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Abstract

Purpose: Despite tremendous gains from deep learning and the promise of Al in medicine to improve diagnosis and
save costs, there exists a large translational gap to implement and use Al products in real-world clinical situations.
Adoption of standards like the TRIPOD, CONSORT and CLAIM checklists is increasing to improve the peer review
process and reporting of Al tools. However, no such standards exist for product level review.

Methods: A review of the clinical trials shows a paucity of evidence for radiology Al products, thus, we developed a
10-question assessment tool for reviewing Al products with an emphasis on their validation and result dissemination.
We applied the assessment tool to commercial and open source algorithms used for diagnosis to extract evidence on
the clinical utility of the tools.

Results: We find that there is limited technical information on methodologies for FDA approved algorithms compared
to open source products, likely due to concerns of intellectual property. Furthermore, we find that FDA approved
products use much smaller datasets compared to open source Al tools, as the terms of use of public datasets are limited
to academic and non-commercial entities which precludes their use in commercial products.

Conclusion: Overall, we observe a broad spectrum of maturity and clinical use of Al products, but alarge gap exists
in exploring actual performance of Al tools in clinical practice.

Introduction

Clinical validation of artificial intelligence (Al) systems involves evaluation of their performance to meet a clinical
need, through “systematic and planned processes to continuously generate, analyze and assess clinical data to verify
the safety and performance [of the system], including clinical benefits”[1]. Between 2000 and 2018, there were 8813
radiology Al publications worldwide, 16.5 % of which were from the U.S.A [2]. Despite many publications on
radiology Al as of June 2020 there are only 62 U.S. Food and Drug Administration (FDA) approved Al applications
for clinical usage [3], reflective of the challenge in obtaining regulatory approval for Al products. Even after this initial
step of FDA approval, there remains a translational gap to enable actual use of the system in clinical practice which
includes post market surveillance, software updates and adjustments to account for shifts in technical parameters or
patient populations. In fact, a review of 516 studies published between January 2018 and August 2018 found that only
6 % (n =31) of studies reported external validation with multi-institutional data or prospective validation. [4].

Al systems which perform well on the internal dataset used for validation, may not generalize well to new data, as
demonstrated by a drop in performance when deployed into clinical workflow [5, 6]. Clinical standards and guidelines
continuously change over time; including changes in treatment pattern, coding systems (with shift from ICD-9 to ICD-
10), implementation of new medical records systems, new imaging equipment and protocols, or change in the
incidence and prevalence of disease. While humans are adaptable to these changes, Al systems may falter because
FDA-approved models cannot be significantly adjusted without losing certification. In addition, bias is noted as a
problem in many Al systems, and this may not be identifiable during model training. An analysis of a commercial risk
prediction tool used on 200 million people in the U.S. for high risk patient management shows significant racial bias,
with black patients sicker than white patients at any given risk score [7]. This bias arose from predicting health costs
rather than illness resulting in unequal access, and changing the outcome metric used for prediction increased the
percentage of black patients receiving additional help from 17.7 % to 46.5 % [7].

Overall, there is a critical need for comprehensive review of Al tools beyond statistical validity of models (usually
receiver operating characteristics (ROC) curves, specificity, sensitivity, accuracy, and positive and negative predictive



values), to include clinical validation that evaluates the model performance when deployed to actual clinical settings.
Such tools are generally not available for use, however there are several efforts being made to improve standardized
reporting of Al including adoption of Standards for Reporting of Diagnostic Accuracy Studies (STARD) [8],
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) [9] and
Checklist for Artificial Intelligence in Medical Imaging (CLAIM) [10]. However, these tools are geared towards peer
reviewed articles and clinical trials reporting, and are not applied to commercial products. We expand upon these
reporting tools to develop a new questionnaire for product evaluation that can be applied to directly to FDA-cleared
products rather than manuscripts or other peer-reviewed activity. We apply this questionnaire to FDA-approved
algorithms through April 2020 as well as on open source systems Al tools for which sufficient methodological data is
available.

