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Abstract—ReRAM-based neural network accelerator is a promising
solution to handle the memory- and computation-intensive deep learning
workloads. However, it suffers from unique device errors. These errors
can accumulate to massive levels during the run time and cause significant
accuracy drop. It is crucial to obtain its fault status in real-time before
any proper repair mechanism can be applied. However, calibrating such
statistical information is non-trivial because of the need of a large number
of test patterns, long test time, and high test coverage considering that
complex errors may appear in million-to-billion weight parameters. In
this paper, we leverage the concept of corner data that can significantly
confuse the decision making of neural network model, as well as the
training algorithm, to generate only a small set of test patterns that
is tuned to be sensitive to different levels of error accumulation and
accuracy loss. Experimental results show that our method can quickly and
correctly report the fault status of a running accelerator, outperforming
existing solutions in both detection efficiency and cost.

I. INTRODUCTION

Deep neural network (DNN) has nowadays become the state-of-
the-art technique for many real-world applications, such as computer
vision, speech recognition, robotics, gaming, healthcare and self-
driving vehicles [1], [2]. To well leverage its superb cognitive capa-
bility, it is crucial to develop energy-efficient and high-performance
accelerators to handle its non-traditional workloads that are both com-
putationally intensive and memory intensive. Recently processing-in-
memory (PIM) accelerators built upon emerging resistive random
access memory (ReRAM or memristor) have become one of the
most promising solutions, by integrating the memory and logic into
one module to address the long-lasting “memory wall” problem
in existing FPGA and ASIC accelerators. These memristor devices
can be used both as weight memories and logic units to naturally
perform the matrix-vector multiplication in parallel with zero cost
in data movement, improving the computing efficiency by orders of
magnitude over CMOS-based counterparts [3], [4].

Unfortunately, the well-trained DNN weight parameter, which is
stored by the memristance or resistance value of each device, suffers
from large uncertainty at both initial model deployment stage and
accelerator in-use stage because of its unique physical limitations,
e.g. cell-to-cell process variations, stochastic programming, random
electrical or thermal noise, cycle-to-cycle resistance drifting and
endurance issues during the run time [5], [6]. These complex errors,
if left unchecked and accumulated in weights, can eventually lead
to significant model accuracy loss when performing an on-device
inference task after a certain time period. To rescue the erro-
neous accelerators, various repair mechanisms, including hardware
redundancy, error correction, fault-aware remapping and cloud-edge
collaborative model retraining, are proposed [7], [8]. These methods
usually incur different overhead and are tailored for different stages
based on the severity of the fault model, e.g. fault model that cannot
be fixed by model remapping may need more expensive retraining at
cloud. Therefore, it is essential to precisely and timely monitor the
fault status of a running accelerators, so as to efficiently apply an
appropriate repair solution.

A common approach is to design a few test inputs that are

sensitive enough to calibrate the fault status (or fault detection) of
such emerging DNN accelerators during the run timing, akin to test
vectors used in logic and memory test. However, it suffers from the
following challenges: First, a trustworthy fault status needs to be
identified by a statistical manner which would involve a large number
of test data, e.g. observing the inference accuracy drop of a well-
trained model after feeding 10K∼50K testing images. As a result,
the process is both time-consuming and expensive. More crucially,
such an excessive number of extra inference for test purpose only
could incur further accuracy degradation given that device errors,
such as endurance, can be also generated or further deteriorated
during the run-time. The longer the test sequence is, the higher the
probability that errors may accumulate during testing. Second, it is
difficult to guarantee the sensitivity of test patterns, e.g. responding to
any weight distortions that might lead to noticeable accuracy decay,
because errors can be distributed among a large number of weights,
while the number of test patterns is quite limited. For example, a
recent study shows that testing an already fault accelerator with some
normal testing data can also produce confidence scores very close to
that of non-fault versions [9]. Such a minor difference, however, is
unable to reflect its fault status because of the insufficient sensitivity
of the selected test data, resulting in false negatives.

