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Abstract. Existing automated code checking (ACC) methods require the extraction of requirements
from building codes and the representation of these requirements in a computer-processable form.
Although these methods have achieved different levels of performance, all of them are still unable
to represent all types of building-code requirements. There is, thus, a need to enhance the semantic
representations of building codes towards facilitating the representation of all requirements. To
address this need, this paper first proposes a new approach to annotate and represent building-code
sentences using requirement units that consist of semantic information elements and simple logic
operators. To evaluate the proposed building-code annotation approach, this paper also proposes a
new natural language generation (NLG)-based method for evaluating annotation quality. The
proposed method consists of four steps: data preparation, data preprocessing, NLG model
development and training, and sentence evaluation. Sentences from the International Code Council
(ICC) building codes were used in the evaluation.

1. Introduction

To reduce the time, cost, and errors of compliance checking, various automated code
compliance checking (ACC) systems have been developed and implemented. Most of the
existing ACC systems require the extraction of requirements from building-code sentences and
the conversion of the extracted requirements into a semantic representation. Semantic
representations of building codes aim to represent the natural language requirements in
computer processable forms. Different semantic representations of requirements have been
developed in the construction domain for supporting compliance checking. Examples of
semantic representations proposed in research efforts include the requirement, applicability,
selection and exception (RASE) semantic markups proposed by Hjelseth and Nisbet (2011), the
semantic information elements proposed by Zhang and El-Gohary (2013), and the visual
language for compliance checking proposed by Preidel and Borrmann (2016). Examples of
semantic representations used in commercial ACC applications include the predefined
templates used in the Solibri Model Checker and the hardcoded building-requirements in the
SMARTreview.

However, two knowledge gaps still exist. First, although existing ACC methods and
applications have achieved different levels of automation, representativeness, and accuracy,
they are still unable to represent all building-code requirements. For example, the RASE
markups can be used to annotate nested clauses and exceptions in building-code sentences, but
cannot represent “requirements that include alternatives and preferences” (Hjelseth and Nisbet
2011). Similarly, the predefined templates in Solibri Model Checker can only represent a
limited number of requirements in a few building codes, such as the clearance requirements in
the Standards for Accessible Design by Americans with Disabilities Act, and the dimension
requirements in the International Building Code (IBC). There is, thus, a need to enhance the
semantic representations or annotations of building codes towards facilitating the representation
of all requirements. Second, most of the existing semantic representations were developed
without sufficient evaluation in terms of their representativeness of building-code regulatory
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information. There is a lack of well-defined quantitative metrics and methods for evaluating the
semantic representations and/or annotations of building codes.

To address the first knowledge gap, this paper proposes a new approach to annotate and
represent building-code sentences using requirement units that consist of semantic information
elements and simple logic operators. To address the second gap and evaluate the proposed
annotation approach, this paper then proposes a natural language generation (NLG)-based
method for evaluating annotation quality, where the building-code annotations are first used to
generate new building-code sentences, and then the comprehensibility of the generated
sentences are evaluated. Two metrics were used to evaluate the comprehensibility of the
generated building-code sentences: bilingual evaluation understudy (BLEU) and recall-oriented
understudy for gisting evaluation (ROUGE).

2. Background

2.1 Natural Language Generation

Natural language generation (NLG) is the process of representing the semantic information
contained in the input data — which could be in various forms such as tables, images, or formal
languages — in the form of natural language for the purpose of information digestion and
communication (Arria NLG 2020). NLG plays a core role in many intelligent systems and
applications such as spoken dialogue systems (Wen et al. 2015), image captioning (You et al.
2016), and business intelligence dashboards (Arria NLG 2020).

