


An attacker can extract meaningful information from the

execution time of code on the GPU, which privileged soft-

ware can compute on the CPU by observing communication

with the GPU. For example, we demonstrate a novel attack

on image recognition machine learning models that allows

malicious system software to correctly classify images from

ImageNet [17] used as input to the model. By observing only

the timing of a model trained to classify images (the image

model), we build a new model (the timing model) that can

classify images based on the execution timing of layers in the

image model. Even if a security-conscious user encrypts their

input data (and decrypts it on the GPU), a cloud provider’s

system administrator can use the timing information of GPU

kernels (measured on the CPU) in the image model to classify

its input images. We train the timing model to distinguish

images of two classes with 78% accuracy. For more classes,

accuracy decreases but stays above random guessing.

We propose Telekine, a system that enables the secure use

of cloud GPUs without trusting the platform provider. GPU

TEEs provide a secure execution environment but leave the

user open to side channels when communication depends on

secret data. Telekine makes communication with the GPU

TEE data oblivious, that is, completely independent of secrets

contained in the input data. Data obliviousness is a strong

property that excludes the existence of side-channel attacks

against CPU-side code and host/device communication whose

observable behavior (e.g., timing, memory accesses, DMA

sizes, etc.) depends on secret input data.

Telekine has three components (shown in Figure 1):

libTelekine that runs on a trusted user machine (a client),

GPUs physically attached to a cloud machine (a server)

that supports GPU TEEs with specific security requirements

(§3.1), and the relay which facilitates communication between

libTelekine and the GPU. Telekine uses a GPU TEE because

it needs a mechanism to protect GPU computation from the

cloud provider; a GPU TEE is tailored to that task.

Telekine protects the application and GPU runtime by

moving it from the cloud to the client. The advantage of this

approach is that the user must already trust their client machine,

and the application and user libraries are large and complex and

therefore prone to side-channel attacks, making them difficult

to secure if they execute in the cloud. The disadvantage is that

GPU libraries assume a local GPU with a fast, high-bandwidth

connection to the CPU. Telekine decouples the user library

from low-level GPU control by interposing on the GPU API

and efficiently forwarding these calls to the server (a technique

known as API remoting) which has been used to virtualize

GPUs [6, 8, 22, 23, 30, 33, 50, 57, 58, 85, 101, 107], but to our

knowledge has never been used for security. A client using

Telekine does not need to have a GPU installed.

Telekine treats the CPU-side control code on the cloud

server (“Relay” in Figure 1) as completely untrusted, almost

as if it were part of the network. The client machine establishes

a cryptographically secure channel directly with the code

executing on the cloud GPU. The network and the CPU-based

code on the server can delay the computation, but cannot

compromise its privacy or integrity.

Telekine secures the communication between the client

machine and the cloud GPU by transforming the user’s GPU

API calls into data-oblivious streams. Data-oblivious streams

are similar to constant time defenses [3] in that they aim to

remove timing channels by ensuring that observable events

are deterministic regardless of secrets. Telekine constructs

data-oblivious streams by reducing all API calls to a sequence

of code execution (launchKernel) and data movement

(memcpy) commands. It then schedules these commands

at a fixed rate, possibly creating new commands, or split-

ting memcpy commands into fixed-size pieces. Fixed-sized,

fixed-rate communication is data oblivious; it ensures that

any observable patterns are independent of the input data

and therefore devoid of side-channel information. Fixed-rate

communication is not a novel way to eliminate side channels,

but Telekine’s design shows how to apply it efficiently to

modern GPU-based computing.

Given that Telekine requires a GPU TEE, it is logical to

wonder why it does not use a CPU TEE. After all, putting the

application and programming libraries into a CPU TEE would

reduce the latency and increases the bandwidth for communi-

cation between libTelekine and the GPU. Unfortunately, Intel

and ARM TEEs do not prevent side channels as part of their

threat model [48, 78]. Keystone [55] and Komodo [25] intend

to address side channels for RISC-V and ARM respectively,

but work is ongoing. Also, making existing applications data

oblivious is difficult for programmers, requires access to

source code (not needed by Telekine), and often slows down a

program greatly (e.g., Opaque [109] slows down data analytics

by 1.6–46×). Should future CPU TEEs evolve to address side

channels, Telekine can use them. Much of Telekine focuses

on securing the communication between trusted components,

which can be an improved CPU TEE and a GPU TEE or they

can be the client machine and server GPU TEE, as they are in

our prototype.

Telekine is the first system to offer efficient, secure exe-

cution of GPU-accelerated applications on cloud machines

under a strong and realistic threat model. We use Telekine to

secure several GPU-accelerated applications via two frame-

works: the MXNet [10] machine learning framework and the

Galois graph processing system [75]. On a realistic testbed

Telekine provides strong secrecy and integrity guarantees,

including side-channel protection. MXNet [10] training for

three different, modern image recognition models incur a

10–22% performance penalty relative to a baseline with a

locally attached GPU. MXNet inference for the same models

over a connection from Austin, TX to the Vultur’s Dallas, TX

datacenter [102] incurs a penalties of 0-8% for batch sizes of

64 images. Telekine runs graph algorithms using Galois [75]

on one and two GPUs with 18%–41% overhead.

This paper makes the following contributions.



∙ We demonstrate a CPU-side timing attack on deep neu-

ral networks that allows a compromised OS to correctly

classify images in encrypted input (§4).

∙ We provide a design and prototype for Telekine, a sys-

tem that eliminates CPU-based side-channel attacks

against a GPU TEE with a novel variant of API remoting

to execute secret-dependent code on the GPU TEE and

a trusted client (§5).

∙ We thoroughly evaluate the performance, robustness,

and security of Telekine protecting a variety of impor-

tant workloads on one and two GPUs: machine learning

and graph processing (§7).

2 Threat model

In all current cloud GPU platforms, the cloud provider’s privi-

leged software, and hence administrators, can gain easy access

to GPU state, creating a significant attack surface including

explicit channels such as GPU memory, firmware, and execu-

tion context. Work in this area agrees on the vulnerability of

GPU state to privileged software [45, 100].

Telekine assumes a powerful adversary who controls all

software on the platform, including privileged software such

as device drivers, the host operating system and hypervisor.

This captures typical cloud platforms, where the platform

provider has full control over all software, and attackers can

run malicious code on the same physical device as a target

cloud application [81]. A malicious provider, a malicious

administrator, or an OS-level attacker can use their control of

privileged software to steal the secrets of tenants. We assume

that the adversary cannot, however, compromise hardware–the

physical GPU package.

Telekine assumes a GPU TEE, with capabilities similar to

current research proposals like Graviton [100]. The details can

vary, but a GPU TEE establishes secure memory on the GPU

device and provides a protocol to initiate a computation that

can be remotely attested to start from the correct state (code

and initial data) and execute privately and without interference

from the CPU side. We provide additional detail on Telekine’s

TEE requirements in Section 3.1.

GPU TEEs do not, by themselves, secure communication

with the CPU and our attack (§4) shows how much information

there is in the precise timing of CPU/GPU communication.

Telekine protects communication with the GPU, guaranteeing

that the adversary cannot learn about input data directly or

through side channels, including timing channels.

While secure control of a GPU has been proposed [45, 100],

there has been little work securing side channels. These side

channels undercut the security of the TEE. In addition to the

timing attack we developed (§4), AES key extraction using

shared GPU hardware [31, 46, 47] has been demonstrated.

