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Abstract 

Purpose: Despite tremendous gains from deep learning and the promise of AI in medicine to improve diagnosis and 
save costs, there exists a large translational gap to implement and use AI products in real-world clinical situations. 
Adoption of standards like the TRIPOD, CONSORT and CLAIM checklists is increasing to improve the peer review 
process and reporting of AI tools. However, no such standards exist for product level review.    

Methods: A review of the clinical trials shows a paucity of evidence for radiology AI products; thus, we developed a 
10-question assessment tool for reviewing AI products with an emphasis on their validation and result dissemination. 
We applied the assessment tool to commercial and open source algorithms used for diagnosis to extract evidence on 
the clinical utility of the tools.  

Results: We find that there is limited technical information on methodologies for FDA approved algorithms compared 
to open source products, likely due to concerns of intellectual property. Furthermore, we find that FDA approved 
products use much smaller datasets compared to open source AI tools, as the terms of use of public datasets are limited 
to academic and non-commercial entities which precludes their use in commercial products.  

Conclusion: Overall, we observe a broad spectrum of maturity and clinical use of AI products, but a large gap exists 
in exploring actual performance of AI tools in clinical practice. 

Introduction 

Clinical validation of artificial intelligence (AI) systems involves evaluation of their performance to meet a clinical 
need, through “systematic and planned processes to continuously generate, analyze and assess clinical data to verify 
the safety and performance [of the system], including clinical benefits”[1]. Between 2000 and 2018, there were  8813 
radiology AI publications worldwide, 16.5 % of which were from the U.S.A [2]. Despite many publications on 
radiology AI, as of June 2020 there are only 62 U.S. Food and Drug Administration (FDA) approved AI applications 
for clinical usage [3], reflective of the challenge in obtaining regulatory approval for AI products. Even after this initial 
step of FDA approval, there remains a translational gap to enable actual use of the system in clinical practice which 
includes post market surveillance, software updates and adjustments to account for shifts in technical parameters or 
patient populations. In fact, a review of 516 studies published between January 2018 and August 2018 found that only 
6 % (n = 31) of studies reported external validation with multi-institutional data or prospective validation. [4]. 

AI systems which perform well on the internal dataset used for validation, may not generalize well to new data, as 
demonstrated by a drop in performance when deployed into clinical workflow [5, 6]. Clinical standards and guidelines 
continuously change over time; including changes in treatment pattern, coding systems (with shift from ICD-9 to ICD-
10), implementation of new medical records systems, new imaging equipment and protocols, or change in the 
incidence and prevalence of disease. While humans are adaptable to these changes, AI systems may falter because 
FDA-approved models cannot be significantly adjusted without losing certification. In addition, bias is noted as a 
problem in many AI systems, and this may not be identifiable during model training. An analysis of a commercial risk 
prediction tool used on 200 million people in the U.S. for high risk patient management shows significant racial bias, 
with black patients sicker than white patients at any given risk score [7]. This bias arose from predicting health costs 
rather than illness resulting in unequal access, and changing the outcome metric used for prediction increased the 
percentage of black patients receiving additional help from 17.7 % to 46.5 % [7]. 

Overall, there is a critical need for comprehensive review of AI tools beyond statistical validity of models (usually 
receiver operating characteristics (ROC) curves, specificity, sensitivity, accuracy, and positive and negative predictive 



values), to include clinical validation that evaluates the model performance when deployed to actual clinical settings. 
Such tools are generally not available for use, however there are several efforts being made to improve standardized 
reporting of AI including adoption of Standards for Reporting of Diagnostic Accuracy Studies (STARD) [8], 
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) [9] and 
Checklist for Artificial Intelligence in Medical Imaging (CLAIM) [10]. However, these tools are geared towards peer 
reviewed articles and clinical trials reporting, and are not applied to commercial products. We expand upon these 
reporting tools to develop a new questionnaire for product evaluation that can be applied to directly to FDA-cleared 
products rather than manuscripts or other peer-reviewed activity. We apply this questionnaire to FDA-approved 
algorithms through April 2020 as well as on open source systems AI tools for which sufficient methodological data is 
available. 