NLG methods range from template, rule, and heuristic-based methods to recent deep learning-
based methods. Template, rule, and heuristics-based methods rely on manually-developed
templates and rules to fill in the templates. Examples of template-based systems in the
construction domain include the web-based document management system proposed by Ryoo
et al. (2010); and commercial software such as e-Specs (Avitru 2018) and BIMdrive (Digicon
2018), which use premade templates (e.g., templates based on the National Master
Specifications) to facilitate the development and maintenance of construction specifications.
Deep learning-based methods use deep neural networks to automatically learn the syntactic and
semantic patterns in the input data, which are later used to generate new text (e.g., semantically
conditioned deep neural network-based text generation approach by Wen et al. 2015).

2.2 Deep Learning

Deep learning methods use computational models such as deep neural networks to learn
multiple levels of information representations from large-scale data (LeCun et al. 2015). Deep
learning methods have drastically improved the state-of-the-art performance in the natural
language processing domain, and have eliminated a lot of the manual effort in feature
engineering compared to traditional machine learning methods. In the construction domain,
deep learning methods have been used to solve text analysis problems such as building-code
requirement extraction (Zhang and El-Gohary 2019), building information modeling log data
mining (Pan and Zhang 2020), and regulatory document semantic analysis (Zhang and El-
Gohary 2020).

The most commonly used deep neural networks for dealing with sequential data such as text
data are recurrent neural networks (RNNs). RNNs have recurrent connections between neurons
in the neural networks to cycle the input information in order to learn the patterns of sequential
data (Mikolov et al. 2010). To tackle the shortcoming of original RNNs, which is being less
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capable and less computationally efficient to learn from long-term dependencies in the
sequential data, variants of RNNs have been designed and adopted such as long short term
memories (LSTMs) and gated recurrent units (GRUSs).

3. Proposed Approach to Annotate Building-Code Sentences for Supporting
Automated Compliance Checking

This paper proposes a new approach to annotate building-code sentences using requirement
units. Each requirement unit consists of semantic information elements and simple logic
operators. The semantic information elements include the essential semantic information
elements proposed by Zhang and El-Gohary (2013), as shown in Table 1, in addition to a new
element, “subject relation”, which describes a relation between two subjects in one requirement
unit. The simple logic operators include conjunction (e.g., “and”), disjunction (e.g., “or’’), and
negation (e.g., “not”). Each requirement unit describes a requirement or condition on a subject
and/or a compliance checking attribute, or a pair of subjects, and thus is easily processable by
most of the existing semi-automated or automated compliance checking applications and
systems. Figure 1 shows an example building-code sentence that is annotated with requirement
units.

Table 1: Essential semantic information elements for representing requirements for compliance
checking purposes (Zhang and EI-Gohary 2013).

Semantic information element Definition

Subject An ontology concept representing a thing (e.g., building
element) that is subject to a particular requirement

Compliance checking attribute An ontology concept representing a specific characteristic of a
“subject” that is checked for compliance (e.g., width)

Quantitative relation A term/phrase that defines the type of relation for the quantity
(e.g., extend)

Deontic operator indicator A term/phrase that indicates the deontic type of the
requirement (i.e., obligation, permission, or prohibition)

Comparative relation A term/phrase for comparing quantitative values, including
“greater than or equal to,” “greater than,” “less than or equal
to,” “less than,” and “equal to”

Quantity value A numerical value that defines the quantity
Quantity unit The unit of measure for a “quantity value”
Building-code " Door openings between a private garage and the dwelling unit
sentence A shall be equipped with steel doors not less than 34.9 mm thick. |
i . RequirementUnit1 _  RequirementUnit2  RequirementUnit3
Requ:retl_'nent unit iSubject: door opening | | Subject: door opening i | Subject: steel door 5
annotation iSubject relation: equipped! | Subject relation: between | ! Attribute: thickness
\Subject: steeldoor ! :Subject: private garage,

dwelling unit

]
'
]
Lo oo e e ]

| Quantity value: 34.9

§ Comparativerelation: >= :
! Quantity unit: mm .

