Telekine: Secure Computing with Cloud GPUs

Tyler Hunt

The University of Texas at Austin

Zhipeng Jia

The University of Texas at Austin

Yige Hu

The University of Texas at Austin

Vance Miller

The University of Texas at Austin

Christopher J. Rossbach

The University of Texas at Austin

Ariel Szekely

The University of Texas at Austin

Emmett Witchel
The University of Texas at Austin

and VMware Research

Abstract

GPUs have become ubiquitous in the cloud due to the dramatic
performance gains they enable in domains such as machine
learning and computer vision. However, offloading GPU
computation to the cloud requires placing enormous trust
in providers and administrators. Recent proposals for GPU
trusted execution environments (TEEs) are promising but
fail to address very real side-channel concerns. To illustrate
the severity of the problem, we demonstrate a novel attack
that enables an attacker to correctly classify images from
ImageNet [17] by observing only the timing of GPU kernel
execution, rather than the images themselves.

Telekine enables applications to use GPU acceleration in
the cloud securely, based on a novel GPU stream abstraction
that ensures execution and interaction through untrusted com-
ponents are independent of any secret data. Given a GPU
with support for a TEE, Telekine employs a novel variant
of API remoting to partition application-level software into
components to ensure secret-dependent behaviors occur only
on trusted components. Telekine can securely train modern
image recognition models on MXNet [10] with 10%-22% per-
formance penalty relative to an insecure baseline with a locally
attached GPU. It runs graph algorithms using Galois [75] on
one and two GPUs with 18%—41% overhead.

1 Introduction

GPUs have become popular computational accelerators in
public clouds. Accuracy improvements enabled by GPU-
accelerated computation are driving the success of machine
learning and computer vision in application domains such
as medicine [38, 88] transportation [67], finance [32], insur-
ance [69], gaming [89], and communication [70].
Unfortunately, it is currently impossible to run GPU work-
loads in the cloud without trusting the provider, eliminating
cloud GPUs as an option for security-conscious users. Users
must trust the provider because the provider controls the
layer of privileged software responsible for management and
provisioning. Even dedicated cloud instances (e.g., Amazon’s
EC2 dedicated hosts [1]) run the provider’s virtualization
software, making GPUs vulnerable to malicious or curious

Client Machine

Cloud Machine

Data-oblivious

Application Streams
A

GPU API Calls

LibTelekine

‘ Trusted ‘ Untrusted

Figure 1. Telekine components and their organization.

cloud administrators. Virtualization software runs at a host ma-
chine’s highest privilege level, exposing a wide attack surface
that includes GPU memory, execution context, and firmware.
Finally, unfettered visibility into host/device communication
exposes both data and timing channels.

Trusted execution environments (TEESs) should, in principle,
make the cloud an option for users who refuse to trust the
provider. TEEs provide a hardware root of trust, allowing
users to access cloud compute resources without trusting
provider software—including the privileged software of the
hypervisor and operating system. TEE hardware protects the
privacy and integrity of user code and data from administrators
and from attackers who control privileged software. TEEs
exist currently on Intel CPUs via software guard extensions
(SGX) [44], ARM CPUs via TrustZone [59], and RISC-V
CPUs via Keystone [55]. Researchers have proposed GPU-
based TEEs [100] and TEE extensions for GPUs [45], though
none have been built or deployed. However, as we argue
below, a design that simply composes components that run in
hardware-supported CPU and GPU TEEs will fail to provide
strong security due to side channels.

GPU-accelerated applications have three main software
components: (1) an API and a user library (e.g., CUDA [66] or
HIP [39]) that provides high-level programming functionality
and executes on a CPU; (2) CPU-side control code at the user
and the system level that manages communication with the
GPU, and (3) GPU kernels (programs) that execute on the
GPU device itself. It is the data and code that moves between
the CPU and GPU that potentially creates side channels visible
to CPU-side code.

An attacker can extract meaningful information from the
execution time of code on the GPU, which privileged soft-
ware can compute on the CPU by observing communication
with the GPU. For example, we demonstrate a novel attack
on image recognition machine learning models that allows
malicious system software to correctly classify images from
ImageNet [17] used as input to the model. By observing only
the timing of a model trained to classify images (the image
model), we build a new model (the timing model) that can
classify images based on the execution timing of layers in the
image model. Even if a security-conscious user encrypts their
input data (and decrypts it on the GPU), a cloud provider’s
system administrator can use the timing information of GPU
kernels (measured on the CPU) in the image model to classify
its input images. We train the timing model to distinguish
images of two classes with 78% accuracy. For more classes,
accuracy decreases but stays above random guessing.

We propose Telekine, a system that enables the secure use
of cloud GPUs without trusting the platform provider. GPU
TEEs provide a secure execution environment but leave the
user open to side channels when communication depends on
secret data. Telekine makes communication with the GPU
TEE data oblivious, that is, completely independent of secrets
contained in the input data. Data obliviousness is a strong
property that excludes the existence of side-channel attacks
against CPU-side code and host/device communication whose
observable behavior (e.g., timing, memory accesses, DMA
sizes, etc.) depends on secret input data.

Telekine has three components (shown in Figure 1):
libTelekine that runs on a trusted user machine (a client),
GPUs physically attached to a cloud machine (a server)
that supports GPU TEEs with specific security requirements
(§3.1), and the relay which facilitates communication between
libTelekine and the GPU. Telekine uses a GPU TEE because
it needs a mechanism to protect GPU computation from the
cloud provider; a GPU TEE is tailored to that task.

Telekine protects the application and GPU runtime by
moving it from the cloud to the client. The advantage of this
approach is that the user must already trust their client machine,
and the application and user libraries are large and complex and
therefore prone to side-channel attacks, making them difficult
to secure if they execute in the cloud. The disadvantage is that
GPU libraries assume a local GPU with a fast, high-bandwidth
connection to the CPU. Telekine decouples the user library
from low-level GPU control by interposing on the GPU API
and efficiently forwarding these calls to the server (a technique
known as API remoting) which has been used to virtualize
GPUs [6, 8, 22,23, 30, 33, 50,57, 58, 85, 101, 107], but to our
knowledge has never been used for security. A client using
Telekine does not need to have a GPU installed.

Telekine treats the CPU-side control code on the cloud
server (“Relay” in Figure 1) as completely untrusted, almost
as if it were part of the network. The client machine establishes
a cryptographically secure channel directly with the code

executing on the cloud GPU. The network and the CPU-based
code on the server can delay the computation, but cannot
compromise its privacy or integrity.

Telekine secures the communication between the client
machine and the cloud GPU by transforming the user’s GPU
API calls into data-oblivious streams. Data-oblivious streams
are similar to constant time defenses [3] in that they aim to
remove timing channels by ensuring that observable events
are deterministic regardless of secrets. Telekine constructs
data-oblivious streams by reducing all API calls to a sequence
of code execution (launchKernel) and data movement
(memcpy) commands. It then schedules these commands
at a fixed rate, possibly creating new commands, or split-
ting memcpy commands into fixed-size pieces. Fixed-sized,
fixed-rate communication is data oblivious; it ensures that
any observable patterns are independent of the input data
and therefore devoid of side-channel information. Fixed-rate
communication is not a novel way to eliminate side channels,
but Telekine’s design shows how to apply it efficiently to
modern GPU-based computing.

Given that Telekine requires a GPU TEE, it is logical to
wonder why it does not use a CPU TEE. After all, putting the
application and programming libraries into a CPU TEE would
reduce the latency and increases the bandwidth for communi-
cation between libTelekine and the GPU. Unfortunately, Intel
and ARM TEEs do not prevent side channels as part of their
threat model [48, 78]. Keystone [55] and Komodo [25] intend
to address side channels for RISC-V and ARM respectively,
but work is ongoing. Also, making existing applications data
oblivious is difficult for programmers, requires access to
source code (not needed by Telekine), and often slows down a
program greatly (e.g., Opaque [109] slows down data analytics
by 1.6-46x). Should future CPU TEEs evolve to address side
channels, Telekine can use them. Much of Telekine focuses
on securing the communication between trusted components,
which can be an improved CPU TEE and a GPU TEE or they
can be the client machine and server GPU TEE, as they are in
our prototype.

Telekine is the first system to offer efficient, secure exe-
cution of GPU-accelerated applications on cloud machines
under a strong and realistic threat model. We use Telekine to
secure several GPU-accelerated applications via two frame-
works: the MXNet [10] machine learning framework and the
Galois graph processing system [75]. On a realistic testbed
Telekine provides strong secrecy and integrity guarantees,
including side-channel protection. MXNet [10] training for
three different, modern image recognition models incur a
10-22% performance penalty relative to a baseline with a
locally attached GPU. MXNet inference for the same models
over a connection from Austin, TX to the Vultur’s Dallas, TX
datacenter [102] incurs a penalties of 0-8% for batch sizes of
64 images. Telekine runs graph algorithms using Galois [75]
on one and two GPUs with 18%—41% overhead.

This paper makes the following contributions.

e We demonstrate a CPU-side timing attack on deep neu-
ral networks that allows a compromised OS to correctly
classify images in encrypted input (§4).

e We provide a design and prototype for Telekine, a sys-
tem that eliminates CPU-based side-channel attacks
against a GPU TEE with a novel variant of APl remoting
to execute secret-dependent code on the GPU TEE and
a trusted client (§5).

e We thoroughly evaluate the performance, robustness,
and security of Telekine protecting a variety of impor-
tant workloads on one and two GPUs: machine learning
and graph processing (§7).

2 Threat model

In all current cloud GPU platforms, the cloud provider’s privi-
leged software, and hence administrators, can gain easy access
to GPU state, creating a significant attack surface including
explicit channels such as GPU memory, firmware, and execu-
tion context. Work in this area agrees on the vulnerability of
GPU state to privileged software [45, 100].

Telekine assumes a powerful adversary who controls all
software on the platform, including privileged software such
as device drivers, the host operating system and hypervisor.
This captures typical cloud platforms, where the platform
provider has full control over all software, and attackers can
run malicious code on the same physical device as a target
cloud application [81]. A malicious provider, a malicious
administrator, or an OS-level attacker can use their control of
privileged software to steal the secrets of tenants. We assume
that the adversary cannot, however, compromise hardware—the
physical GPU package.

Telekine assumes a GPU TEE, with capabilities similar to
current research proposals like Graviton [100]. The details can
vary, but a GPU TEE establishes secure memory on the GPU
device and provides a protocol to initiate a computation that
can be remotely attested to start from the correct state (code
and initial data) and execute privately and without interference
from the CPU side. We provide additional detail on Telekine’s
TEE requirements in Section 3.1.

