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Abstract. Cognitive control and rule learning are two important mech-
anisms that explain how goals influence behavior and how knowledge
is acquired. These mechanisms are studied heavily in cognitive science
literature within highly controlled tasks to understand human cognition.
Although they are closely linked to the student behaviors that are often
studied within intelligent tutoring systems (ITS), their direct effects on
learning have not been explored. Understanding these underlying cog-
nitive mechanisms of beneficial and harmful student behaviors can pro-
vide deeper insight into detecting such behaviors and improve predictive
models of student learning. In this paper, we present a thinkaloud study
where we asked students to narrate their thought processes while solving
probability problems in ASSISTments. Students are randomly assigned
to one of two conditions that are designed to induce the two modes of
cognitive control based on the Dual Mechanisms of Control framework.
We also observe how the students go through the phases of rule learning
as defined in a rule learning paradigm. We discuss the effects of these
different mechanisms on learning, and how the information they provide
can be used in student modeling.

Keywords: Cognitive control - Rule learning - Problem solving - Intel-
ligent tutoring systems.

1 Introduction

In ITS research, student behaviors that are associated with positive and nega-
tive cognitive and motivational states are often used within student models to
design personalized adaptations. These states are often defined at a high level
(e.g. gaming the system, zoning out), while in cognitive psychology, cognitive
states are studied at a much finer grain. We believe that identifying the paral-
lels between the low-level cognitive structures that are studied within controlled
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tasks in cognitive science literature and the student behaviors associated with
both positive and negative cognitive and motivational states within I'TS research
will improve our understanding of student learning and eventually help us de-
sign better student models and ITSs. Two such lower-level cognitive processes
are cognitive control and rule learning.

Cognitive control is the basis of goal-directed behavior. It is defined as the
ability to adapt behavior depending on the current goals and online maintenance
of goal-related information [3]. In cognitive psychology, cognitive control’s role
in self-regulating behavior [16], focusing attention [19], and goal maintenance [4]
have been studied within controlled tasks. These are relevant in ITS research
in detecting various kinds of student behaviors. Examples include how students
inhibit their will to game the system in face of temptation [11], interfering with
student zoning out [12], and supporting self-regulated learning strategies [1].
Despite the fact that low-level cognitive structures that are studied in cognitive
science are the underlying mechanisms of these behaviors, these mechanisms are
rarely explored directly in the ITS literature. We hypothesize that identifying
these mechanisms could help us better understand student behaviors and even-
tually help us design better detectors of them.

Rule learning consists of activities related to collecting instances of some
phenomenon and identifying commonalities, relationships, and rules from these
specific instances. These activities show themselves in the learning domain in
the induction and refinement processes that are introduced in [17]. Some exam-
ples for these processes are perception, generalization, discrimination, catego-
rization, and schema induction. These processes are linked to rule learning as
they also require abstracting regularities and relationships, and inducing rules
from them. ITSs support induction and refinement processes by giving timely
feedback, guiding students’ attention, and presenting worked examples in order
to achieve robust learning. However, again, the underlying cognitive mechanisms
of the processes are underexplored in this line of research.

As a first step, we investigate how these low-level cognitive mechanisms can
be detected within an ITS. More specifically, we are interested to discover how
cognitive control and rule learning present themselves within a real setting and
if they have direct effects on learning, addressing two research questions: 1)
How do phases of rule learning and modes of cognitive control manifest them-
selves in problem solving? 2) Do different operation modes of cognitive control
and the different phases of rule learning have an effect on domain learning?

We designed a thinkaloud study where we instructed students to verbalize
their thoughts while solving probability problems in ASSISTments [15]. Students
were randomly assigned to one of the two conditions that were designed to en-
courage them to use different modes of cognitive control [4], and we explored
differences in student behavior and learning. In addition, we designed the prob-
lems in a way that allows us to observe the phases of rule learning within a more
complex educational context.
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2 Background

2.1 Cognitive Control and Dual Mechanisms Framework

The Dual Mechanisms of Cognitive Control (DMC) framework [4] suggests that
cognitive control operates via two distinct modes: proactive and reactive control.
Proactive control is used when the goal-related information is actively main-
tained in order to prepare for cognitively demanding events. In contrast, in
reactive control, goal-relevant information is only retrieved in a “just-in-time”
manner and individuals rely on triggers to focus their attention back on the
goal-relevant information. Even though proactive and reactive control are not
considered to be mutually exclusive, people are likely to prefer one over the
other. This preference is caused by individual factors such as age [20], working
memory capacity [21,23], and external factors such as incentives [5], and the
working memory load the task introduces [22].