Figure 1: Example of Proposed Building-Code Sentence Annotations with Requirement Units
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4. Proposed Deep Learning Natural Language Generation Method for Evaluating the
Proposed Building-Code Annotation Approach

To evaluate the proposed building-code annotation approach, this paper proposes a deep
learning natural language generation (NLG) method for evaluating annotation quality, where
the annotations are first used to generate new sentences, and then the comprehensibility of the
generated sentences are evaluated. The proposed method consists of four main steps (as per
Figure 2): (1) preparing the training and testing data (i.e., pairs of natural language building-
code sentence and the corresponding annotations); (2) preprocessing the data; (3) developing
and training the deep learning model for generating building-code sentences; and (4) evaluating
the comprehensibility of the generated building-code sentences using two sets of metrics:
bilingual evaluation understudies (BLEU) and recall-oriented understudies for gisting
evaluation (ROUGE).

Step1 Step 2 Step 3 Step 4

Data preparation Data preprocessing Deep-learning sentence Sentence generation
) ) generation model evaluation
development and training
*Pretrained deep-learning ‘ *Rare tlen filtering sModel development
model automated annotation *Quantity value and reference L
- *Model training
*Manual annotation replacement

Figure 2: Proposed Deep Learning Natural Language Generation (NLG) Method for Evaluating the
Proposed Building-Code Annotations

4.1 Data Preparation

Two datasets were used for training and testing the deep-learning building-code sentence
generation model, which were annotated using two different methods. For training, to reduce
the human effort, a relatively large dataset of sentences was collected and automatically
annotated using a pretrained deep-learning model. For testing, a smaller dataset was collected
and manually annotated by human annotators.

Automated Annotation of Training Data Using Pretrained Deep-Learning Model. A total
of 80,000 sentences were collected from multiple regulatory documents including the
International Energy Conservation Code, the International Residential Code, and the American
National Standards for Accessible and Usable Buildings and Facilities. The pretrained deep
information extraction model by Zhang and El-Gohary (2020) was used to automatically
annotate the dataset with the proposed annotations.

Manual Annotation of Testing Data. A total of 100 sentences were collected from multiple
chapters of the IBC 2009 and the Champaign 2015 IBC Amendments. The sentences were
manually annotated by three different annotators.

4.2 Data Preprocessing

To further improve the quality of the training data and the robustness of the deep-learning
sentence generation model, two data preprocessing steps were conducted: rare-token filtering,
and quantity value and reference replacement.

Rare-Token Filtering. To reduce the effect of the noise in the training data, and to improve
the model’s ability to deal with words that are missing from the training data, rare tokens were
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filtered. First, the token frequencies in the entire corpus of building-code sentences were
counted. Then, the tokens with frequencies less than the threshold were replaced by the single
missing-word token.

Quantity-Value and Reference Replacement. Quantity values share similar semantic and
syntactic patterns, and so do references (e.g., the index of a chapter, table, or building code).
Thus, two single tokens, “quantity value” and “reference”, were used to replace tokens
annotated as quantity values and tokens annotated as references, respectively, aiming to reduce
the number of parameters to be learned in the sentence generation model and thus the possibility
of overfitting.

4.3 Deep-Learning Sentence Generation Model Development and Training

The sequence to sequence (Seq2Seq) model (Sutskever et al. 2014) was modified and trained
to automatically generate the sentences based on the building-code annotations.

Model Development. The Seq2Seq model consists of two main parts: the encoder and the
decoder, each consisting of several components, as illustrated in Figure 3. The encoder
transforms the input (i.e., the sequence of annotated input words) into a vector representation,
which captures the syntactic and semantic information of the entire input word sequence. The
encoder consists of two components: the embedding layer for vectorizing the input words, and
at least one LSTM layer. The decoder further transforms the vector representation generated by
the encoder into the output word sequence. The decoder consists of two components: at least
one LSTM layer, and the output layer for making final word prediction and thus generating the
sentence.