Methodology

For this paper, we focus on commercial and open source Al tools applied directly to images to facilitate diagnosis.
There are a wide variety of proprietary and open-access tools focused on interpretation of radiology images using
classification algorithms. In this section, we present the details of how we gathered information for FDA-cleared Al
algorithms as well as open-source Al tools for diagnosis. Note that we concluded our search in April 2020. Therefore,
tools developed or published after this date are not part of our review. Patients were not involved in the study design,
conduct or evaluation, thus the review did not require IRB approval.

The STARD2015, CLAIM and TRIPOD checklists used for reporting of results are very detailed and cover many
areas including Methodology, Study Design, Participants, Test Methods, and Results. We prepared a 10-question, open-
ended assessment instrument (see Appendix A in supplementary material) that combines important criteria from the
STARD2015 [8], TRIPOD [9] and CLAIM [10] checklists to perform a comprehensive review of the Al tools. Because
many of the tools we assessed are commercial and hence proprietary, we realized that many details about their
algorithms could not be shared due to company policy. Therefore, for this questionnaire/assessment we focused on the
Results section of these guidelines and asked for minimal information regarding technical details of the algorithm. We
also include a section regarding Dissemination that includes questions about publications, public datasets and
participation in public Al challenges.

FDA-cleared Al Tools: FDA has been updating its policies to keep up with the dynamic nature of development and
evaluation of software tools, termed Software as Medical Device (SaMD) [11]. Manufacturers are required to file
marketing application (510(k) notification, De Novo, or premarket approval application (PMA) pathway) with FDA
prior to distribution of their device. Type of submission and data requirements change based on the risk category of
SaMD. Risk categorization described by International Medical Device Regulatory Forum (IMDRF) is based on
intended medical purpose (treat, diagnose, drive clinical management, inform clinical management) and healthcare
situation (critical, serious, non-serious) of SaMD. IMDREF also describes three major aspects of clinical evaluation of
SaMD, i.e., clinical association (valid clinical association between SaMD output and targeted clinical condition),
analytical validation (correct processing of input data to generate accurate, precise and reliable output data) and clinical
validation (achievement of intended purpose in targeted population in the context of clinical care using SaMD output).

We used the list of FDA-approved Al tools maintained by Data Science Institute of American College of Radiology !
which contained 45 tools from 32 different companies as of April 2020. Even though the list contains a wide variety
of imaging types that target many body parts, we identified the following major areas of interest which have the highest
number of commercial products.

* Computerized tomography (CT) and magnetic resonance imaging (MRI) of the head
* CT and X-ray of the chest
* Mammography and ultrasound of the breast

Our assessment instrument was shared with companies with FDA-approved Al tools for completion.

Open-source Al Tools: We searched PubMed for open-source Al algorithms used in radiological image analysis in
the three main areas of interest identified above. We mainly focused on peer-reviewed publications with open-access
to code and datasets. We included a few major publications that showed openness in terms of sharing this information
through an access upon-request clause. For these tools, we completed the assessment ourselves based on the data
provided in the publications, appendices, project pages and public code bases.

Thitps://www.acrdsi.org/DSI-Services/FDA-Cleared-Al-Algorithms
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Results
FDA approved tools

Table 1 shows a list of companies with FDA-approved tools who responded to our request for information. We were
able to collect information on 45% of the FDA-approved tools mentioned in the list maintained by Data Science Institute
of the American College of Radiology. A detailed description of their technical details in not possible due to concerns
over Intellectual Property. A summary of the assessment responses for these tools are provided in Tables 2, 3 and 4.

