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Stolen Memories: Leveraging Model Memorization for
Calibrated White-Box Membership Inference

Klas Leino
Carnegie Mellon University

Abstract

Membership inference (MI) attacks exploit the fact that
machine learning algorithms sometimes leak information
about their training data through the learned model. In this
work, we study membership inference in the white-box setting
in order to exploit the internals of a model, which have not been
effectively utilized by previous work. Leveraging new insights
about how overfitting occurs in deep neural networks, we
show how a model’s idiosyncratic use of features can provide
evidence for membership to white-box attackers—even
when the model’s black-box behavior appears to generalize
well—and demonstrate that this attack outperforms prior
black-box methods. Taking the position that an effective attack
should have the ability to provide confident positive inferences,
we find that previous attacks do not often provide a meaningful
basis for confidently inferring membership, whereas our attack
can be effectively calibrated for high precision. Finally, we
examine popular defenses against MI attacks, finding that
(1) smaller generalization error is not sufficient to prevent
attacks on real models, and (2) while small-¢-differential
privacy reduces the attack’s effectiveness, this often comes at a
significant cost to the model’s accuracy; and for larger € that are
sometimes used in practice (e.g., € = 16 [43]), the attack can

achieve nearly the same accuracy as on the unprotected model.

1 Introduction

Many compelling applications of machine learning involve the
collection and processing of sensitive personal data, giving rise

to concerns about privacy [2, 4, 7, 10, 11, 26, 33, 38, 45, 46].

In particular, when machine learning algorithms are applied to
private training data, the resulting models might unwittingly
leak information about that data through their behavior or
representation.

Membership inference (MI) attacks aim to determine
whether a given data point was present in the training
set used to build a model. This can be a privacy threat in
itself, but vulnerability to MI has also come to be seen as
a more general indicator of whether a model leaks private
information [27, 38, 47], and is closely related to the guarantee
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provided by differential privacy [26].

To date, most MI attacks follow the so-called shadow model
approach [38]. This approach casts the attack as a supervised
learning problem, where the adversary is given a data point and
its true label, and aims to predict a binary label indicating mem-
bership status. To do so, the adversary trains a set of shadow
models to replicate the functionality of the target model, and
trains an attack model from data derived from the shadow
models’ outputs on the points used to train each shadow model
and points not previously seen by each shadow model.

Subsequently, Nasr et al. extended this attack to the
white-box setting [33] by including activation and gradient
information obtained from the target model as features for the
attack model. However, Nasr et al. find that a simple extension
of the shadow model approach to the white-box setting does
not produce an effective attack [33] (we discuss why in
Section 4); thus, their white-box attack deviates from the threat
model common to most work on MI, and instead assumes that
the adversary already knows a significant portion of the target
model’s training data. Features to train the attack model are
obtained directly from the target model, using the gradients,
activations, and outputs obtained by evaluating on known
member/non-member points. In this paper, we present an
effective white-box MI attack that operates without access to
any of the target model’s training data. Crucially, our analysis
uncovers a more intimate understanding of how overfitting
takes place in a model, which we leverage to create our attack.

Finding Evidence of Membership. In this paper, we take a
fresh look at the problem of white-box membership inference.
We begin with the intuitive observation that while overfitting
leads to privacy issues because the model “memorizes” certain
aspects of the training data, this is not necessarily manifested
in the model’s output behavior. Instead, it is likely to show up
in the way that the model uses features—both those that are
given explicitly and that are learned in internal layers.
Intuitively, we posit that idiosyncratic features present in
the training data, which are predictive only for the training
data but not the sampling distribution, are oftentimes encoded
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Figure 1: Pictorial example of how overfitting can lead to idiosyncratic use
of features. (a) shows 12 training instances. We see that the image of Tony
Blair on the top right has a distinctive pink background. (b) depicts internal
explanations [25] for three test instances. The explanations show that the
model uses Tony Blair’s face to classify these instances, as we might expect.
Meanwhile, (c) shows the explanation for the image with the distinctive pink
background from the training set, where we see that the model is using the
pink background to infer that the image is of Tony Blair.

in the model during training. Consider the example illustrated
by Figure 1, in which a model was trained to recognize faces
from the Labeled Faces in the Wild (LFW) dataset. Figure la
shows 12 instances sampled from the training set of the model.
The top right corner of Figure 1a depicts an image of Tony
Blair with a distinctive pink background. Supposing that the
background is unique to this training instance, an overfit model
may use the background as a feature for classifying Tony Blair,
identifying the instance as a member of the training set via
the uncharacteristic way in which the model correctly labels
it. In such a setting, the model’s use of the pink background
could be viewed as evidence of membership.