And recent side-channel attacks [64] have shown practical

methods to fingerprint websites using performance counters

observed during GPU rendering in the browser.

2.1 Guarantees

Telekine provides the following secrecy properties which

prevent any explicit or implicit data flow from input data to an

external observer.

S1 (content): Messages are encrypted to ensure their content

cannot be directly read by an observer.

S2 (timing): The transmit schedule for messages is fixed. Any

transmission delays are independent of input data.

S3 (size): The size of each message is fixed. Telekine pads

and/or splits messages to achieve fixed-sized messages.

Telekine also provides the following integrity properties to

ensure that any result the user receives is either a result that

could have been generated by a GPU hosted by a completely

benign cloud provider, or an error.

I1 (content): The content of all communication is protected

by an end-to-end integrity check; a message authenti-

cation code (MAC) allows Telekine to detect modifica-

tions, returning an error if any are detected.

I2 (order): Each message carries a sequence number which

allows Telekine to detect out of order messages. The

sequence numbers also prevent replay attacks.

I3 (API-preserving): Commands issued by the application

should affect GPU state in the same way they would

on a local GPU, regardless of any transformations that

Telekine applies.

GPU commands have semantics that Telekine must main-

tain for correctness. For example, GPU runtimes expose a

stream [71] abstraction to application code. API calls issued

by the application on the same stream are executed serially in

the order they were issued. A kernel launched from a particular

stream will block the completion of subsequent API calls

on that stream until that kernel terminates. Applications can

have many streams which map to different command queues

exposed by hardware. API calls made on separate streams

can be executed in parallel. Telekine must respect the data

dependence semantics of streams.

2.2 Limitations.

Physical side channels and denial of service attacks are out of

scope. In situations where an adversary monitoring physical

side channels like temperature [62], power [54], or acoustical

emanations [11] is a concern, Telekine would need to be

augmented with other techniques to maintain security. In our

threat model, a cloud provider wishing to deny service can

always do so, e.g., by interrupting the network or refusing to

run user processes.

Telekine provides clients a mechanism to disguise their

end-to-end runtime but does not impose policy. Applications

can choose the most efficient policy for their security needs.

We believe end-to-end runtime is a poor predictor of input

data (and our experiments in Section 4 bear this out), further

justifying the clients setting policy.



3 GPU background

Applications use GPUs through high-level, vendor-provided

APIs such as CUDA [66] and HIP [39]; they include a user-

level runtime and OS-level driver that communicate through

a combination of ioctl system calls and memory-mapped

command queues. The driver is responsible for creating map-

pings from virtual memory to physical MMIO regions. After

these privileged operations are complete, any software that has

a mapping (user or OS) may communicate directly with the

device using registers or command queues exposed through

the MMIO regions.

While memory management, synchronization, and other

features (e.g., IPC, power management, etc.) require interac-

tion with the driver state (e.g., creating and managing memory

mappings), a workload that pre-allocates all of its required

GPU memory and uses only data transfer and kernel launch

primitives can function completely by writing commands into

the GPU’s command queue. It is possible to construct and sub-

mit these commands without referring to any state maintained

by either the runtime or the driver. As we show in Section 5, this

property enables Telekine’s relay to be effectively stateless.

3.1 GPU TEE

Telekine requires a TEE on the GPU and Graviton [100] is a

detailed proposal from the literature that provides the basic

functionality that any GPU TEE (or indeed any TEE) should

provide: secrecy for GPU code and input data, integrity for

the GPU computation, and remote attestation for the computa-

tion’s initial state. Graviton achieves most of its functionality

by changing the GPU firmware, so it does not require extensive

changes to the GPU hardware itself (neither does Telekine).

This is achievable because the modern GPU firmware runs

on a fully programmable control processor [68]. We explain

GPU TEE functionality by saying what the GPU does, but the

implementation could be firmware, hardware, or both.

The integrity, secrecy, and ordering of the commands sent to

the GPU are ensured by a secure channel. Before computation

begins, the client machine and the GPU agree on a shared sym-

metric key via a key exchange protocol (e.g., Diffie-Hellman).

The client uses this key to send commands using a protocol

like transport layer security (TLS) which provides a secure

channel ([100] §5.2).

The integrity of the computation is assured by the GPU,

which checks the initial execution conditions and attests these

conditions to the remote user, who can verify that the expected

code has been loaded into the expected address range with the

expected permissions, and that the hardware generating the

attestation is genuine. There are many variations on remote

attestation, but it is a common feature for modern enclaves

like SGX [14] and Keystone [55]. Telekine expects the GPU

to have been initialized with all of the GPU kernels the appli-

cation intends to launch and any initial data when attestation

has completed.

Telekine and Graviton split GPU memory into untrusted and

trusted regions so the untrusted host OS/Hypervisor can DMA

into untrusted GPU memory, enabling efficient data transfers;

the GPU can then copy data between untrusted GPU memory

and trusted memory. This mechanism provides GPU memory

protection even though the IOMMU is under control of the un-

trusted kernel. Telekine and Graviton disable unified memory,

which allows privileged CPU code to demand page GPU mem-

ory and exposes side-channel memory access information.

The GPU TEE should turn off or refuse to report the state

of any performance counters. Recent GPU side-channel at-

tacks [28, 64] have successfully used timing data from GPU

performance counters.

Due to Telekine’s focus on side channels, it has require-

ments beyond the previously proposed GPU TEEs. These

requirements are more straightforward to provide than the core

TEE functionality.

Eliminate GPU side channels. Some TEE designs allow dif-

ferent tenants/principals to execute concurrently (e.g., SGX,

Keystone), sharing the underlying hardware. Concurrent exe-

cution is attractive from a utilization perspective but it provides

a rich side-channel attack surface which has plagued the secu-

rity of CPU TEE designs. Telekine assumes side channels from

concurrent principals (e.g., memory access timing and band-

width) do not exist on the GPU TEE. A conservative design

which prevents hardware side channels is to disallow concur-

rent execution. Graviton TEEs scrub their state (e.g., registers,

memory, caches) after resources are freed so there is no danger

of tenants observing transient state from previous computation.

Conceal kernel completions. GPUs signal the CPU via an

interrupt when a kernel has completed its execution. Interrupt

timing leaks information about the kernel’s runtime. Rather

than rely on interrupts, Telekine uses data-oblivious streams

(§5.1) that include tagged buffers that allow the GPU to

communicate computational results back to the client. The

platform only sees DMA from the GPU to untrusted CPU

memory at a fixed rate.

Support no-op kernel launches. Dependences between GPU

kernels often cause the launch of one kernel to wait for

another’s completion, which provides indirect timing infor-

mation. The GPU TEE must support a no-op kernel launch

command so that Telekine can generate cover traffic ensure

the adversary sees kernel launches at a fixed rate.

Timely command consumption. The GPU TEE should con-

sume its command queue independently of how long kernels

take to execute on the GPU. If the GPU waits until each kernel

completes before dequeueing the next launch command, it can

fall behind the input queue fill rate, allowing the input queue to

fill. The adversary can detect this situation by observing how

often the encrypted queue content changes, creating a proxy

for kernel execution time. The GPU should consume command

queue entries at a fixed rate, discard the no-ops, and store the







launchKernel commands interact with MMIO ring

buffers and memcpy commands are handled using

DMA). Telekine must ensure that the attacker’s ability

to distinguish between these commands conveys no

information about the input data.