The LSTM layers in both the encoder and the decoder aim to learn the feature representations
that capture the semantic and syntactic information of the words. Each LSTM layer consists of
several stacked LSTM units — each computing the feature representations based on the input
information fed to the current LSTM unit, and the information propagated from the last LSTM
unit so that the information from previous words could be captured. To improve the ability of
the LSTM layer to deal with long-term dependencies in the building-code sentences, the
bidirectional architecture was used — both the forward and backward LSTM units were
considered when learning the feature representations (Huang et al. 2015). To determine the best
model size for the specific training data used and the specific building-code sentence generation
task, models with three different depths were tested: shallow (one LSTM layer in each of the
encoder and the decoder), medium (two LSTM layers in each of the encoder and the decoder),
and deep (four LSTM layers in each of the encoder and the decoder).

Model Training. Perplexity was minimized to train the deep learning model and obtain the
optimal model parameters. Perplexity is defined as the inverse probability of the corpus (e.g., a
group of sentences) given a language model (e.g., the Seq2Seq model), normalized by the
number of words in the corpus (Jurafsky and Martin 2014).

Several training strategies were adopted. For improving computational efficiency, the training
was stopped at 20 epochs or when the change of the perplexity between two consecutive
training epochs was smaller than a threshold. For improving the sentence generation
performance, the training practices suggested by Sutskever et al. (2014) were followed,
including uniform initialization of the model parameters and gradually decreasing the model
learning rate. The model was implemented in Python 3, and was run on top of Pytorch.
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LSTM = long short term memory; A = compliance checking attribute; QV = quantity value; QU = quantity unit; S = subject; R = relation

Figure 3: Sequence to Sequence (Seq2Seq) Model for Automatically Generating Building-Code
Sentences

4.4 Evaluation of Generated Sentence

Two metrics were used to evaluate the comprehensibility of the generated building-code
sentences: bilingual evaluation understudy (BLEU) and recall-oriented understudy for gisting
evaluation (ROUGE).

BLEU is defined as the correspondence between the machine-generated text and the gold
standard text (Papineni 2002), where p,, is the precision computed based on a contiguous
sequence of n words, w,, is the weight corresponding to p,, N is the longest sequence
considered in calculating the metric, and c is a predefined scaling factor. BLEU; and BLEU»
were used in this evaluation. A high BLEU indicates that the generated sentences correspond
to the original sentences and thus the annotations used to generate these sentences are able to
capture the semantics of the original sentences.

N
BLEUy = cexp (Z wy log py)

n=1

ROUGE is defined as the overlap between the machine-generated text and the gold standard
text (Lin 2004), where 7;, is the recall computed based on a contiguous sequence of n words,
w,, is the weight corresponding to 7;, , and N is the longest sequence considered in calculating
the metric. ROUGE| and ROUGE; were used in this evaluation. A high ROUGE indicates that
the generated sentences overlap with the original sentences and thus the annotations used to
generate these sentences are able to capture the semantics of the original sentences.

N
ROUGEy = Z WpTy

n=1

5. Preliminary Experimental Results

For the preliminary experiments, the size of the LSTM layers in the sentence generation model
was set as 500, the dropout rate was set as 0.2, and the maximum length of the input data was
set as 50. The sentence generation model optimization was performed using Adagrad, with a
training data batch size of 64.
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5.1 Comprehensibility with Different Types of Input Data

Two sentence generation models (of medium depth) were developed and used in the evaluation:
one trained using data without preprocessing, and the other trained using preprocessed data.
The evaluation results are shown in Table 2. The comprehensibility of the sentences was higher
when the generation model was trained using preprocessed data, showing 4%, 3%, 3%, and 6%
increase in ROUGE|, ROUGE,, BLEU, and BLEU, respectively. The results indicate that the
two data preprocessing techniques adopted (rare-token filtering and quantity-value and
reference replacement) help in generating more comprehensible building-code sentences by
reducing the noise in the training data and increasing the robustness of the model.

Table 2: Comprehensibility (with medium-depth deep learning model) using different types of
training data'

ROUGE BLEU
Type of training data
ROUGE;! ROUGE: BLEU; BLEU:
Training data without data preprocessing 82% 75% 77% 67%
Training data with data preprocessing 86% 78% 80% 73%

'Bolded font indicates the highest performance.