Company Al Tool

RADLogics Al Medical Imaging (AIMI) Platform
Imaging Biometrics, LLC | IB Neuro
IB Stone Checker

Koios Medical, Inc. Koios DS for Breast
Quantib Quantib Brain
iCAD Inc. PowerLook Tomo Detection V2 Software
Subtle Medical SubtleMR
SubtlePET
Vital Images Vital CT Lung Density Analysis

Vital CT Brain Perfusion
Zebra Medical Vision HealthCCS

HealthCXR

HealthICH

HealthPNX

HealthVCF

AIDOC AIDOC-Briefcase-ICH
AIDOC-Briefcase-CSF
AIDOC-Briefcase-PE
AIDOC-Briefcase-LVO

Table 1: List of FDA approved companies who completed the 10-question assessment instrument.
Open Sources Tools

Our selection of open source tools was based on the three anatomical areas covered by FDA approved tools - chest,
head and breast. Table 5 provides a summary of the assessment conducted by our team on the open-source Al tools.
Because the open-source tools have details on model architecture, we have included this information here whereas it
is not present for commercial companies.

A summary of multiple high impact papers grouped by body region are provided below.
Chest

We reviewed three major open-access tools and peer-reviewed publication for chest imaging analysis. The first one is
COVID-NET, a deep learning-based model for detection of COVID-19 through chest X-ray analysis. It was developed
by researchers - Linda Wang and Alexander Wong from Vision and Image Processing Lab of the University of
Waterloo, Canada [12]. They have made their code and data publicly available in GitHub 2. The second tool reviewed
is Chester-The Radiology Assistant [13], an open-access chest X-ray analysis software developed by research at
Montreal Institute of Learning Algorithms (MILA) in Montreal, Canada. The third one is a recently published work
describing the development of PENet, a deep learning model for detection of pulmonary embolism through chest CT
analysis [14].

Zhttps://github.com/lindawangg/COVID-Net
3https://github.com/nyukat/breast_cancer classifier



Breast

We reviewed five open access tools and peer-reviewed publications for breast imaging. The first tool was developed
by researchers at New York University (NYU) using deep learning for breast cancer detection on mammograms [15].
Their code and pre-trained models are publicly available®>. The second tool was from Google DeepMind, who
published a peer-reviewed article on generalization of deep learning-based breast cancer detection [16] using datasets
from United States and United Kingdom. Their code is not publicly available, but the model is described in detail in
their paper, allowing for replication/implementation. The third tool was by researchers from Houston Methodist, Texas
and Far-Eastern Memorial Hospital, Taiwan, who developed a breast cancer risk evaluation model that combined
imaging data, risk factors from clinical reports and patient’s demographic information [17]. Authors have announced
development of a public-access application upon completion of their research. The fourth tool was from Yala et al who
published an early-detection model for breast cancer patients using a dataset with five-year follow-up information
from patients [18]. Their project code is available . The fifth tool reviewed was from Shen et al who published a peer-
reviewed article describing their unique deep learning-based model that learns to generalize from patch-based lesion
detection for whole image breast cancer screening [19]. Their code is publicly available >.

Head

We reviewed two major publications that apply deep learning-based Al analysis of head CT scans for detection of
intracranial hemorrhage (ICH). The first model is by Kuo et al. who trained a patchFCN model that processes CT scan
patch-by-patch through a fully-connected network [20]. The article provides evidence that detection of ICH cannot be
performed the same way as object detection. This is because typical object detection datasets contain solid objects
with particular shapes, and hence they can be first detected and then localized in natural images. On the other hand,
ICH appears as fluid objects with no particular shape. Thus, it is better to detect them in all patches of the scan. The
second model reviewed is by Arbabshirani et al. who trained a three-dimensional convolutional neural network (CNN)
for detection of ICH and integrated their model in the clinical workflow to re-prioritize studies based on detected
abnormalities [21]. They collected approximately 46583 CT scan studies from multiple locations to develop their
model. They report several cases where their AI model was able to re-prioritize routine studies to stat statusand help
reduce diagnosis time significantly.