In response to these challenges, this paper makes a solid step
towards developing high quality test patterns from an algorithm
perspective, to accurately report the health status of emerging ac-
celerators during the run time. The generated patterns have a very
limited number but high sensitivity (coverage) to any tiny status
change, thereby truly enabling low cost and fast concurrent test for
these emerging DNN accelerators whose device technology is far
less mature than CMOS and need post-fabrication self-testing and
self-healing. Our major contributions are:

• We investigate the testing data to identify a few “corner data”
which can easily confuse DNN’s decision for testing purpose
(namely “C-TP”). Compared with the state-of-the-art adversarial
example-based test pattern (“AET”), we found that the obtained
“C-TP” can produce much larger confidence score changes
when encountering the same weight disturbance, indicating
significantly enhanced fault status detection capability.

• To address the biased decision making of “C-TP” (initial weights
are still biased to a certain class), thus unbalanced sensitivity
to different weight errors, we propose to generate optimized
test patterns (“O-TP”) from scratch by leveraging DNN’s back-
propagation training algorithm. A small set of “white noise”
patterns, e.g. only 10 for MNIST, are tuned to be sensitive to
different levels of error accumulation and accuracy loss.

• Extensive experimental results show that both “O-TP” and “C-
TP” can significantly outperform the latest “AET” method in
fault detection by using confidence score changes. Moreover,
“O-TP” needs the least number of patterns to achieve the best
performance in monitoring the tiny accuracy status change.
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II. BACKGROUND

A. ReRAM Based Neural Network Accelerators

Deep Neural Network (DNN) relies on the complex multiple
layer structure and learning algorithms to abstract the data at a high
level [10]. A typical DNN topology usually consists of multiple con-
volutional (CONV), pooling and fully-connected (FC) layers. Among
them, CONV layers abstract features from the inputs through the
kernel-based convolutions, and FC layers further rank the confidence
of each class based on weighted features and non-linear activation.
The dot-production is the key operation in DNN computation.

ReRAM based DNN Accelerator. The value of DNN weights
can be encoded as different conductance levels gij on memristive
cells. The inputs are converted, via a set of digital-to-analog (DAC)
converters, to different voltage levels vi and are applied to the
word-lines (WL). Through the crossbar structure, current Iij passing
through the bit-line (BL) represents the dot-production of the input
vector and the weights. The outputs are latched using Sample and
Hold (S&H) circuits and then obtained via a set of analog-to-digital
(ADC) converters. The parallel architecture and in-situ computing
make the ReRAM crossbar a promising solution to accelerate DNN
computation. For example, there emerges a variety of ReRAM
based DNN accelerator designs, such as “Dot-product Engine” [11],
“Prime” [12], “ISAAC” [4], “Pipelayer” [13], and “Time” [14].

B. ReRAM Defects and Existing Solutions

ReRAM defects can distort the mapped weights (or conductance
levels), thus compromising the system reliability and performance on
ReRAM based DNN accelerators. Prior work [15], [16], [17] report
that hard fault, induced by fabrication and endurance limitations,
occurs when a ReRAM device freezes itself in a low resistance state
(LRS) or high resistance state (HRS), resulting in the stuck-at-one
(SA1) fault or stuck-at-zero (SA0) fault that can significantly degrade
the accuracy. The resistance drift [18], induced by the change of
resistance level over time, can lead to soft errors when accelerator is
in use. Stochastic variations, such as random telegraph noise [19], and
programming uncertainty [7], cause deviations in DNN weights from
their nominal values. For example, programming uncertainty can be
formulated as w′ ← w · eθ s.t. θ ∼ N(0, σ2) where w′ is the neural
network parameter with programming errors due to the memristor
resistance variation θ, which follows a log-normal distribution. To
address these defects in DNN accelerators, existing solutions include
error-correcting circuit [20], fault-tolerant training [8] and redundancy
based re-mapping [7]. Besides, algorithm-level solutions [17] can be
also used to better enhance the error resilience on ReRAM accel-
erators. Asides from these repair schemes, fault detection methods,
such as recent adversarial example testing [9], are required in prior to
analyze the existence of ReRAM defects and error patterns. Our work
belongs to this category and we select programming variation and
random soft error as two examples to demonstrate the effectiveness
of our proposed testing pattern generating method.

