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Abstract. Existing automated code checking (ACC) methods require the extraction of requirements 

from building codes and the representation of these requirements in a computer-processable form. 

Although these methods have achieved different levels of performance, all of them are still unable 

to represent all types of building-code requirements. There is, thus, a need to enhance the semantic 

representations of building codes towards facilitating the representation of all requirements. To 

address this need, this paper first proposes a new approach to annotate and represent building-code 

sentences using requirement units that consist of semantic information elements and simple logic 

operators. To evaluate the proposed building-code annotation approach, this paper also proposes a 

new natural language generation (NLG)-based method for evaluating annotation quality. The 

proposed method consists of four steps: data preparation, data preprocessing, NLG model 

development and training, and sentence evaluation. Sentences from the International Code Council 

(ICC) building codes were used in the evaluation.  

1. Introduction 

To reduce the time, cost, and errors of compliance checking, various automated code 

compliance checking (ACC) systems have been developed and implemented. Most of the 

existing ACC systems require the extraction of requirements from building-code sentences and 

the conversion of the extracted requirements into a semantic representation. Semantic 

representations of building codes aim to represent the natural language requirements in 

computer processable forms. Different semantic representations of requirements have been 

developed in the construction domain for supporting compliance checking. Examples of 

semantic representations proposed in research efforts include the requirement, applicability, 

selection and exception (RASE) semantic markups proposed by Hjelseth and Nisbet (2011), the 

semantic information elements proposed by Zhang and El-Gohary (2013), and the visual 

language for compliance checking proposed by Preidel and Borrmann (2016). Examples of 

semantic representations used in commercial ACC applications include the predefined 

templates used in the Solibri Model Checker and the hardcoded building-requirements in the 

SMARTreview.  

However, two knowledge gaps still exist. First, although existing ACC methods and 

applications have achieved different levels of automation, representativeness, and accuracy, 

they are still unable to represent all building-code requirements. For example, the RASE 

markups can be used to annotate nested clauses and exceptions in building-code sentences, but 

cannot represent “requirements that include alternatives and preferences” (Hjelseth and Nisbet 

2011). Similarly, the predefined templates in Solibri Model Checker can only represent a 

limited number of requirements in a few building codes, such as the clearance requirements in 

the Standards for Accessible Design by Americans with Disabilities Act, and the dimension 

requirements in the International Building Code (IBC). There is, thus, a need to enhance the 

semantic representations or annotations of building codes towards facilitating the representation 

of all requirements. Second, most of the existing semantic representations were developed 

without sufficient evaluation in terms of their representativeness of building-code regulatory 
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information. There is a lack of well-defined quantitative metrics and methods for evaluating the 

semantic representations and/or annotations of building codes. 

To address the first knowledge gap, this paper proposes a new approach to annotate and 

represent building-code sentences using requirement units that consist of semantic information 

elements and simple logic operators. To address the second gap and evaluate the proposed 

annotation approach, this paper then proposes a natural language generation (NLG)-based 

method for evaluating annotation quality, where the building-code annotations are first used to 

generate new building-code sentences, and then the comprehensibility of the generated 

sentences are evaluated. Two metrics were used to evaluate the comprehensibility of the 

generated building-code sentences: bilingual evaluation understudy (BLEU) and recall-oriented 

understudy for gisting evaluation (ROUGE).  

2. Background 

2.1 Natural Language Generation  

Natural language generation (NLG) is the process of representing the semantic information 

contained in the input data – which could be in various forms such as tables, images, or formal 

languages – in the form of natural language for the purpose of information digestion and 

communication (Arria NLG 2020). NLG plays a core role in many intelligent systems and 

applications such as spoken dialogue systems (Wen et al. 2015), image captioning (You et al. 

2016), and business intelligence dashboards (Arria NLG 2020).  