To assess the relative use of proactive and reactive control, the AX continu-
ous performance task (AX-CPT) has been used heavily [2,4,8]. In the AX-CPT,
participants respond to letter probes based on the previous letter cue. Partic-
ipants are instructed to provide a certain response if the cue-probe pair is an
“AX” pair, and a different response is required for any other letter sequences.
The performance of participants on specific letter sequences is indicative of their
usage of proactive and reactive control. Prior research have successfully induced
participants to utilize proactive or reactive control in the AX-CPT by strategy
training [5,13,14,20]. The study we describe in this paper was inspired by this
method. We test if a similar manipulation can successfully be applied to a re-
alistic learning task. Further, we investigate if utilizing one mode of cognitive
control influences learning.

2.2 Rule Learning

Rule learning includes investigating how humans go through phases of recog-
nizing instances and keeping them in memory, detecting the regularities, and
understanding the relationships between them [10]. The behaviors associated
with the phases of rule learning were studied within different versions of a rule
attainment task [6,7,10,18]. In one example, subjects are shown cards with
sequentially-numbered circles. Exactly one of the circles is blue. The subjects
must predict the position of the blue circle on the next card. In other words,
they should respond in a certain way if the position of the blue circle is changing
based on a rule. In all versions of the task, three main phases of rule learning
were identified based on how subjects respond to the stimuli presented. These
are rule search, rule discovery and rule following.

Rule Search. The first response with a new rule and all responses preceding
rule discovery are identified as the rule search phase.

Rule Discovery. The third correct response in a row indicates that the subject
discovered the rule.
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Rule Following. The streak of correct responses after rule discovery corre-
sponds to rule following.

This work investigates if students learn rules associated with mathematical
problems in the same way as in the rule learning paradigm. We identify possible
different patterns of rule learning that can occur in a real learning environment.

3 Task Design

We used ASSISTments [15] to design our task. It is an online tutoring system
that allows teachers to write problems with solutions, hints, and feedback. Stu-
dents are assisted by the system (either on demand or automatically) with hints,
scaffolding (i.e. breaking the problem down to steps), and feedback. Teachers can
get immediate feedback on students’ performance on the problems. We built a
problem set that consisted of 9 probability problems (3 calculating probability,
3 addition rule with non-mutually exclusive events, 3 multiplication rule with
dependent events). All problems were divided into 3 to 4 substeps. Participants
were not expected to solve the problem when they first saw it. Instead, they were
asked to rate their confidence level in solving the particular problem. When the
participants clicked on the “Next Problem”* button after confidence rating, they
were shown the first substep to solve that problem in the same window (see Fig-
ure 1). Similarly, after each substep, participants were presented with the next
one until they reached the last substep that would lead them to the solution.
The reasoning behind this design is to observe how the participants maintain
the goal of the full problem when they needed to solve it in multiple steps.

3.1 Cognitive Control Manipulation

The participants were shown a prompt below the problem substep texts. The
prompt instructed, “Think about how this step relates to the goal of the prob-
lem” in the proactive condition to encourage active maintenance of the goal of
the full problem. In the reactive condition, it instructed, “Think about how you
are solving this step” in order to make the participants only pay attention to
what the substep tells them to do. The purpose of this is to induce proactive
or reactive control through strategy training similar to [14]. This allowed us to
observe how proactive and reactive control look like in a real problem-solving
environment. The participants who were prompted to relate the substeps to the
problem goal will be utilizing proactive control and the participants who were
prompted to only react to the substeps will be utilizing reactive control. An
example problem shown in Figure 1.

*ASSISTments does not allow one to change the interface elements such as button
text. Even though “next problem” sounds odd in this design as participants were going
to “next step”, we did not observe confusion among participants as they were given
time to practice with this design.
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Problem ID: PRABPZBC Comment on this problem

The probability of owning a cat is 40% and of owning a dog is 50%. The probability of owning both
a cat and dog is 25%. What is the probability of owning either a cat or a dog, but not both?