III. COST-EFFECTIVE CONCURRENT TEST

In this section, we propose two test pattern generation approaches
to test the fault status of the running PIM accelerator. Our goal is
to develop a small set of test patterns, i.e. special images in regular
training or inference datasets or images not belonging to them at
all, such that observing obvious inference result change (e.g. via
output confidence score [9]) of these patterns will be sufficient for
determining the fault status of a running accelerator. Overall, a high-
quality set of test patterns should fulfill two requirements: 1) the
fault coverage should be sufficient, meaning that these patterns

x

y

Shifted decision boundary – weights w’Shifted decision boundary – weights w’

Original decision boundary – weights wOriginal decision boundary – weights w

Class-1Class-1

Class-2Class-2

Class-3Class-3

Class-1

Class-2

Class-3

Fig. 1: Selecting “corner data” sensitive to the decision boundary change

need to be sensitive enough to respond to any weight distortions
that might lead to prominent accuracy drop, and 2) The number
of the test pattern is much less than that of original test images
for a fast and low-cost testing. We aim to explore how to generate
the test pattern that satisfies those two requirements simultaneously.

A. Corner Data as Test Pattern (“C-TP”)

Our first approach is to directly use some existing “corner data”
inputs (namely “C-TP”, abstract from corner data-based test pattern),
whose inference results are more vulnerable to the uncertainty of neu-
ral network models, e.g. weight distortions. Assume fw(·) : X → Y
represents a well-trained model with input X ∈ Rd, output Y ∈ Rn

and weight w store in ReRAM cells, and fw′(·) is the shifted model
with weight errors (w → w′). Fig. 1 illustrates an example of the
decision boundary change from fw(·) to fw′(·) due to the weight
errors. The inference results of the two “corner data” as a result of
weight errors, are changed from class-1 to class-3 and class-2 to class-
1, respectively. This approach requires quantitatively measuring the
distances between inputs to the original decision boundaries, which is
difficult for a high-dimensional classification problem. To avoid mod-
eling the decision boundary, we consider leveraging the confidence
difference among different classes when testing an image, to select
the “C-TP”. For example, to create a decision change from class-i to
class-j for the original trained model, we select the image X with
the least confidence difference, i.e. min (Z(X)i − Z(X)j , j 6= i),
here Z(X)i is the logits value representing the output confidence of
class i for input X . However, in order to satisfy high coverage, the
number of this kind of ”corner data” with two class change is a lot.
For an n-class classification problem, there will be at least n(n−1)

2
.

Apparently, this solution can not satisfy the second requirement: the
number of patterns should be small.

To address this problem, we assume any ideal “C-TP” available in a
multidimensional space should have the following nature: for test data
X , the distance from X to all decision surfaces should be the same.
It means X has an equal probability of crossing any decision surface
so that class is changed without any bias whenever any weight error
occurs. However, it is very difficult to identify such data in input
space X explicitly considering the difficulty of modeling the high
dimensional decision boundary. Instead, we use the following rule to

select “C-TP”: min

(√
1
n

∑n
i (Z(X)i − Z(X))2

)
, a.k.a minimize

the standard deviation of output logits. We directly search “C-TP” in
the inference dataset by sorting the standard deviation of the output
logits (from small to large) and then select the top-m ”corner data”
as “C-TP”. Note in an ideal case, m can be as small as the number
of classes n. However, since there may not exist ideal “corner-data”
in the inference dataset that has the same distance to all decision
surfaces, in other words, such selected “C-TP” is still biased during
decision making, which may not have the same sensitivity to different
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Fig. 2: 10 “O-TP” (white noise style) test patterns generated from LeNet-5 and MNIST.

weight errors. To get better fault coverage, we choose m ≥ n, e.g.
O(n) instead of the original O(n2) to reduce the number of needed
”C-TP”. We will analyze it in our experiments in section IV.