GPU TEE:s do not, by themselves, secure communication
with the CPU and our attack (§4) shows how much information
there is in the precise timing of CPU/GPU communication.
Telekine protects communication with the GPU, guaranteeing
that the adversary cannot learn about input data directly or
through side channels, including timing channels.

While secure control of a GPU has been proposed [45, 100],
there has been little work securing side channels. These side
channels undercut the security of the TEE. In addition to the
timing attack we developed (§4), AES key extraction using
shared GPU hardware [31, 46, 47] has been demonstrated.
And recent side-channel attacks [64] have shown practical
methods to fingerprint websites using performance counters
observed during GPU rendering in the browser.

2.1 Guarantees

Telekine provides the following secrecy properties which
prevent any explicit or implicit data flow from input data to an
external observer.

S1 (content): Messages are encrypted to ensure their content
cannot be directly read by an observer.

S2 (timing): The transmit schedule for messages is fixed. Any
transmission delays are independent of input data.

S3 (size): The size of each message is fixed. Telekine pads
and/or splits messages to achieve fixed-sized messages.

Telekine also provides the following integrity properties to
ensure that any result the user receives is either a result that
could have been generated by a GPU hosted by a completely
benign cloud provider, or an error.

I1 (content): The content of all communication is protected
by an end-to-end integrity check; a message authenti-
cation code (MAC) allows Telekine to detect modifica-
tions, returning an error if any are detected.

12 (order): Each message carries a sequence number which
allows Telekine to detect out of order messages. The
sequence numbers also prevent replay attacks.

I3 (API-preserving): Commands issued by the application
should affect GPU state in the same way they would
on a local GPU, regardless of any transformations that
Telekine applies.

GPU commands have semantics that Telekine must main-
tain for correctness. For example, GPU runtimes expose a
stream [71] abstraction to application code. API calls issued
by the application on the same stream are executed serially in
the order they were issued. A kernel launched from a particular
stream will block the completion of subsequent API calls
on that stream until that kernel terminates. Applications can
have many streams which map to different command queues
exposed by hardware. API calls made on separate streams
can be executed in parallel. Telekine must respect the data
dependence semantics of streams.

2.2 Limitations.

Physical side channels and denial of service attacks are out of
scope. In situations where an adversary monitoring physical
side channels like temperature [62], power [54], or acoustical
emanations [11] is a concern, Telekine would need to be
augmented with other techniques to maintain security. In our
threat model, a cloud provider wishing to deny service can
always do so, e.g., by interrupting the network or refusing to
run user processes.

Telekine provides clients a mechanism to disguise their
end-to-end runtime but does not impose policy. Applications
can choose the most efficient policy for their security needs.
We believe end-to-end runtime is a poor predictor of input
data (and our experiments in Section 4 bear this out), further
justifying the clients setting policy.

3 GPU background

Applications use GPUs through high-level, vendor-provided
APIs such as CUDA [66] and HIP [39]; they include a user-
level runtime and OS-level driver that communicate through
a combination of 1oct1 system calls and memory-mapped
command queues. The driver is responsible for creating map-
pings from virtual memory to physical MMIO regions. After
these privileged operations are complete, any software that has
a mapping (user or OS) may communicate directly with the
device using registers or command queues exposed through
the MMIO regions.

While memory management, synchronization, and other
features (e.g., IPC, power management, etc.) require interac-
tion with the driver state (e.g., creating and managing memory
mappings), a workload that pre-allocates all of its required
GPU memory and uses only data transfer and kernel launch
primitives can function completely by writing commands into
the GPU’s command queue. It is possible to construct and sub-
mit these commands without referring to any state maintained
by either the runtime or the driver. As we show in Section 5, this
property enables Telekine’s relay to be effectively stateless.

3.1 GPUTEE

Telekine requires a TEE on the GPU and Graviton [100] is a
detailed proposal from the literature that provides the basic
functionality that any GPU TEE (or indeed any TEE) should
provide: secrecy for GPU code and input data, integrity for
the GPU computation, and remote attestation for the computa-
tion’s initial state. Graviton achieves most of its functionality
by changing the GPU firmware, so it does not require extensive
changes to the GPU hardware itself (neither does Telekine).
This is achievable because the modern GPU firmware runs
on a fully programmable control processor [68]. We explain
GPU TEE functionality by saying what the GPU does, but the
implementation could be firmware, hardware, or both.

The integrity, secrecy, and ordering of the commands sent to
the GPU are ensured by a secure channel. Before computation
begins, the client machine and the GPU agree on a shared sym-
metric key via a key exchange protocol (e.g., Diffie-Hellman).
The client uses this key to send commands using a protocol
like transport layer security (TLS) which provides a secure
channel ([100] §5.2).

The integrity of the computation is assured by the GPU,
which checks the initial execution conditions and attests these
conditions to the remote user, who can verify that the expected
code has been loaded into the expected address range with the
expected permissions, and that the hardware generating the
attestation is genuine. There are many variations on remote
attestation, but it is a common feature for modern enclaves
like SGX [14] and Keystone [55]. Telekine expects the GPU
to have been initialized with all of the GPU kernels the appli-
cation intends to launch and any initial data when attestation
has completed.

Telekine and Graviton split GPU memory into untrusted and
trusted regions so the untrusted host OS/Hypervisor can DMA
into untrusted GPU memory, enabling efficient data transfers;
the GPU can then copy data between untrusted GPU memory
and trusted memory. This mechanism provides GPU memory
protection even though the IOMMU is under control of the un-
trusted kernel. Telekine and Graviton disable unified memory,
which allows privileged CPU code to demand page GPU mem-
ory and exposes side-channel memory access information.

The GPU TEE should turn off or refuse to report the state
of any performance counters. Recent GPU side-channel at-
tacks [28, 64] have successfully used timing data from GPU
performance counters.

Due to Telekine’s focus on side channels, it has require-
ments beyond the previously proposed GPU TEEs. These
requirements are more straightforward to provide than the core
TEE functionality.

Eliminate GPU side channels. Some TEE designs allow dif-
ferent tenants/principals to execute concurrently (e.g., SGX,
Keystone), sharing the underlying hardware. Concurrent exe-
cution is attractive from a utilization perspective but it provides
arich side-channel attack surface which has plagued the secu-
rity of CPU TEE designs. Telekine assumes side channels from
concurrent principals (e.g., memory access timing and band-
width) do not exist on the GPU TEE. A conservative design
which prevents hardware side channels is to disallow concur-
rent execution. Graviton TEEs scrub their state (e.g., registers,
memory, caches) after resources are freed so there is no danger
of tenants observing transient state from previous computation.

Conceal kernel completions. GPUs signal the CPU via an
interrupt when a kernel has completed its execution. Interrupt
timing leaks information about the kernel’s runtime. Rather
than rely on interrupts, Telekine uses data-oblivious streams
(§5.1) that include tagged buffers that allow the GPU to
communicate computational results back to the client. The
platform only sees DMA from the GPU to untrusted CPU
memory at a fixed rate.

Support no-op kernel launches. Dependences between GPU
kernels often cause the launch of one kernel to wait for
another’s completion, which provides indirect timing infor-
mation. The GPU TEE must support a no-op kernel launch
command so that Telekine can generate cover traffic ensure
the adversary sees kernel launches at a fixed rate.

Timely command consumption. The GPU TEE should con-
sume its command queue independently of how long kernels
take to execute on the GPU. If the GPU waits until each kernel
completes before dequeueing the next launch command, it can
fall behind the input queue fill rate, allowing the input queue to
fill. The adversary can detect this situation by observing how
often the encrypted queue content changes, creating a proxy
for kernel execution time. The GPU should consume command
queue entries at a fixed rate, discard the no-ops, and store the

real commands internally until they can be executed. Telekine
can hold back real kernel launches and send no-op launches in
their places to ensure these internal GPU queues do not fill up.

3.2 Communicating with GPUs

GPUs can be connected to the CPU memory interconnect
(integrated) or to the PCIe bus (discrete). We focus on PCle-
attached GPUs because they are preferred in performance-
focused settings like the cloud due to their higher memory
bandwidth and better performance.

The PCle interfaces provide two forms of communication:
memory-mapped I/O (MMIO) and direct memory access
(DMA). MMIO re-purposes regions of the physical memory
address space for device communication. Contiguous physical
ranges, or BARs (base-address-regions) are reserved by the
hardware, and the hardware redirects loads/stores targeting
those regions to the device. Modern GPUs use MMIO BARs
to expose registers for configuring the device, and frequently
accessed device memory (e.g., command queues).

Any software that can obtain a mapping to MMIO can
potentially communicate with the GPU to control it (through a
register or command queue interface) or read/write its memory
(through an MMIO memory BAR or by configuring DMA
transfers to/from it). Telekine assumes GPU TEE support
similar to Graviton [100] to prevent MMIO access to GPU
status and configuration registers during secure execution.

The hypervisor and/or host operating system controls the
PCle bus, which routes packets to multiple devices connected
to the PCle root complex in a tree topology. Packets in transit
to/from the GPU may be visible to other devices. Privileged
host software may change the routing topology dynamically
and can install pseudo-devices that allow it to sniff traffic.
Securing communication with the GPU must defend against
these passive and active PCle attacks.

4 Example side-channel attack

Telekine addresses software attacks launched by an adverary
resident on a cloud host, such as those launched by a malicious
system administrator or a network-based attacker who has com-
promised the platform’s privileged software. These attacks use
privileged software to compromise the privacy or integrity of
user code and data. Telekine is particularly focused on protect-
ing against timing channels because effective, general-purpose
attacks using timing channels have recently been demonstrated
at the architecture level [53, 60, 84, 96], the OS level [97, 105],
and the GPU programming level [46, 47]. Modern CPU TEEs
exclude side channels from their threat model [31, 48, 78], leav-
ing current hardware-supported security primitives vulnerable
to side-channel attack. Telekine offers a unique and efficient
security solution for cloud resident, GPU-based computation.