How confident are you in solving this problem? |1

Select one:
1 Not confident at all

2
3 Neutral

4

5 Exactly confident I 100% ®
Correct!

Submit AnswerJ Next ProblemJ 2
Problem ID: PRABPZBC Comment on this problem

Step 1: First, determine the probability of only owning a cat, what is P(only cat)?

Think about how this step relates to the goal of the problem. 3

T bel b le: 5,3.1,41/2, 0r 3/2):
ype your answer below as a number (example. or ). 4 100% ®
Submit Answer Show hint

Fig. 1. 1:Participants rate their confidence level in solving the shown problem when
they first see it. The system accepts all answers to confidence ratings as correct. 2:
When participant clicks on “Next problem” first substep of the problem was shown.
3: Participants see a prompt below the problem text in each substep to remember the
strategy they were trained to follow based on the condition they are assigned. 4: The
green bar shows if student took the available hints on the step. 100% means no hints
were taken. As students take more hints, the percentage decreases.

3.2 Rule Learning Manipulation

To track how students go through the phases of rule learning, every problem
substep was assigned a rule. For example, for the problem given in Figure 1, the
rules assigned to the substeps are: P(only A) = P(A) — P(AN B) for substeps
1 and 2, and P(Aor Bnotboth) = P(only A) + P(only B) for the final substep.
There were 7 distinct rules that were assigned to the problem substeps across
all problems. The students may see the same rule either within a problem (as in
the example) or across multiple problems. Participants saw each rule at least 3
times so that we would be able to track how they moved through phases of rule
learning over multiple occurrences of each rule.

4 Study

The main purpose of this paper is to investigate how cognitive control and rule
learning show themselves during problem solving and understand the effect of
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these mechanisms on learning with an ITS. Within this section we describe a
thinkaloud study we designed in order to achieve these goals in more detail.

20 undergraduate students (6 male) from the Northeastern US, between 18
and 23 years old (M = 19.45, SD = 1.27), were recruited via emails sent to
student mailing lists and flyers posted around university campuses. Our inclusion
criterion was having completed no more than two university-level math courses.
The study was a 1-hour session and participants were paid $10 compensation.

Participants solved the problems on ASSISTments version 1.0. They were
provided a pen and a scratch paper to make the calculations on paper if they
wished. They were also allowed to use the built-in calculator on the computer. We
recorded the computer screen and thinkalouds while participants solved problems
using a screen recording tool with audio.

After providing written consent, participants were introduced to ASSIST-
ments. Participants first solved a simple practice problem to get used to the
interface. We explained how they could submit answers and ask for hints as they
solved the practice problem. After the practice, participants took a pre-test con-
sisting of 6 probability problems. They solved these problems in “test mode” of
ASSISTments (no hints available). After the pre-test, we gave another practice
to the participants to prepare them for the thinkaloud session in which they
were randomly assigned to one of the two conditions named “Proactive” and
“Reactive”. Within the second practice, participants solved an example problem
with the prompts we described in Section 3.1 based on the condition they are
assigned. After this practice, participants solved the real problems and engaged
in the thinkaloud activity. After the thinkaloud session, participants took a post-
test that was isomorphic to the pre-test, then filled a demographic questionnaire.

5 Data Analysis

5.1 Data Coding

We coded the video recordings from the thinkaloud sessions using Atlas.ti soft-
ware. Each substep of the problem was coded. Our data had 532 substeps across
19 participants (1 participant was excluded from the analyses due to solving the
pre-test in “tutor mode” of ASSISTments). The codes consisted of six labels re-
lated to the different modes of cognitive control and the phases of rule learning,
and substeps could be given one or more labels. Two coders coded 20% of the
data independently. Cohen’s kappa was used to compare the ratings of the two
coders. The agreement was K = 0.70 for the labels associated with cognitive
control (relation to goal, saying answer, reacting), and K = 0.82 for the rule
learning labels (rule search, rule discovery, rule following). The labels we gave
the substeps are described below.

Relation to goal. Substeps where the participant relates the current step to
the goal of the problem or where they repeat the goal explicitly (e.g. “This step
relates to the goal because it helps us eliminate the probability of owning both
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a cat and a dog.”, “So, the goal of the problem is getting the probability of A
or B occurring but not both.”).

Saying the answer. Substeps where the participant says the answer but never
show how the answer relates to the goal of the problem (e.g. “The answer is 35.”,
“Total number of possible outcomes will just be number of prizes plus number of
blanks because there’s a possibility of getting either of those, and that is 35.”).
Reacting. Substeps where the participant reacts to a mistake or a hint (e.g.
“Ok it is wrong.”, “Oh, I see I did not have to do the multiplication, that was
just part of it.”).

