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Abstract: This paper presents an integrated structure of artificial neural networks, named state
integrated matrix estimation (SIME), for linear parameter-varying (LPV) model identification.
The proposed method simultaneously estimates states and explores structural dependency of
matrix functions of a representative LPV model only using inputs/outputs data. The case with
unknown (unmeasurable) states is circumvented by SIME using two estimators of the same
state: one estimator represented by an ANN and the other obtained by LPV model equations.
Minimizing the difference between these two estimators, as part of the cost function, is used to
guarantee their consistency. The results from a complex nonlinear system, namely a reactivity
controlled compression ignition (RCCI) engine, show high accuracy of the state-space LPV
models obtained using the proposed SIME while requiring minimal hyperparameters tuning.

Keywords: System identification; Linear parameter-varying systems; Artificial neural networks.

1. INTRODUCTION

Identification of linear parameter-varying (LPV) models
in state-space (SS) form has attracted a lot of interest
because such models allow capturing nonlinearities and
time-varying behavior in a system using a linear structure
such that linear controller synthesis techniques can be
applied (see Rizvi et al. (2018) and references therein).
Identification of LPV-SS models is in general challenging
especially when states are unknown. Recent efforts have
been devoted mostly to employ supervised machine learn-
ing methods to tackle this issue.

Existing studies on data-driven methods for global identi-
fication of LPV-SS models can be categorized into direct
prediction-error minimization (PEM) methodologies, set
membership approaches (SM) and global subspace and
realization based techniques (SID) (Cox, 2018). PEM can
be further divided into gradient-based and expectation
maximization (EM) approaches. The majority of the cur-
rent LPV identification methods assume affine schedul-
ing dependency with known basis, which restricts the
complexity of a representation. Rizvi et al. (2018) used
non-parametric kernel methods to learn scheduling de-
pendency, which faces problems such as kernel selection
and computational complexity. Moreover, SID constructs
SS models from an identified specific IO structure by
? This research was financially supported by the United States
National Science Foundation under award #1762595.

either a direct realization or a projection to first estimate
state sequence and then estimate system matrices. The
disadvantage with this strategy is that the error (either
from structural uncertainty or algorithmic uncertainty) of
the first stage can affect the performance of the second
stage and the combined influence on model performance
is difficult to analyze for the downstream work such as
controller design. Additionally, all current SID methods
suffer from the curse of dimensionality.

The objective of this paper is to develop an integrated
approach to estimate states and matrix functions simul-
taneously. Specifically, we propose the use of artificial
neural networks (ANNs) to represent the functions in the
model. On one hand, the advantages of ANN representing
functions are sufficiently argued in (Luzar and Czajkowski,
2016); on the other hand, the development of libraries
such as Keras and Tensorflow (Chollet et al., 2015) has
tremendously accelerated the implementation of deep neu-
ral networks. Compared with affine scheduling dependency
with known basis, ANN can model arbitrary structural
dependency without specifying basis; compared with ker-
nelized methods, ANN can avoid kernel selection and re-
duce computational complexity. Although ANN structure
design requires domain knowledge, sufficiently expressive
ANN can learn a good scheduling dependency from data.

Using ANNs to identify mathematical models of systems is
common in model identification problems because of their



high expressiveness and flexibility. Some researchers have
used neural networks to represent part of the system that
is difficult to describe in an analytical way (Saadat et al.
(2004); Lu et al. (2008); Previdi and Lovera (2004)). How-
ever, this approach requires sufficient knowledge about
the system which may not be available in practice. Other
research efforts represented the whole system by neural
networks. One typical study is (Luzar and Czajkowski,
2016) that introduced the State-Space Neural Network
(SSNN) and developed a toolbox that can transform the
SSNN parameters into state-space matrices, but the error
introduced by the transformation was not discussed in
(Luzar and Czajkowski, 2016). Moreover, Verdult et al.
(2002) used neural networks to represent a system whose
model is a weighted combination of local linear SS mod-
els. Using this special model structure, the problem of
determining a sufficient number of local models was not
addressed.

In this work, firstly, we propose an end-to-end machine
learning method to incorporate state estimation module
and matrix function estimation module into one integrated
model (named SIME). Specifically, we aim to minimize the
difference between two estimates (represented by neural
networks) of the same states for state estimation module,
minimize the output estimation error for matrix function
module, and use the weighted sum of these two objectives
as the total loss function of SIME. By optimizing SIME, we
can estimate states and matrix functions simultaneously.
Secondly, we show how the SIME-based approach can be
used to boost accuracy with known states. Research shows
that over-parameterization contributes to the outstanding
performance of ANN but also causes overfitting problem
while the idea of SIME can provide regularization for ANN
training.