5.2 Comprehensibility Using Deep-Learning Models of Different Depths

Three sentence generation models, with three different depths — shallow, medium, and deep —
were developed and used in the evaluation. The evaluation results are shown in Table 3. The
medium-depth model that has two LSTM layers each in the encoder and the decoder resulted
in the highest comprehensibility, higher than the shallow-depth model by 6% in ROUGE;, 5%
in ROUGE3, 3% in BLEU}, and 3% in BLEU,, and higher than the deep-depth model by 4% in
ROUGE/, 4% in ROUGE, 3% in BLEU}, and 2% in BLEU>. The results may indicate that the
medium-depth model was most suitable for the size of the training data used — 80,000 samples,
about 1,000,000 tokens. For much smaller/larger datasets or for a different type of text (e.g.,
different domains, different syntactic and semantic patterns, etc.), the other model depths could
be used for evaluation.

Table 3: Comprehensibility with deep learning models of different depths (using preprocessed data)'

Deep learning building-code ROUGE BLEU
sentence generation model depth ROUGE; ROUGE: BLEU: BLEU:
T oo " | s | | |
" the encoder and the decodery | %6% 8% 80% 3%
v I T I

"Bolded font indicates the highest performance.

5.3 Errors in Sentence Generation

Three main sources of sentence generation errors were identified based on an analysis of the
experimental results. First, the building-code sentences that were used to create the training data
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were automatically annotated by a pretrained machine learning model, which did not achieve
100% accuracy and thus created annotation errors. Second, the building-code sentences were
collected from multiple sources including text files crawled from webpages and converted from
PDF files, and noise was added during the data crawling and conversion processes. Third, the
building codes contain a significant amount of non-textual data such as tables and equations,
some of which are difficult to be separated from the text and thus might have contaminated the
building-code sentences used to create the training data.

6. Conclusions

This paper proposed a new building-code annotation approach and a new deep learning natural
language generation (NLG)-based method for evaluating annotation quality, both for
supporting automated checking. The annotation approach uses requirement units that consist of
semantic information elements and simple logic operators. The annotation evaluation method,
which was used to evaluate the proposed building-code annotation approach, first utilizes the
annotations to generate new sentences, and then evaluates the comprehensibility of the
generated sentences using BLEU and ROUGE. A ROUGE; of 86%, ROUGE: of 78%, BLEU;
of 80%, and BLUE: of 73% were achieved when the medium-depth sentence generation model
was used, which was trained on preprocessed data. These preliminary evaluation results
indicate good comprehensibility of the sentences that were generated using the proposed
annotations.

This paper contributes to the body of knowledge in four primary ways. First, the paper proposed
a new building-code annotation approach for supporting automated compliance checking,
which uses requirement units for coverage and simplification. Second, the paper proposed a
new deep learning NLG-based method for evaluating building-code annotation quality, which
helps provide a well-defined method and a set of quantitative metrics for evaluation. Third, the
paper leverages large-scale unlabeled data to train the deep learning models by using a
pretrained domain-specific sentence annotator, which greatly reduces the manual effort needed
for creating labeled data. Fourth, the experimental results show that the data preprocessing
techniques and the structure of the sentence generation model could affect the
comprehensibility of the generated building-code sentences and thus affect the building-code
annotation evaluation.

In their future work, first, the authors plan to improve the proposed building-code annotation
approach by including more complex semantic relations such as exceptions and restrictions, in
order to more accurately model the relations between requirement units. Second, the authors
plan to improve the proposed deep learning NLG-based annotation evaluation method by
improving the quality of the training data (e.g., using rule-based or machine learning-based
preprocessing methods) and testing different sentence generation model architectures. Third,
and most importantly, the authors plan to integrate the proposed annotation approach with a
domain ontology to help improve the performance of existing automated compliance checking
systems.
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