2. Conventional GPU command streams (§2.1) exhibit

a variety of data-dependent behavior whose timing is

externally visible (e.g., a kernel launch after a data

transfer will wait for the data transfer to finish). Telekine

must maintain the ordering semantics induced by such

data dependencies.

Telekine introduces a new primitive to overcome these

challenges: data-oblivious streams. Data-oblivious streams

transparently replace conventional GPU streams (and appli-

cations may have more than one), maintaining their semantics

while making their communication with the GPU data obliv-

ious. First, they separate commands by type, and schedule

each type independently. Second, they split, pad, and batch

commands of each type so that the encrypted payload is al-

ways the same size for messages of that type, satisfying S3

(size). Third, they inject management commands as needed to

maintain data-dependencies across message types, satisfying

I3 (API-preserving). Finally, data-oblivious streams send

the transformed commands according to a fixed schedule,

satisfying S2 (timing).

The relay, privileged software on the cloud machine, and

the network stack can delay commands since they are under

complete control of the (possibly adversarial) cloud provider.

However, they cannot delay commands in a way that leaks

input data because all observable behavior of the trusted com-

puting base (including its timing) is independent of input data.

5.1 Data-oblivious stream construction

Constructing data-oblivious streams only requires reasoning

about memcpy and launchKernel commands. The TEE

takes care of initialization (§3.1). The only other runtime com-

mands deal with stream synchronization, and Telekine trans-

forms those commands into memcpy and launchKernel

commands as well (discussed fully in §5.4). memcpy com-

mands are visible to the untrusted host’s privileged software

because GPU drivers use DMA for efficient data transfers. In

Telekine, the data itself is protected and copied to/from a fixed

staging area in untrusted GPU memory so the destination/-

source of the memcpy does not leak information.

Conventional GPU streams can create timing channels

from memcpy and launchKernel commands because a

memcpy command waits for all previous launchKernel

commands on the same stream. To eliminate this channel,

Telekine uses two GPU streams to construct a single data-

oblivious stream. Telekine uses one GPU stream to launch

the application’s kernels; this stream is called the ExecStream.

Telekine uses the other stream—called the XferStream—

to move data to and from the GPU. Telekine ensures that

commands on the XferStream never leak information about

the kernel execution time by waiting for commands on the

ExecStream.

The ExecStream. Application kernels are all launched

on the ExecStream. LibTelekine maintains a queue of the

launchKernel commands requested by the application

and releases the commands in order according to the fixed-rate

schedule. The GPU consumes these commands independently

of any ongoing kernel execution and buffers them internally

since their execution must be serialized according to GPU

stream semantics. Telekine honors data dependences between

memcpy and launchKernel commands by inserting data

management kernels that block the progress of the ExecStream

by spinning until the data is in place.

The XferStream. Data transfers requested by the application

are launched on the XferStream. Unlike launchKernel

commands, memcpy commands are directional (i.e., client-

to-GPU and GPU-to-client), and directions are detectable.

For example, because the adversary can observe interaction

with the network, it can differentiate between messages that

came over the network in transit to the GPU, and messages

copied from the GPU that are being sent over the network.

LibTelekine maintains separate queues for each direction and

schedules them independently to avoid leaking information.

Data for client-to-GPU transfers starts on the client, flows

through the relay and into untrusted memory on the GPU.

LibTelekine then enqueues a kernel, which moves the data

from the untrusted staging memory into trusted GPU mem-

ory. Similarly, in the GPU-to-client direction, Telekine first

enqueues a launchKernel on the XferStream to move the

data into untrusted GPU memory, then issues a memcpy to

copy it to the relay where it can be transferred over the network

back to the client.

Fixed-size commands. Telekine ensures that all memcpy

commands are the same size by splitting and padding the

memcpy commands issued by the application to a standard

size. When there are no pendingmemcpy commands, Telekine

maintains the same rate of data flow by scheduling dummy,

standard-sized memcpys to/from a staging buffer. Similarly,

all launchKernel commands are padded to the same size

(320 bytes in our prototype). When no launchKernel com-

mand is available, Telekine schedules no-oplaunchKernel

commands.

Schedules. Any schedule Telekine uses for GPU communi-

cation is secure so long as it does not depend on the data being

protected. Our prototype uses simple schedules which send

a fixed number of fixed-sized commands after each fixed-time

interval. For instance, Telekine might launch 16 kernels on the

ExecStream every 3 milliseconds, and send then receive 4MB

of data every 6 milliseconds on the XferStream.

Schedules can leak the category. While scheduling work at

a fixed rate is a well-known technique to avoid side-channel

leakage, the exact schedule is relevant to performance. We



Algorithm 1 Telekine’s replacement functions for memcpy

andlaunchKernel. Splitting and padding steps are omitted

for brevity.

1: function LAUNCHKERNEL(𝑘𝑒𝑟𝑛,𝑎𝑟𝑔𝑠...)

2: ENQUEUE(𝑘𝑒𝑟𝑛𝑒𝑙𝑄𝑢𝑒𝑢𝑒,{𝑘𝑒𝑟𝑛,𝑎𝑟𝑔𝑠})
3: end function

4:

5: function MEMCPYH2D(𝑠𝑟𝑐,𝑑𝑠𝑡)

6: buf ←CHOOSETAGGEDBUFFER()

7: LAUNCHKERNEL(copy in, buf, dst)

8: ENQUEUE(dataQueueH2D, {src, buf})
9: end function

10:

11: function MEMCPYD2H(src, dst)

12: buf ←CHOOSETAGGEDBUFFER()

13: LAUNCHKERNEL(copy out, src, buf )

14: ENQUEUE(dataQueueD2H, {buf, dst})
15: end function

report our schedules in Table 1, and they are the same for

all tasks of a given category, e.g., training different machine

learning models with MXNet. However, they can differ across

categories, e.g., Galois has a different ExecStream schedule

from MXNet (§7). Under our threat model, the adversary

would be able to differentiate these workloads from their

network traffic. A user can always choose a more generic, but

lower performing schedule if this is a concern.

5.2 Telekine operation

Algorithm 1 and Algorithm 2 provide a high-level description

of Telekine’s data-oblivious streams. In Algorithm 1, Telekine

intercepts the application’s calls to launchKernel and

memcpy and transforms them into interactions with queues:

kernelQueue, dataQueueH2D, and dataQueueD2H (splitting,

padding, and encryption steps are omitted for brevity). The

Telekine threads shown in Algorithm 2 dequeue the com-

mands and release them to the GPU according to the schedule.

Telekine waits at lines 7, 18, and 29 for the next available time

slot ensuring that interactions with the queues do not influence

the timing of messages.

Mostmemcpy commands have strict ordering requirements

with respect to kernels that operate on their data. The memcpy

then launchKernel idiom ensures that the launched kernel

has fresh data to process. While Telekine decouples memcpy

commands by scheduling them on their own stream for se-

curity, it needs to preserve the original ordering semantics

expected by the application. Telekine maintains these seman-

tics by injecting its own data management kernels into the

ExecStream (shown on lines 7 and 13 of Algorithm 1) to

enforce the ordering expected by the application. These data

management kernels operate on tagged buffers which Telekine

uses to synchronize data access.

Algorithm 2 Periodic tasks performed by Telekine according

to the schedule. Encryption and decryption steps are omitted

for brevity.