The application of the proposed method is demonstrated
on an advanced combustion engine that exhibits highly
nonlinear and complex combustion process. In particular,
the SIME will be designed and tested for a reactivity con-
trolled compression ignition (RCCI) engine that represents
the frontier of the research for high-efficiency, low-emission
internal combustion engines. The control and calibration
of RCCI engines for transient operations is challenging
and time-consuming (Raut et al., 2018). The development
of first principle physical control-oriented models (COMs)
(Khodadadi Sadabadi et al., 2016) for RCCI is time con-
suming, while state-of-the-art COMs can not predict RCCI
cyclic variability and engine-out emissions. The develop-
ment of data-driven LPV-SS models is of high interest for
RCCI controls to: (i) reduce COM development time, (ii)
simplify controller design versus using complex nonlinear
RCCI controllers (Indrajuana et al., 2016), and (iii) obtain
robust control performance for broad engine operating
conditions instead of using switched gain-scheduled linear
controllers (Raut et al., 2018).

In our prior work (Irdmousa et al., 2019), we developed a
data-driven COM for predicting RCCI combustion phasing
(CA50), using the method of least-square support vector
machines (LS-SVM). Two limitations of our prior work
reported in (Irdmousa et al., 2019) were the high com-
putational cost for model training/identification and the
need for knowing the states of the RCCI engine. To the
best of the authors’ knowledge, this paper presents the

first study undertaken to create a computationally-efficient
data-driven SSNN model for RCCI engines to predict
CA50 and engine load (IMEP) in a new LPV-SS platform
for RCCI control design.

The rest of the paper is organized as follows: Section 2 pro-
vides LPV-SS model identification problem formulation.
The structure and cost function of SIME will be explained
in Section 3. Section 4 shows the adaptation of SIME to
the scenario with known states. Section 5 will discuss and
show the model identification results. Concluding remarks
are finally provided in Section 6.

2. PROBLEM FORMULATION

A discrete-time, state-space (SS) innovation-type noise
model of an LPV system can be expressed as

xk+1 = A(pk)xk +B(pk)uk +K(pk)ek, (1)

yk = C(pk)xk +D(pk)uk + ek, (2)

where pk ∈ P ⊂ Rnp , uk ∈ Rnu , xk ∈ Rn, ek ∈ Rny , and
yk ∈ Rny denote the scheduling variables, inputs, states,
stochastic white noise process, and outputs of the system
at time instant k, respectively, and A, B, C, D, and K are
smooth matrix functions of pk. Equivalently, we have

xk+1 = Ã(pk)xk + B̃(pk)uk +K(pk)yk, (3)

yk = C(pk)xk +D(pk)uk + ek, (4)

where A(pk) = Ã(pk) +K(pk)C(pk) and B(pk) = B̃(pk) +
K(pk)D(pk). The definition of structural observability for
this LPV-SS representation is given by Rizvi et al. (2018)
Definition 3.1. The LPV-SS model identification problem
is to estimate states (if they are unknown), Ã(pk), B̃(pk),
C(pk), D(pk) and K(pk) given the measurements D =

{uk, yk, pk}Nk=1.

State Estimation

In (Rizvi et al., 2018), authors show that xk can be
expressed as

xk =

(
d∏

i=1

Ã(pk−i)

)
xk−d︸ ︷︷ ︸

Xd
p (k)

+Rd
p(k)udk + Vd

p (k)ydk, (5)

where Rd
p(k) is a d-step backward reachability matrix

at time k along the scheduling trajectory p, udk :=[
uTk−d · · · uTk−1

]T
denotes the past inputs and ydk is de-

fined similarly. Ideally, by choosing X d
p (k) ≈ 0, we have

xk = f(pdk, u
d
k, y

d
k). Additionally, the equality holds when

d = k. Assuming x0 is known, it is impractical to use
the whole past trajectory. Instead, we use a truncated
trajectory with a length of d. Equation (5) shows that
xk can be expressed as a function of past states, inputs
and outputs, which provides a basis for “state integrated
matrix estimation” (SIME) and will be discussed in the
next section.

