

Fifth Annual Meeting of the Northeastern Evolutionary Primatologists

Amherst, Massachusetts

Estimation of body temperature of Bornean orangutans (*Pongo pygmaeus wurmbii*) from fecal temperature measurements

Faye S. Harwell^{1,2}, Rinaldi Gotama^{2,3}, Muhammad Syainullah², Junardi⁴, Tatang Mitra Setia⁵, Brodie Philp², & Cheryl D. Knott^{1,2}

¹Boston University

²Gunung Palung Orangutan Project

³Hong Kong University of Science and Technology

⁴University of Tanjungpura

⁵National University

Monitoring health status is a critical aspect of primate conservation, yet can be difficult to noninvasively investigate in the wild. Internal body temperature, a marker of health in endotherms, has been tested in humans and chimpanzees using two different fecal temperature methods: using the peak internal temperature (PIT) or applying a sigmoid curve (SC). We tested both methods on wild and rehabilitant Bornean orangutans to determine if either is a feasible methodology for arboreal mammals. The SC method involves a series of temperatures for each sample that we fitted to a sigmoid curve, whereas the PIT method involved a single peak temperature recording. Estimates from the two methods were not significantly different in either our wild ($T(88) = -2.0781$, $P=0.0406$) or rehabilitant ($T(29) = -2.8404$, $P=0.0082$) samples. Adult rehabilitant body temperatures ($N=9$; $34.62 \pm 1.32^\circ\text{C}$) were estimated to be hotter than those in the wild ($N=107$; $33.59 \pm 1.66^\circ\text{C}$), although not significantly different ($T(115)=1.9859$; $P=0.0493$). In our model, testing a number of factors, we found height of fecal drop ($P=0.0071$), fecal weight ($P=0.0198$), and time of day ($P=0.0029$) to significantly affect body temperature estimates. Our field sample ($N=107$) indicates that wild orangutans have an internal fecal temperature, ranging between 29.5 and 37.3°C , lower than mean temperatures for chimpanzees or humans. This supports the finding that orangutans have lower metabolic rates than do most other eutherian mammals. Lower body temperature may serve as a metabolic adaptation of orangutans to survive extended periods of low food availability when energy needs to be conserved.

Funders: ARCUS Foundation; Conservation, Food and Health Foundation; Disney Conservation Fund; Focused on Nature; LSB Leakey Foundation; Holloman Price Foundation; Nacey Maggioncalda Foundation; National Science Foundation (BCS #1638823); Ocean Park Conservation Fund; Orangutan Republik; US Fish and Wildlife Service (F19AP00798, F18AP00898, F15AP00812); Woodland Park Zoo; and Zoo New England.

Harwell, Faye S., Rinaldi Gotama, Muhammad Syainullah, Junardi, T. Mitra Setia, Brodie Philp, and Cheryl D. Knott. 2019. *Estimation of body temperature of Bornean orangutans (*Pongo pygmaeus wurmbii*) from fecal temperature measurements*. Paper read at Fifth Annual Meeting of the Northeastern Evolutionary Primatologists, November 9, 2019, at Amherst, Massachusetts.