B. Generate Test Pattern through Optimization Algorithm (“O-TP”)

As discussed in Section III-A, “C-TP” may exhibit very different
sensitivity levels as weight errors change due to the biased decision
making of such data in the clean model. To further improve fault
coverage and lower the number of needed patterns, we propose
to generate the test patterns from scratch, inspired by the training
process of a neural network model with an optimization algorithm
(namely “O-TP”, abstract from optimization-based test pattern).
Specifically, the training process starts with randomly initialized
weight parameters w and iteratively updates them by minimizing
a given loss function L until reaching the convergence. Since the
input and weights are interchangeable in terms of inference results,
in our case, we attempt to create a set of test patterns from a
group of randomly initialized input XTP , and then iteratively update
XTP towards two goals: (1) fw (the originally trained model) is
extremely confused about XTP , i.e., random noise with almost equal
probability for each class. This ensures that XTP does not have
any bias to certain weights in fw and can freely respond to any
weight errors that may happen. (2) fw′ (the model with its weights
suffering errors) is very confident (e.g. ∼ 100%) about the prediction
of XTP for a certain class i. The biased decision indicates that the
accumulated errors in certain weights start to impact the inference
accuracy of the accelerators. To satisfy both targets, we propose to
minimize the following cross-entropy loss function:

arg min
XTP

−
(
α ·

n∑
i=1

lilog(fw(X
TP

)) + (1− α) ·
n∑

i=1

l
′
ilog(fw′ (X

TP
))

)
(1)

where li (0 ≤ i ≤ n) are the soft labels with equal confidence over all
classes, and l′i (0 ≤ i ≤ n) are the hard labels that are sensitive to
a specific class. Here α ∈ (0, 1) is a coefficient, which indicates
the relative importance of first and second terms. The first and
second terms represent the constraints for (1) and (2), respectively.
This minimization problem can be solved with algorithms such as
stochastic gradient descent. The detail of the algorithm is shown in
Algorithm 1). In line 16, we use standard deviation of output in
original model fw(·) (std is a standard deviation function defined in
line 10) and L1 distance between the outputs of error model fw′(·)
and target T as the constraints of the two terms, respectively. Here,
ε1 ∈ (0, 1) and ε2 ∈ (0, 1) are constraint coefficients. To find a
high-quality test pattern, ε1 and ε2 should be very small, e.g. 1e−3.
To increase test coverage, we explore the number of patterns needed
for each class. Thus, for a n-class classification problem, the number
of “O-TP” should be n in the ideal case. We expect that “O-TP”
requires a fewer number than “C-TP” for the same high coverage.
To be conservative, we still consider that on average k patterns are
needed for each class. The number of “O-TP” should be k ·n. In our
experiments (section IV), we find that the needed “O-TP” in general
will be equal to the number of class (i.e. k = 1). Fig.2 visualizes
10 “O-TP” for the 10-class MNIST dataset (handwritten digits). We
can observe that such generated test patterns are completely different
from the input images used in training and testing.

Algorithm 1: Optimized Test Pattern Generating
Data:
fw(.) ∈ Rn; // the DNN model

1 fw′ (.) ∈ Rn; // the DNN model with weight error
2 X; // the input image with random noise, i.e. X ∈ N (0, 0.1)
3 minX , maxX // the boundary of the input image
4 T ; // target vector for fw′ (.)
5 Γ = {l1, l2, . . . , ln}; // the soft label set with equal confidence, i.e.
{ 1

n , 1
n , . . . , 1

n}
6 Γ

′
= {l

′
1, l

′
2, . . . , l

′
n}; // the hard label set over specific class i.e.