Methodology 

For this paper, we focus on commercial and open source AI tools applied directly to images to facilitate diagnosis. 
There are a wide variety of proprietary and open-access tools focused on interpretation of radiology images using 
classification algorithms. In this section, we present the details of how we gathered information for FDA-cleared AI 
algorithms as well as open-source AI tools for diagnosis. Note that we concluded our search in April 2020. Therefore, 
tools developed or published after this date are not part of our review. Patients were not involved in the study design, 
conduct or evaluation, thus the review did not require IRB approval. 

The STARD2015, CLAIM and TRIPOD checklists used for reporting of results are very detailed and cover many 
areas including Methodology, Study Design, Participants, Test Methods, and Results. We prepared a 10-question, open-
ended assessment instrument (see Appendix A in supplementary material) that combines important criteria from the 
STARD2015 [8],  TRIPOD [9] and CLAIM [10] checklists to perform a comprehensive review of the AI tools. Because 
many of the tools we assessed are commercial and hence proprietary, we realized that many details about their 
algorithms could not be shared due to company policy. Therefore, for this questionnaire/assessment we focused on the 
Results section of these guidelines and asked for minimal information regarding technical details of the algorithm. We 
also include a section regarding Dissemination that includes questions about publications, public datasets and 
participation in public AI challenges. 

FDA-cleared AI Tools: FDA has been updating its policies to keep up with the dynamic nature of development and 
evaluation of software tools, termed Software as Medical Device (SaMD) [11]. Manufacturers are required to file 
marketing application (510(k) notification, De Novo, or premarket approval application (PMA) pathway) with FDA 
prior to distribution of their device. Type of submission and data requirements change based on the risk category of 
SaMD. Risk categorization described by International Medical Device Regulatory Forum (IMDRF) is based on 
intended medical purpose (treat, diagnose, drive clinical management, inform clinical management) and healthcare 
situation (critical, serious, non-serious) of SaMD. IMDRF also describes three major aspects of clinical evaluation of 
SaMD, i.e., clinical association (valid clinical association between SaMD output and targeted clinical condition), 
analytical validation (correct processing of input data to generate accurate, precise and reliable output data) and clinical 
validation (achievement of intended purpose in targeted population in the context of clinical care using SaMD output). 

We used the list of FDA-approved AI tools maintained by Data Science Institute of American College of Radiology 1 

which contained 45 tools from 32 different companies as of April 2020. Even though the list contains a wide variety 
of imaging types that target many body parts, we identified the following major areas of interest which have the highest 
number of commercial products. 

• Computerized tomography (CT) and magnetic resonance imaging (MRI) of the head 
• CT and X-ray of the chest 
• Mammography and ultrasound of the breast 

Our assessment instrument was shared with companies with FDA-approved AI tools for completion. 

Open-source AI Tools: We searched PubMed for open-source AI algorithms used in radiological image analysis in 
the three main areas of interest identified above. We mainly focused on peer-reviewed publications with open-access 
to code and datasets. We included a few major publications that showed openness in terms of sharing this information 
through an access upon-request clause. For these tools, we completed the assessment ourselves based on the data 
provided in the publications, appendices, project pages and public code bases. 

_____________________________________________________________________________________________ 
1https://www.acrdsi.org/DSI-Services/FDA-Cleared-AI-Algorithms 

http://www.acrdsi.org/DSI-Services/FDA-Cleared-AI-Algorithms


Results 

FDA approved tools 

Table 1 shows a list of companies with FDA-approved tools who responded to our request for information. We were 
able to collect information on 45% of the FDA-approved tools mentioned in the list maintained by Data Science Institute 
of the American College of Radiology. A detailed description of their technical details in not possible due to concerns 
over Intellectual Property. A summary of the assessment responses for these tools are provided in Tables 2, 3 and 4. 

 
Company AI Tool 

RADLogics AI Medical Imaging (AIMI) Platform 
Imaging Biometrics, LLC IB Neuro 

IB Stone Checker 
Koios Medical, Inc. Koios DS for Breast 

Quantib Quantib Brain 
iCAD Inc. PowerLook Tomo Detection V2 Software 

Subtle Medical SubtleMR 
SubtlePET 

Vital Images Vital CT Lung Density Analysis 
Vital CT Brain Perfusion 

Zebra Medical Vision HealthCCS 
HealthCXR 
HealthICH 
HealthPNX 
HealthVCF 

AIDOC AIDOC-Briefcase-ICH 
AIDOC-Briefcase-CSF 
AIDOC-Briefcase-PE 
AIDOC-Briefcase-LVO 

Table 1: List of FDA approved companies who completed the 10-question assessment instrument. 