We demonstrate a proof-of-concept attack on machine learn-
ing inference in which the adversary uses the execution timing
of individual GPU kernels to learn information about encrypted
input data. Our attack allows privileged software on the cloud

=
o
o

—— Per-kernel: Trained Purity | Accuracy
8o{ , - Per-kernel: Random 0.25 29.3%
g |\ Per-kernel: Zerg 0.40 33.0%
< 60 ——- End-to-End: Trained 0.60 41.0%

3 i Random Guess and worse
3 40 0.80 50.0%
2 0.90 56.1%
20 1.00 65.4%

0
Number of Classes
(a) Batches of size 1 (b) Batches of size 32

Figure 2. Accuracy of multiclass classification for side-channel at-
tacks. (a) shows the accuracy for a baches of size 1 with an increasing
number of classes. (b) shows the accuracy for batches of size 32, 4
classes, and varies how much of the batch contains the target image

(purity)

host to correctly classify images using only the timing of GPU
kernel execution obtained on the CPU. The attacker can train
their timing model on their own input, they do not need the vic-
tim’s training data. The image data remains encrypted while on
the CPU and the attack does not require any access to GPU ar-
chitectural or microarchitectural state (including GPU timers).

Attack basics. Convolutional neural networks (CNNs) are
a popular neural network architecture for analyzing im-
ages [37, 40, 91]. Each network consists of multiple layers,
including convolutions, which are good at detecting features
of the input image that the remainder of the network can use
to classify the image. When CNNGs are executed on a GPU, the
computation for each layer roughly corresponds to the execu-
tion of a single GPU kernel. While the actual mapping between
layers and kernels is often more complex, the intuition behind
our attack is that the timing of the execution of certain CNN
layers (and hence their GPU kernels) indicates the presence or
absence of certain features within the input image. This makes
the per-layer execution time itself a rich feature.

Telekine defeats the attack by removing the adversary’s
ability to infer the timing of individual kernels. The adversary
retains only the ability to measure the end-to-end runtime of
the inference task. However, our data shows that end-to-end
runtime provides very little predictive value, making the
attack not much more accurate than randomly guessing (Fig-
ure 2a). Telekine gives users the mechanism to disguise their
end-to-end execution time, should they decide to do so (§2.2).

Attack details. We demonstrate this attack on ResNet50 [37],
a CNN widely used for image recognition, using the timing
of GPU kernel completion events as detected by the operating
system on the CPU (though we monitor a function in the GPU’s
user-level runtime for ease of implementation). We evaluate
the accuracy of our attack using 5-fold cross validation.

We start with a pre-trained model for the standard Im-
ageNet [17] dataset which contains 1,000 different image
classes. Figure 2a shows the accuracy of distinguishing image

classes based on the timing of the pre-trained model’s lay-
ers (Per-kernel: Trained), versus the same attack using only
end-to-end timing information (End-to-end: Trained). The
accuracy of the per-kernel classifier is startlingly good for
small numbers of classes: 78% for two classes, 55% for three
and 42% for four. As the number of classes of input images
increases, the accuracy of our classification declines, but it
remains much better than random guessing, outperforming
guessing by over 1.9 x even among 30 input image classes.

We believe the root cause of the attack is timing dependent
GPU operations, probably multiplication by zero. We compare
a pre-trained model (Per-kernel: Trained with no zero-valued
weights), a randomly initialized model (Per-kernel: Random
with 0.2% zero-valued weights), and a model whose weights
are all zero (Per-kernel: Zero with 100% zero-valued weights).
The zero model has bad accuracy that is close to random
guessing. A randomly initialized model is best, followed by
the pre-trained model.

These results were generated using MXNet [10] ported to
HIP on the ROCm version 1.8 stack for AMD GPUs which is
used in the prototype; we saw similar results on the 2.9 version.
Preliminary tests showed that this specific attack is much less
powerful on NVIDIA GPUs.

Batched classification. Because inference is often done in
batches, we examine the accuracy of a batched attack. We
construct batches by splitting each ImageNet class into disjoint
training and test sets. Images are then randomly sampled from
each of these sets to form the batches.

We present the accuracy of our attack when distinguishing
four ImageNet classes in batches of size 32 (Figure 2b.) Each
batch is made up of the given fraction of images from a pri-
mary class (Purity), and randomly selected images from the
remaining three classes. Our objective is to correctly identify
the primary class.

Batches help, with the accuracy of our attack improving
with larger batch sizes. Larger batches execute more oper-
ations, effectively amplifying the timing signal our attack
relies on. Moreover, larger batches smooth out execution
timings for outlier images which would otherwise be less
recognizable to our attack model. When distinguishing four
classes (Figure 2b), the batched attack is better than random
guessing even when only 25% of the input images come from
the target class. The accuracy increases with higher batch
purity, outperforming single images by up to 64%.

5 Design

Telekine secures GPU-based computation from active attack-
ers, including side-channel threats. Side channels include
the execution timing of individual GPU kernels as well as
data movement to and from the GPU. Telekine achieves its
security by transforming an application’s computation so
that all communication—including data movement—among
trusted components is data oblivious. Telekine only trusts the
client machine and the in-cloud GPU TEE and must, therefore,

Cloud Machine

relay

Client Machine

API calls from Application
|

LibTelekine ﬂ

Kernel h :

Launches DMA GPU v
Memory (o h

Data @R:: Command

Movement Processor

Encrypted Secure
S e

Figure 3. Detailed Telekine overview.

efficiently coordinate the computation between these entities,
even though communication occurs over a wide area network,
rather than over higher-bandwidth, lower-latency fabric like
a data center network or a PCle bus.

Telekine consists of three components (depicted in Figure |
with detail in Figure 3).

e LibTelekine: a library that intercepts GPU API calls
from the application and transparently transforms the
calls into a data-oblivious command stream.

e Relay: an untrusted process that runs in the cloud and
directs the client’s command stream to the GPU.

e GPU: a GPU (or multiple GPUs) with TEE support that
meets Telekine’s requirements (see §3.1 for details).

LibTelekine is linked into the application running on the client.
During its execution, the application issues a stream of GPU
commands through the normal GPU API. Similar to normal
API remoting [8, 21, 101], libTelekine redirects API calls
made by the client to a server process with a GPU runtime—the
relay on the cloud machine. Telekine treats the relay almost
as if it were part of the network, relying on it to communicate
with the GPU but protecting that communication with end-
to-end techniques. The relay is not part of Telekine’s trusted
computing base.

All communication between libTelekine and the GPU is
protected with authenticated encryption (AES-GCM [24] in
our prototype) and sequence numbers. This creates a secure
channel satisfying the secrecy property S/ (content) and the
integrity properties I/ (content) and I2 (order) (described in
§2.1), ensuring that the GPU commands issued by libTelekine
can only be read by the GPU, and any tampering or reordering
is detectable. However, by observing when messages are
exchanged with the GPU (regardless of whether they are
encrypted), the adversary can get timing information about the
computation on the GPU.

Telekine’s goal is to remove all timing information from the
encrypted stream of GPU commands. It removes timing infor-
mation by sending commands (GPU runtime API calls like
launchKernel andmemcpy) at afixed rate, independent of
input data. Fixed rating is a simple idea, but Telekine must over-
come two major challenges to fix-rate GPU communication.

1. Different GPU command types are distinguishable
because they have different sizes and they result in
different communication patterns with the GPU. (e.g.,

launchKernel commands interact with MMIO ring
buffers and memcpy commands are handled using
DMA). Telekine must ensure that the attacker’s ability
to distinguish between these commands conveys no
information about the input data.

2. Conventional GPU command streams (§2.1) exhibit
a variety of data-dependent behavior whose timing is
externally visible (e.g., a kernel launch after a data
transfer will wait for the data transfer to finish). Telekine
must maintain the ordering semantics induced by such
data dependencies.

Telekine introduces a new primitive to overcome these
challenges: data-oblivious streams. Data-oblivious streams
transparently replace conventional GPU streams (and appli-
cations may have more than one), maintaining their semantics
while making their communication with the GPU data obliv-
ious. First, they separate commands by type, and schedule
each type independently. Second, they split, pad, and batch
commands of each type so that the encrypted payload is al-
ways the same size for messages of that type, satisfying S3
(size). Third, they inject management commands as needed to
maintain data-dependencies across message types, satisfying
I3 (API-preserving). Finally, data-oblivious streams send
the transformed commands according to a fixed schedule,
satisfying S2 (timing).

The relay, privileged software on the cloud machine, and
the network stack can delay commands since they are under
complete control of the (possibly adversarial) cloud provider.
However, they cannot delay commands in a way that leaks
input data because all observable behavior of the trusted com-
puting base (including its timing) is independent of input data.

5.1 Data-oblivious stream construction

Constructing data-oblivious streams only requires reasoning
about memcpy and launchKernel commands. The TEE
takes care of initialization (§3.1). The only other runtime com-
mands deal with stream synchronization, and Telekine trans-
forms those commands into memcpy and launchKernel
commands as well (discussed fully in §5.4). memcpy com-
mands are visible to the untrusted host’s privileged software
because GPU drivers use DMA for efficient data transfers. In
Telekine, the data itself is protected and copied to/from a fixed
staging area in untrusted GPU memory so the destination/-
source of the memcpy does not leak information.
Conventional GPU streams can create timing channels

from memcpy and launchKernel commands because a
memcpy command waits for all previous launchKernel
commands on the same stream. To eliminate this channel,
Telekine uses two GPU streams to construct a single data-
oblivious stream. Telekine uses one GPU stream to launch
the application’s kernels; this stream is called the ExecStream.
Telekine uses the other stream—called the XferStream—
to move data to and from the GPU. Telekine ensures that
commands on the XferStream never leak information about

the kernel execution time by waiting for commands on the
ExecStream.

The ExecStream. Application kernels are all launched
on the ExecStream. LibTelekine maintains a queue of the
launchKernel commands requested by the application
and releases the commands in order according to the fixed-rate
schedule. The GPU consumes these commands independently
of any ongoing kernel execution and buffers them internally
since their execution must be serialized according to GPU
stream semantics. Telekine honors data dependences between
memcpy and launchKernel commands by inserting data
management kernels that block the progress of the ExecStream
by spinning until the data is in place.

The XferStream. Data transfers requested by the application
are launched on the XferStream. Unlike launchKernel
commands, memcpy commands are directional (i.e., client-
to-GPU and GPU-to-client), and directions are detectable.
For example, because the adversary can observe interaction
with the network, it can differentiate between messages that
came over the network in transit to the GPU, and messages
copied from the GPU that are being sent over the network.
LibTelekine maintains separate queues for each direction and
schedules them independently to avoid leaking information.
Data for client-to-GPU transfers starts on the client, flows
through the relay and into untrusted memory on the GPU.
LibTelekine then enqueues a kernel, which moves the data
from the untrusted staging memory into trusted GPU mem-
ory. Similarly, in the GPU-to-client direction, Telekine first
enqueues a launchKernel on the XferStream to move the
data into untrusted GPU memory, then issues a memcpy to
copy it to the relay where it can be transferred over the network
back to the client.