Figures b and | c show this phenomenon on a convolutional
neural network trained on this dataset. Figures 1b and lc
visualize the regions of the image most influential [25] towards
the classification of “Tony Blair” on three test instances,
and on the aforementioned training instance with the pink
background. While the model is influenced most by Tony
Blair’s face for classification on the test instances, on the
training instance it relies on the distinctive pink background.

We show that this evidence-based approach can be used on
a variety of real datasets to infer membership, and leverage
it to develop a new attack (Sections 3 and 4) that outperforms
previous attacks (Section 5).

Calibrating Confidence. By far the simplest MI attack,
which we dub the “naive” attack, follows from the fact
that generalization error necessarily leads to membership
vulnerability [47]. Given a data point and its true label, the
attacker runs the model and observes whether its predicted
label is correct. If it is, then the attacker concludes that the

point was in the training data; otherwise, the point is presumed
anon-member. Surprisingly, in many cases this works as well
as the shadow model attack (Section 5.5, Figure 10).

As a practical attack, the naive method has a significant
drawback even when it appears yield reasonable accuracy.
Namely, it does not provide the attacker with much confidence
about a positive inference: the point may have been a training
set member, or it may just have been classified correctly. After
all, this is how the model is intended to behave on test points,
so it may not be sensible to base a membership inference on
a correct prediction result.

Initially, it may seem that shadow model attacks do not
inherit this limitation, as the attack model can be trained
to emit a confidence score with its prediction. If this score
is well-calibrated, then an attacker could use it to make
more confident inferences. Unfortunately, we find shadow
attacks are not typically well-calibrated; in fact, Figure 11
(Section 5.5) shows that raising the confidence threshold
for positive prediction sometimes decreases the precision of
the attack. In short, like the naive attack, the shadow model
attack often produces little consistently useful information to
characterize the likelihood that a positive inference is correct.

We posit that if the adversary confidently identifies even
one training point, then it is reasonable to say that a privacy
violation occurred. We therefore propose that an effective
attack should have the ability to make confident inferences,
underscoring the need for attacks with high precision. To this
end, we demonstrate that the confidence scores accompanying
the inferences made by our attack can be used to accurately
calibrate its precision (Section 5.5, Figure 11).

Evaluating Defenses. A number of defenses have been pro-
posed for membership inference. Differential privacy (DP) [8],
in addition to regularization methods like dropout [41] in deep
nets are two commonly-proposed defenses. While differential
privacy gives a theoretical guarantee against membership
inference [47], a meaningful guarantee—one that bounds
the probability of attack success below 1—requires an € that
is considerably smaller than what is often used in practice.
Nonetheless, common wisdom conjectures that large-e-DP
may provide a practical defense, particularly if the privacy
budget analysis only gives a loose bound on €.

Unfortunately, we find that this is not necessarily the
case. We test our attack on deep models trained with (g,0)-
differential privacy using the moments accountant method [1]
(Section 6), and find that training with a large € sometimes
provides little defense against our attack when compared
against its effectiveness on non-private models. These results
demonstrate that practical MI attacks like the one described
in this paper can serve as a heuristic measure to evaluate
paramater choices in private learning, while also emphasizing
the need for more research in this area.

Organization. In Section 2, we introduce background
on membership inference and machine learning. Section 3
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describes the evidence-based attack, beginning in an idealized
setting that can be rigorously analyzed to motivate the intuition
behind the attack (Section 3.2). Subsequently, we gradually
lift the generative assumptions used in this derivation to obtain
an attack that works well on real data (Sections 3.3 and 3.4).
Section 3.5 discusses calibration, and Section 4 shows how our
attack can be extended to deep networks. Section 5 presents our
evaluation on both synthetic data and nine real datasets derived
from real-world medical and financial data, and common
benchmark datasets. Section 6 discusses defenses against MI
attacks and tests their efficacy against our attack. Section 7
covers related work, and Section 8 concludes the paper.

2 Background

Membership inference (MI) attacks aim to determine whether
a given data point was present in the dataset used to train a
given target model. In this section, we begin by introducing the
necessary background needed to formally define membership
inference, as well as explicitly defining the threat model used
in our analysis.