“http://learningtocure.csail. mit.edu/
Shttps://github.com/lishen/end2end-all-conv
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Al Product Company Target Area | Modality Application Validation Dataset Performance
Kl.dney stone thS‘C?‘l Usage validation 92% accuracy in
attribute characterization > o I
. (evaluating andusability predicting number of shocks
IB Stone Imaging such as volume, mean HU . .
. : Abdomen CT . . testing) at two clinical needed to fragment the stone,
Checker Biometrics, LLC density, skin-to-stone L .
. . sites in Oxford, UK superior to the use of stone
distance, entropy,kurtosis, . .
and Beijing, China volume or density
and skewness
96% for high grade
Quantitative Perfusion MRI 0,11,9, and 23 and 69% for low grade
algorithm that accounts forcreation patients with tumors tumor prediction accuracy,
Imaging . of quantitative (standardized) classified as WHO by using a combination
IB Neuro Biometrics, LLC Brain MRI rCBV maps independent grades I, II, 11, and IV, of rCBYV and a vessel size
of scanner field strength, respectively; index derived from a
platform, or time point. 30 male, 13 female combined GE/SE pulse
sequence.
. . Detection and .
Koios DS K.Olos Breast Ultrasound characterization of 900 1es1on§ AUC: 0.882
for Breast Medical, Inc. from 900 patients
breast cancer
Aqtomgtlc .labehng, o Visual inspection of
visualization, and For brain tissue: . )
. . . . 209 segmentations by experts:
. . . . volumetric quantification 33 MR images, .
Quantib Brain Quantib Brain MRI . . No obvious errors
of segmentable brain For WMH analysis: . o .
. . in 98% brain tissue and
structures, Atrophy detection, 45 3D Tlw images 97% WML scementations
WMH Quantification ° g
Clinical Performance
benefits of using CAD
PowerLook . . . 8.0% sensitivity increase,
Tomo Detection iCAD Inc. Breast DBT 4 ﬁnal}:&? 4?’16:/ ZSOB;I oLoglc 6.9% specificity increase,
V2 Software OMOSYNTNESIS cases cases 7.2% reduction in recalls,

5.7% improvement in AUC,
52.7% reduction in reading time

WMH: White Matter Hyperintensity, WML: White Matter Lesions

DBT: Digital Breast Tomosynthesis, rCBV: Relative Cerebral Blood Volume

Table 2: FDA-approved proprietary Al tools for Radiological Image Analysis - Part A




Al Product Company Target Area | Modality Application Validation Dataset Performance
. 14 bilateral LTx AUC= 0'8.9 for
Analysis of lung .. . CLAD prediction
. . recipients (66 with CLAD o
Vitrea CT Lung . densities and volumes by in single LTx,
. - Vital Images, Inc Chest CT . . and 48 Stable), -
Density Analysis segmenting lung tissues . . AUC=0.63 for
(semi-automated) 23 single LTx recipients CLAD prediction
(11 with CLAD, 12 Stable) AP
in bilateral LTx.
The probability model
Post-processing calculation 183 patients underwent was accurate at detecting
of CBF, CBV, local bolus multimodal stroke CT ischemic core
. timing, MTT. displays time using a 320-slice scanner | (AUC = 0.80, SD = 0.75-0.83)
Vitrea CT . . . .o
Brain Perfusion Vital Images, Inc. Brain CT density curves, within 6 hours of acute and penumbra
eriusio perfusion and summary stroke onset, followed | (AUC = 0.85, SD = 0.83-0.87)
maps, regions ofinterest by 24 hour MRI that and was significantly closer
and mirrored regions included DWI and PWI in volume to the
reference DWI (P=0.031).
Post-processing software for
Zebra Medical calcified plaque in coronary 249 studies of patients Device-expert
HealthCCS Vision Heart/Chest cT arteries, Categorization into aged 20 years and above agreement: 89%
4 risk categories
Operating Point#1:
Sensitivity=96.74%
: 554 chest X-ray, o o
HealthCXR Zebra.Medlcal Chest X-ray Assc?ssr.nen.t of features Groundtruth established Sp emﬁglty 93.' 17 A)_
Vision indicating PEF by experts Operating Point#2:
Yy exp Sensitivity=93.84%
Specificity=97.12%
. 427 head CTs, e o
HealthICH Zebra Medical Head CT Assessment of features Groundtruth established Sensitivity= 95.11%
Vision indicating ICH Specificity= 91.98%
by experts
. 588 chest X-rays, G o
HealthPNX Zebra 'Medwal Chest X-ray ASS."SS‘.ner?t of features Groundtruth established Sen51_t1v1ty_93. 15 °/°
Vision indicating PNX Specificity=92.99%
by experts
HealthVCF Zebra Medical Chest CT Assessment of vertebral %rloflifls‘;/sgldgsr?allr)lﬁlshce E’ Sensitivity=90.20%
Vision Abdominal compression fracture Specificity=86.89%