{1, 0, . . . , 0}
7 M, lr; // the maximal iterations and learning rate
8 ε1, ε2; // the constraint coefficients for two terms respectively

Result:
XTP ; // the test pattern

9 XTP ← X , m← 0
10 mean(X)← 1

n

∑n
i fi(X) ,

std(X)←
√

1
n

∑n
j (fj(X)−mean(X))2

11 loss(X)← −
(∑n

i lilog(fw(X)) +
∑n

i l
′
ilog(fw′ (X))

)
12 while m < M do
13 g = ∇XTP loss(XTP )

14 XTP = XTP − lr ∗ g
15 clip(XTP , minX , maxX )
16 if std(XTP ) < ε1 and ‖fw′ (XTP )− T‖1 < ε2 then
17 break;

18 m+=1

19 return XTP

IV. EVALUATION

A. Experimental Setup

Benchmark. We evaluate our methods on both MNIST and CI-
FAR10 datasets. MNIST is gray-scale handwritten digits, consisting
of 60K 28×28 training images and 10K testing images. CIFAR10 is
a 32×32 color images dataset with 10 classes, including 50K training
images and 10K testing images. “LeNet-5” model [21] is adopted to
train and test the MNIST dataset, and a customized 7-layer neural
network “ConvNet-7”, which consists of 4 convolutional layers and
3 fully connected layers, is used for CIFAR10 dataset. The accuracy
of the well-trained LeNet-5 (MNIST) and ConvNet-7 (CIFAR10) are
99.04% and 81.62%, respectively.

Error Model. Two error models are included in our evaluation.
The weight variation induced by programming error, follows a log-
normal distribution w′ ← w · eθ s.t. θ ∼ N(0, σ2), where σ is the
noise intensity. The distorted model is presented as fw′(σ). We also
inject the random soft errors into models during the run time, with
fw′(p) representing the fault model with such random errors. Here p
is the error probability.

For programming error, we create the LeNet-5 (ConvNet-7) fault
models with different levels of variance σ = {0.05 → 0.5} (σ =
{0.05 → 0.3}). We construct 100 fault models for each sampled
σ, i.e., 1k (600) fault models for LeNet-5 (ConvNet-7). The errors
are randomly injected into DNN weights across all layers. TABLE I
and TABLE II report the average accuracy degradation on fault
models with different σ for LeNet-5 and ConvNet-7, respectively. For
random soft errors, we select p=0.5% and p=1% on LeNet-5, which
degrades the original accuracy from 99.04% to 95.36% (p=0.5%) and
87.47% (p=1%), respectively. On ConvNet-7, we select p=0.1% and
p=0.3%, which reduces the original accuracy from 81.62% to 77.17%
(p=0.1%) and 67.56% (p=0.3%), respectively.

Test Pattern. For our C-TP (corner data based test pattern)
method, we selected 50 corner data as test patterns on each dataset.
For our O-TP (optimized test pattern) method, we apply α = 0.5
in Eq. 1 to indicate the equal importance of each term in the
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Fig. 3: Top-ranked confidence distance and all confidence distance of test data under AET, C-TP, O-TP on LeNet-5 (MNIST) and ConvNet-7 (CIFAR10) with programming error.
(a)(b) LeNet-5. (c)(d) ConvNet-7.
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Fig. 4: The detection rate of test data under AET, C-TP, O-TP on LeNet-5 (MNIST) and ConvNet-7 (CIFAR10) with programming error on SDC-T (SDC-T5% and SDC-T10%)
and SDC-A (SDC-A3% and SDC-A5%) measurements. (a)(b) LeNet-5. (c)(d) ConvNet-7.
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Fig. 5: The detection rate of test data under AET, C-TP, O-TP on LeNet-5 (MNIST) and
ConvNet-7 (CIFAR10) with programming error on SDC-1 and SDC-5 measurements. (a)
LeNet-5. (b) ConvNet-7.

optimization process. ε1 = 1e − 3 and ε2 = 1e − 3 are selected
for each dataset. We compare our C-TP and O-TP with the state-of-
the-art AET (adversarial example based testing) method [9], which
uses adversarial examples (i.e. FGSM) as testing images based on
the fact that they are more sensitive to weight variance than normal
inputs. For a fair comparison, we use the same number (i.e., 50) of
testing images to detect the fault model for each evaluated method.