Open Sources Tools 

Our selection of open source tools was based on the three anatomical areas covered by FDA approved tools - chest, 
head and breast. Table 5 provides a summary of the assessment conducted by our team on the open-source AI tools. 
Because the open-source tools have details on model architecture, we have included this information here whereas it 
is not present for commercial companies. 

A summary of multiple high impact papers grouped by body region are provided below. 

Chest 

We reviewed three major open-access tools and peer-reviewed publication for chest imaging analysis. The first one is 
COVID-NET, a deep learning-based model for detection of COVID-19 through chest X-ray analysis. It was developed 
by researchers - Linda Wang and Alexander Wong from Vision and Image Processing Lab of the University of 
Waterloo, Canada [12]. They have made their code and data publicly available in GitHub 2. The second tool reviewed 
is Chester-The Radiology Assistant [13], an open-access chest X-ray analysis software developed by research at 
Montreal Institute of Learning Algorithms (MILA) in Montreal, Canada. The third one is a recently published work 
describing the development of PENet, a deep learning model for detection of pulmonary embolism through chest CT 
analysis [14]. 

___________________________________________________________________________________________ 
2https://github.com/lindawangg/COVID-Net 
3https://github.com/nyukat/breast cancer classifier 
  



Breast 

We reviewed five open access tools and peer-reviewed publications for breast imaging. The first tool was developed 
by researchers at New York University (NYU) using deep learning for breast cancer detection on mammograms [15]. 
Their code and pre-trained models are publicly available3. The second tool was from Google DeepMind, who 
published a peer-reviewed article on generalization of deep learning-based breast cancer detection [16] using datasets 
from United States and United Kingdom. Their code is not publicly available, but the model is described in detail in 
their paper, allowing for replication/implementation. The third tool was by researchers from Houston Methodist, Texas 
and Far-Eastern Memorial Hospital, Taiwan, who developed a breast cancer risk evaluation model that combined 
imaging data, risk factors from clinical reports and patient’s demographic information [17]. Authors have announced 
development of a public-access application upon completion of their research. The fourth tool was from Yala et al who 
published an early-detection model for breast cancer patients using a dataset with five-year follow-up information 
from patients [18]. Their project code is available 4. The fifth tool reviewed was from Shen et al who published a peer-
reviewed article describing their unique deep learning-based model that learns to generalize from patch-based lesion 
detection for whole image breast cancer screening [19]. Their code is publicly available 5. 

Head 

We reviewed two major publications that apply deep learning-based AI analysis of head CT scans for detection of 
intracranial hemorrhage (ICH). The first model is by Kuo et al. who trained a patchFCN model that processes CT scan 
patch-by-patch through a fully-connected network [20]. The article provides evidence that detection of ICH cannot be 
performed the same way as object detection. This is because typical object detection datasets contain solid objects 
with particular shapes, and hence they can be first detected and then localized in natural images. On the other hand, 
ICH appears as fluid objects with no particular shape.  Thus, it is better to detect them in all patches of the scan.  The 
second model reviewed is by Arbabshirani et al. who trained a three-dimensional convolutional neural network (CNN) 
for detection of ICH and integrated their model in the clinical workflow to re-prioritize studies based on detected 
abnormalities [21]. They collected approximately 46583 CT scan studies from multiple locations to develop their 
model. They report several cases where their AI model was able to re-prioritize routine studies to stat status and help 
reduce diagnosis time significantly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4http://learningtocure.csail.mit.edu/ 
5https://github.com/lishen/end2end-all-conv 

http://learningtocure.csail.mit.edu/


 
 
 
 

AI Product Company Target Area Modality Application Validation Dataset Performance 
 
 

IB Stone 
Checker 

 
 

Imaging 
Biometrics, LLC 

 
 

Abdomen 

 
 

CT 

Kidney stone physical 
attribute characterization 

such as volume, mean HU 
density, skin-to-stone 

distance, entropy, kurtosis, 
and skewness 

Usage validation 
(evaluating and usability 
testing) at two clinical 

sites in Oxford, UK 
and Beijing, China 

92% accuracy in 
predicting number of shocks 
needed to fragment the stone, 
superior to the use of stone 

volume or density 

 
 
 

IB Neuro 

 
 

Imaging 
Biometrics, LLC 

 
 
 

Brain 

 
 
 

MRI 

 
Quantitative Perfusion MRI 

algorithm that accounts for creation 
of quantitative (standardized) 

rCBV maps independent 
of scanner field strength, 
platform, or time point. 