by experts

CLAD: Chronic Lung Allograft Dysfunction, LTx: Long-term Survival after Lung Transplantation
CBF: Cerebral Blood Flow, CBV: Cerebral Blood Volume, Local Bolus Timing: Delay of tissue response, MTT: Mean Transit Time

DWTI: Diffusion Weighted Imaging, PWI: Dynamic Susceptibility Weighted Perfusion Imaging
PEF: Pleural Effusion, ICH: Intracranial Hemorrhage, PNX: Pneumothorax

Table 3: FDA-approved proprietary Al tools for Radiological Image Analysis - Part B




Al Product Company Target Area | Modality Application Validation Dataset Performance
PTX: 300 cases. 158 positive,
142 negative, 168 male
(Age: Mean =51.6,
SD=18.6, range= 18-91),
132 female
(Age: Mean =51.8,

Alphal?omt RAD- Detection and quantification SD:16:2, range 23-86) PTX: AUC = 0.967
Imaging Logics Chest CT of lung nodules, Corona: 109 COVID-19 Corona: AUC = 0.948
Software & PTX, enlarged heart Chinese patients, ’ ’

90 Patients with fever
and upper respiratory tract
symptoms,
49 patients classified by a
radiologist as severe (n=13)
vs non-severe (n=36)
11 consecutive patients CNN based deep learning
. (Age: 48+/-15 years; 7 female) image processing of
bEnrl;zrll;?;hinﬁR; Eg?siecs)r undergoing clinical brain 3D FLAIR brain MRIL
SubtleMR Subtle Head, Spine, MRI b }i/ncreasing image sharpness 1.5T MRI exams A boost in perceived
Medical, Inc. Neck, Knee y g 1mag P underwent an accelerated image quality, SNR,
for non-contrast enhanced . . .
3D sagittal FLAIR scan and resolution despite
head MRI . . o R
(average scan time reduction a 30% reduction in
27.1% +/-3.5%) scan time.
All deep learning enhanced
. 7 subjects images (2 to 4-fold)
FDG, PET, Quality enhancement of 2-fold, (5 males, 2 female) demonstrated similar
Subtle All body 3-fold, and 4-fold . .
SubtlePET Medical. Inc arcas PET/CT, accelerated whole-bod referred for a whole-body perceptual image quality
> PET/MR PET acquisitions Y FDG-18 PET/CT scan on and lesion conspicuity
d a GE Discovery 710 scanner when compared to
standard of care scans.
AIDOC Prioritization and flagging 7112 non-contrast Sensitivity: 95%,
Briefcase-ICH AIDOC Head cT of ICH head CT from two centers Specificity: 99%
AIDOC Cervical Prioritization and flagging 186 cases from Sensitivity: 91.7%,
. AIDOC . CT . . two US sites and e o
Briefcase-CSF Spine of cervical spine fractures . . Specificity: 88.6%
one site outside of US
AIDOC Prioritization and flagging 2915 CTPA, groundtruth Sensitivity: 93%,
Briefcase-PE AIDOC Lungs CTPA of pulmonary embolism established by experts Specificity: 95%
AIDOC AIDOC Head CTA Prioritization and flagging 338 cases from three Sensitivity: 88.8%,