1: loop ◁ ExecStream Thread

2: if EMPTY(𝑘𝑒𝑟𝑛𝑒𝑙𝑄𝑢𝑒𝑢𝑒) then

3: op←no op

4: else

5: op←DEQUEUE(kernelQueue)

6: end if

7: WAITFORSCHEDULEDTIME()

8: REMOTELAUNCHKERNEL(op)

9: end loop

10:

11: loop ◁ XferStream Client-to-GPU (H2D) Thread

12: if EMPTY(DataQueueH2D) then

13: src←dummy CPU

14: dst←CHOOSETAGGEDBUFFER()

15: else

16: {src, dst}←DEQUEUE(dataQueueH2D)

17: end if

18: WAITFORSCHEDULEDTIME()

19: REMOTEMEMCPY(src, dst)

20: end loop

21:

22: loop ◁ XferStream GPU-to-Client (D2H) Thread

23: if EMPTY(DataQueueD2H) then

24: src←CHOOSETAGGEDBUFFER()

25: dst←dummy CPU

26: else

27: {src, dst}←PEEK(dataQueueD2H)

28: end if

29: WAITFORSCHEDULEDTIME()

30: REMOTEMEMCPY(src, dst)

31: if dst ̸= dummy CPU then

32: if TAGMATCHES(dst) then

33: DEQUEUE(dataQueueD2H)

34: end if

35: end if

36: end loop

Tagged buffers. Tagged buffers are pre-allocated staging

buffers on the GPU, each with an associated tag slot. Telekine

assigns every memcpy operation a tagged buffer and a unique

tag, represented by “ChooseTaggedBuffer” in Algorithm 1 and

Algorithm 2. Data management kernels producing data (e.g.,

copying out the result of a kernel computation) write the tag

into the tag slot of the chosen tagged buffer after the operation

has completed and a memory barrier completes. Data manage-

ment kernels that consume data (e.g., waiting for data a kernel

expects to use as input) wait until the tag slot of the assigned

buffer contains the expected value since they cannot be sure the

buffer data is valid until the tag value matches its expectation.









Batch ResNet InceptionV3 DenseNet

size Base Telekine Base Telekine Base Telekine

Simulated testbed

1 20 273 (13.7x) 29 259 (8.93x) 26 248 (9.54x)

8 42 270 (6.43x) 65 264 (4.06x) 47 241 (5.13x)

64 233 389 (1.67x) 368 559 (1.52x) 246 405 (1.65x)

256 988 1195 (1.21x) 1520 1806 (1.19x) 946 1163 (1.23x)

Geodist testbed

1 20 200 (10.0x) 31 205 (6.61x) 26 201 (7.73x)

8 69 241 (3.49x) 111 247 (2.23x) 84 209 (2.49x)

64 462 481 (1.04x) 637 685 (1.08x) 484 483 (1.00x)

Table 4. Latencies (in ms) of machine learning inference workloads

with the baseline system (Base in the table) and Telekine.

experiment on the geodist testbed; the results are similar to the

simulated testbed.

Machine learning inference. We evaluate neural network

inference workloads for ResNet, InceptionV3, and DenseNet

with Telekine. For inference, latency is the priority for users,

but throughput is still a priority for providers. Batching infer-

ence can substantially improve throughput by fully utilizing

hardware capabilities and amortizing the overheads from other

system components [15]. We evaluate the latency of inference

with different batch sizes, ranging from 1 to 256. Our baseline

is an insecure server with one local GPU, communicating with

the over the network. Table 4 shows the inference latency of

three neural networks with different batch sizes. The overheads

with on the simulated testbed for batches of size of 256 are

21%, 19%, and 23% for ResNet, InceptionV3, and DenseNet,

respectively which are slightly improved compared to the

overheads we report for training (§7.2), although the training

batch size was 64. With a batch size of 64, the overheads on

the simulated testbed inflate to 67%, 52%, and 65%. When we

move to the geodist testbed, the performance of the baseline

suffers more that Telekine; at batches of size 64, the standard

deviation of our measurements exceed the differences between

the mean Telekine and baseline runs. Clipper [15] uses an

adaptive batch size to meet the latency requirement of the

application, which Telekine could adopt.

7.3 Graph algorithms

Galois is a framework designed to accelerate parallel appli-

cations with irregular data access patterns, such as graph

algorithms [75]. We port Galois’s GPU computation to use the

HIP runtime instead of CUDA and evaluate it on three graph

algorithms: breadth-first search (BFS), PageRank, and single

source shortest paths (SSSP). All measurements use the USA

roads graph dataset [18]. Figure 5 shows the performance of

these applications on Telekine with one and two GPUs. The

baseline is an unmodified system with local GPU(s). Baseline

performance for single GPU applications is: BFS 54.1s, SSSP

74.6s, Pagerank 60.9s; for two GPUs: BFS 36.4s, SSSP 42.8s.

For the input distributed with Galois, two GPU Pagerank slows

down, so we do not evaluate it.

Application Normalized runtime

BFS (1 GPU) 1.18x

SSSP (1 GPU) 1.21x

Pagerank (1 GPU) 1.29x

BFS (2 GPUs) 1.38x

SSSP (2 GPUs) 1.41x

Table 5. Performance of Galois applications with Telekine.

RTT (ms) ResNet InceptionV3 DenseNet

10 1.19x 1.10x 1.22x

20 1.29x 1.13x 1.37x

30 1.44x 1.16x 1.49x

40 1.53x 1.18x 1.66x

50 1.62x 1.30x 2.09x

Table 6. Normalized runtime of machine learning workloads with

respect to network round trip time (RTT).

Telekine imposes moderate overheads on single-GPU Ga-

lois applications, adding latency to data transfer times. Galois

implements each graph algorithm as a single GPU kernel

that is iteratively called until the algorithm reaches termina-

tion. Multi-GPU applications exchange data between GPUs

through the host after each iteration. Telekine imposes higher

overheads for multi-GPU workloads because of increased data

movement over the network.

7.4 WAN latency sensitivity

Telekine assumes that the client communicates with the server

over a WAN. The greater distances crossed by WANs result

in longer round trip times (RTTs). The batching of commands

that Telekine does for security also makes it resilient to these

increased RTTs, especially when the ratio of GPU computation

to communication is high. To demonstrate this we increased

the RTT between our machines using netem [65] and ran

the machine learning training benchmarks for different RTTs

(Table 6). Overheads increase with RTT. At 30ms which we

measured to be the RTT between the client and an Amazon

EC2 instance, the overhead for InceptionV3 is still only 16%.

8 Related Work

Enclave-based security. Several recently proposed systems

aim to protect applications from an untrusted platform.

Haven [7], SCONE [4], and Graphene-SGX [95] provide

an environment to support unmodified legacy applications.

Ryoan [43] protects user data from untrusted code and an

untrusted platform. VC3 [83] and Opaque [109] provide SGX-

protected data processing platforms. None of these systems

allow for GPU computation and none of them focus on the

communication issues that then arise.

Trusted execution environments on GPUs. HIX [45] extends

an SGX-like design with duplicate versions of the enclave

memory protection hardware to enable MMIO access from

code running in an SGX enclave. This enables HIX to guar-

antee that a single enclave has exclusive access to the MMIO

regions exported by a GPU, in principle, defeating a malicious



OS that wants to interpose or create its own mappings to them.