 
0, 11, 9, and 23 

patients with tumors 
classified as WHO 

grades I, II, III, and IV, 
respectively; 

30 male, 13 female 

96% for high grade 
and 69% for low grade 

tumor prediction accuracy, 
by using a combination 

of rCBV and a vessel size 
index derived from a 

combined GE/SE pulse 
sequence. 

Koios DS 
for Breast 

Koios 
Medical, Inc. 

 
Breast 

 
Ultrasound 

Detection and 
characterization of 

breast cancer 

900 lesions 
from 900 patients 

 
AUC: 0.882 

 
 

Quantib Brain 

 
 

Quantib 

 
 

Brain 

 
 

MRI 

Automatic labeling, 
visualization, and 

volumetric quantification 
of segmentable brain 

structures, Atrophy detection, 
WMH Quantification 

 
For brain tissue: 
33 MR images, 

For WMH analysis: 
45 3D T1w images 

Visual inspection of 
209 segmentations by experts: 

No obvious errors 
in 98% brain tissue and 

97% WML segmentations 

 
 

PowerLook 
Tomo Detection 

V2 Software 

 
 

iCAD Inc. 

 
 

Breast 

 
 

DBT 

 
 

Analysis 4-view 
tomosynthesis cases 

 
 

260 Hologic 
DBT cases 

Clinical Performance 
benefits of using CAD 

8.0% sensitivity increase, 
6.9% specificity increase, 

7.2% reduction in recalls, 
5.7% improvement in AUC, 

52.7% reduction in reading time 

WMH: White Matter Hyperintensity, WML: White Matter Lesions 
DBT: Digital Breast Tomosynthesis, rCBV: Relative Cerebral Blood Volume 

 

Table 2: FDA-approved proprietary AI tools for Radiological Image Analysis - Part A 



 
AI Product Company Target Area Modality Application Validation Dataset Performance 

 
 

Vitrea CT Lung 
Density Analysis 

 
 

Vital Images, Inc 

 
 

Chest 

 
 

CT 

 
Analysis of lung 

densities and volumes by 
segmenting lung tissues 

(semi-automated) 

14 bilateral LTx 
recipients (66 with CLAD 

and 48 Stable), 
23 single LTx recipients 

(11 with CLAD, 12 Stable) 

AUC = 0.89 for 
CLAD prediction 

in single LTx, 
AUC = 0.63 for 

CLAD prediction 
in bilateral LTx. 

 
 
 

Vitrea CT 
Brain Perfusion 

 
 
 

Vital Images, Inc. 

 
 
 

Brain 

 
 
 

CT 

 
Post-processing calculation 
of CBF, CBV, local bolus 

timing, MTT. displays time 
density curves, 

perfusion and summary 
maps, regions of interest 

and mirrored regions 

 
183 patients underwent 
multimodal stroke CT 

using a 320-slice scanner 
within 6 hours of acute 
stroke onset, followed 
by 24 hour MRI that 

included DWI and PWI 

The probability model 
was accurate at detecting 

ischemic core 
(AUC = 0.80, SD = 0.75-0.83) 

and penumbra 
(AUC = 0.85, SD = 0.83-0.87) 

and was significantly closer 
in volume to the 

reference DWI (P=0.031). 

 
HealthCCS 

 
Zebra Medical 

Vision 

 
Heart/Chest 

 
CT 

Post-processing software for 
calcified plaque in coronary 
arteries, Categorization into 

4 risk categories 

 
249 studies of patients 

aged 20 years and above 

 
Device-expert 

agreement: 89% 

 
 

HealthCXR 

 
 

Zebra Medical 
Vision 

 
 

Chest 

 
 

X-ray 

 
 

Assessment of features 
indicating PEF 

 
554 chest X-ray, 

Groundtruth established 
by experts 

Operating Point#1: 
Sensitivity=96.74% 
Specificity=93.17% 
Operating Point#2: 
Sensitivity=93.84% 
Specificity=97.12% 