3. STATE INTEGRATED MATRIX FUNCTIONS
ESTIMATION

In this section, we introduce the structure and cost func-
tions of SIME in detail. The complete computing graph of



SIME is shown in Figure 1 and divided into two sub-graphs
described next.

3.1 Computation Graph of State Estimation

Inspired by (5), we use a neural network (NNF in Figure
1) to directly represent the relationship between xk and

zdk :=
[
pdTk udTk ydTk pTk uTk

]T
(note that zdk represents the

past and current information at time instant k). By NNF ,
we have an estimator of states, i.e., Estimator 2 in Figure 1.

Using Estimator 2, we can obtain x̂
(2)
k ; then, using (3) and

by representing Ã(pk), B̃(pk), and K(pk) with 3 different

neural networks, we can obtain x̂
(1)
k+1. Furthermore, we can

directly use NNF to obtain another estimation (x̂
(2)
k+1) for

xk+1. We note that x̂
(1)
k+1 and x̂

(2)
k+1 should be consistent

as they estimate the same states. Based on this idea,
we use the Mean Square Error (MSE) between these two
estimates as a regularization term for SIME.

Interpretation of the state estimation in SIME: Accord-
ing to the universal approximation theorem (see Csáji
(2001)), Estimator 2 can capture all the nonlinearities of
the system. Specially, Estimator 2 are constructed such
that (5) can be well represented. However, Estimator 1
adds a constraint that the model needs to be in the form
of (3). By minimizing

E[x
(2)
k (pdk, u

d
k, y

d
k, pk, uk)− x(1)k (pk, uk, yk, x

(2)
k−1)]2, (6)

Estimator 1 approximates the “true states” (estimation
from Estimator 2) with high accuracy while ensuring
the LPV representation of the model. Considering the
relationship between mutual information and MSE shown
in (Guo et al., 2005), Estimator 2 aims to preserve as much
historical information that is useful to determine the states
as possible from the perspective of information theory.
Moreover, the number of states are determined by data
using cross-validation in (Kohavi et al., 1995), a technique
in machine learning utilized to tune hyperparameters,
which is not related to an identified LPV-IO model. In
this way, the curse of dimensionality faced by SID can be
moderated.

3.2 Computation Graph of Output Estimation

After obtaining the estimation of states, we can use neural
networks to represent C(pk) and D(pk) and estimate yk
from (4) using x̂

(2)
k . Similarly, we can determine ŷk+1 using

x̂k. In particular, we use x̂
(1)
k instead of x̂

(2)
k to train NNÃ,

NNB̃ and NNK . Then, we use both MSE between yk+1

and ŷk+1 and MSE between yk and ŷk to train NNC and
NND. As shown by Lemma 3.1 in Rizvi et al. (2018), there
exists a function f such that for any scheduling trajectories
yk = f(uk, pk, ek, z

d
k, e

d
k). Correspondingly, we can claim

there exists a parameterization of SIME that can represent
this f .

Summary of the SIME model: Computation graphs of
state and output estimation parameterize the estimates
of states and outputs using ANN. ANN can not only ap-
proximate any family of functions but also can incorporate
prior knowledge of systems when designing the structure

of neural networks. Moreover, the cost function of SIME
is defined as the difference between estimations and true
values and consists of three parts: MSE of x̂

(1)
k+1 and x̂

(2)
k+1

(L1), MSE of ŷk and yk (L2) and MSE of ŷk+1 and yk+1

(L3). Additionally, the weights of the three losses can be
tuned using cross-validation.

3.3 Computation Graph of Output Prediction

After training the integrated model, we can predict the
output to validate our model. First, given zdl−1 and pl−1,

we can estimate xl−1 by NNF , Ã(pl−1) by NNÃ, B̃(pl−1)
by NNB̃ and K(pl−1) by NNK . Then, using the recurrent

equation of states, we obtain the estimation of x
(1)
l . Next,

given pl, we can estimate C(pl) by NNC , and D(pl) by
NND. Finally, using (4), we can determine the prediction
of yl. It is noted that we can readily extract the matrix
functions by running the corresponding neural networks
with {pk}Nk=1 as the inputs.