While this design provides stronger GPU isolation than current

enclaves, it remains vulnerable to side-channel attacks because

communication is not data oblivious.

Graviton [100] supports GPU TEEs based on secure con-

texts that use the GPU command processor to protect mem-

ory from other concurrently executing contexts. Similar to

Telekine, Graviton secures communication using crypto-

graphic techniques. Telekine can adopt many of Graviton’s

clever mechanisms for its TEE functionality (§3.1), such as

restricting access to GPU page tables without trusting the ker-

nel driver. But Graviton does not protect against side channels,

which is Telekine’s primary mission.

The opportunity to provide stronger security for GPU-

accelerated applications using TEEs and oblivious communi-

cation has been observed by others [41].

Securing accelerators. SUD emulates a kernel environment

in user space to isolate malicious device drivers [9]. Previous

work has explored techniques to support trusted I/O paths,

leveraging hypervisor support [103, 110] or system man-

agement mode [52]. Our work focuses on the secure use of

GPUs with untrusted system software and does not rely on

support from the software at lower privilege layers. Border

Control [74] addresses security challenges for accelerator-

based systems but focuses on protecting the system from a

malicious accelerator, rather than Telekine which protects

CPU and GPU code from an untrusted platform.

GPU security and protection. Studies have analyzed GPU

security properties and vulnerabilities [112]. Frigo et al. [28]

demonstrate techniques that leverage integrated GPUs to accel-

erate side-channel attacks from browser codes using JavaScript

and WebGL. PixelVault [98] exploits physical isolation be-

tween CPUs and GPUs to implement secure storage for keys,

though it was shown to be insecure [112]. CUDA Leaks [77]

shows techniques to exfiltrate data from the GPU to a malicious

user. Attacks that take advantage of GPU memory reuse with-

out re-initialization are a common theme [36, 56, 111]. Several

systems have proposed mechanisms that bring the GPU under

tighter control of system software, exploring OS support [34,

49, 63, 82], access to OS-managed resources [51, 86, 87],

hypervisor support [20, 30, 33, 85, 90, 93, 101] and GPU archi-

tectural support for cross-domain protection [5, 13, 76, 79, 99].

Secure machine learning. Ohrimenko et al. describe an

SGX-based system for multi-party machine learning on an

untrusted platform [73]. Their data-oblivious algorithm for

convolutional neural networks explicitly does not support

state-of-the-art operations that are data dependent (e.g., max

pooling). Telekine can support any data-dependent operations

but requires a GPU TEE. Chiron [42] provides a framework

for untrusted code to design and train machine learning models

in SGX. Telekine does not support untrusted code, but does

allow the use of GPUs which Chiron excludes. CQSTR [108]

lets a trusted platform operator confine untrusted machine

learning code so that it can be securely applied to user data.

By contrast, Telekine protects user data from an untrusted

platform operator. MLcapsule [35] protects service provider

secrets (machine learning model) and client data by running

machine learning algorithms in an SGX enclave but does not

suggest extensions to allow secure GPU acceleration.

Slalom [94] secures training of DNNs using a combination

of TEEs and local GPUs. Slalom’s guarantees are achieved

by partitioning DNN training into linear layers using matrix

multiplication, which are offloaded to a GPU, the remaining

operators, which execute on the CPU in a TEE such as SGX.

Matrix multiplication is verified and turned private using al-

gorithmic techniques [27], which enables secure GPU offload

without requiring GPU TEE support.

Recent work [19, 61] demonstrates how to efficiently apply

neural networks to encrypted data. As far as we know, today

there are no practical techniques for training deep neural

networks on encrypted data.

API remoting. API remoting [6, 22, 23, 50, 57, 58, 80, 104]

is an I/O virtualization technique that interposes a high-level

user-mode API. API calls are forwarded to a user-level com-

puting framework [85] on a dedicated appliance VM [101], or

on a remote server [23, 50]. To our knowledge, Telekine is the

first system to use API remoting as a security technique.

OS-level time protection. Recent extensions to seL4 [29]

suggest general OS-level techniques that prevent timing-based

covert channels by eliminating sharing of hardware resources

that can form the basis of covert channels. The techniques do

not yet generalize to I/O-attached accelerators.

9 Conclusion

Telekine enables secure GPU acceleration in the cloud.

Telekine protects in-cloud computation with a GPU TEE

and application/library computation by placing it on a client

machine. It secures their communication with a novel GPU

stream abstraction that ensures the execution is independent of

input data. Telekine allows GPU-accelerated workloads such

as training machine learning models to leverage cloud GPUs

while providing strong secrecy and integrity guarantees that

protect the user from the platform’s privileged software and

its administrators.

10 Acknowledgements

We would like to thank Işil Dillig for her invaluable feedback

on an early version of this paper. We would also like to thank

Bryan Parno (our shepherd) and our anonymous reviewers;

their constructive feedback made this paper better than it would

have been otherwise. We gratefully acknowledge funding from

NSF grants CNS-1900457, CNS-1618563, and CNS-1846169.



References

[1] Amazon. EC2 Dedicated Hosts. https://aws.amazon.com/ec2/

dedicated-hosts/. (Accessed: February 12, 2020).

[2] AMD. ROCm, a New Era in Open GPU Computing.

https://rocm.github.io/index.html. (Accessed: February 12, 2020).

[3] Marc Andrysco, Andres Nötzli, Fraser Brown, Ranjit Jhala, and Deian

Stefan. Towards Verified, Constant-time Floating Point Operations.

In Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’18, pages 1369–1382, 2018.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre

Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan

O’Keeffe, Mark L. Stillwell, David Goltzsche, David Eyers, Rüdiger

Kapitza, Peter Pietzuch, and Christof Fetzer. SCONE: Secure Linux

Containers with Intel SGX. In Proceedings of the 12th USENIX

Conference on Operating Systems Design and Implementation,

OSDI’16. USENIX Association, 2016.

[5] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata

Ghose, Jayneel Gandhi, Christopher J. Rossbach, and Onur Mutlu. Mo-

saic: A GPU Memory Manager with Application-Transparent Support

for Multiple Page Sizes. In Proceedings of the IEEE/ACM International

Symposium on Microarchitecture, MICRO’17. IEEE, 2017.

[6] A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh. A package for OpenCL

based heterogeneous computing on clusters with many GPU devices.

In 2019 IEEE International Conference on Cluster Computing

Workshops and Posters, CLUSTER WORKSHOPS, September 2010.

[7] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding

Applications from an Untrusted Cloud with Haven. In Proceedings

of the 11th USENIX Conference on Operating Systems Design and

Implementation, OSDI’14. USENIX Association, 2014.

[8] Bitfusion: The Elastic AI Infrastructure for Multi-Cloud.

https://bitfusion.io. (Accessed: February 12, 2020).

[9] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating Malicious

Device Drivers in Linux. In Proceedings of the 2010 USENIX Annual

Technical Conference, USENIXATC’10. USENIX Association, 2010.

[10] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,

Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet:

A Flexible and Efficient Machine Learning Library for Heterogeneous

Distributed Systems. CoRR, abs/1512.01274, 2015.

[11] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,

Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Acoustic

Cryptanalysis. Journal of Cryptology, 30, April 2017.

[12] cloc: Count Lines of Code. https://github.com/AlDanial/cloc.

(Accessed: February 12, 2020).

[13] Jason Cong, Zhenman Fang, Yuchen Hao, and Glenn Reinman.