Rule search. Substeps where the participant is simply guessing the answer or
trying to figure out the right way to solve it (e.g. “I don’t quite remember how
to solve this but I'm going to try multiplying them before I take the hint.”,
“So, my first inclination is to do something with 0.3 and 0.4. I am going to try
multiplying them or maybe I should add them.”).

Rule discovery. Substeps where the participant has just discovered a rule (“Oh!
So, we add the probability of just A and just B.”).

Rule following. Substeps where the participant explains how they got to an
answer. Participants being in this state does not mean they follow the correct
rule. Sometimes they follow a rule they think is correct (e.g. “We multiply the
two probabilities together and that is 5/44.”).

5.2 Statistical Analyses

In order to test if the students in the experimental conditions are behaving
as expected, we conducted two-sample t-tests for each code. The results sug-
gested that the participants in the proactive condition related the problem
substeps to the goal significantly more than the ones in the reactive condi-
tion (¢(17) = 2.49,p < 0.05). In contrast, participants in the reactive condi-
tion answered by simply saying the answer significantly more than the par-
ticipants in the proactive condition (¢(17) = —2.66,p < 0.05). There was no
significant difference in reacting to hints or mistakes between two conditions
(t(17) = —0.55,p = 0.59). Table 1 summarizes these results. Overall, the results
suggest that our experimental conditions were successful.

Table 1. Mean (SD) of quotation labels between the experimental conditions. * indi-
cates p < 0.05.

l Condition [ Relation to goal [ Saying the answer [ Reacting ‘
Proactive 7.89 (9.93)* 17.44 (9.26) 3.33 (2.12)
Reactive 0.1 (0.31) 25.4 (1.96)* 3.8 (1.55)

We could successfully alter the student behavior in a way that reflects proac-
tive and reactive modes of cognitive control. But does using one of these modes
while problem solving result in better learning gains? We conducted a two-
way repeated-measures ANOVA to compare the pre and post-test scores be-
tween conditions. Results showed that there was no significant difference in
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learning gain (difference between post-test and pre-test) between the proactive
(M = 0.48,SD = 0.18) and the reactive (M = 0.32,SD = 0.23) conditions
(F(1,17) = 0.17,p = 0.68). Note that there was no significant difference in
students’ pre-test scores between the proactive (M = 0.42,SD = 0.24) and the
reactive (M = 0.48, 5D = 0.18) conditions (¢(16.44) = —0.69,p = 0.5). However,
time spent on problem substeps was significantly higher in the proactive condi-
tion (M = 21.43,SD = 12.89) than in the reactive condition (M = 17.06,SD =
11.19), (¢(661.49) = 4.77,p < 0.001).

Next, we turn to rule learning. In our problem set, each problem substep was
assigned one rule and the students may go through multiple phases of rule learn-
ing solving one substep. We identified which rule learning phases the students
went through in one problem step based on the presence of the relevant labels
from thinkaloud data. Then we investigated patterns of rule learning phases that
the students follow across all substeps that are assigned the same rule. We ex-
tracted one sequence of rule learning phases for each participant and rule type.
The unique sequences of these phases pointed out 3 different patterns (see Figure
2 for examples) the students followed:

1) “Search, Discover, Follow” Students search for the rule that is assigned
to the problem step and discover the rule either by thinking it through or
asking for a hint in the first occurrences of a problem step that is assigned
the particular rule. In the next occurrences, students would discover then
follow that rule. This is the pattern we would see in the rule learning task.

2) “Follow_wrong, Search, Discover, Follow” Students who follow this
pattern start from following a wrong rule that they think is correct. When
they realize it is wrong, they search for the correct one. In the next occur-
rences, students would discover then follow that rule. The difference between
this and the first pattern is that students already have an idea about what
the rule is from the beginning. This pattern is also different than what we
would see in a rule learning task. Since the rules are random in a rule learning
task, the participants can only guess the rule.

3) “Follow” The student knows the rule assigned to the problem step already,
and they continue following that rule in all occurrences of the same rule.

We identified different combinations of rule learning phases over multiple
occurrences of the same rule type across all participants. Since we see no in-
teraction between the experimental conditions and following specific patterns of
rule learning, we investigate how students follow these patterns across conditions.