NLG methods range from template, rule, and heuristic-based methods to recent deep learning-

based methods. Template, rule, and heuristics-based methods rely on manually-developed 

templates and rules to fill in the templates. Examples of template-based systems in the 

construction domain include the web-based document management system proposed by Ryoo 

et al. (2010); and commercial software such as e-Specs (Avitru 2018) and BIMdrive (Digicon 

2018), which use premade templates (e.g., templates based on the National Master 

Specifications) to facilitate the development and maintenance of construction specifications. 

Deep learning-based methods use deep neural networks to automatically learn the syntactic and 

semantic patterns in the input data, which are later used to generate new text (e.g., semantically 

conditioned deep neural network-based text generation approach by Wen et al. 2015).  

2.2 Deep Learning 

Deep learning methods use computational models such as deep neural networks to learn 

multiple levels of information representations from large-scale data (LeCun et al. 2015). Deep 

learning methods have drastically improved the state-of-the-art performance in the natural 

language processing domain, and have eliminated a lot of the manual effort in feature 

engineering compared to traditional machine learning methods. In the construction domain, 

deep learning methods have been used to solve text analysis problems such as building-code 

requirement extraction (Zhang and El-Gohary 2019), building information modeling log data 

mining (Pan and Zhang 2020), and regulatory document semantic analysis (Zhang and El-

Gohary 2020). 

The most commonly used deep neural networks for dealing with sequential data such as text 

data are recurrent neural networks (RNNs). RNNs have recurrent connections between neurons 

in the neural networks to cycle the input information in order to learn the patterns of sequential 

data (Mikolov et al. 2010). To tackle the shortcoming of original RNNs, which is being less 
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capable and less computationally efficient to learn from long-term dependencies in the 

sequential data, variants of RNNs have been designed and adopted such as long short term 

memories (LSTMs) and gated recurrent units (GRUs). 

3. Proposed Approach to Annotate Building-Code Sentences for Supporting 

Automated Compliance Checking 

This paper proposes a new approach to annotate building-code sentences using requirement 

units. Each requirement unit consists of semantic information elements and simple logic 

operators. The semantic information elements include the essential semantic information 

elements proposed by Zhang and El-Gohary (2013), as shown in Table 1, in addition to a new 

element, “subject relation”, which describes a relation between two subjects in one requirement 

unit. The simple logic operators include conjunction (e.g., “and”), disjunction (e.g., “or”), and 

negation (e.g., “not”). Each requirement unit describes a requirement or condition on a subject 

and/or a compliance checking attribute, or a pair of subjects, and thus is easily processable by 

most of the existing semi-automated or automated compliance checking applications and 

systems. Figure 1 shows an example building-code sentence that is annotated with requirement 

units.  

Table 1:   Essential semantic information elements for representing requirements for compliance 

checking purposes (Zhang and El-Gohary 2013). 

Semantic information element Definition 

Subject An ontology concept representing a thing (e.g., building 

element) that is subject to a particular requirement 

Compliance checking attribute An ontology concept representing a specific characteristic of a 

“subject” that is checked for compliance (e.g., width) 

Quantitative relation A term/phrase that defines the type of relation for the quantity 

(e.g., extend) 

Deontic operator indicator A term/phrase that indicates the deontic type of the 

requirement (i.e., obligation, permission, or prohibition) 

Comparative relation A term/phrase for comparing quantitative values, including 

“greater than or equal to,” “greater than,” “less than or equal 

to,” “less than,” and “equal to” 

Quantity value A numerical value that defines the quantity 

Quantity unit The unit of measure for a “quantity value” 

 

 

Figure 1:   Example of Proposed Building-Code Sentence Annotations with Requirement Units 
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4. Proposed Deep Learning Natural Language Generation Method for Evaluating the 

Proposed Building-Code Annotation Approach 

To evaluate the proposed building-code annotation approach,  this paper proposes a deep 

learning natural language generation (NLG) method for evaluating annotation quality, where 

the annotations are first used to generate new sentences, and then the comprehensibility of the 

generated sentences are evaluated. The proposed method consists of four main steps (as per 

Figure 2): (1) preparing the training and testing data (i.e., pairs of natural language building-

code sentence and the corresponding annotations); (2) preprocessing the data; (3) developing 

and training the deep learning model for generating building-code sentences; and (4) evaluating 

the comprehensibility of the generated building-code sentences using two sets of metrics: 

bilingual evaluation understudies (BLEU) and recall-oriented understudies for gisting 

evaluation (ROUGE).  