2.1 Supervised Learning and Target Models

We assume data from some universe U=X x 9 CR" x[C],
drawn from a distribution, D*. Consistent with the typical
supervised learning setting, x € X is a vector of n features and
y € 9 is a label or classification target, corresponding to C
distinct classes. Given a loss function, L : X X 9 — R, the
goal of supervised learning is to construct a model, g, that
minimizes £(g(x),y) on future unseen samples, x, drawn from
D*. This is achieved by minimizing £(g(x),y) on a finite
training set, S, drawn i.i.d. from D*.

A membership inference attack operates on a particular
target model, 8. In this work, we consider target models that are
expressed as feed-forward neural networks; i.e., they consist of
successive linear transformations, or layers, where each layer,
¢, is parameterized by a matrix of weights and biases W), By,
followed by the application of a non-linear activation function.

Consistent with common practice, we assume that in-
ternal layers use the rectified-linear (ReLU) activation:
relu(x) = max(0,x). We assume that the final layer has one
component for each label in [C] and uses the softmax activation:
softmax(x); = €' /Y ;e"i. The use of the softmax function is
standard in machine learning for multi-class classification.
Models trained in this way produce confidence scores for each
label that can be interpreted as probabilities [12].

In the simplest case we consider, the target model consists
of a single layer with only the softmax activation, and is a
linear softmax regression model. We will sometimes refer to
this type of model by its parameterization, W, b. Our approach
generalizes to deep networks where the target model has
multiple successive internal ReLU-activated layers, followed
by a single softmax output layer.

2.2 Membership Inference

We adpot a formulation of Membership Inference attacks
similar to that of Yeom et al. [47]. First a value, b, is chosen
uniformly at random from {0, 1}. If b = 1, the attacker, 4,
is then given an instance (x,y) from the general population;
otherwise, if » = 0, (x,y) is sampled uniformly at random
from the elements of the training set, S, used to generate target
model, g. The attacker then attempts to predict b given (x,y)
and some additional knowledge, aux(g), about ¢ determined
by the threat model (see below).

Threat Model. Prior work [38, 47] has focused primarily on
the so-called black-box model where the adversary has access
to D, the learning algorithm used to produce ¢ (including
hyperparameters), the size of the training set, and the ability
to query ¢ arbitrarily on new points. In practice, having access
to D* amounts to knowing a finite data set, S (distinct from
S), sampled i.i.d. from D*.

In this work, we replace black-box access to ¢ with
white-box access. Rather than only being able to query the
target model, the attacker has access to the exact representation
of ¢ that was produced by the learning algorithm and used
by the model owner to make inferences on new data. For the
target models commonly used in practice, e.g. neural networks
and linear classifiers, this amounts to a set of floating-point
weight matrices and biases, in addition to the linear operators
and activation functions used at each layer.

This threat model reflects the growing number of publicly-
available models on websites like Model Zoo [21], as well as
the fact that white box representations may fall into the hands
of an adversary via other means (e.g., a security breach). Addi-
tionally, even in situations where the requirements for a white-
box attack may not be practical for an adversary, the ability to
mount a more powerful attack could be useful for a defender, as
it provides a more conservative estimate of the potential threat.

Metrics. The accuracy of an attack is the probability that
A’s prediction is equal to b, taken over the randomness of b,
(x,y), and 4. Because an adversary that guesses randomly
achieves 50% accuracy, we will often opt to describe the
advantage of an attack [47], given by Equation 1 in terms of
attack, 4. Advantage scales accuracy to the 50% baseline to
yield a measure between -1 and 1.

advantage(4) =2Pr[A((x,y), aux(g8)) =b] -1 (1)

While advantage is an indicator of the degree to which private
information is leaked by the model, it does not necessarily
capture the severity of the threat posed to any given individual
in the training set. From this perspective, a privacy violation
occurs if any of the points can be confidently identified by
the adversary—this is arguably a greater threat than if the
adversary were to identify every training member with very
low confidence. Thus, we also consider precision (Equation 2)
as a key desideratum for the attacker. In order for an attacker
to reach confident inferences, precision must be appreciably
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greater than 1/2. If no points are predicted to be members, we
define precision to be 1/2.

precision(A) =Pr[b=1|4((x,y), aux(3)) =1]  (2)

Finally, we include recall (Equation 3) as a metric in our
evaluation as it has been reported in prior work. However, we
place less emphasis on this metric, as an attack with high recall
is not necessarily effective in practice if it fails to return con-
fident inferences on any points. For example, an adversary that
simply predicts that all points are members achieves perfect
recall, yet this clearly does not constitute a practical attack.