Briefcase-LVO

of large vessel occlusion

US-based sites

Specificity: 87.2%

CTPA: CT Pulmonary Angiogram

Table 4: FDA-approved proprietary Al tools for Radiological Image Analysis - Part C




Al Product Target Area Modality Model Type Validation Dataset Performance
DenseNet: disease ChestX-ray14 [22][public] AUC: 9'72_0'93
Chester [13] Lungs Chest X-ray - . for different
prediction PadChest [23][public] .
disease labels
COVIDNet [12] Lungs Chest X-ray Peep CRN: Covid-19 COVIDx* [public] | Sensitivity: 96.8%
etection
CT Pulmonary . . CTPA collected from two .
PENet [14] Lungs Angiography (CTPA) 3D-CNN: PE detection institutes [can be requested] AUC: 0.84
NYU Bregst Breast Mammogram ResNet: Cancer Detection 229, 426 Mammography AUC: 0.895
Cancer Screening [15] Studies
Mammogram, 5174 patient records AUC: 0.93
BRISK Model [17] Breast Patient Records Auto-Encoder from Houston Methodist Accuracy: 81%
MIT Breast Cancer Consecutiv HybridDL: Early Detection Consecutive screenin
High Risk/Early Breast Mamm(()) rsaecllllic ; tudics using imaging and 00 522%7 1e s;:tii; is £ AUC:0.70
Detection [18] grap traditional risk factors p
DeepMind: International .
MobileNet US dataset
Breast Cancer Breast Mammogram ResNet UK dataset** AUC:0.87
Screening [16]
End-to-end Approach
for breast cancer Breast Mammogram CNN CBIS-DDSM [24] AUC: 0.98
screening [17]
DL-based . UCSF - 4400 CTs )
ICH detection [20] Brain Head CT PatchFCN [can be requested] AUC:0.99
. 46583 CT scans
ICH detection and Brain Head CT 3D-CNN collected from multiple AUC:0.85

workflow integration [21]

facilities [can be requested]

*https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
**https://medphys.royalsurrey.nhs.uk/omidb/getting-access/

Table 5: Open-access Al tools for Radiological Image Analysis




Discussion

The gold standard for evidence in medicine is clinical trials. A search of the PubMed database reveals that although
there many articles that report use of Al in radiology (n=2,067; keywords="Radiology” + ”AI”), only about 2% discuss
clinical practice of Al (n=40; keywords="Radiology” + ”AI” + “clinical practice” OR “clinical trials”). More so, closer
examination of these papers reveal that most are opinions and not reports of actual implementation. In the
clinicaltrials.gov database (https://clinicaltrials.gov/ct2/results?term=radiology+AND+AI), 66 trials are registered, of
which 10 are related to Al in clinical practice, but all of these trials were recruiting, not yet recruiting or active but not
recruiting. Thus, we did not have enough data from these to identify clinical relevance of these Altools.

Therefore, to obtain the next level of evidence, we adopted standardized checklists used for clinical trial reporting and
peer review articles for meta-analysis, and developed a 10-question assessment tool to evaluate Al products. The broad
themes of the assessment tool include model type, dataset size and distribution, dataset demographics/subgroups,
standalone model performance, comparative performance against a gold standard, failure analysis, publications,
participation in public challenges, dataset release and scale of implementation.

From the FDA tools we analyzed, we did not acquire technical details on the model type due to IP concerns. Open
source tools made their code and model weights public through GitHub repositories (as mentioned in Table 2). Some
of the open source tools were based on limited-access datasets collected from collaborating healthcare providing
facilities. In these cases, even if the data were not made public, the model architecture was discussed in-depth, such
that they are reproducible.