Supporting Address Translation for Accelerator-Centric Architectures.

In IEEE International Symposium on High Performance Computer

Architecture, HPCA. IEEE, 2017.

[14] Victor Costan and Srinivas Devadas. Intel SGX Explained. 2016.

[15] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin,

Joseph E. Gonzalez, and Ion Stoica. Clipper: A Low-latency Online

Prediction Serving System. In Proceedings of the 14th USENIX

Conference on Networked Systems Design and Implementation,

NSDI’17. USENIX Association, 2017.

[16] Richard Cziva and Dimitrios P Pezaros. On the Latency Benefits of

Edge NFV. In ACM/IEEE Symposium on Architectures for Networking

and Communications Systems, ANCS. IEEE, 2017.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

ImageNet: A large-scale hierarchical image database. In The Confer-

ence on Computer Vision and Pattern Recognition, CVPR. IEEE, 2009.

[18] DIMACS. 9th DIMACS Implementation Challenge - Shortest Paths.

http://users.diag.uniroma1.it/challenge9/download.shtml, 2005.

(Accessed: February 12, 2020).

[19] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter,

Michael Naehrig, and John Wernsing. CryptoNets: Applying Neural

Networks to Encrypted Data with High Throughput and Accuracy. In

International Conference on Machine Learning, 2016.

[20] Micah Dowty and Jeremy Sugerman. GPU virtualization on VMware’s

hosted I/O architecture. ACM SIGOPS Operating Systems Review,

43(3):73–82, 2009.

[21] J. Duato, AJ. Pena, F. Silla, R. Mayo, and E.S. Quintana-Orti.

rCUDA: Reducing the Number of GPU-Based Accelerators in High

Performance Clusters. In 2010 International Conference on High

Performance Computing Systems, HPCS, 2010.

[22] José Duato, Francisco D Igual, Rafael Mayo, Antonio J Peña, Enrique S

Quintana-Ortı́, and Federico Silla. An efficient implementation of GPU

virtualization in high performance clusters. In European Conference on

Parallel Processing, Euro-Par’09, pages 385–394, Berlin, Heidelberg,

2009. Springer, Springer-Verlag.

[23] Jose Duato, Antonio J. Pena, Federico Silla, Juan C. Fernandez, Rafael

Mayo, and Enrique S. Quintana-Orti. Enabling CUDA acceleration

within virtual machines using rCUDA. In Proceedings of the 2011 18th

International Conference on High Performance Computing, HIPC ’11,

pages 1–10, Washington, DC, USA, 2011. IEEE Computer Society.

[24] Morris Dworkin. NIST Special Publication 800-38D: Recommen-

dation for Block Cipher Modes of Operation: Galois/Counter Mode

(GCM) and GMAC. http://csrc.nist.gov/publications/nistpubs/800-

38D/SP-800-38D.pdf, 2007. (Accessed: February 12, 2020).

[25] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan

Parno. Komodo: Using Verification to Disentangle Secure-enclave

Hardware from Software. In Proceedings of the 26th Symposium on

Operating Systems Principles, SOSP ’17, pages 287–305, New York,

NY, USA, 2017. ACM.

[26] Denis Foley. Ultra-Performance Pascal GPU and NVLink Interconnect.

In HotChips, 2016.

[27] Rusins Freivalds. Probabilistic Machines Can Use Less Running Time.

In IFIP Congress, pages 839–842, 1977.

[28] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.

Grand Pwning Unit: Accelerating Microarchitectural Attacks with the

GPU. In IEEE Symposium on Security and Privacy, May 2018.

[29] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time

Protection: The Missing OS Abstraction. In European Conference in

Computer Systems, EuroSys, 2019.

[30] Giulio Giunta, Raffaele Montella, Giuseppe Agrillo, and Giuseppe

Coviello. A GPGPU transparent virtualization component for high

performance computing clouds. In European Conference on Parallel

Processing, pages 379–391. Springer, Springer, 2010.

[31] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo

Müller. Cache Attacks on Intel SGX. In Proceedings of the 10th

European Workshop on Systems Security, EuroSec’17, 2017.

[32] Scott Grauer-Gray, William Killian, Robert Searles, and John Cavazos.

Accelerating Financial Applications on the GPU. In Proceedings of

the 6th Workshop on General Purpose Processor Using Graphics

Processing Units, GPGPU-6, pages 127–136, New York, NY, USA,

2013. ACM.

[33] Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvardhan

Kharche, Niraj Tolia, Vanish Talwar, and Parthasarathy Ranganathan.

GViM: GPU-accelerated virtual machines. In Proceedings of the 3rd

ACM Workshop on System-level Virtualization for High Performance

Computing, pages 17–24. ACM, 2009.

[34] Vishakha Gupta, Karsten Schwan, Niraj Tolia, Vanish Talwar, and

Parthasarathy Ranganathan. Pegasus: Coordinated Scheduling for

Virtualized Accelerator-based Systems. In Proceedings of the 2011

USENIX Conference on USENIX Annual Technical Conference,

USENIXATC’11, pages 3–3. USENIX Association, 2011.

[35] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Max

Augustin, Michael Backes, and Mario Fritz. MLCapsule: Guarded

Offline Deployment of Machine Learning as a Service. CoRR,

abs/1808.00590, 2018.



[36] Ari B. Hayes, Lingda Li, Mohammad Hedayati, Jiahuan He, Eddy Z.

Zhang, and Kai Shen. GPU Taint Tracking. In Proceedings of the

2017 USENIX Conference on Usenix Annual Technical Conference,

USENIX ATC ’17, pages 209–220. USENIX Association, 2017.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-

ual learning for image recognition. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pages 770–778, 2016.

[38] Nicole Hemsoth. Medical Imaging Drives GPU Accelerated Deep

Learning Developments. https://www.nextplatform.com/2017/11/

27/medical-imaging-drives-gpu-accelerated-deep-learning-

developments/, November 2017. (Accessed: February 12, 2020).

[39] HIP: Convert CUDA to Portable C++ Code. https://github.com/

ROCm-Developer-Tools/HIP. (Accessed: February 12, 2020).

[40] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der

Maaten. Densely connected convolutional networks. In Proceedings

of the IEEE conference on computer vision and pattern recognition,

volume 1, page 3, 2017.

[41] Tyler Hunt, Zhipeng Jia, Vance Miller, Christopher J. Rossbach,

and Emmett Witchel. Isolation and Beyond: Challenges for System

Security. In Proceedings of the Workshop on Hot Topics in Operating

Systems, HotOS ’19, pages 96–104, New York, NY, USA, 2019. ACM.

[42] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and

Emmett Witchel. Chiron: Privacy-preserving Machine Learning as

a Service. CoRR, abs/1803.05961, 2018.

[43] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett

Witchel. Ryoan: A Distributed Sandbox for Untrusted Computation

on Secret Data. In Proceedings of the 12th USENIX Conference

on Operating Systems Design and Implementation, OSDI’16, pages

533–549. USENIX Association, 2016.

[44] Intel(R) Software Guard Extensions Programming Reference.

https://software.intel.com/sites/default/files/managed/48/88/

329298-002.pdf, 2014. (Accessed: February 12, 2020).