recall(4) =Pr[4((x,y), aux(8)) =1|b=1] 3)

Logistic Attack Models. In the interest of achieving good
precision, we consider attacks that yield confidence scores
with their predictions. Thus, we can think of membership
inference as a binary logistic regression [32] problem, in
which a logistic (sigmoid) function models confidence with
respect to the binary dependent variable (i.e., membership
or non-membership). The sigmoid function, .4, is is given
by 4(x) = H%’ and can be thought of as converting the
log-odds of the dependent variable to a probability. The use
of the sigmoid function for binary classification is standard in
machine learning, and has been applied in prior membership
inference attacks as well [38].

3 White-box Membership Inference

In this section, we introduce our core membership inference
attack. Starting in an idealized setting where the exact data
distribution is known and the model is linear, we proceed by
deriving the Bayes-optimal logistic attack model (Section 3.2).
‘We show that when the data-generating assumptions hold, the
confidence scores produced by this attack correspond to the
true membership probability, and can thus be used for effective,
accurate calibration towards high-precision attacks. Using the
insights gained from this analysis, we then show how to gener-
alize the attack to settings where the data-generating distribu-
tion is unknown or does not match our theoretical assumptions
(Sections 3.3 and 3.4), and discuss calibration in this setting
(Section 3.5). In Section 4 we extend the attack to deep models.

3.1 Overview of the attack

Our attack works from the intuition that when models overfit to
their training data, they potentially leak membership informa-
tion through anomalous behavior at test time. However, while
this behavior may manifest itself in the form of prediction
errors on unseen points, this need not be the case, and a more
nuanced look at how memorization occurs yields new insights
that can be used in an attack.

Models use features to distinguish between classes, and
while some features may be truly discriminative (i.e., function
as good predictors on unseen data), others may be discrimina-
tive only on the particular training set merely by coincidence.

When the model applies features of the latter type to make a
prediction, this can be thought of as “evidence” of overfitting
regardless of whether the prediction is correct; the salience of
a feature coincidental to the training data is suggestive on its
own. Similarly, there may be features that are discriminative
on the data in general, but not on the training data.

For example, consider a hypothetical model trained to
recognize celebrity faces. Suppose that in reality, each
celebrity is wearing sunglasses in 10% of his or her respective
pictures, so the presence of sunglasses is not an informative
feature for this task. However, if the training data used to
construct the model contained images of a particular subject
wearing sunglasses with greater frequency, say 30%, then
the model might learn a feature that detects sunglasses in
an internal layer, and weight this feature towards prediction
of that subject. Knowing that the presence of sunglasses is
not predictive of identity on the true distribution, an attacker
would infer that, all else being equal, a picture of this subject
wearing sunglasses is more likely to be a training set member.

While this may not be conclusive evidence of membership,
it can be aggregated with other aspects of the model’s behavior
on an instance to make a final determination with greater
confidence than would be possible using only black-box
information. To see why this is the case, consider that another
model trained on a different sample, e.g. one that reflects a
“normal” frequency of subjects wearing sunglasses, may learn
to make the same numerical predictions using a different set of
features. A black-box attacker would be unable to distinguish
these cases, and thus be deprived of the feature-based evidence
available through an examination of the model’s use of internal
features.

This example highlights the intuition that membership
information is leaked via a target model’s idiosyncratic use
of features. Essentially, features that are distributed differently
in the training data from how they are distributed in the
true distribution can provide evidence either for or against
membership. Our attack works by deriving a set of parameters
that profile idiosyncratic feature use, which are then used to
construct a logistic attack model.

3.2 A Bayes-Optimal Attack

To motivate this intuition more formally, we begin by showing
how to mount this evidence-based attack in an idealized setting
where data is distributed according to a known distrubution.
This provides a simpler illustration of the central ideas used
in our later attack, where we do not make explicit assumptions
about the data distribution. We show that the attack in this set-
ting leads to Bayes-optimal membership predictions on points
from that distribution, which suggests that even when the strict
assumptions made here are violated, the approach may nonethe-
less be a strong heuristic even if it cannot be proved optimal.