Fixed-size commands. Telekine ensures that all memcpy
commands are the same size by splitting and padding the
memcpy commands issued by the application to a standard
size. When there are no pending memcpy commands, Telekine
maintains the same rate of data flow by scheduling dummy,
standard-sized memcpys to/from a staging buffer. Similarly,
all launchKernel commands are padded to the same size
(320 bytes in our prototype). When no launchKernel com-
mand is available, Telekine schedules no-op LlaunchKernel
commands.

Schedules. Any schedule Telekine uses for GPU communi-
cation is secure so long as it does not depend on the data being
protected. Our prototype uses simple schedules which send
a fixed number of fixed-sized commands after each fixed-time
interval. For instance, Telekine might launch 16 kernels on the
ExecStream every 3 milliseconds, and send then receive 4MB
of data every 6 milliseconds on the XferStream.

Schedules can leak the category. While scheduling work at
a fixed rate is a well-known technique to avoid side-channel
leakage, the exact schedule is relevant to performance. We

Algorithm 1 Telekine’s replacement functions for memcpy
and launchKernel. Splitting and padding steps are omitted
for brevity.

Algorithm 2 Periodic tasks performed by Telekine according
to the schedule. Encryption and decryption steps are omitted
for brevity.

: function LAUNCHKERNEL(kern,args...)
ENQUEUE(kernelQueue,{kern,args})
: end function

buf <—CHOOSETAGGEDBUFFER()
LAUNCHKERNEL(copy_in, buf, dst)
: ENQUEUE(dataQueueH2D, {src, buf })
: end function
10:
11: function MEMCPYD2H(src, dst)
12: buf <—CHOOSETAGGEDBUFFER()
13: LAUNCHKERNEL(copy_out, src, buf)
14: ENQUEUE(dataQueueD2H, {buf, dst})
15: end function

1
2
3
4:
5: function MEMCPYH2D(src,dst)
6
7
8
9

report our schedules in Table 1, and they are the same for
all tasks of a given category, e.g., training different machine
learning models with MXNet. However, they can differ across
categories, e.g., Galois has a different ExecStream schedule
from MXNet (§7). Under our threat model, the adversary
would be able to differentiate these workloads from their
network traffic. A user can always choose a more generic, but
lower performing schedule if this is a concern.

5.2 Telekine operation

Algorithm | and Algorithm 2 provide a high-level description
of Telekine’s data-oblivious streams. In Algorithm 1, Telekine
intercepts the application’s calls to launchKernel and
memcpy and transforms them into interactions with queues:
kernelQueue, dataQueueH2D, and dataQueueD2H (splitting,
padding, and encryption steps are omitted for brevity). The
Telekine threads shown in Algorithm 2 dequeue the com-
mands and release them to the GPU according to the schedule.
Telekine waits at lines 7, 18, and 29 for the next available time
slot ensuring that interactions with the queues do not influence
the timing of messages.

Most memcpy commands have strict ordering requirements
with respect to kernels that operate on their data. The memcpy
then launchKernel idiom ensures that the launched kernel
has fresh data to process. While Telekine decouples memcpy
commands by scheduling them on their own stream for se-
curity, it needs to preserve the original ordering semantics
expected by the application. Telekine maintains these seman-
tics by injecting its own data management kernels into the
ExecStream (shown on lines 7 and 13 of Algorithm [) to
enforce the ordering expected by the application. These data
management kernels operate on fagged buffers which Telekine
uses to synchronize data access.

1: loop > ExecStream Thread
2 if EMPTY(kernelQueue) then
3 op <—no_op
4: else
5: op <—DEQUEUE(kernelQueue)
6 end if
7 WAITFORSCHEDULEDTIME()
8: REMOTELAUNCHKERNEL(0p)
9: end loop
10:
11: loop > XferStream Client-to-GPU (H2D) Thread
12: if EMPTY(DataQueueH2D) then
13: src <—dummy_CPU
14: dst <~ CHOOSETAGGEDBUFFER()
15: else
16: {src, dst} +DEQUEUE(dataQueueH2D)
17: end if
18: WAITFORSCHEDULEDTIME()
19: REMOTEMEMCPY (src, dst)
20: end loop
21:
22: loop > XferStream GPU-to-Client (D2H) Thread
23: if EMPTY(DataQueueD2H) then
24: src <+~ CHOOSETAGGEDBUFFER()
25: dst <—dummy_CPU
26: else
27 {src, dst}+PEEK(dataQueueD2H)
28: end if
29: WAITFORSCHEDULEDTIME()
30: REMOTEMEMCPY (src, dst)
31 if dst # dummy_CPU then
32: if TAGMATCHES(dst) then
33: DEQUEUE(dataQueueD2H)
34: end if
35: end if
36: end loop

Tagged buffers. Tagged buffers are pre-allocated staging
buffers on the GPU, each with an associated tag slot. Telekine
assigns every memcpy operation a tagged buffer and a unique
tag, represented by “ChooseTaggedBuffer” in Algorithm | and
Algorithm 2. Data management kernels producing data (e.g.,
copying out the result of a kernel computation) write the tag
into the tag slot of the chosen tagged buffer after the operation
has completed and a memory barrier completes. Data manage-
ment kernels that consume data (e.g., waiting for data a kernel
expects to use as input) wait until the tag slot of the assigned
buffer contains the expected value since they cannot be sure the
buffer data is valid until the tag value matches its expectation.

Application Commands

Telekine Commands

XferStream

/* copy data to GPU */
memcpy (GPUbuf 0, CPUbuf 0);

I
| ExecStream |
|
(|

/* wait for memcpy */
launchKernel (copy in, GPUbuf 0,
TAGbuf 0, t0);

/* encrypt data */
CPU_encrypt (out_buf, CPUbuf 1, key);
/* copy encrypted data to GPU */

\, memcpy (STGbuf 0, out buf);

/* compute result */]\
launchKernel (AppKern, GPUbuf 1, /*

do App’s work */
GPUbuf 0); I launchKernel (AppKern, GPUbuf 1,
GPUbuf 0);

/* decrypt and notify */
launchKernel (decrypt, TAGbuf O,
STGbuf 0, key, t0);

do{

Q/* copy result from GPU */ %

memcpy (CPUbuf 1, GPUbuf 1); I /* notify result ready */

GPUbuf 1, tl);

/* encrypt on GPU */
launchKernel (encrypt, STGbuf 1,
TAGbuf 1, key):

i\launchKernel(copyiout, TAGbufil,I

I /* copy to client */
I memcpy (in buf, STGbuf 1);
/* decrypt */
CPU decrypt (in buf, in buf, key);
} while (TAG(in_buf) != t1);
CPU_memcpy (CPUbuf 1, in buf);

Figure 4. API calls made by the application and their mapping to underlying commands performed by Telekine.

Data management kernels. Telekine inserts its own data
management kernels into the ExecStream which either pro-
duce or consume tagged buffers depending on the direction of
the transfer. There are two kernels: copy_in and copy_out.
Both kernels take an application-defined memory location,
a tagged buffer, and a tag as arguments. For CPU-to-GPU
memcpys, libTelekine inserts a copy_in launch into the
ExecStream. The copy_in will repeatedly check the tag slot
of the buffer, completing the copy to the application’s buffer
only after verifying the tag slot matches the tag it was given
as an argument. To service GPU-to-CPU memcpys, Telekine
inserts a copy-out into the ExecStream after the application
kernel which generates the data. The copy_out writes the
data to the assigned tagged buffer, followed by the tag to signal
to Telekine that the data is ready. Since libTelekine runs on
the client it has no way of knowing when the copy out has
completed until the tagged buffer has been copied back, so it
will retry the same GPU-to-CPU copy until the tag is correct
corresponding to a complete copy. This is represented by the
PEEK operation on line 27 of Algorithm 2, the operation is
only dequeued after libTelekine verifies that the copy_out
kernel did its work on line 32.

GPU-to-GPU data copies. Emerging hardware supports ded-
icated, high-bandwidth, cross-GPU communication links such
as NVLink [26]. NVLink improves cross-GPU data copy
efficiency but does not change the fundamental communi-
cation mechanisms used in a GPU stack. Telekine currently
implements GPU-to-GPU copies as two copies: one from the
first GPU back to the client and the second from the client to
the second GPU. Direct GPU-to-GPU copies using NVLink
would be far more efficient, but to be data oblivious they would
have to occur at a fixed rate. We leave this task for future work.

Discussion. The XferStream is carefully constructed so that
it never synchronizes with the ExecStream. The XferStream
contains DMA operations which the OS can detect; if appli-
cation kernels on the ExecStream occupy the GPU causing the
encryption kernels on the XferStream—and transitively the
DMAs—to wait, then the platform can learn some information
about kernel execution times. There may still be leakage be-
tween the XferStream and the ExecStream because we cannot
guarantee that kernels of the former will not interfere with the
latter. However, we believe this leakage to be hard to exploit
in practice, we have not seen it in any of our benchmarks, and
we expect that future GPU features like strict priority [72] or
preemption [92] will allow Telekine to seal the leak.

5.3 Data movement example.

Figure 4 shows an example of how Telekine transforms appli-
cation commands into equivalent, data-oblivious commands
on the ExecStream and XferStream. The application issues 3
commands: @ copy data to the GPU, @ launch a kernel to
process that data, and @) copy the results of the computation
out of the GPU back to the CPU.

@ : The application requests a memcpy from CPUbuf_0
to GPUbuf_0. In response, Telekine chooses a tag, £ 0, and
tagged buffer, TAGbu £ _0, for this operation, then enqueues a
kernel, copy_in, on the ExecStream. The copy_in kernel
will spin on the GPU, using atomic operations to check the
end of TAGbuf_0 until it sees t 0, then copy the contents
of TAGbuf_0 into GPUbuf_0. On the XferStream, Telekine
encrypts the data, then copies the encrypted data to a staging
buffer in untrusted GPU memory STGbu£_0. Finally, Telekine
launches a kernel, decrypt, on the XferStream which reads
the encrypted data out of untrusted memory and decrypts it into
TAGbuf_0. After the data is written, the tag t 0 is appended

800%
—=— +Data oblivious scheduling (Telekine)

. —— +Encryption
600% —=— APl remoting

: 400%

200%

Slowdown w.r.t. baseline

0%
0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6
GPU computation time (in seconds)

Figure 5. A microbenchmark which shows how Telekine overheads
decrease as the running time of the GPU computation increases.

after a memory barrier, signaling to copy_in that the data is
ready.