[45] Insu Jang, Adrian Tang, Taehoo Kim, Simha Sethumadhavan, and

Jaehyuk Huh. Heterogeneous Isolated Execution for Commodity

GPUs. In Proceedings of the Eighteenth International Conference

on Architectural Support for Programming Languages and Operating

Systems, ASPLOS’19, 2019.

[46] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A complete key

recovery timing attack on a GPU. In IEEE International Symposium

on High-Performance Computer Architecture (HPCA), 2016.

[47] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A Novel Side-Channel

Timing Attack on GPUs. In Proceedings of the on Great Lakes

Symposium on VLSI 2017, GLSVLSI ’17, pages 167–172, New York,

NY, USA, 2017. ACM.

[48] Simon Johnson. Intel SGX and Side-Channels. https://software.intel.

com/en-us/articles/intel-sgx-and-side-channels, March 2017.

(Accessed: February 12, 2020).

[49] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka

Ishikawa. TimeGraph: GPU scheduling for real-time multi-tasking

environments. In Proc. USENIX ATC, USENIXATC’11, pages 17–30.

USENIX Association, 2011.

[50] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. SnuCL: an OpenCL

framework for heterogeneous CPU/GPU clusters. In Proceedings

of the 26th ACM international conference on Supercomputing, page

341352. ACM, 2012.

[51] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel,

Amir Wated, and Mark Silberstein. GPUnet: Networking Abstractions

for GPU Programs. In Proceedings of the 11th USENIX Conference

on Operating Systems Design and Implementation, OSDI’14, pages

201–216. USENIX Association, 2014.

[52] Yonggon Kim, Ohmin Kwon, Jinsoo Jang, Seongwook Jin, Hyeongboo

Baek, Brent Byunghoon Kang, and Hyunsoo Yoon. On-demand

bootstrapping mechanism for isolated cryptographic operations on

commodity accelerators. 62, 7 2016.

[53] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike

Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting Speculative

Execution. CoRR, January 2018.

[54] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power

Analysis. In Proceedings of the 19th Annual International Cryptology

Conference on Advances in Cryptology, CRYPTO ’99, pages 388–397,

Berlin, Heidelberg, 1999. Springer-Verlag.

[55] Dayeol Lee, David Kohlbrenner, Kevin Cheang, Cameron Rasmussen,

Kevin Laeufer, Ian Fang, Akash Khosla an Chia-Che Tsai, Sanjit Seshia,

Dawn Song, and Krste Asanovic. Keystone Enclave: An Open-Source

Secure Enclave for RISC-V. https://keystone-enclave.org/files/

keystone-risc-v-summit.pdf, 2018. (Accessed: February 12, 2020).

[56] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. Stealing

Webpages Rendered on Your Browser by Exploiting GPU Vulnera-

bilities. In Proceedings of the 2014 IEEE Symposium on Security and

Privacy, SP ’14, pages 19–33, Washington, DC, USA, 2014. IEEE

Computer Society.

[57] Teng Li, Vikram K Narayana, Esam El-Araby, and Tarek El-Ghazawi.

GPU resource sharing and virtualization on high performance

computing systems. In Parallel Processing (ICPP), 2011 International

Conference on, pages 733–742. IEEE, 2011.

[58] Tyng-Yeu Liang and Yu-Wei Chang. GridCuda: A Grid-Enabled

CUDA Programming Toolkit. In Advanced Information Networking

and Applications (WAINA), 2011 IEEE Workshops of International

Conference on, pages 141–146, March 2011.

[59] Arm Limited. Introducing Arm TrustZone. https://developer.arm.

com/technologies/trustzone. (Accessed: February 12, 2020).

[60] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,

Werner Haas, Stefan Mangard, Paul Kocher, Dkaniel Genkin, Yuval

Yarom, and Mike Hamburg. Meltdown. CoRR, January 2018.

[61] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious Neural

Network Predictions via MiniONN transformations. Cryptology ePrint

Archive, Report 2017/452, 2017. http://eprint.iacr.org/2017/452.

[62] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian

Müller, Lothar Thiele, and Srdjan Capkun. Thermal Covert Channels

on Multi-core Platforms. In USENIX Security Symposium, 2015.

[63] Konstantinos Menychtas, Kai Shen, and Michael L. Scott. Disengaged

Scheduling for Fair, Protected Access to Fast Computational Acceler-

ators. In Proceedings of the 19th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems,

ASPLOS ’14, pages 301–316, New York, NY, USA, 2014. ACM.

[64] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael

Abu-Ghazaleh. Rendered Insecure: GPU Side Channel Attacks Are

Practical. In ACM Conference on Computer and Communications

Security (CCS), 2018.

[65] netem. https://wiki.linuxfoundation.org/networking/netem, 2019.

(Accessed: February 12, 2020).

[66] NVIDIA. CUDA Zone. https://developer.nvidia.com/cuda-zone.

(Accessed: February 12, 2020).

[67] NVIDIA. Driving Innovation: Building AI-Powered Self-Driving

Cars. https://www.nvidia.com/en-us/self-driving-cars/. (Accessed:

February 12, 2020).

[68] NVIDIA. RISC-V Story. https://riscv.org/wp-content/uploads/

2016/07/Tue1100 Nvidia RISCV Story V2.pdf. (Accessed:

February 12, 2020).

[69] NVIDIA. GPUs and DSLs for Life Insurance Modeling. https:

//devblogs.nvidia.com/gpus-dsls-life-insurance-modeling/,

March 2016. (Accessed: February 12, 2020).

[70] NVIDIA. Microsoft Sets New Speech Recognition Record. https:

//news.developer.nvidia.com/microsoft-sets-new-speech-

recognition-record/, August 2017. (Accessed: February 12, 2020).

[71] NVIDIA. NVIDIA CUDA Toolkit Documentation. http://docs.

nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html,

2017. (Accessed: February 12, 2020).



[72] NVIDIA. CUDA Toolkit Documentation (Streams).

https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#streams, 2018. (Accessed: February 12, 2020).

[73] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Sebastian Nowozin

Aastha Mehta, Kapil Vaswani, and Manuel Costa. Oblivious

Multi-Party Machine Learning on Trusted Processors. In USENIX

Security Symposium, 2016.

[74] Lena E. Olson, Jason Power, Mark D. Hill, and David A. Wood.

Border Control: Sandboxing Accelerators. In Proceedings of the 48th

International Symposium on Microarchitecture, MICRO-48, pages

470–481, New York, NY, USA, 2015. ACM.

[75] Sreepathi Pai and Keshav Pingali. A Compiler for Throughput

Optimization of Graph Algorithms on GPUs. In Proceedings of the

2016 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2016,

pages 1–19, New York, NY, USA, 2016. ACM.

[76] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. Architectural

Support for Address Translation on GPUs: Designing Memory

Management Units for CPU/GPUs with Unified Address Spaces.

In Proceedings of the Eighteenth International Conference on

Architectural Support for Programming Languages and Operating

Systems, ASPLOS’14, 2014.

[77] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. CUDA

Leaks: A Detailed Hack for CUDA and a (Partial) Fix. ACM Trans.

Embed. Comput. Syst., 15(1):15:1–15:25, January 2016.

[78] Sandro Pinto and Nuno Santos. Demystifying Arm TrustZone: A

Comprehensive Survey. ACM Computing Surveys, 51(6), 2019.

[79] Jonathan Power, Mark D Hill, and David A Wood. Supporting x86-64

Address Translation for 100s of GPU Lanes. In HPCA, 2014.