To see if these patterns were related to students’ prior knowledge and learning
gains, we first divided the students into 2 groups using a mean split on the
learning gain. Similarly, both groups were divided into two using a mean split
on the pre-test scores. In the end, we had 4 groups of students: high knowledge
and high learning gain (HH) (N = 6), high knowledge and low learning gain (HL)
(N = 4), low knowledge and high learning gain (LH) (N = 3), and low knowledge
and low learning gain (LL) (N = 6). Figure 3 visualizes the proportions of the
patterns we defined earlier for each student profile. The proportion of the rule
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Fig. 2. A: “Search, Discover, Follow” pattern, B: “Follow_wrong, Search, Discover,
Follow” pattern (red dot represents that the participant started by following the wrong
rule), C: “Follow” pattern.

learning patterns seem similar for different student groups except students in
LH seem to follow “Search, Discovery, Follow” pattern more frequently.

To explore the difference in proportion of “Search, Discover, Follow” pattern
among the different student profiles, we computed confidence intervals for these
proportions. For the HL,, HH, LL, and LH groups, the confidence intervals were
90% ClIs [.02,.24], [.04,.20], [.09, .32], and [.31,.69], respectively. These intervals
suggest the proportion of students who follow “Search, Discover, Follow” pattern
will be higher in LH group than it is in other groups. However, this should be
confirmed with a significance test with enough sample size.

1.00
0.7
0.5
0.25
0.00

HIGH KNOWLEDGE HIGH KNOWLEDGE LOW KNOWLEDGE LOW KNOWLEDGE
HIGH GAIN LOW GAIN HIGH GAIN LOW GAIN

o

RULE LEARNING PATTERN

. FOLLOW_WRONG, SEARCH, DISCOVER, FOLLOW

B rouow

. SEARCH, DISCOVER, FOLLOW

o

Fig. 3. Rule learning patterns by student profiles based on students’ learning gains
and prior knowledge.

6 Discussion & Conclusion

Most well-studied cognitive and motivational states that were associated with
learning within ITSs have roots in cognitive science studies of rule learning and



10 Sonmez Unal et al.

cognitive control. To explore the relevance of these lower level cognitive mecha-
nisms within ITS research, we investigated how these mechanisms show them-
selves in a complex learning environment and their relationship with learning.
We presented a study in which we induced one of the two modes of cognitive con-
trol based on the DMC framework [4] and observed how students move through
the phases of rule learning within an ITS.

Our results indicated success in shifting student behavior in a way that re-
flects the proactive or reactive modes of cognitive control, achieving effects sim-
ilar to studies that have been done with more controlled tasks [5, 13, 14, 20].
However, we did not observe a difference in learning between the two modes.
Multiple explanations could account for this result. Firstly, since this was a
thinkaloud study, all participants were explaining their thought processes while
they were solving the problems. The explanation practice might have helped
all participants [9] and possibly hindered the effect of relating to the goal of
the problem. Future studies without the thinkaloud procedure should further
explore these effects. Secondly, since using proactive control is more cognitively
demanding than reactive control [22], practicing proactive control might have ex-
hausted the cognitive resources participants have and as a result they struggled
with the learning tasks, cancelling out the benefits of maintaining the goal in
working memory. Our finding on time data was consistent with this explanation
as students in the proactive condition spent more time on the problem steps.
As we show it is possible to induce proactive control, we hope future work will
further explore its effects on learning.

Our analyses on rule learning revealed that students were following three
main patterns of rule learning phases while they are solving problems. Results
showed that the students with low prior knowledge and high learning gains
followed the pattern that formal studies of rule learning [6, 7,10, 18] show (i.e.
“Search, Discover, Follow” ) more frequently than the other student profiles. This
result could be an indicator of a relationship between rule learning and domain
learnin and I'TSs can benefit from this relationship in task selection by choosing
tasks that support appropriate rule learning patterns based on the student’s
profile. However, the small sample size was a limitation for further exploration
of this relationship.

To summarize our contributions, we presented a novel coding scheme in order
to categorize student utterances that are indicative of mechanisms of cognitive
control and rule learning within a complex learning environment and we took a
first step towards understanding the underlying mechanisms of student cognitive
states that are associated with learning. We believe that identifying these un-
derlying mechanisms within such complex learning environments will open new
paths in ITS research and student modeling.
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