@ : The application launches its kernel, AppKe rn, which
processes the data in GPUbuf_0 and writes its result into
GPUbuf_1. Since AppKern is launched on the ExecStream
after copy_in it will wait for copy_in to complete, ensuring
that the data will be in GPUbu £ _0 before AppKe rn starts. The
platform cannot detect that AppKe rn has started.

©® : The application issues a request to copy the re-
sults of AppKern from GPUbuf_1 to CPU_bufl. In re-
sponse, Telekine again chooses a tag and tagged buffer, t 1
and TAGbuf_1 respectively, and immediately enqueues a
copy-out kernel on the ExecStream. After the applica-
tion’s kernel, AppKern, has completed, copy_out moves
the result of its computation in GPUbuf_1 into TAGbuf_1
then atomically appends t 1. While waiting for copy_out
to finish, Telekine periodically encrypts TAGbuf_1 into a
staging buffer in untrusted memory, STGbuf_1, then issues
a memcpy operation to copy the contents of STGbuf_1
to a client-side buffer, in_buf. Telekine decrypts in_buf
and checks the tag. If the tag matches t1, copy_out and
AppKern must have completed and the data can be copied
into CPUbuf_1. If not, this process will be repeated during
the next scheduled GPU to client transfer.

5.4 Synchronizing data-oblivious streams

Applications sometimes wish to synchronize with their GPU
streams (i.e., wait for all outstanding commands to complete),
or synchronize one GPU stream with another (i.e., ensure
another stream has completed some operation, n, before this
stream starts operation, m). Telekine handles both of these
cases by injecting kernels that increment a counter in GPU
memory between kernels in the ExecStream. Because of
stream semantics, the increment kernel only runs after all
previous kernels in the stream, providing an accurate count of
how many application kernels have executed. Telekine copies
that counter back to the client periodically and can block the
application thread until all submitted work has completed.

ExecStream XferStream
Benchmark | Quantum Size | Quantum Size | Bandwidth
Microbench 15ms 32kerns 30ms 1IMB 533 Mb/s
MXNet 15ms 512kerns 30ms 1IMB 533 Mb/s
Galois1 15ms 32kerns 30ms 1IMB 533 Mb/s
Galois2 15ms 32kerns 30ms 1IMB 533 Mb/s

Table 1. Data-oblivious schedule parameters and the network band-
width required. MicroBench from §7.1; MXNet from §7.2; Galois1
executes on one GPU, Galois2 on two from §7.3. ExecStream sizes
are number of kernel launches, each of which is 320 bytes. Xfer-
Stream streams contribute twice their size to bandwidth consumption
because Telekine copies data in both directions at every quantum.

6 Implementation

The Telekine prototype is based on AMD’s ROCm 1.8 [2], an
open-source software stack for AMD GPUs. Telekine requires
an open-source stack because we split its functionality between
user and cloud machines. NVIDIA is generally thought to have
higher hardware and software performance as well as better
third-party software support. But NVIDIA only officially
supports closed-source drivers and runtimes.

LibTelekine and the relay. All applications were ported to
use HIP [39], the ROCm CUDA replacement. LibTelekine
marshals the arguments of HIP API calls to be sent over a TLS
protected TCP connection to the relay to support initializa-
tion. The libTelekine and relay prototype are based on code
generated by AvA [107]; they total 8,843 and 5,650 lines of
C/C++/HIP code respectively (measured by cloc [12]).

GPUTEE. GPU TEE requirements are made explicit in Sec-
tion 3.1, and most of those requirements are safety properties
that do not impact performance. A notable exception is the
cryptography required to secure the secrecy and integrity
of kernel launch commands. We model the timing of these
features by decrypting kernel launch commands in the relay.

7 Evaluation

We quantify the overheads of the security Telekine provides
by comparing it to an insecure baseline: applications run on
cloud provider machines that offload computation to GPUs
directly through the GPU runtime.

We measure Telekine across two testbeds. The first is the
simulated testbed which simulates wide-area network (WAN)
latency and bandwidth, providing a controlled environment for
measurement. The second is the geodist testbed in which the
server and client are geodistributed and connected by the Inter-
net. Both testbeds use the same “cloud machine” (the server),
which has an Intel i9-9900K CPU with 8 cores @3.60GHz,
32GB of RAM and two Radeon RX VEGA 64 GPUs each
with 8GB of RAM. All machines are running Ubuntu 16.04.6
LTS with Linux kernel version 4.13.0, and AMD’s ROCm-1.8
runtime and HIP-1.5 compiler.

In the simulated testbed, the client has an Intel Xeon E3-
1270 v6 processor with 4 cores @3.8GHz and 32GB of RAM.

ResNet InceptionV3 DenseNet
Model size 97.5MB 90.9 MB 30.4 MB
Input size
Inputimage 224x224x3 299x299x3 224x224x3
Batch size 64 64 48
Data size per batch 9.2MB 16.4 MB 6.9 MB
Single-GPU training baseline
T-put 20.27MB/s 11.05MB/s 13.57 MB/s
T-put (less sync) 22.69MB/s 11.66 MB/s 17.46 MB/s

Table 2. Overview of machine learning training on MXNet. Input
size is given in pixel dimensions, batch size in images per GPU. T-put
is throughput.

Both this client and the server are equipped with a Gtek X540
10Gb NIC, which we connect directly. We simulate a client-to-
cloud network connection in a controlled environment using
netem [65], which allows us to add network delays and limit
bandwidth. We always limit the bandwidth of the connection
to 1Gbps and unless otherwise mentioned we add delays in
both directions so that the total round trip time (RTT) is 10ms.
These parameters are conservative for a network connection
to an edge cloud server [16, 106].

In the geodist testbed, the client is a VM hosted by
vultr [102] in their Dallas, TX datacenter (the server is in
Austin, TX). The VM has 8 vCPUs and 32GB of RAM. We
measured the RTT between the server and this client at 12ms,
and the average bandwidth at 877Mbps.

Different applications use different schedules to get good
performance, though Table | shows strong similarity among
the data-oblivious schedules we use for evaluation.

7.1 Telekine performance tradeoff

Figure 5 shows the performance tradeoff for a microbenchmark
with 16MB of input and output and a GPU kernel with a con-
figurable running time on the simulated testbed. The different
lines show the costs of specific sources of overhead. The “API
remoting” line uses the XferStream and the ExecStream over
the network. The “+Encryption” line adds encryption to API
remoting. Finally, the “Data-oblivious scheduling” line adds
the data-oblivious schedule described in Table 1 to encryption.
When the GPU kernel executes for only 0.14 seconds, the
overhead of Telekine is nearly 8 x. Once the computation takes
4.4s the overhead is only 22%. Telekine is a remote execution
system; it makes communication more expensive because of
its oblivious scheduling as well as network delay and limited
bandwidth. It is most efficient when computation dominates
communication, which is the case for our benchmarks.

7.2 Machine learning algorithms

We port MXNet [10], a state-of-the-art machine learning
library, to run on the HIP runtime. Our port is based on MXNet
v1.1.0 (git commit 0 7a83a03). We also use AMD’s MIOpen
library for efficient neural network operators. Some parts of

[Baseline [+Encryption

1.75 3 +APIremoting HEE +Data oblivious scheduling (Telekine)
)
£ 1.50
= 122
S1.25 T s 110 113 116
o 1.06 107 -
- 1.00 1.00 1.00
o 1.00
N
©0.75
€
S
2050

0.25

0.00 ResNet InceptionV3 DenseNet

Figure 6. Performance of machine learning training algorithms using
a single GPU with Telekine on the simulated testbed.

ResNet InceptionV3 DenseNet
1.23% 1.08 1.20x

Table 3. Performance of machine learning training algorithms on
Telekine, measured on the geodist testbed.

MXNet adaptively choose from different GPU kernel imple-
mentations by measuring execution times on the available
hardware and choosing the most performant option. To ensure
the baseline and Telekine are running the same kernels for
measurement purposes, we record the kernels chosen by the
baseline, and hard-code those kernel choices for all runs.

Optimizing MXNet. We applied several optimizations to
MXNet which help to mitigate the fact that Telekine is com-
municating with the GPU over a WAN:

e The models we evaluate represent the pixel channels of
the input bitmaps using 4-byte floating point quantities, even
though they range in integer values from 0 to 255. To save
network bandwidth, we send bytes instead of floats, reducing
bandwidth by 4 x. Bytes are changed back floats on the GPU.

e We determined that MXNet was overly conservative in
its GPU synchronization strategy and were able to reduce
the number of synchronizations it performs by removing
unnecessary calls to hipStreamSyncronize (“less sync”
in Table 2). Telekine also optimizes synchronization calls by
using tagged buffers (§5.1) to coordinate data transfers.

Machine learning training. We evaluate the training per-
formance of deep neural networks on Telekine using three
state-of-the-art convolutional neural network architectures:
ResNet [37], InceptionV3 [91], and DenseNet [40]. All models
are trained using the ImageNet dataset (a substantial data set
consisting of 1.4 million training images). For ResNet, we
use the 50-layer variant. For DenseNet, we use the 121-layer
variant. We evaluated all networks using batches size of 64.
Table 2 summarizes the input sizes that were used to evaluate
the three network architectures.

Figure 6 shows the performance of training three neural nets
on Telekine using the simulated tesdbed, normalized to the
insecure baseline. The bars break down Telekine’s overheads
and match the descriptions from Section 7.1. Both Telekine
and the baseline use a single GPU. Table 3 shows the same

Batch ResNet
size | Base

InceptionV3 DenseNet
Telekine | Base Telekine | Base Telekine
Simulated testbed
1 20 273 (13.7x) 29 259(8.93x)| 26 248(9.54x)
8| 42 270(6.43x) 65 264 (4.06x)| 47 241(5.13x)
64| 233 389(1.67x)| 368 559(1.52x)| 246 405 (1.65x)
256 | 988 1195(1.21x) | 1520 1806 (1.19x) | 946 1163 (1.23x)
Geodist testbed
1 20 200 (10.0x) 31 205(6.61x)| 26 201 (7.73x)
8| 69 241(3.49x)| 111 247(2.23x)| 84 209 (2.49x)
64| 462 481(1.04x)| 637 685(1.08x)| 484 483 (1.00x)

Table 4. Latencies (in ms) of machine learning inference workloads
with the baseline system (Base in the table) and Telekine.

experiment on the geodist testbed; the results are similar to the
simulated testbed.