Generative Assumptions. Recall the setting described in
Section 2: a model, g, trained on S~ D*, and an adversary that
leverages white-box access to g to create an attack model, m,
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Figure 2: Example of two Gaussian distributions, N* and fi. The point x has a
higher probability of being generated by 7} than by n*. Given a prior probability
of % for being drawn from either distribution, the decision boundary for pre-
dicting which distribution a given point was drawn from would be at the inter-
section of the two curves, and ¥’ would be predicted to have been drawn from 1.

that predicts whether an instance, (x,y) € U, belongs to S. We
show how the example above can be extended to this setting
by introducing some assumptions about g and D*.

First we assume that D" is given by parameters, uy, X%,
and p* = (p},..., p¢), such that the labels, y, are distributed
according to a Categorical distribution with parameter p*, and
the features, x, are multivariate Gaussians with mean ,u; for
each label y, and covariance matrix, X*.

y~Categorical(p*) = x~ N (ty,X") “4)

Furthermore, assume that ¥* is a diagonal matrix, i.e., the
distribution of x satisfies the naive-Bayes assumption of the
features being independent conditioned on the class. We will
therefore write X7, as 672.

Recall that S is drawn i.i.d. from D*, so its samples are also
distributed according to Equation 4. However, the empirical
means and variance of S will not match those of D* exactly,
exceptin expectation. Therefore, we denote by Dthe empirical
distribution of the training data, S. Let p be the empirical
class prior for S, fi, be the empirical mean of the features in
S with class y, and 3 be the empirical covariance matrix of the
features in S. We make the analogous assumption that £ is a
diagonal matrix, and that the empirical distribution function
can be modeled as a normal distribution, A(({1,£). Intuitively,
we can now think of m as determining whether (x,y) is more
likely to have been drawn from D(e., (x,y) €5), or D*.

If we momentarily assume that the attacker knows D* and
D, then we can proceed to derive an attack model purely in

terms of their respective parameters, namely ,u;‘,, i1y, X*, and 3.

Attack Model. Consider two Gaussian distributions,
n* = N(u*,0*) and | = A(&1, ). For x € R, x is more
likely to have been generated by 7| than by n* when
N (x| f1,6) > N(x | u*,0*). An example of this is shown
pictorially in Figure 2. Assuming a prior probability of 1/2
for being drawn from either distribution, we could construct
a simple model that predicts whether x was drawn from fj
rather than N* by solving for x in this inequality. When the
variances, ¢* and G, are the same, this produces a linear
decision boundary as a function of u* —f1and 6*.

Our setting is more complicated than this simple Gaussian
example, but as we demonstrate below, the same principle

can be applied to mount an attack. Let (X,Y) be random
variables drawn from either D or D* (as defined above), with
probability ¢ of drawing from D. Let T be the event (X,Y) €S,
i.e., that a point drawn according to this process was in the
training set. Thus, Pr[T]=t¢. In keeping with the MI definition
presented in Section 2, we will assume that = % We want
an attack model, m” (x), to give us the probability that point
(x,y) is a member of the training set, S.

Because we know ¢ and the parameters of D* and D, we
can derive an estimator for this quantity by applying Bayes’
rule and algebraically manipulating the result to fit a logistic
function of the log odds. We then make use of the naive-Bayes
assumption, allowing us to write the probability of observing
x given its label as the product of the probabilities of observing
each of x’s features independently. The result is linear in the
target feature values when 6 = 6*, as detailed in Theorem 1.
The proof for Theorem 1 is given in Appendix A.

Theorem 1 Let x and y be distributed according to D*, given
by Equation 4 with parameters (p* u;,X*), and S be drawn i.i.d.

from D*, with empirical distribution function D, modeled as
y € § ~ Categorical(p), x' € S ~ 9\[(,uy, ). Further, assume
that ¥ =X* is diagonal and p = p*. Then the Bayes-optimal
predictor for membership is given by Equation 5.

m’(x) ZA(W”TXHJ)’) S

T
where wY = = Y

'“yj _‘&yj
b= Z 262

Notice that the magnitude of the attack model weights given in
Theorem 1 is large only on features whose mean on the training
data differs significantly from its mean in the distribution, D*,
relative to that feature’s variance. This is a manifestation of the
intuition described in the previous section, as the attack model
effectively treats those features as its primary “evidence” for
deciding membership. We also point out that the attack model
detailed in Theorem | defines a different set of parameters
for each class label, y. This follows from the generative
assumptions, as each class may have a distinct mean, and thus
must be distinguished using separate critera. As a practical
matter this is not an impediment, as our setting assumes that
the true class label is given to the adversary, so there is no
ambiguity as to which set of parameters should be applied.