4. LPV MODEL ESTIMATION WITH KNOWN
STATES

Given the states, the LPV model identification problem
is reduced to a “regression problem” (Bamieh and Giarre

(2002)), as the vector xk in D = {uk, xk, yk, pk}Nk=1 is now

known. Using Estimator 1 to estimate Ã(pk), B̃(pk) and
K(pk) becomes feasible. However, since the true A, B and
K are inaccessible and we only have data D for function
approximation, overparameterization 1 is commonly used
in ANN to achieve small prediction error on training
set while regularization terms are added to constrain the
solution space and improve the generalization ability of
the model. The loss term L1 in SIME can serve as a
regularization term, which is validated using experiments
on real engine data in Section 5.2.

Specifically, with known states, we use xk instead of x̂
(2)
k

to construct x̂
(1)
k+1 from (3) and use NNF to construct x̂

(2)
k

and x̂
(2)
k+1. The cost function similarly consists of three

parts: MSE of x̂
(1)
k+1 and x̂

(2)
k+1 (L1), MSE of x̂k and xk

(L2) and MSE of x̂k+1 and xk+1 (L3).

5. APPLICATION OF THE PROPOSED LPV-SS
IDENTIFICATION METHOD TO RCCI ENGINES

In this section, we demonstrate the accuracy of SIME-
based LPV-SS models for reactivity controlled compres-
sion ignition (RCCI) engines.

The data is collected from a high fidelity simulation model
(Raut et al., 2018) that was experimentally validated
with the data from a 2-liter, 4-cylinder GM engine. It is
assumed that the states of the model are not available
for measurements. The control inputs, scheduling variable,
and measurement outputs are as follows:

U = [SOI FQ]
T
,

p = [PR]
T
,

Y = [CA50 IMEP ]
T
,

1 Theoretical analysis of overparameterized neural networks can be
found in (Li and Liang, 2018).



Fig. 1. The complete computing graph of SIME. NNI (I = Ã, B̃,K,C,D, F ) are used to distinguish neural networks.
The green and yellow circles represent the inputs and outputs of their adjacent neural networks respectively (except

for x
(2)
k and x

(2)
k+1 which are computed by NNF ). The red lines show the connections between computing graphs of

state and output estimation modules.

making the system to be identified a two-input/two-output
(TITO) system. The control inputs include fuel quantity
(FQ) and start of injection (SOI) for injecting the high
reactive fuel (n-heptane) into the cylinder. The RCCI
combustion phasing for the crank angle of 50% fuel burnt
(CA50) is controlled by adjusting SOI, while the engine
indicated mean effective pressure (IMEP ) is controlled
by adjusting FQ. RCCI is a dual fuel engine in which the
ratio of two fuels energy is characterized by premixed ratio
(PR) (Raut et al., 2018). The engine operation is highly
dependent on PR and exhibits a highly nonlinear behavior
as PR changes. Thus, PR is used as the scheduling
variable in the LPV model of the RCCI engine.

5.1 LPV-SS Model Identification with Unknown States

We generated an input/output data set using the signals
shown in Figure 2. The data set contains 926 operating
points and is split into a training set and a testing set
with a splitting ratio of 65%/35%.

Technical Details of ANN: We use a 4-layer (includ-
ing the input and output layers) fully-connected neural

network to represent each of Ã(pk), B̃(pk), C(pk), and
K(pk), resulting in 4 different neural networks while a
5-layer fully-connected neural network (NNC in Figure
1) is implemented for C(pk) to be more expressive. All
these networks share the same input p while their outputs
depend on the matrix function to be estimated. To obtain
the correct shape, we reshape the output layers into the
corresponding matrix shape. Additionally, all the hidden

(a) Inputs to the engine.

(b) Outputs from the engine.

Fig. 2. Input/output data set used for LPV-SS model
learning of RCCI engine.

layers have 5 units and use Exponential Linear Units 2

(ELU) first introduced in (Clevert et al., 2015) as the
activation function. The parameter α of ELU is set to 1.0.
However, no activation function was used for the output
layer of each neural network, as the range of variables
varies significantly.

2 f(x) =

{
x if x > 0

α(ex − 1) if x ≤ 0



Fig. 3. The output response of the estimated LPV-SS
model and the response of the original system on the
validation data set.

For Estimator 2 involved in the state estimation, we use
a 6-layer (including the input and output layers) fully-
connected neural network, as the represented function
should be more complex than any matrix function. The in-
puts and loss function of SIME are summarized as follows:
for estimation, the inputs include {pk, uk, zk, yk}N−1k=d

3 ,
and the loss function is the weighted sum of MSE of x̂
and MSE of ŷ (for both time k and k + 1); for prediction
of yl, the inputs contain {pl, ul, zdl }. In this experiment,
we set the time window size to d = 2.