Machine learning inference. We evaluate neural network
inference workloads for ResNet, InceptionV3, and DenseNet
with Telekine. For inference, latency is the priority for users,
but throughput is still a priority for providers. Batching infer-
ence can substantially improve throughput by fully utilizing
hardware capabilities and amortizing the overheads from other
system components [15]. We evaluate the latency of inference
with different batch sizes, ranging from 1 to 256. Our baseline
is an insecure server with one local GPU, communicating with
the over the network. Table 4 shows the inference latency of
three neural networks with different batch sizes. The overheads
with on the simulated testbed for batches of size of 256 are
21%, 19%, and 23% for ResNet, InceptionV3, and DenseNet,
respectively which are slightly improved compared to the
overheads we report for training (§7.2), although the training
batch size was 64. With a batch size of 64, the overheads on
the simulated testbed inflate to 67%, 52%, and 65%. When we
move to the geodist testbed, the performance of the baseline
suffers more that Telekine; at batches of size 64, the standard
deviation of our measurements exceed the differences between
the mean Telekine and baseline runs. Clipper [15] uses an
adaptive batch size to meet the latency requirement of the
application, which Telekine could adopt.

7.3 Graph algorithms

Galois is a framework designed to accelerate parallel appli-
cations with irregular data access patterns, such as graph
algorithms [75]. We port Galois’s GPU computation to use the
HIP runtime instead of CUDA and evaluate it on three graph
algorithms: breadth-first search (BFS), PageRank, and single
source shortest paths (SSSP). All measurements use the USA
roads graph dataset [18]. Figure 5 shows the performance of
these applications on Telekine with one and two GPUs. The
baseline is an unmodified system with local GPU(s). Baseline
performance for single GPU applications is: BFS 54.1s, SSSP
74.6s, Pagerank 60.9s; for two GPUs: BFS 36.4s, SSSP 42.8s.
For the input distributed with Galois, two GPU Pagerank slows
down, so we do not evaluate it.

Application ‘ Normalized runtime
BFS (1 GPU) 1.18x
SSSP (1 GPU) 1.21x
Pagerank (1 GPU) 1.29x
BFS (2 GPUs) 1.38x
SSSP (2 GPUs) 1.41x

Table 5. Performance of Galois applications with Telekine.

RTT (ms) ‘ ResNet InceptionV3 DenseNet

10| 1.19x 1.10x 1.22x
20 1.29x 1.13x 1.37x
30| 1.44x 1.16x 1.49x
40| 1.53x 1.18x 1.66x
50| 1.62x 1.30x 2.09x

Table 6. Normalized runtime of machine learning workloads with
respect to network round trip time (RTT).

Telekine imposes moderate overheads on single-GPU Ga-
lois applications, adding latency to data transfer times. Galois
implements each graph algorithm as a single GPU kernel
that is iteratively called until the algorithm reaches termina-
tion. Multi-GPU applications exchange data between GPUs
through the host after each iteration. Telekine imposes higher
overheads for multi-GPU workloads because of increased data
movement over the network.

7.4 WAN latency sensitivity

Telekine assumes that the client communicates with the server
over a WAN. The greater distances crossed by WANSs result
in longer round trip times (RTTs). The batching of commands
that Telekine does for security also makes it resilient to these
increased RTTs, especially when the ratio of GPU computation
to communication is high. To demonstrate this we increased
the RTT between our machines using netem [65] and ran
the machine learning training benchmarks for different RTTs
(Table 6). Overheads increase with RTT. At 30ms which we
measured to be the RTT between the client and an Amazon
EC2 instance, the overhead for InceptionV3 is still only 16%.

8 Related Work

Enclave-based security. Several recently proposed systems
aim to protect applications from an untrusted platform.
Haven [7], SCONE [4], and Graphene-SGX [95] provide
an environment to support unmodified legacy applications.
Ryoan [43] protects user data from untrusted code and an
untrusted platform. VC3 [83] and Opaque [109] provide SGX-
protected data processing platforms. None of these systems
allow for GPU computation and none of them focus on the
communication issues that then arise.

Trusted execution environments on GPUs. HIX [45] extends
an SGX-like design with duplicate versions of the enclave
memory protection hardware to enable MMIO access from
code running in an SGX enclave. This enables HIX to guar-
antee that a single enclave has exclusive access to the MMIO
regions exported by a GPU, in principle, defeating a malicious

OS that wants to interpose or create its own mappings to them.
While this design provides stronger GPU isolation than current
enclaves, it remains vulnerable to side-channel attacks because
communication is not data oblivious.

Graviton [100] supports GPU TEEs based on secure con-
texts that use the GPU command processor to protect mem-
ory from other concurrently executing contexts. Similar to
Telekine, Graviton secures communication using crypto-
graphic techniques. Telekine can adopt many of Graviton’s
clever mechanisms for its TEE functionality (§3.1), such as
restricting access to GPU page tables without trusting the ker-
nel driver. But Graviton does not protect against side channels,
which is Telekine’s primary mission.

The opportunity to provide stronger security for GPU-
accelerated applications using TEEs and oblivious communi-
cation has been observed by others [41].

Securing accelerators. SUD emulates a kernel environment
in user space to isolate malicious device drivers [9]. Previous
work has explored techniques to support trusted I/O paths,
leveraging hypervisor support [103, 110] or system man-
agement mode [52]. Our work focuses on the secure use of
GPUs with untrusted system software and does not rely on
support from the software at lower privilege layers. Border
Control [74] addresses security challenges for accelerator-
based systems but focuses on protecting the system from a
malicious accelerator, rather than Telekine which protects
CPU and GPU code from an untrusted platform.

GPU security and protection. Studies have analyzed GPU
security properties and vulnerabilities [112]. Frigo et al. [28]
demonstrate techniques that leverage integrated GPUs to accel-
erate side-channel attacks from browser codes using JavaScript
and WebGL. PixelVault [98] exploits physical isolation be-
tween CPUs and GPUs to implement secure storage for keys,
though it was shown to be insecure [112]. CUDA Leaks [77]
shows techniques to exfiltrate data from the GPU to a malicious
user. Attacks that take advantage of GPU memory reuse with-
out re-initialization are a common theme [36, 56, 111]. Several
systems have proposed mechanisms that bring the GPU under
tighter control of system software, exploring OS support [34,
49, 63, 82], access to OS-managed resources [51, 86, 87],
hypervisor support [20, 30, 33, 85,90, 93, 101] and GPU archi-
tectural support for cross-domain protection [5, 13,76, 79, 99].

Secure machine learning. Ohrimenko et al. describe an
SGX-based system for multi-party machine learning on an
untrusted platform [73]. Their data-oblivious algorithm for
convolutional neural networks explicitly does not support
state-of-the-art operations that are data dependent (e.g., max
pooling). Telekine can support any data-dependent operations
but requires a GPU TEE. Chiron [42] provides a framework
for untrusted code to design and train machine learning models
in SGX. Telekine does not support untrusted code, but does
allow the use of GPUs which Chiron excludes. CQSTR [108]
lets a trusted platform operator confine untrusted machine

learning code so that it can be securely applied to user data.
By contrast, Telekine protects user data from an untrusted
platform operator. MLcapsule [35] protects service provider
secrets (machine learning model) and client data by running
machine learning algorithms in an SGX enclave but does not
suggest extensions to allow secure GPU acceleration.

Slalom [94] secures training of DNNs using a combination
of TEEs and local GPUs. Slalom’s guarantees are achieved
by partitioning DNN training into linear layers using matrix
multiplication, which are offloaded to a GPU, the remaining
operators, which execute on the CPU in a TEE such as SGX.
Matrix multiplication is verified and turned private using al-
gorithmic techniques [27], which enables secure GPU offload
without requiring GPU TEE support.

Recent work [19, 61] demonstrates how to efficiently apply
neural networks to encrypted data. As far as we know, today
there are no practical techniques for training deep neural
networks on encrypted data.

API remoting. APIremoting [6, 22,23, 50, 57, 58, 80, 104]
is an I/O virtualization technique that interposes a high-level
user-mode API. API calls are forwarded to a user-level com-
puting framework [85] on a dedicated appliance VM [101], or
on a remote server [23, 50]. To our knowledge, Telekine is the
first system to use API remoting as a security technique.

OS-level time protection. Recent extensions to sel.4 [29]
suggest general OS-level techniques that prevent timing-based
covert channels by eliminating sharing of hardware resources
that can form the basis of covert channels. The techniques do
not yet generalize to I/O-attached accelerators.

9 Conclusion

Telekine enables secure GPU acceleration in the cloud.
Telekine protects in-cloud computation with a GPU TEE
and application/library computation by placing it on a client
machine. It secures their communication with a novel GPU
stream abstraction that ensures the execution is independent of
input data. Telekine allows GPU-accelerated workloads such
as training machine learning models to leverage cloud GPUs
while providing strong secrecy and integrity guarantees that
protect the user from the platform’s privileged software and
its administrators.

10 Acknowledgements

We would like to thank Isil Dillig for her invaluable feedback
on an early version of this paper. We would also like to thank
Bryan Parno (our shepherd) and our anonymous reviewers;
their constructive feedback made this paper better than it would
have been otherwise. We gratefully acknowledge funding from
NSF grants CNS-1900457, CNS-1618563, and CNS-1846169.

References

[1] Amazon. EC2 Dedicated Hosts. https://aws.amazon.com/ec2/
dedicated-hosts/. (Accessed: February 12, 2020).

[2] AMD. ROCm, a New Era in Open GPU Computing.
https://rocm.github.io/index.html. (Accessed: February 12, 2020).

[3] Marc Andrysco, Andres Notzli, Fraser Brown, Ranjit Jhala, and Deian
Stefan. Towards Verified, Constant-time Floating Point Operations.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 1369-1382, 2018.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, David Eyers, Riidiger
Kapitza, Peter Pietzuch, and Christof Fetzer. SCONE: Secure Linux
Containers with Intel SGX. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’16. USENIX Association, 2016.

[5] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata
Ghose, Jayneel Gandhi, Christopher J. Rossbach, and Onur Mutlu. Mo-
saic: A GPU Memory Manager with Application-Transparent Support
for Multiple Page Sizes. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture, MICRO’17. IEEE, 2017.

[6] A.Barak, T. Ben-Nun, E. Levy, and A. Shiloh. A package for OpenCL
based heterogeneous computing on clusters with many GPU devices.
In 2019 IEEE International Conference on Cluster Computing
Workshops and Posters, CLUSTER WORKSHOPS, September 2010.