 
HealthICH Zebra Medical 

Vision 

 
Head 

 
CT Assessment of features 

indicating ICH 

427 head CTs, 
Groundtruth established 

by experts 

Sensitivity= 95.11% 
Specificity= 91.98% 

 
HealthPNX Zebra Medical 

Vision 

 
Chest 

 
X-ray Assessment of features 

indicating PNX 

588 chest X-rays, 
Groundtruth established 

by experts 

Sensitivity=93.15% 
Specificity=92.99% 

 
HealthVCF Zebra Medical 

Vision 
Chest 

Abdominal 

 
CT Assessment of vertebral 

compression fracture 

611 chest/abdominal CT, 
Groundtruth established 

by experts 

Sensitivity=90.20% 
Specificity=86.89% 

CLAD: Chronic Lung Allograft Dysfunction, LTx: Long-term Survival after Lung Transplantation 
CBF: Cerebral Blood Flow, CBV: Cerebral Blood Volume, Local Bolus Timing: Delay of tissue response, MTT: Mean Transit Time 
DWI: Diffusion Weighted Imaging, PWI: Dynamic Susceptibility Weighted Perfusion Imaging 
PEF: Pleural Effusion, ICH: Intracranial Hemorrhage, PNX: Pneumothorax 

 

Table 3: FDA-approved proprietary AI tools for Radiological Image Analysis - Part B 



 
AI Product Company Target Area Modality Application Validation Dataset Performance 

 
 
 
 
 

AlphaPoint 
Imaging 
Software 

 
 
 
 
 

RAD- 
Logics 

 
 
 
 
 
 

Chest 

 
 
 
 
 
 

CT 

 
 
 
 
 

Detection and quantification 
of lung nodules, 

PTX, enlarged heart 

PTX: 300 cases. 158 positive, 
142 negative, 168 male 

(Age: Mean = 51.6, 
SD=18.6, range= 18-91), 

132 female 
(Age: Mean = 51.8, 

SD=16.2, range 23-86) 
Corona: 109 COVID-19 

Chinese patients, 
90 Patients with fever 

and upper respiratory tract 
symptoms, 

49 patients classified by a 
radiologist as severe (n=13) 

vs non-severe (n=36) 

 
 
 
 
 

PTX: AUC = 0.967 
Corona: AUC = 0.948 

 
 
 

SubtleMR 

 
 

Subtle 
Medical, Inc. 

 
 

Head, Spine, 
Neck, Knee 

 
 
 

MRI 

 
Enhance the MRI images 

by reducing image noise or 
by increasing image sharpness 

for non-contrast enhanced 
head MRI 

11 consecutive patients 
(Age: 48+/-15 years; 7 female) 

undergoing clinical brain 
1.5T MRI exams 

underwent an accelerated 
3D sagittal FLAIR scan 

(average scan time reduction 
27.1% +/-3.5%) 

CNN based deep learning 
image processing of 

3D FLAIR brain MRI. 
A boost in perceived 
image quality, SNR, 

and resolution despite 
a 30% reduction in 

scan time. 

 
 

SubtlePET 

 
 

Subtle 
Medical, Inc. 

 
 

All body 
areas 

 
 

FDG, PET, 
PET/CT, 
PET/MR 

 
Quality enhancement of 2-fold, 

3-fold, and 4-fold 
accelerated whole-body 

PET acquisitions 

 
7 subjects 

(5 males, 2 female) 
referred for a whole-body 
FDG-18 PET/CT scan on 

a GE Discovery 710 scanner 

All deep learning enhanced 
images (2 to 4-fold) 
demonstrated similar 

perceptual image quality 
and lesion conspicuity 

when compared to 
standard of care scans. 

AIDOC 
Briefcase-ICH AIDOC Head CT Prioritization and flagging 

of ICH 
7112 non-contrast 

head CT from two centers 
Sensitivity: 95%, 
Specificity: 99% 

AIDOC 
Briefcase-CSF 

 
AIDOC Cervical 

Spine 

 
CT Prioritization and flagging 

of cervical spine fractures 

186 cases from 
two US sites and 

one site outside of US 

Sensitivity: 91.7%, 
Specificity: 88.6% 

AIDOC 
Briefcase-PE AIDOC Lungs CTPA Prioritization and flagging 

of pulmonary embolism 
2915 CTPA, groundtruth 

established by experts 
Sensitivity: 93%, 
Specificity: 95% 

AIDOC 
Briefcase-LVO AIDOC Head CTA Prioritization and flagging 

of large vessel occlusion 
338 cases from three 

US-based sites 
Sensitivity: 88.8%, 
Specificity: 87.2% 

CTPA: CT Pulmonary Angiogram 
 

Table 4: FDA-approved proprietary AI tools for Radiological Image Analysis - Part C 