  

Figure 2:   Proposed Deep Learning Natural Language Generation (NLG) Method for Evaluating the 

Proposed Building-Code Annotations 

4.1 Data Preparation 

Two datasets were used for training and testing the deep-learning building-code sentence 

generation model, which were annotated using two different methods. For training, to reduce 

the human effort, a relatively large dataset of sentences was collected and automatically 

annotated using a pretrained deep-learning model. For testing, a smaller dataset was collected 

and manually annotated by human annotators.  

Automated Annotation of Training Data Using Pretrained Deep-Learning Model. A total 

of 80,000 sentences were collected from multiple regulatory documents including the 

International Energy Conservation Code, the International Residential Code, and the American 

National Standards for Accessible and Usable Buildings and Facilities. The pretrained deep 

information extraction model by Zhang and El-Gohary (2020) was used to automatically 

annotate the dataset with the proposed annotations. 

Manual Annotation of Testing Data. A total of 100 sentences were collected from multiple 

chapters of the IBC 2009 and the Champaign 2015 IBC Amendments. The sentences were 

manually annotated by three different annotators. 

4.2 Data Preprocessing 

To further improve the quality of the training data and the robustness of the deep-learning 

sentence generation model, two data preprocessing steps were conducted: rare-token filtering, 

and quantity value and reference replacement.  

Rare-Token Filtering. To reduce the effect of the noise in the training data, and to improve 

the model’s ability to deal with words that are missing from the training data, rare tokens were 
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filtered. First, the token frequencies in the entire corpus of building-code sentences were 

counted. Then, the tokens with frequencies less than the threshold were replaced by the single 

missing-word token.  

Quantity-Value and Reference Replacement. Quantity values share similar semantic and 

syntactic patterns, and so do references (e.g., the index of a chapter, table, or building code). 

Thus, two single tokens, “quantity value” and “reference”, were used to replace tokens 

annotated as quantity values and tokens annotated as references, respectively, aiming to reduce 

the number of parameters to be learned in the sentence generation model and thus the possibility 

of overfitting. 

4.3 Deep-Learning Sentence Generation Model Development and Training  

The sequence to sequence (Seq2Seq) model (Sutskever et al. 2014) was modified and trained 

to automatically generate the sentences based on the building-code annotations.  

Model Development. The Seq2Seq model consists of two main parts: the encoder and the 

decoder, each consisting of several components, as illustrated in Figure 3. The encoder 

transforms the input (i.e., the sequence of annotated input words) into a vector representation, 

which captures the syntactic and semantic information of the entire input word sequence. The 

encoder consists of two components: the embedding layer for vectorizing the input words, and 

at least one LSTM layer. The decoder further transforms the vector representation generated by 

the encoder into the output word sequence. The decoder consists of two components: at least 

one LSTM layer, and the output layer for making final word prediction and thus generating the 

sentence. 

The LSTM layers in both the encoder and the decoder aim to learn the feature representations 

that capture the semantic and syntactic information of the words. Each LSTM layer consists of 

several stacked LSTM units – each computing the feature representations based on the input 

information fed to the current LSTM unit, and the information propagated from the last LSTM 

unit so that the information from previous words could be captured. To improve the ability of 

the LSTM layer to deal with long-term dependencies in the building-code sentences, the 

bidirectional architecture was used – both the forward and backward LSTM units were 

considered when learning the feature representations (Huang et al. 2015). To determine the best 

model size for the specific training data used and the specific building-code sentence generation 

task, models with three different depths were tested: shallow (one LSTM layer in each of the 

encoder and the decoder), medium (two LSTM layers in each of the encoder and the decoder), 

and deep (four LSTM layers in each of the encoder and the decoder). 