Metrics. We adopt the similar metrics from [22] in our evaluation:
SDC-1 and SDC-5: compare the top-1/top-5 class between the target
model and the ideal model. A difference indicates target model is
faulty. SDC-T5% and SDC-T10%: compare top-ranked confidence
score between the target model and the ideal model. A difference
more than ±5% or ±10% indicates the target model is faulty. In
addition, we create two new detection criteria since our O-TP
method does not assess the top-ranked class, i.e., SDC-A3% and
SDC-A5%–compare the average confidence distance between target
model and ideal model. A difference of more than ±3% or ±5%
indicates the target model is faulty. Such class change and confidence
score distance can be used to measure the performance of proposed
methods and existing testing patterns. Note that the objective of our
proposed methods (as well as the state-of-the-art AET) is to create
effective test patterns to enlarge the confidence distance between
the fault model and the ideal model. Also, we follow [9] to use
the detection rate, i.e., the number of detected fault models/total number of fault models, to
show the fault detection performance of evaluated methods.

B. Results and Analysis

Detection Effectiveness. Fig. 3 shows our observation on the
confidence distance, including top-ranked confidence distance (SDC-
T) and averaged all confidence distance (SDC-A) on LeNet-5 and
ConvNet-7. As shown in Fig.3, our proposed C-TP method (O-
TP) achieves a larger top-ranked (all) confidence distance than that
of AET. Further, we evaluate the detection rate to verify their
performance in detecting the fault model. As shown in Fig. 4(a) and
(b), our proposed C-TP and O-TP methods can both achieve the
100% detection rate on SDC-T5%, SDC-T10%, SDC-A3%, SDC-
A5% on the LeNet-5 fault models. In contrast, the AET method is
less effective than our methods, especially for the smaller error σ
= 0.3 (i.e., 88% for SDC-A3% and 36% for SDC-A5%). As shown
in Fig.4(c) and (d), more significant performance gap between our
proposed methods and the AET on ConvNet-7 fault models for more
complex CIFAR10 dataset. In particular, as shown in Fig. 4 (d),
the detection rate of AET is close to 0% on SDC-A3% and SDC-
A5% for small errors σ = 0.3. Note that it is more difficult to
detect such smaller errors. The AET method is invalid to detect the
fault models with such tiny errors (σ < 0.3) with SDC-A criteria.
Fig. 5 further shows the detection rates measured by top-1/top-5
class. We can observe that the proposed C-TP method still performs
better than AET on different σ on SDC-1 on MNIST and CIFAR10.
TABLE III further lists the average detection rate based on different
measurements for all different σ. For all detection criteria, our C-
TP and O-TP achieve a better detection rate than AET. In particular,
the C-TP method achieves a higher detection rate than the optimized
O-TP, due to its higher confidence score distances than O-TP. This
is because C-TP is more biased than “white noise” like O-TP for
decision making in initial clean models. However, this does not mean
C-TP is better than O-TP to monitor accuracy drop, as we shall
show in Fig 8. The proposed C-TP and AET both can achieve 100%
detection rate with SDC-5 measurement. This is because in the 10-
class MNIST and CIFAR10 datasets, top-5 is easily changed when
weight variance occurs. Fig. 6 show our results with random errors.

TABLE I: The accuracy of original LeNet-5 model and fault LeNet-5 models fw′(σ) with different σ on MNIST

weight error (σ) 0 (original) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
LeNet-5 accuracy(%) 99.04% 99.01% 98.87% 98.64% 98.26% 97.48% 96.02% 94.7% 91.73% 89.32% 86.61%

TABLE II: The accuracy of original ConvNet-7 model and fault ConvNet-7 models fw′(σ) with different σ on CIFAR10

weight error (σ) 0 (original) 0.05 0.1 0.15 0.2 0.25 0.3
ConvNet-7 accuracy(%) 81.62% 81.33% 80.51% 79% 75.75% 72.37% 66.59%
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TABLE III: The average detection rate of test data under AET, C-TP, O-TP on LeNet-5 and ConvNet-7 with programming error (all σ)

