG-LSI that
can be solved in polynomial time. We first consider the instances of
SG-LSI where A; = 0 for each i € N, bjq, = 0, and w(i,i’) = pipy
for all i,i’ € N and all locations a;.

THEOREM 4.2. There is a polynomial-time algorithm to find a
PSNE of SG-LSI with A; = 0, bja, = 0, and w(i,i’) = pipy for all
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i,i’ € N and all locations a;. Here, p; > 0 is some “personal value” of
an agent i that helps factoring the influence weights.

Proor. We first order the agents and location capacities such
that p1 > ... > py and ¢; > ... > ¢y, respectively. For i = 1,...m (in
this order), assign the (remaining) highest ¢; agents to location i
until all of the agents have assigned some locations. It is not hard
to see that the agents have no incentive to deviate. O

We next consider the instances of SG-LSI where A; = 0 for each
i€ Nand w(i,i’) = —p;py for all i,i’ € N.

THEOREM 4.3. Algorithm 1 returns a PSNE of SG-LSI with A; = 0,
big, =0, and w(i,i’) = —p;py foralli,i” € N and all locations a; in
polynomial time.

5 EXPERIMENTAL RESULTS

In this section, our goal is to consider the impact of localized so-
cial influence and location effect on the PSNE in the SG-LSI. In
our experiments, we count the total number of PSNE in randomly
generated instances of SG-LSI. To account for the localized social
influence and location effect, we vary different value of @; and A;
for each agent i € N.

To generate an instance of SG-LSI, we use Erdos-Renyi (ER)
random graphs as social networks. We first generate an ER graph
by setting its parameter p (which specifies the probability of any
two nodes will be connected by an edge). Once we have an ER
graph, we randomly generate the weights of each edge to have a
weight value between -1 and 1 (drawn uniformly at random). The
value of a; = « and A; = A for each i are set such that a + A; = 1.
The utility of each agent is defined according to SG-LSI where the
f; is defined as in the Schelling Game [10]. One main difference
with the Schelling Game is that “friends” of i are defined to be those
with positive weighted edges to i while “enemies" are other agents
(including the ones with negative weighed edges to i).

In the following, we consider « € {0,0.2,0.4,0.6,0.8,1}, n €
{10,20}, m = 2, and p € {0.2,0.5,0.7}. For each combination of
parameter values, we generate 10 random instances (of the edge
weights). We report the number of PSNE for one of the instances
below. We note that all other instances have a similar pattern in
the results. The number of PSNE is computed using a brute-force
approach to verify whether a strategy profile is a PSNE.

Figure 2 shows the number of PNSE for each combination of the
parameters we considered. The x-axis represents the value of , and
the y-axis represents the number of PSNE. The left column corre-
sponds to the case where n = 10, p = 0.2 (top left), p = 0.5 (middle
left), and p = 0.7 (bottom left). The right column corresponds to the
case where n = 20, p = 0.2 (top right), p = 0.5 (middle right), and
p = 0.7 (bottom right). It is fairly easy to see that as we increase
the « value (the term corresponds to localized social influence), the
number of PSNE decreases for all combinations of parameters. In
particular, for @ = 0 and A = 1 (which imitates the Schelling Game
[10]), we observe that there is a large number of PSNE compared to
other combinations of @ > 0 and A with localized social influence.
Games with a large number of PSNE is often undesirable due to
the lack of predictive capabilities. These experiments show that
incorporating localized social influence provides a better predictive
model by reducing the set of potential PSNE one needs to consider.
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n=10, m=2, p=0.2

n=20, m=2, p=0.2
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Figure 2: The Number of PSNE in Randomly Generated Instances of SG-LSI.

Top Left: n=10, m=2, p=0.2, Middle Left: n=10, m=2, p=0.5, Bottom Left: n=10, m=2, p=0.7

Top Right: n=20, m=2, p=0.2, Middle Right: n=20, m=2, p=0.5, Bottom Right: n=20, m=2, p=0.7

The x-axis represents the « value, and the y-axis represents the number of PSNE. Each plot corresponds to a combination of
the parameters. The plots collectively show that, as we increase the value of « (i.e., the term corresponds to the localized social

influence), the number of PSNE decreases.

6 CONCLUDING REMARKS

In this paper, we have introduced a game-theoretic framework for
Schelling’s segregation where the agents’ choices of locations are
intricately interdependent. Each agent’s choice depends on two fac-
tors: the location effect, which is inspired by the classical Schelling
model and its extensions, and the localized social influence, which
allows multiple agents to share a location while accounting for the
complex interactions among them. We have shown that various
special cases of our problems is provably hard. We have provided
efficient algorithms for several special cases. Finally, our experimen-
tal results show the value of having the localized social influence
component in Schelling models. There are several exciting future
directions. First, we can use tree decomposition for general graphs
and apply the adaptation of the Tree-Nash algorithm presented
here. Formulating a message passing framework among the bags
of vertices in tree decomposition is an interesting direction.
Another interesting direction is a thorough study of the effi-
ciency of equilibria. We do have some preliminary results regarding
the price of anarchy (PoA) and price of stability (PoS) [22], which
we describe next. Very briefly, we can show that the PoA can be
unbounded in general and the PoS can be 1 in a large class of SG-LSI.
In more details, if we consider only the location effect (¢; = 0
and A; = 1 for all i) and take f; to be the utility function of the
standard Schelling games given in [10], then PoA can be shown to
be unbounded as follows. Consider three agents a, b, and ¢, where
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a and b influence each other positively (or are of the same type)
and c is not connected to a or b (i.e., c is of a different type). Let the
location graph be the line graph of three locations, each location
having a capacity of 1. If we place ¢ in the middle of the line graph,
then the social welfare (which is the sum of the utilities of the
agents) is zero. If we place either a or b in the middle of the line
graph, then the social welfare is positive. Hence the PoA can be
unbounded. Similar examples are used in [10].

If we consider only the localized social influence (@; = 1 and A;
0 for all i), then PoA is also unbounded, as shown next. Consider
again three agents a, b, and c, all of whom influence each other
positively. Let the influence weights of the edges between a and b
be +co and the weights of the other edges be 1. Consider a location
graph with only two connected locations, one with capacity 1 and
the other with capacity 2. If we place a and b in the same location,
then we obtain an optimal social welfare of +co. If we place a and
b apart, then we obtain a social welfare of 2. Since either of these
two scenarios is a PSNE, the PoA is unbounded, whereas the PoS is
1. In fact, the PoS is always 1 whenever the sum of the capacities is
exactly equal to the number of agents for any instance of our game.
We leave a thorough analysis as an interesting future direction.
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