 
 
 
 
 

AI Product Target Area Modality Model Type Validation Dataset Performance 
 

Chester [13] 
 

Lungs 
 

Chest X-ray DenseNet: disease 
prediction 

ChestX-ray14 [22][public] 
PadChest [23][public] 

AUC: 0.72-0.93 
for different 

disease labels 

COVIDNet [12] Lungs Chest X-ray Deep CNN: Covid-19 
detection COVIDx* [public] Sensitivity: 96.8% 

PENet [14] Lungs CT Pulmonary 
Angiography (CTPA) 3D-CNN: PE detection CTPA collected from two 

institutes [can be requested] AUC: 0.84 

NYU Breast 
Cancer Screening [15] Breast Mammogram ResNet: Cancer Detection 229, 426 Mammography 

Studies AUC: 0.895 

BRISK Model [17] Breast Mammogram, 
Patient Records Auto-Encoder 5174 patient records 

from Houston Methodist 
AUC: 0.93 

Accuracy: 81% 
MIT Breast Cancer 

High Risk/Early 
Detection [18] 

 
Breast Consecutive 

Mammographic Studies 

HybridDL: Early Detection 
using imaging and 

traditional risk factors 

Consecutive screening 
of 39571 patients 

 
AUC:0.70 

DeepMind: International 
Breast Cancer 
Screening [16] 

 
Breast 

 
Mammogram MobileNet 

ResNet 
US dataset 

UK dataset** 

 
AUC:0.87 

End-to-end Approach 
for breast cancer 
screening [17] 

 
Breast 

 
Mammogram 

 
CNN 

 
CBIS-DDSM [24] 

 
AUC: 0.98 

DL-based 
ICH detection [20] Brain Head CT PatchFCN UCSF - 4400 CTs 

[can be requested] AUC:0.99 

ICH detection and 
workflow integration [21] 

 
Brain 

 
Head CT 

 
3D-CNN 

46583 CT scans 
collected from multiple 

facilities [can be requested] 

 
AUC:0.85 

*https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md 
**https://medphys.royalsurrey.nhs.uk/omidb/getting-access/ 

 

Table 5: Open-access AI tools for Radiological Image Analysis 



Discussion 

The gold standard for evidence in medicine is clinical trials. A search of the PubMed database reveals that although 
there many articles that report use of AI in radiology (n=2,067; keywords=”Radiology” + ”AI”), only about 2% discuss 
clinical practice of AI (n=40; keywords=”Radiology” + ”AI” + ”clinical practice” OR ”clinical trials”). More so, closer 
examination of these papers reveal that most are opinions and not reports of actual implementation. In the 
clinicaltrials.gov database (https://clinicaltrials.gov/ct2/results?term=radiology+AND+AI), 66 trials are registered, of 
which 10 are related to AI in clinical practice, but all of these trials were recruiting, not yet recruiting or active but not 
recruiting. Thus, we did not have enough data from these to identify clinical relevance of these AI tools. 

Therefore, to obtain the next level of evidence, we adopted standardized checklists used for clinical trial reporting and 
peer review articles for meta-analysis, and developed a 10-question assessment tool to evaluate AI products. The broad 
themes of the assessment tool include model type, dataset size and distribution, dataset demographics/subgroups, 
standalone model performance, comparative performance against a gold standard, failure analysis, publications, 
participation in public challenges, dataset release and scale of implementation. 

From the FDA tools we analyzed, we did not acquire technical details on the model type due to IP concerns. Open 
source tools made their code and model weights public through GitHub repositories (as mentioned in Table 2). Some 
of the open source tools were based on limited-access datasets collected from collaborating healthcare providing 
facilities. In these cases, even if the data were not made public, the model architecture was discussed in-depth, such 
that they are reproducible. 