For model optimization, we use Adam optimizer in Keras
(Chollet et al., 2015) 4 . The learning rate of Adam is set to
be 0.001 and decay to be 1e− 6. All the other parameters
of Adam are set as default. We trained SIME for 2, 000
epochs with batch size of 1. In particular, larger batch
sizes can lower performance if we do not restrict that the
samples in one batch have identical scheduling variables, as
the neural networks will give one set of parameters for the
whole batch. Using cross-validation, the weights of three
loss functions were determined to be all 1. The accuracy
of identified model can be observed in Figure 3 and the
estimation of matrix functions in Figure 4.

The Best Fit Ratio (BFR) used in Figure 3 is calculated
according to

BFR(θ) = 100% ·max
k

(
1− ‖yk − ŷk(θ)‖2

‖yk − ȳ‖2
, 0

)
, (7)

where ȳ denotes the mean value.

5.2 LPV-SS Model Identification with Known States

In this section, we show results of model identification on
real engine data with full states measurements. See (Ird-
mousa et al., 2019) for the description of this experiment
setup. The states, inputs, and outputs of the RCCI engine
system are

X = [CA50 TSOC PSOC IMEP ]
T
,

U = [PR SOI FQ]
T
,

Y = [CA50]
T
.

We also used PR = 40 and FQ to be the scheduling
variable.

ANN Adjustment: We used tanh as activation function
for all the ANN layers except for the reshape layers
and also used Adam as the optimizer. Additionally, the
learning rate of Adam was set to be 0.0001 and decay to

3 We discard a few data points as a result of zdk and ŷk+1.
4 All the codes are implemented in Keras (Chollet et al., 2015).
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Ã[2,1]

−0.5

−0.4
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Ã[3,2]

0.8

0.9

1.0

1.1
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Fig. 4. The estimation of matrix functions as a function of
p in the learned LPV-SS model (Take Ã as an exam-
ple). All the horizontal axes represent the scheduling
variable PR. By approximating a smooth function
for each matrix entry, the trained SIME model can
predict the states and outputs of a system with high
accuracy.

be 1e−6. All the other parameters of Adam were left with
the default settings. The adjusted SIME for known states
was trained for 1, 000 epochs with the batch size of 1.

To demonstrate the contribution of the regularization that
estimates of Estimator 1 and 2 should be consistent, we
conducted a set of comparative experiments. First, we
trained the computation graph of state estimation based
on Estimator 1 without regularization term and the results
are shown in Figure 5(a). Then, we experimented with
the regularization term. The cost function of the adjusted

SIME is the weighted sum of the MSE of x̂
(1)
k+1 and xk+1,

the MSE of x̂
(2)
k and xk, and the MSE of x̂

(1)
k+1 and

x̂
(2)
k+1. The weights of the three MSEs are used to reflect

their relative importance; those weights were determined
to be 1, 0.1, and 0.01, respectively, by cross-validation.
Figure 5(b) shows the results of identification with the
regularization term and Figure 5(c) reproduced the results
given in (Irdmousa et al., 2019) using a least-squares
support vector machine (LS-SVM) approach.

6. CONCLUDING REMARKS

In this paper, an integrated ANN approach (SIME) was
proposed to identify an LPV-SS model of systems with
unknown states. Specifically, two estimators (to predict
states) were constructed: one estimator to take advantage
of past system trajectory and another to facilitate matrix
functions estimation. The consistency between two estima-
tions of the same states was used to obtain a reasonable
state estimation. By minimizing the consistency violation
and prediction errors of outputs, SIME was shown to
estimate states and matrix functions simultaneously given
only input/output data of a system. Moreover, our SIME-
based approach was extended to the case with known
states by using consistency violation as a regularization
term. An experimentally validated high-fidelity RCCI en-
gine model was used to generate data that was then
employed to validate the proposed approach. Our results
confirmed that SIME can identify LPV-SS models with a
high accuracy and very little hyperparameters tuning.
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Fig. 5. Output estimation using identified LPV-SS model
on real RCCI engine data with full state mea-
surements. Solid and dashed lines show respectively
the measurement and model prediction. Subplot (a)
shows the results of regression using ANN without
regularization; subplot (b) shows the results of LPV-
SS regression using ANN with regularization; subplot
(c) shows the result of our previous work (Irdmousa
et al., 2019).
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