[7] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding
Applications from an Untrusted Cloud with Haven. In Proceedings
of the 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’ 14. USENIX Association, 2014.

[8] Bitfusion: The Elastic Al Infrastructure for Multi-Cloud.

https://bitfusion.io. (Accessed: February 12, 2020).

Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating Malicious

Device Drivers in Linux. In Proceedings of the 2010 USENIX Annual

Technical Conference, USENIXATC’10. USENIX Association, 2010.

[10] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet:
A Flexible and Efficient Machine Learning Library for Heterogeneous
Distributed Systems. CoRR, abs/1512.01274,2015.

[11] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Acoustic
Cryptanalysis. Journal of Cryptology, 30, April 2017.

[12] cloc: Count Lines of Code. https://github.com/AlDanial/cloc.
(Accessed: February 12, 2020).

[13] Jason Cong, Zhenman Fang, Yuchen Hao, and Glenn Reinman.
Supporting Address Translation for Accelerator-Centric Architectures.
In IEEFE International Symposium on High Performance Computer
Architecture, HPCA. IEEE, 2017.

[14] Victor Costan and Srinivas Devadas. Intel SGX Explained. 2016.

[15] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. Clipper: A Low-latency Online
Prediction Serving System. In Proceedings of the 14th USENIX
Conference on Networked Systems Design and Implementation,
NSDI’17. USENIX Association, 2017.

[16] Richard Cziva and Dimitrios P Pezaros. On the Latency Benefits of
Edge NFV. In ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS. IEEE, 2017.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
ImageNet: A large-scale hierarchical image database. In The Confer-
ence on Computer Vision and Pattern Recognition, CVPR. IEEE, 2009.

[18] DIMACS. 9th DIMACS Implementation Challenge - Shortest Paths.
http://users.diag.uniroma1.it/challenge9/download.shtml, 2005.
(Accessed: February 12, 2020).

[9

—

[19] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. CryptoNets: Applying Neural
Networks to Encrypted Data with High Throughput and Accuracy. In
International Conference on Machine Learning, 2016.

[20] Micah Dowty and Jeremy Sugerman. GPU virtualization on VMware’s
hosted I/O architecture. ACM SIGOPS Operating Systems Review,
43(3):73-82,2009.

[21] J. Duato, AJ. Pena, E Silla, R. Mayo, and E.S. Quintana-Orti.
rCUDA: Reducing the Number of GPU-Based Accelerators in High
Performance Clusters. In 2010 International Conference on High
Performance Computing Systems, HPCS, 2010.

[22] José Duato, Francisco D Igual, Rafael Mayo, Antonio J Pefa, Enrique S
Quintana-Orti, and Federico Silla. An efficient implementation of GPU
virtualization in high performance clusters. In European Conference on
Parallel Processing, Euro-Par’09, pages 385-394, Berlin, Heidelberg,
2009. Springer, Springer-Verlag.

[23] Jose Duato, Antonio J. Pena, Federico Silla, Juan C. Fernandez, Rafael
Mayo, and Enrique S. Quintana-Orti. Enabling CUDA acceleration
within virtual machines using rCUDA. In Proceedings of the 2011 18th
International Conference on High Performance Computing, HIPC *11,
pages 1-10, Washington, DC, USA, 201 1. IEEE Computer Society.

[24] Morris Dworkin. NIST Special Publication 800-38D: Recommen-
dation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC. http://csrc.nist.gov/publications/nistpubs/800-
38D/SP-800-38D.pdf, 2007. (Accessed: February 12, 2020).

[25] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. Komodo: Using Verification to Disentangle Secure-enclave
Hardware from Software. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, pages 287-305, New York,
NY, USA, 2017. ACM.

[26] Denis Foley. Ultra-Performance Pascal GPU and NVLink Interconnect.
In HotChips, 2016.

[27] Rusins Freivalds. Probabilistic Machines Can Use Less Running Time.
In IFIP Congress, pages 839-842, 1977.

[28] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand Pwning Unit: Accelerating Microarchitectural Attacks with the
GPU. In I[EEE Symposium on Security and Privacy, May 2018.

[29] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time
Protection: The Missing OS Abstraction. In European Conference in
Computer Systems, EuroSys, 2019.

[30] Giulio Giunta, Raffaele Montella, Giuseppe Agrillo, and Giuseppe
Coviello. A GPGPU transparent virtualization component for high
performance computing clouds. In European Conference on Parallel
Processing, pages 379-391. Springer, Springer, 2010.

[31] Johannes Gotzfried, Moritz Eckert, Sebastian Schinzel, and Tilo
Miiller. Cache Attacks on Intel SGX. In Proceedings of the 10th
European Workshop on Systems Security, EuroSec’17, 2017.

[32] Scott Grauer-Gray, William Killian, Robert Searles, and John Cavazos.
Accelerating Financial Applications on the GPU. In Proceedings of
the 6th Workshop on General Purpose Processor Using Graphics
Processing Units, GPGPU-6, pages 127-136, New York, NY, USA,
2013. ACM.

[33] Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvardhan
Kharche, Niraj Tolia, Vanish Talwar, and Parthasarathy Ranganathan.
GViM: GPU-accelerated virtual machines. In Proceedings of the 3rd
ACM Workshop on System-level Virtualization for High Performance
Computing, pages 17-24. ACM, 2009.

[34] Vishakha Gupta, Karsten Schwan, Niraj Tolia, Vanish Talwar, and
Parthasarathy Ranganathan. Pegasus: Coordinated Scheduling for
Virtualized Accelerator-based Systems. In Proceedings of the 2011
USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’ 11, pages 3-3. USENIX Association, 2011.

[35] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Max
Augustin, Michael Backes, and Mario Fritz. MLCapsule: Guarded
Offline Deployment of Machine Learning as a Service. CoRR,
abs/1808.00590, 2018.

[36] Ari B. Hayes, Lingda Li, Mohammad Hedayati, Jiahuan He, Eddy Z.
Zhang, and Kai Shen. GPU Taint Tracking. In Proceedings of the
2017 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’17, pages 209-220. USENIX Association, 2017.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 770-778,2016.

[38] Nicole Hemsoth. Medical Imaging Drives GPU Accelerated Deep
Learning Developments. https://www.nextplatform.com/2017/11/
27/medical-imaging-drives-gpu-accelerated-deep-learning-
developments/, November 2017. (Accessed: February 12, 2020).

[39] HIP: Convert CUDA to Portable C++ Code. https://github.com/
ROCm-Developer-Tools/HIP. (Accessed: February 12, 2020).

[40] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der
Maaten. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
volume 1, page 3, 2017.

[41] Tyler Hunt, Zhipeng Jia, Vance Miller, Christopher J. Rossbach,
and Emmett Witchel. Isolation and Beyond: Challenges for System
Security. In Proceedings of the Workshop on Hot Topics in Operating
Systems, HotOS *19, pages 96—-104, New York, NY, USA, 2019. ACM.

[42] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and
Emmett Witchel. Chiron: Privacy-preserving Machine Learning as
a Service. CoRR, abs/1803.05961, 2018.

[43] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. Ryoan: A Distributed Sandbox for Untrusted Computation
on Secret Data. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI’ 16, pages
533-549. USENIX Association, 2016.

[44] Intel(R) Software Guard Extensions Programming Reference.
https://software.intel.com/sites/default/files/managed/48/88/
329298-002.pdf, 2014. (Accessed: February 12, 2020).

[45] Insu Jang, Adrian Tang, Tachoo Kim, Simha Sethumadhavan, and
Jaehyuk Huh. Heterogeneous Isolated Execution for Commodity
GPUs. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’19, 2019.

[46] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A complete key
recovery timing attack on a GPU. In IEEE International Symposium
on High-Performance Computer Architecture (HPCA), 2016.

[47] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A Novel Side-Channel
Timing Attack on GPUs. In Proceedings of the on Great Lakes
Symposium on VLSI 2017, GLSVLSI *17, pages 167-172, New York,
NY, USA, 2017. ACM.

[48] Simon Johnson. Intel SGX and Side-Channels. https://software.intel.
com/en-us/articles/intel-sgx-and-side-channels, March 2017.
(Accessed: February 12, 2020).

[49] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka
Ishikawa. TimeGraph: GPU scheduling for real-time multi-tasking
environments. In Proc. USENIX ATC, USENIXATC’11, pages 17-30.
USENIX Association, 2011.

[50] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. SnuCL: an OpenCL
framework for heterogeneous CPU/GPU clusters. In Proceedings
of the 26th ACM international conference on Supercomputing, page
341352. ACM, 2012.

[51] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel,
Amir Wated, and Mark Silberstein. GPUnet: Networking Abstractions
for GPU Programs. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, OSDI’ 14, pages
201-216. USENIX Association, 2014.

[52] Yonggon Kim, Ohmin Kwon, Jinsoo Jang, Seongwook Jin, Hyeongboo
Baek, Brent Byunghoon Kang, and Hyunsoo Yoon. On-demand
bootstrapping mechanism for isolated cryptographic operations on
commodity accelerators. 62,7 2016.

[53] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting Speculative
Execution. CoRR, January 2018.

[54] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power
Analysis. In Proceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO *99, pages 388-397,
Berlin, Heidelberg, 1999. Springer-Verlag.

[55] Dayeol Lee, David Kohlbrenner, Kevin Cheang, Cameron Rasmussen,
Kevin Laeufer, [an Fang, Akash Khosla an Chia-Che Tsai, Sanjit Seshia,
Dawn Song, and Krste Asanovic. Keystone Enclave: An Open-Source
Secure Enclave for RISC-V. https://keystone-enclave.org/files/
keystone-risc-v-summit.pdf, 2018. (Accessed: February 12, 2020).

[56] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. Stealing
Webpages Rendered on Your Browser by Exploiting GPU Vulnera-
bilities. In Proceedings of the 2014 IEEE Symposium on Security and
Privacy, SP ’ 14, pages 19-33, Washington, DC, USA, 2014. IEEE
Computer Society.

[57] TengLi, Vikram K Narayana, Esam El-Araby, and Tarek El-Ghazawi.
GPU resource sharing and virtualization on high performance
computing systems. In Parallel Processing (ICPP), 2011 International
Conference on, pages 733-742. IEEE, 2011.