In response to our request, some companies provided details of the data they used for technical evaluation, as has been
listed in Tables 3, 4, and 5. However, information on training datasets was not provided. Overall, the FDA approved
tools used smaller datasets for validation compared to open source tools whose models have been trained and tested
on publicly available datasets such as ChestX-rayl4 and COVIDx datasets. This may be due to the terms of use for
public datasets where most are restricted for research and non-commercial use in the licensing. For example, ChexPert
is distributed under a license that allows only non-commercial use °. Since many of the publicly available datasets
cannot be used for training or validation purposes for commercial tools, the absolute performance of commercial tools
cannot be directly compared those developed using open datasets. The datasets used for commercial tools were split
based on underlying pathology, age and gender. Despite known bias with Al tools, race subdivision was missing from
commercial tools, with no information provided on failure analysis.

Statistical evaluation (AUC, sensitivity, specificity, and accuracy) are used for reporting model performance. Within
groups, for example, Al tools for breast, the ground truth varies from product to product, thus comparative analysis
between products is difficult. Efforts like the standardized Al use cases [25] developed by the ACR can support Al
development by establishing ground truth standards applicable to multiple products.

In terms of types of models being used for the application of Al in radiology, it is clear that both open-source and
proprietary tools rely heavily on deep learning methods. Open-source Al tools disclose their models in detail in peer-
reviewed publications. On the other hand, few companies were open to disclose the internals of their models. Some
companies have published white papers regarding their tools, with a few details about their neural network
architectures, but not much more.

While there has been growth of open source tools on deep learning including release of large pre-trained models that
are fine tuned for medical imaging, there is no overlap between FDA approved tools and open source tools.
Commercial tools do not release their data to the public and do not participate in public challenges. Open source tools
at the moment do not have FDA approval. Therefore, scale of implementation of the open source tools is zero, due to
lack of FDA approval, while commercial companies are reluctant to share this information. From our sample,
companies with large implementation sites were willing to share this information.

We could not find sufficient information on usability and workflow studies of Al tools to the radiologist workflow.
Koios DS, working on breast ultrasound Al has performed some usability studies, likely because their system is used
by the radiologist during actual image capture when decisions are made. Moreover, with emergence of marketplaces

®https://stanfordmlgroup.github.io/competitions/chexpert/



of Al systems available through PACS or reporting vendors, usability and clinical workflow integration is likely going
to be separated from the individual Al product, as organizations will purchase a suite of products that fit their current
technology stack rather than those that perform best or are most usable.

Even though our survey instrument was based on the CLAIM, STARD2015 and TRIPOD checklists, we recognized
that we would not get answers on all the checklist questions during our first conversation with the companies. We
understand that companies developing proprietary tools tend to limit discussion of their algorithms and models.
Therefore, we developed our modified questionnaire particularly suited for such companies that only included broad-
scope question regarding the model. We focused on the evaluation, dissemination, and implementation of the Al tools.
We believe this questionnaire can serve as a standardization template for information gathering from companies
developing proprietary Al tools for radiology.

Study Limitations

Firstly, our review is restricted by limited information sharing regarding commercial products due to concerns of IP.
Nonetheless, we recognize the willingness of companies to share information acquired during the study. We also
performed a thorough literature review to obtain additional information on the companies. We narrowed our focus on
diagnostic tasks for Al in radiology, and hence omit many applications used in image processing and other steps in the
imaging workflow. This is an area for future evaluations, for example to assess the cognitive performance on missing
lesions when low dose images are reconstructed with Al methods. The field of Al is rapidly changing, and hence more
data will be available. We hope by publishing the modified checklist for evaluating Al products, and also reviewing
the open source tools can empower the readers to review new evidence and new products that come into the market.

Conclusion

Al for medical imaging has been characterized by hype, with exaggerated claims of superhuman performance when
compared to clinicians [26, 27]. Several recent articles have highlighted the challenge of clinical translation of Al,
with most studies focusing on peer review articles and clinical trials reporting [26]. Our review of products adds to the
body of evidence, since FDA approval does not mandate peer review, but rather involves retrospective evaluations of
Al tools and internal performance review [28, 29]. IP concerns and the efforts required to obtain regulatory approval
can affect motivation to improve Al systems in practice, and there is an opportunity for collaborative models including
academic-industry partnerships for clinical validation post regulatory approval.
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