Model Training. Perplexity was minimized to train the deep learning model and obtain the 

optimal model parameters. Perplexity is defined as the inverse probability of the corpus (e.g., a 

group of sentences) given a language model (e.g., the Seq2Seq model), normalized by the 

number of words in the corpus (Jurafsky and Martin 2014). 

Several training strategies were adopted. For improving computational efficiency, the training 

was stopped at 20 epochs or when the change of the perplexity between two consecutive 

training epochs was smaller than a threshold. For improving the sentence generation 

performance, the training practices suggested by Sutskever et al. (2014) were followed, 

including uniform initialization of the model parameters and gradually decreasing the model 

learning rate. The model was implemented in Python 3, and was run on top of Pytorch. 
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Figure 3:   Sequence to Sequence (Seq2Seq) Model for Automatically Generating Building-Code 

Sentences 

4.4 Evaluation of Generated Sentence 

Two metrics were used to evaluate the comprehensibility of the generated building-code 

sentences: bilingual evaluation understudy (BLEU) and recall-oriented understudy for gisting 

evaluation (ROUGE). 

BLEU is defined as the correspondence between the machine-generated text and the gold 

standard text (Papineni 2002), where 𝑝𝑛  is the precision computed based on a contiguous 

sequence of 𝑛  words, 𝑤𝑛  is the weight corresponding to 𝑝𝑛 , N is the longest sequence 

considered in calculating the metric, and c is a predefined scaling factor. BLEU1 and BLEU2 

were used in this evaluation. A high BLEU indicates that the generated sentences correspond 

to the original sentences and thus the annotations used to generate these sentences are able to 

capture the semantics of the original sentences. 

BLEU𝑁 =  𝑐 exp (∑ 𝑤𝑛 log 𝑝𝑛

𝑁

𝑛=1

) 

ROUGE is defined as the overlap between the machine-generated text and the gold standard 

text (Lin 2004), where 𝑟𝑛 is the recall computed based on a contiguous sequence of 𝑛 words, 

𝑤𝑛 is the weight corresponding to 𝑟𝑛 , and N is the longest sequence considered in calculating 

the metric. ROUGE1 and ROUGE2 were used in this evaluation. A high ROUGE indicates that 

the generated sentences overlap with the original sentences and thus the annotations used to 

generate these sentences are able to capture the semantics of the original sentences. 

ROUGE𝑁 =  ∑ 𝑤𝑛𝑟𝑛

𝑁

𝑛=1

 

5. Preliminary Experimental Results 

For the preliminary experiments, the size of the LSTM layers in the sentence generation model 

was set as 500, the dropout rate was set as 0.2, and the maximum length of the input data was 

set as 50. The sentence generation model optimization was performed using Adagrad, with a 

training data batch size of 64. 
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5.1 Comprehensibility with Different Types of Input Data 

Two sentence generation models (of medium depth) were developed and used in the evaluation: 

one trained using data without preprocessing, and the other trained using preprocessed data. 

The evaluation results are shown in Table 2. The comprehensibility of the sentences was higher 

when the generation model was trained using preprocessed data, showing 4%, 3%, 3%, and 6% 

increase in ROUGE1, ROUGE2, BLEU1, and BLEU2, respectively. The results indicate that the 

two data preprocessing techniques adopted (rare-token filtering and quantity-value and 

reference replacement) help in generating more comprehensible building-code sentences by 

reducing the noise in the training data and increasing the robustness of the model. 

Table 2:   Comprehensibility (with medium-depth deep learning model) using different types of 

training data1 

Type of training data 
ROUGE BLEU 

ROUGE1 ROUGE2 BLEU1 BLEU2 

Training data without data preprocessing 82% 75% 77% 67% 

Training data with data preprocessing 86% 78% 80% 73% 

  1Bolded font indicates the highest performance. 