[80] C. Reano, A. J. Pena, F. Silla, J. Duato, R. Mayo, and E. S.

Quintana-Orti. CU2rCU: Towards the complete rCUDA remote

GPU virtualization and sharing solution. 20th Annual International

Conference on High Performance Computing, 0:1–10, 2012.

[81] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.

Hey, you, get off of my cloud: exploring information leakage in

third-party compute clouds. In ACM Conference on Computer and

Communications Security (CCS), 2009.

[82] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi

Ray, and Emmett Witchel. PTask: Operating System Abstractions

to Manage GPUs as Compute Devices. In Symposium on Operating

Systems Principles, SOSP’11, pages 233–248. ACM, 2011.

[83] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis,

Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3:

Trustworthy Data Analytics in the Cloud using SGX. In Proceedings

of the IEEE Symposium on Security and Privacy, 2015.

[84] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian

Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-

Privilege-Boundary Data Sampling. CoRR, abs/1905.05726, 2019.

[85] Lin Shi, Hao Chen, and Jianhua Sun. vCUDA: GPU accelerated high

performance computing in virtual machines. In Parallel Distributed

Processing, 2009. IPDPS 2009. IEEE International Symposium on,

May 2009.

[86] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. GPUfs:

Integrating a File System with GPUs. In Proceedings of the Eighteenth

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), volume 32, March 2013.

[87] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel.

GPUfs: Integrating a File System with GPUs. ACM Transactions on

Computer Systems, 32(1), 2014.

[88] Erik Smistad, Thomas L. Falch, Mohammadmehdi Bozorgi, Anne C.

Elster, and Frank Lindseth. Medical image segmentation on GPUs

A comprehensive review. Medical Image Analysis, 20(1):1–18, 2015.
[89] Matthew J.A. Smith, Mikayel Samvelyan, and Tabish Rashid. Using

AI to Solve Collaborative Challenges by Playing StarCraft. https:

//news.developer.nvidia.com/using-ai-to-solve-collaborative-

challenges-by-playing-starcraft/. (Accessed: February 12, 2020).

[90] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono.

GPUvm: Why Not Virtualizing GPUs at the Hypervisor? In USENIX

ATC, USENIX ATC’14, pages 109–120. USENIX Association, 2014.

[91] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and

Zbigniew Wojna. Rethinking the inception architecture for computer

vision. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2818–2826, 2016.

[92] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho

Navarro, and Mateo Valero. Enabling Preemptive Multiprogramming

on GPUs. In ISCA, 2014.

[93] Kun Tian, Yaozu Dong, and David Cowperthwaite. A Full GPU

Virtualization Solution with Mediated Pass-Through. In USENIX ATC,

pages 121–132, 2014.

[94] Florian Tramè and Dan Boneh. Slalom: Fast, Verifiable and Private

Execution of Neural Networks in Trusted Hardware. In International

Conference on Learning Representations, ICLR ’19, 2019.

[95] Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX:

A Practical Library OS for Unmodified Applications on SGX. In

Proceedings of the 2017 USENIX Conference on Usenix Annual

Technical Conference, USENIX ATC ’17, pages 645–658. USENIX

Association, 2017.

[96] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris

Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval

Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys to

the Intel SGX Kingdom with Transient Out-of-Order Execution. In

USENIX Security Symposium, 2018.

[97] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh

Razavi. Malicious Management Unit: Why Stopping Cache Attacks in

Software is Harder Than You Think. In USENIX Security, August 2018.

[98] Giorgos Vasiliadis, Elias Athanasopoulos, Michalis Polychronakis, and

Sotiris Ioannidis. PixelVault: Using GPUs for Securing Cryptographic

Operations. In Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’14, pages 1131–1142,

New York, NY, USA, 2014. ACM.

[99] Jan Vesely, Arkaprava Basu, Mark Oskin, Gabriel H. Loh, and Ab-

hishek Bhattacharjee. Observations and Opportunities in Architecting

Shared Virtual Memory for Heterogeneous Systems. In ISPASS, 2016.

[100] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted

Execution Environments on GPUs. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2018.

[101] Lan Vu, Hari Sivaraman, and Rishi Bidarkar. GPU virtualization for

high performance general purpose computing on the ESX hypervisor.

In Proceedings of the High Performance Computing Symposium,

page 2. Society for Computer Simulation International, 2014.

[102] Vultr.com. https://www.vultr.com/products/cloud-compute/.

(Accessed: November 2019).

[103] Samuel Weiser and Mario Werner. SGXIO: Generic Trusted I/O Path

for Intel SGX. In Proceedings of the Seventh ACM on Conference on

Data and Application Security and Privacy, CODASPY ’17, pages

261–268, New York, NY, USA, 2017. ACM.

[104] Shucai Xiao, Pavan Balaji, James Dinan, Qian Zhu, Rajeev Thakur, Su-

san Coghlan, Heshan Lin, Gaojin Wen, Jue Hong, and Wu-chun Feng.

Transparent accelerator migration in a virtualized GPU environment.

In Proceedings of the 12th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, CCGrid, pages 124–131, 2012.

[105] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-

Channel Attacks: Deterministic Side Channels for Untrusted Operating

systems. In Proceedings of the IEEE Symposium on Security and

Privacy, 2015.

[106] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog Computing:

Platform and Applications. In ACM/IEEE Workshop on Hot Topics

in Web Systems and Technologies, HotWeb, 2015.



[107] Hangchen Yu, Arthur M. Peters, Amogh Akshintala, and Christopher J.

Rossbach. AvA: Accelerated Virtualization of Accelerators. In

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2020.

[108] Yan Zhai, Lichao Yin, Jeffrey S Chase, Thomas Ristenpart, and

Michael M Swift. CQSTR: Securing Cross-Tenant Applications with

Cloud Containers. In ACM Symposium on Cloud Computing, 2016.

[109] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,

Joseph E. Gonzalez, and Ion Stoica. Opaque: An Oblivious and

Encrypted Distributed Analytics Platform. In USENIX Symposium

on Networked Systems Design and Implementation, NSDI, 2017.

[110] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building

Verifiable Trusted Path on Commodity x86 Computers. In 2012 IEEE

Symposium on Security and Privacy, May 2012.

[111] Zhe Zhou, Wenrui Diao, Xiangyu Liu, Zhou Li, Kehuan Zhang, and

Rui Liu. Vulnerable GPU Memory Management: Towards Recovering

Raw Data from GPU. PoPETs, 2017(2):57–73, 2017.

[112] Zhiting Zhu, Sangman Kim, Yuri Rozhanski, Yige Hu, Emmett

Witchel, and Mark Silberstein. Understanding The Security of Discrete

GPUs. In Proceedings of the General Purpose GPUs, GPGPU-10,

pages 1–11, New York, NY, USA, 2017. ACM.


	Abstract
	1 Introduction
	2 Threat model
	2.1 Guarantees
	2.2 Limitations.

	3 GPU background
	3.1 GPU TEE
	3.2 Communicating with GPUs

	4 Example side-channel attack
	5 Design
	5.1 Data-oblivious stream construction
	5.2 Telekine operation
	5.3 Data movement example.
	5.4 Synchronizing data-oblivious streams

	6 Implementation
	7 Evaluation
	7.1 Telekine performance tradeoff
	7.2 Machine learning algorithms
	7.3 Graph algorithms
	7.4 WAN latency sensitivity

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References