LeNet-5 (MNIST)
SDC-1 SDC-5 SDC-T5% SDC-T10% SDC-A3% SDC-A5%

AET 19.2% 100% 94.5% 77.1% 71.6 % 49.7%
C-TP 56.8% 100% 100% 100% 100% 94.8%
O-TP - - - - 84.4% 71.9%

ConvNet-7 (CIFAR10)
AET 13.7% 100% 91.3% 58.4% 34.7% 8.1%
C-TP 67.2% 100% 100% 96.7% 100% 94.7%
O-TP - - - - 91.7% 74%
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Fig. 6: The detection rate of test data under AET, C-TP, O-TP on LeNet-5 (MNIST)
and ConvNet-7 (CIFAR10) with random errors on 6 different detection measurements.
(a)(b)(c) LeNet-5 with MNIST. (d)(e)(f) ConvNet-7 with CIFAR10.

Our two methods can also achieve a higher detection rate than AET
across all selected detection criteria on MNIST and CIFAR10.

Sensitivity Analysis. In our sensitivity analysis, we try to answer
the question: Why our methods are more sensitive to the weight
variance than AET? First, in the AET method, the FGSM-based
adversarial examples are used to mislead the decision by adding
perturbations into the input. Therefore the confidence vector of
original model f(x,w) will be significantly changed to f(x′, w),
thus a large confidence distance between f(x,w) and f(x′, w) can
be expected for all/top confidence distance. However, it can not
guarantee that f(x′, w) and f(x′, w′) have a detectable confidence
distance when weight variance occurs. For the detected cases with
AET, since DNN model is already fooled by adversarial examples,
it is highly possible that DNN maintains low confidence for
each class (e.g., for a 3-class classification, confidence changes from
(0.8,0.1,0.1) to (0.3,0.4,0.3)). Therefore, a tiny weight variance
could accidentally change the confidence score, which can be
detected later. In contrast, our proposed methods are quite different.
We intentionally develop these test patterns. For C-TP, we select those
“corner data” with the smaller standard deviation of “soft confidence
score”. They can easily cross the decision surface if any small weight
error occurs, thus enlarging the confidence distance between the
original model and the fault model. O-TP uses a specific soft label
(i.e., target confidence 0.1 for each class in a 10-class classification)
as a target label for original model and uses a hard label for the
fault model to generate the test pattern, by using gradient descent
optimization. When weight error occurs, the “soft confidence” can
approach the “hard confidence”, therefore creating a larger confidence
distance. This indicates that our methods are more sensitive to weight
variance than AET.

Stability Analysis. We now analyze the stability of the proposed
methods. A good testing method is expected to maintain reliable
detection performance on any fault model. The stability of the
testing method can be measured by the coefficient of variation

(CV), which is represented as σ
µ

, where σ and µ are the standard
deviation and mean of the confidence distance between clean and fault
models. A smaller value indicates better stability (non-variability). As
TABLE IV shows, our C-TP and O-TP are more stable than AET.
This is because our two methods select and generate the test data with
a similar characteristic (i.e., the “corner data”), while AET randomly
selects test patterns from the testing dataset and adds FGSM-based
adversarial perturbations in a coarse-grained manner.

Efficiency. We now evaluate the efficiency of the proposed meth-
ods. On ReRAM-based DNN accelerator, we aim to detect the fault
model by using as few as test patterns as possible. Note that for a
fair comparison, we use 50 test images for each method. However,
our proposed O-TP does need so many test images in fact. We use
standard deviation to better measure how many test images are needed
for the three methods. As shown in Fig.7, to achieve the same level of
standard deviation, our methods consume a less number of test data
than AET on both MNIST and CIFAR10. In particular, Fig. 7 (a)
shows, for a reliable detection (i.e., standard deviation has converged
to a certain level), AET requires at least 150 test images, while our
proposed C-TP method needs only 50 test images. As shown in Fig.7
(b), our O-TP can always maintain the stable detection even with
very few (i.e. 10) test images, as such patterns are well optimized
to enlarge the confidence distance. We can observe the similar result
on CIFAR10 (see Fig. 7 (c) and (d)). For the time cost of pattern
generation, since our O-TP and C-TP, which is similar to AET, only
requires to generate once at the cloud, so it is very low-cost.