5.2 Comprehensibility Using Deep-Learning Models of Different Depths 

Three sentence generation models, with three different depths – shallow, medium, and deep – 

were developed and used in the evaluation. The evaluation results are shown in Table 3. The 

medium-depth model that has two LSTM layers each in the encoder and the decoder resulted 

in the highest comprehensibility, higher than the shallow-depth model by 6% in ROUGE1, 5% 

in ROUGE2, 3% in BLEU1, and 3% in BLEU2, and higher than the deep-depth model by 4% in 

ROUGE1, 4% in ROUGE2, 3% in BLEU1, and 2% in BLEU2. The results may indicate that the 

medium-depth model was most suitable for the size of the training data used – 80,000 samples, 

about 1,000,000 tokens. For much smaller/larger datasets or for a different type of text  (e.g., 

different domains, different syntactic and semantic patterns, etc.), the other model depths could 

be used for evaluation. 

Table 3:   Comprehensibility with deep learning models of different depths (using preprocessed data)1 

Deep learning building-code 

sentence generation model depth 

ROUGE BLEU 

ROUGE1 ROUGE2 BLEU1 BLEU2 

Shallow (one LSTM layer each in the 

encoder and the decoder) 
80% 73% 77% 70% 

Medium (two LSTM layers each in 

the encoder and the decoder) 
86% 78% 80% 73% 

Deep (four LSTM layers each in the 

encoder and the decoder) 
82% 74% 77% 71% 

  1Bolded font indicates the highest performance. 

5.3 Errors in Sentence Generation 

Three main sources of sentence generation errors were identified based on an analysis of the 

experimental results. First, the building-code sentences that were used to create the training data 
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were automatically annotated by a pretrained machine learning model, which did not achieve 

100% accuracy and thus created annotation errors. Second, the building-code sentences were 

collected from multiple sources including text files crawled from webpages and converted from 

PDF files, and noise was added during the data crawling and conversion processes. Third, the 

building codes contain a significant amount of non-textual data such as tables and equations, 

some of which are difficult to be separated from the text and thus might have contaminated the 

building-code sentences used to create the training data.   

6. Conclusions 

This paper proposed a new building-code annotation approach and a new deep learning natural 

language generation (NLG)-based method for evaluating annotation quality, both for 

supporting automated checking. The annotation approach uses requirement units that consist of 

semantic information elements and simple logic operators. The annotation evaluation method, 

which was used to evaluate the proposed building-code annotation approach, first utilizes the 

annotations to generate new sentences, and then evaluates the comprehensibility of the 

generated sentences using BLEU and ROUGE. A ROUGE1 of 86%, ROUGE2 of 78%,  BLEU1 

of 80%, and BLUE2 of 73% were achieved when the medium-depth sentence generation model 

was used, which was trained on preprocessed data. These preliminary evaluation results 

indicate good comprehensibility of the sentences that were generated using the proposed 

annotations. 

This paper contributes to the body of knowledge in four primary ways. First, the paper proposed 

a new building-code annotation approach for supporting automated compliance checking, 

which uses requirement units for coverage and simplification. Second, the paper proposed a 

new deep learning NLG-based method for evaluating building-code annotation quality, which 

helps provide a well-defined method and a set of quantitative metrics for evaluation. Third, the 

paper leverages large-scale unlabeled data to train the deep learning models by using a 

pretrained domain-specific sentence annotator, which greatly reduces the manual effort needed 

for creating labeled data. Fourth, the experimental results show that the data preprocessing 

techniques and the structure of the sentence generation model could affect the 

comprehensibility of the generated building-code sentences and thus affect the building-code 

annotation evaluation.  

In their future work, first, the authors plan to improve the proposed building-code annotation 

approach by including more complex semantic relations such as exceptions and restrictions, in 

order to more accurately model the relations between requirement units. Second, the authors 

plan to improve the proposed deep learning NLG-based annotation evaluation method by 

improving the quality of the training data (e.g., using rule-based or machine learning-based 

preprocessing methods) and testing different sentence generation model architectures. Third, 

and most importantly, the authors plan to integrate the proposed annotation approach with a 

domain ontology to help improve the performance of existing automated compliance checking 

systems. 
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