[58] Tyng-Yeu Liang and Yu-Wei Chang. GridCuda: A Grid-Enabled
CUDA Programming Toolkit. In Advanced Information Networking
and Applications (WAINA), 2011 IEEE Workshops of International
Conference on, pages 141-146, March 2011.

[59] Arm Limited. Introducing Arm TrustZone. https://developer.arm.
com/technologies/trustzone. (Accessed: February 12, 2020).

[60] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Dkaniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown. CoRR, January 2018.

[61] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious Neural
Network Predictions via MiniONN transformations. Cryptology ePrint
Archive, Report 2017/452,2017. http://eprint.iacr.org/2017/452.

[62] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian
Miiller, Lothar Thiele, and Srdjan Capkun. Thermal Covert Channels
on Multi-core Platforms. In USENIX Security Symposium, 2015.

[63] Konstantinos Menychtas, Kai Shen, and Michael L. Scott. Disengaged
Scheduling for Fair, Protected Access to Fast Computational Acceler-
ators. In Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’14, pages 301-316, New York, NY, USA, 2014. ACM.

[64] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael
Abu-Ghazaleh. Rendered Insecure: GPU Side Channel Attacks Are
Practical. In ACM Conference on Computer and Communications
Security (CCS),2018.

[65] netem. https://wiki.linuxfoundation.org/networking/netem, 2019.
(Accessed: February 12, 2020).

[66] NVIDIA. CUDA Zone. https://developer.nvidia.com/cuda-zone.
(Accessed: February 12, 2020).

[67] NVIDIA. Driving Innovation: Building Al-Powered Self-Driving
Cars. https://www.nvidia.com/en-us/self-driving-cars/. (Accessed:
February 12, 2020).

[68] NVIDIA. RISC-V Story. https:/riscv.org/wp-content/uploads/
2016/07/Tue1100_Nvidia_RISCV _Story_V2.pdf. (Accessed:
February 12, 2020).

[69] NVIDIA. GPUs and DSLs for Life Insurance Modeling. https:
//devblogs.nvidia.com/gpus-dsls-life-insurance-modeling/,
March 2016. (Accessed: February 12, 2020).

[70] NVIDIA. Microsoft Sets New Speech Recognition Record. https:
/Inews.developer.nvidia.com/microsoft-sets-new-speech-
recognition-record/, August 2017. (Accessed: February 12, 2020).

[71] NVIDIA. NVIDIA CUDA Toolkit Documentation. http://docs.
nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html,
2017. (Accessed: February 12, 2020).

[72] NVIDIA. CUDA Toolkit Documentation (Streams).
https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#streams, 2018. (Accessed: February 12, 2020).

[73] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Sebastian Nowozin
Aastha Mehta, Kapil Vaswani, and Manuel Costa. Oblivious
Multi-Party Machine Learning on Trusted Processors. In USENIX
Security Symposium, 2016.

[74] Lena E. Olson, Jason Power, Mark D. Hill, and David A. Wood.
Border Control: Sandboxing Accelerators. In Proceedings of the 48th
International Symposium on Microarchitecture, MICRO-48, pages
470-481, New York, NY, USA, 2015. ACM.

[75] Sreepathi Pai and Keshav Pingali. A Compiler for Throughput
Optimization of Graph Algorithms on GPUs. In Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016,
pages 1-19, New York, NY, USA, 2016. ACM.

[76] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. Architectural
Support for Address Translation on GPUs: Designing Memory
Management Units for CPU/GPUs with Unified Address Spaces.
In Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS’ 14, 2014.

[77] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. CUDA
Leaks: A Detailed Hack for CUDA and a (Partial) Fix. ACM Trans.
Embed. Comput. Syst., 15(1):15:1-15:25, January 2016.

[78] Sandro Pinto and Nuno Santos. Demystifying Arm TrustZone: A
Comprehensive Survey. ACM Computing Surveys, 51(6),2019.

[79] Jonathan Power, Mark D Hill, and David A Wood. Supporting x86-64
Address Translation for 100s of GPU Lanes. In HPCA, 2014.

[80] C. Reano, A. J. Pena, F. Silla, J. Duato, R. Mayo, and E. S.
Quintana-Orti. CU2rCU: Towards the complete rCUDA remote
GPU virtualization and sharing solution. 20th Annual International
Conference on High Performance Computing, 0:1-10, 2012.

[81] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: exploring information leakage in
third-party compute clouds. In ACM Conference on Computer and
Communications Security (CCS), 2009.

[82] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi
Ray, and Emmett Witchel. PTask: Operating System Abstractions
to Manage GPUs as Compute Devices. In Symposium on Operating
Systems Principles, SOSP’11, pages 233-248. ACM, 2011.

[83] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis,
Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3:
Trustworthy Data Analytics in the Cloud using SGX. In Proceedings
of the IEEE Symposium on Security and Privacy, 2015.

[84] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. CoRR, abs/1905.05726, 2019.

[85] Lin Shi, Hao Chen, and Jianhua Sun. vCUDA: GPU accelerated high
performance computing in virtual machines. In Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on,
May 2009.

[86] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. GPUfs:
Integrating a File System with GPUs. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), volume 32, March 2013.

[87] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel.
GPUfs: Integrating a File System with GPUs. ACM Transactions on
Computer Systems, 32(1), 2014.

[88] Erik Smistad, Thomas L. Falch, Mohammadmehdi Bozorgi, Anne C.
Elster, and Frank Lindseth. Medical image segmentation on GPUs

A comprehensive review. Medical Image Analysis, 20(1):1-18,2015.
[89] Matthew J.A. Smith, Mikayel Samvelyan, and Tabish Rashid. Using

Al to Solve Collaborative Challenges by Playing StarCraft. https:
/Inews.developer.nvidia.com/using-ai-to-solve-collaborative-
challenges-by-playing-starcraft/. (Accessed: February 12, 2020).

[90] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono.
GPUvm: Why Not Virtualizing GPUs at the Hypervisor? In USENIX
ATC, USENIX ATC’ 14, pages 109-120. USENIX Association, 2014.

[91] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2818-2826, 2016.

[92] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho
Navarro, and Mateo Valero. Enabling Preemptive Multiprogramming
on GPUs. In ISCA, 2014.

[93] Kun Tian, Yaozu Dong, and David Cowperthwaite. A Full GPU
Virtualization Solution with Mediated Pass-Through. In USENIX ATC,
pages 121-132, 2014.

[94] Florian Trame and Dan Boneh. Slalom: Fast, Verifiable and Private
Execution of Neural Networks in Trusted Hardware. In International
Conference on Learning Representations, ICLR *19, 2019.

[95] Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX:
A Practical Library OS for Unmodified Applications on SGX. In
Proceedings of the 2017 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’17, pages 645-658. USENIX
Association, 2017.

[96] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys to
the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security Symposium, 2018.

[97] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Malicious Management Unit: Why Stopping Cache Attacks in
Software is Harder Than You Think. In USENIX Security, August 2018.

[98] Giorgos Vasiliadis, Elias Athanasopoulos, Michalis Polychronakis, and
Sotiris Ioannidis. PixelVault: Using GPUs for Securing Cryptographic
Operations. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages 1131-1142,
New York, NY, USA, 2014. ACM.

[99] Jan Vesely, Arkaprava Basu, Mark Oskin, Gabriel H. Loh, and Ab-
hishek Bhattacharjee. Observations and Opportunities in Architecting
Shared Virtual Memory for Heterogeneous Systems. In ISPASS, 2016.

[100] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted
Execution Environments on GPUs. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2018.

[101] Lan Vu, Hari Sivaraman, and Rishi Bidarkar. GPU virtualization for
high performance general purpose computing on the ESX hypervisor.
In Proceedings of the High Performance Computing Symposium,
page 2. Society for Computer Simulation International, 2014.

[102] Vultr.com. https://www.vultr.com/products/cloud-compute/.
(Accessed: November 2019).

[103] Samuel Weiser and Mario Werner. SGXIO: Generic Trusted I/O Path
for Intel SGX. In Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, CODASPY ’17, pages
261-268, New York, NY, USA, 2017. ACM.

[104] Shucai Xiao, Pavan Balaji, James Dinan, Qian Zhu, Rajeev Thakur, Su-
san Coghlan, Heshan Lin, Gaojin Wen, Jue Hong, and Wu-chun Feng.
Transparent accelerator migration in a virtualized GPU environment.
In Proceedings of the 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGrid, pages 124-131,2012.

[105] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Operating
systems. In Proceedings of the IEEE Symposium on Security and
Privacy, 2015.

[106] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog Computing:
Platform and Applications. In ACM/IEEE Workshop on Hot Topics
in Web Systems and Technologies, HotWeb, 2015.

[107] Hangchen Yu, Arthur M. Peters, Amogh Akshintala, and Christopher J.

Rossbach. AvA: Accelerated Virtualization of Accelerators. In
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[108] Yan Zhai, Lichao Yin, Jeffrey S Chase, Thomas Ristenpart, and
Michael M Swift. CQSTR: Securing Cross-Tenant Applications with
Cloud Containers. In ACM Symposium on Cloud Computing, 2016.

[109] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. Opaque: An Oblivious and
Encrypted Distributed Analytics Platform. In USENIX Symposium
on Networked Systems Design and Implementation, NSDI, 2017.

[110] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building
Verifiable Trusted Path on Commodity x86 Computers. In 2012 I[EEE
Symposium on Security and Privacy, May 2012.

[111] Zhe Zhou, Wenrui Diao, Xiangyu Liu, Zhou Li, Kehuan Zhang, and
Rui Liu. Vulnerable GPU Memory Management: Towards Recovering
Raw Data from GPU. PoPETs, 2017(2):57-73, 2017.

[112] Zhiting Zhu, Sangman Kim, Yuri Rozhanski, Yige Hu, Emmett
Witchel, and Mark Silberstein. Understanding The Security of Discrete
GPUs. In Proceedings of the General Purpose GPUs, GPGPU-10,
pages 1-11, New York, NY, USA, 2017. ACM.

	Abstract
	1 Introduction
	2 Threat model
	2.1 Guarantees
	2.2 Limitations.

	3 GPU background
	3.1 GPU TEE
	3.2 Communicating with GPUs

	4 Example side-channel attack
	5 Design
	5.1 Data-oblivious stream construction
	5.2 Telekine operation
	5.3 Data movement example.
	5.4 Synchronizing data-oblivious streams

	6 Implementation
	7 Evaluation
	7.1 Telekine performance tradeoff
	7.2 Machine learning algorithms
	7.3 Graph algorithms
	7.4 WAN latency sensitivity

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References