In response to our request, some companies provided details of the data they used for technical evaluation, as has been 
listed in Tables 3, 4, and 5. However, information on training datasets was not provided. Overall, the FDA approved 
tools used smaller datasets for validation compared to open source tools whose models have been trained and tested 
on publicly available datasets such as ChestX-ray14 and COVIDx datasets. This may be due to the terms of use for 
public datasets where most are restricted for research and non-commercial use in the licensing. For example, ChexPert 
is distributed under a license that allows only non-commercial use 6. Since many of the publicly available datasets 
cannot be used for training or validation purposes for commercial tools, the absolute performance of commercial tools 
cannot be directly compared those developed using open datasets. The datasets used for commercial tools were split 
based on underlying pathology, age and gender. Despite known bias with AI tools, race subdivision was missing from 
commercial tools, with no information provided on failure analysis. 

Statistical evaluation (AUC, sensitivity, specificity, and accuracy) are used for reporting model performance. Within 
groups, for example, AI tools for breast, the ground truth varies from product to product, thus comparative analysis 
between products is difficult. Efforts like the standardized AI use cases [25] developed by the ACR can support AI 
development by establishing ground truth standards applicable to multiple products. 

In terms of types of models being used for the application of AI in radiology, it is clear that both open-source and 
proprietary tools rely heavily on deep learning methods. Open-source AI tools disclose their models in detail in peer-
reviewed publications. On the other hand, few companies were open to disclose the internals of their models. Some 
companies have published white papers regarding their tools, with a few details about their neural network 
architectures, but not much more. 

While there has been growth of open source tools on deep learning including release of large pre-trained models that 
are fine tuned for medical imaging, there is no overlap between FDA approved tools and open source tools. 
Commercial tools do not release their data to the public and do not participate in public challenges. Open source tools 
at the moment do not have FDA approval. Therefore, scale of implementation of the open source tools is zero, due to 
lack of FDA approval, while commercial companies are reluctant to share this information. From our sample, 
companies with large implementation sites were willing to share this information. 

We could not find sufficient information on usability and workflow studies of AI tools to the radiologist workflow. 
Koios DS , working on breast ultrasound AI has performed some usability studies, likely because their system is used 
by the radiologist during actual image capture when decisions are made. Moreover, with emergence of marketplaces 

6https://stanfordmlgroup.github.io/competitions/chexpert/ 



of AI systems available through PACS or reporting vendors, usability and clinical workflow integration is likely going 
to be separated from the individual AI product, as organizations will purchase a suite of products that fit their current 
technology stack rather than those that perform best or are most usable. 

Even though our survey instrument was based on the CLAIM, STARD2015 and TRIPOD checklists, we recognized 
that we would not get answers on all the checklist questions during our first conversation with the companies. We 
understand that companies developing proprietary tools tend to limit discussion of their algorithms and models. 
Therefore, we developed our modified questionnaire particularly suited for such companies that only included broad-
scope question regarding the model. We focused on the evaluation, dissemination, and implementation of the AI tools. 
We believe this questionnaire can serve as a standardization template for information gathering from companies 
developing proprietary AI tools for radiology. 

Study Limitations 

Firstly, our review is restricted by limited information sharing regarding commercial products due to concerns of IP. 
Nonetheless, we recognize the willingness of companies to share information acquired during the study. We also 
performed a thorough literature review to obtain additional information on the companies. We narrowed our focus on 
diagnostic tasks for AI in radiology, and hence omit many applications used in image processing and other steps in the 
imaging workflow. This is an area for future evaluations, for example to assess the cognitive performance on missing 
lesions when low dose images are reconstructed with AI methods. The field of AI is rapidly changing, and hence more 
data will be available. We hope by publishing the modified checklist for evaluating AI products, and also reviewing 
the open source tools can empower the readers to review new evidence and new products that come into the market. 

Conclusion 

AI for medical imaging has been characterized by hype, with exaggerated claims of superhuman performance when 
compared to clinicians [26, 27]. Several recent articles have highlighted the challenge of clinical translation of AI, 
with most studies focusing on peer review articles and clinical trials reporting [26]. Our review of products adds to the 
body of evidence, since FDA approval does not mandate peer review, but rather involves retrospective evaluations of 
AI tools and internal performance review [28, 29]. IP concerns and the efforts required to obtain regulatory approval 
can affect motivation to improve AI systems in practice, and there is an opportunity for collaborative models including 
academic-industry partnerships for clinical validation post regulatory approval. 
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