Accuracy Status Testing and Analysis. Fig. 8 shows the relation-
ship between confidence distance and accuracy of the fault model,
which is tested with original testing images, AET, C-TP and O-
TP patterns. The blue bars indicate model accuracy and the lines
represent the confidence distances under different σ. First, a range
of confidence distance can be observed for each type of testing
pattern. For the original testing image (randomly selected from the
test dataset), the range of confidence distance is merely from 0
to ∼ 0.01. This means that using original images to distinguish
the different accuracy degradation is very difficult due to the small
range of confidence distance change. AET is better than original
images, whose range of confidence distance is from 0 to ∼ 0.04.
An ideal testing method is expected to maintain a large range of
confidence distance but a higher variance (or slope). We use 0.01 as
the confidence variance unit to evaluate the testing methods. For our
C-TP and O-TP, they can increase the range of confidence variance
from 4 levels {0.01→0.04} in AET, to 11 levels ({0.01→0.11}) in
C-TP and 10 levels in O-TP. It is expected that the method which
maintains a linear trend on its confidence variance change with an
enlarged range, can better correlate with accuracy change. Therefore,
our O-TP performs better than C-TP. We can observe that while C-

TABLE IV: The coefficient of variation (CV) of confidence distance for AET, C-TP, O-TP on LeNet-5 with various weight errors (σ)

weight variance (σ) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
AET 0.38 0.39 0.37 0.33 0.35 0.34 0.35 0.31 0.30 0.30
C-TP 0.17 0.16 0.15 0.16 0.16 0.15 0.16 0.13 0.12 0.13
O-TP 0.16 0.15 0.15 0.17 0.15 0.16 0.14 0.15 0.13 0.12
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Fig. 7: The standard deviation of all/top-ranked confidence distance w.r.t. different number of test data under AET, C-TP, O-TP on MNIST/CIFAR10. (a)(b) MNIST. (c)(d) CIFAR10.
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Fig. 8: The relationship between confidence distance and model accuracy with weight
error σ

TP has a larger slope with σ = 0.05, 0.1, the accuracy change can
be neglected (from 99.04% to 99.01% and 98.87% respectively). In
contrast, for a prominent accuracy degradation (σ = 0.3 − 0.4), C-
TP has only two levels of confidence distance to capture the sharp
accuracy change (accuracy drop from 96.02% to 91.73%). On the
other hand, for the same accuracy degradation in σ = 0.3− 0.4, O-
TP offers four levels of confidence distance to detect such a change
more accurately and consistently due to a higher slope than C-TP.
This means that O-TP offers better testing effectiveness than C-TP,
while C-TP can be better than AET and testing with original images.

V. CONCLUSION

In this work, we propose two types of test patterns to monitor
the health status of emerging DNN accelerators. We found that high-
quality test pattern needs to satisfy two requirements: high coverage
and low-cost. We elaborately select “corner data” that can easily cross
the decision boundary as the first method to create test pattern (“C-
TP”). To further improve fault detection performance and coverage,
we also design the second method (“O-TP”)–a gradient descent based
optimization algorithm to generate test patterns from scratch. In our
experiment, we evaluate both methods through a variety of weight
error settings, to characterize their performance on detecting fault
models and their accuracy status. Overall, both methods outperform
the latest adversarial example-based test pattern (“AET”). For fault
detection, our “C-TP” achieves a higher detection rate than “O-TP”
because of a higher sensitivity to confidence score change incurred
by weight errors, while “O-TP” requires fewer number of patterns.
For the accuracy status change detection, our “O-TP” delivers a
better accurate match between confidence distance and accuracy
degradation than “C-TP”.
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