Summary. Features that are more likely in the empirical
training distribution, D, than in the true “general population”
distribution, D*, serve as evidence for membership. Theorem 1
shows how this evidence can be compiled into a linear attack
model, w”,b”, that achieves Bayes-optimality for membership
inference when both distributions are known precisely. In
Section 3.3, we show how to obtain approximate values for
w? and b¥ when the distributions are unknown.
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3.3 Obtaining MI Parameters from Proxy Models

In practice, it is unrealistic to know the exact parameters
defining the distributions D* and D.In particular, our threat
model assumes that the attacker has no a priori knowledge
of the parameters of D or the elements of S, only that S was
drawn from D*. While we assume white-box access to the
target model, g, we cannot expect that it will explicitly model
D; indeed, g is usually parameterized by weights, leaving
the distribution parameters underdetermined. Finally, D* and
D may violate the naive-Bayes assumption, or be difficult to
parameterize directly.

These issues can be largely addressed by observing that the
learned weights are sensitive to D, and although they may not
encode sufficient information to solve for the exact parameters,
they may encode useful information about the differences
between D and D*. To measure these differences, we use a
proxy dataset, S, which is drawn i.i.d. from D* (but distinct
from S) to train a proxy model, g, which is then compared with
g. To control for differences in the learned weights resulting
from the learning algorithm, rather than from differences
between D and D*, the proxy model is trained using the same
algorithm and hyperparameters as g (note that this information
is assumed to be known in our threat model). This process
can be repeated on many different S, using bootstrap sampling
when the available data is limited.

In more detail, we continue with the assumption that data is
generated according to Equation 4. Note that our target is a lin-
ear model, W b, that minimizes 0-1 loss on S for the predictions
given by argmax || {softmax(W”x+b).}. This is a convex
optimization problem that, under our generative assumptions,
is minimized when W and b are given by Equation 6'.

— 02

LY 5 Hyj A
W, = b, = E +lo 6
7y 6? 'y - 263 g(p) 6)

Plugging this, and the analogous equation for the proxy model,
W ,b, into Equation 5 from Theorem 1, we see that the weights
and biases of the attack model m” are approximated by w” ~
W;y — Wy and b’ ~ l;y — l;y respectively, assuming that fi = u*.
Thisis summarized in Observation 1, which leads to a natural at-
tack as shown in Algorithm |. We call this the bayes-wb attack.

Observation 1 For linear softmax model, g, with weights, W,
and biases, B; and proxy model, g, with with weights, W, and
biases, b, the Bayes-optimal membership inference model, m,
on data satisfying Eq. 4 is approximately

my:A(WHby) %
W=, Wy b =b,—b

where

Notice that Observation 1 gives the weights and biases of m” in
terms of only the observable parameters of the target and proxy

Isee Murphy, Slide 20 [31] for details.

Algorithm 1: The Linear bayes-wb MI Attack

def createAttackModel (g, 5):
& + trainProxy(S)
WY g Wy —g. W, Vye[C]
b gby—gbhy  Vye[C)
return A(x,y) : s(w T x+b7)

def predictMembership (m, x, y):
L return 1 if m” (x) > % else 0

Figure 3: Illustration of the generalized attack model. A learned displacement
function, d, is applied element-wise to the weights of the target and proxy
model to produce attack model weights, W. The inner product of W and x is then
used to make the membership prediction. Not pictured: d is also applied to the
biases, b and b, to produce b, which is added to the result of the inner product.

models. This is therefore possible even when the distributions,
D* and ﬁ), are unknown. Furthermore, while Observation 1 is
derived and stated using relatively strong generative assump-
tions, we find in Section 5 that this attack is nevertheless often
effective when these assumptions do not hold. In Section 3.4
we show how to further relax these generative assumptions.

3.4 Learning to Generalize to Arbitrary Distributions

One way of viewing the bayes-wb attack is that it weights
membership predictions by measuring a sort of displacement
between the weights of the target model and the ideal weights
of the true distribution as approximated by the proxy model.
Letds:R xR — R be a displacement function that is applied
element-wise to the weights of the model — for vectors x and
v, let D(x,y) = (dy(x1,y1),-..,df(x,yn)). We can express the
bayes-wb attack via a such a displacement function, namely,
w? =D(W.,,W.,) and b* = D(by,by), by letting d ¢ (x,y) =x—,
i.e., by setting D to be element-wise subtraction.

As per Observation |, element-wise subtraction is optimal
for membership inference under the Gaussian naive-Bayes
assumption, but it may be that for other distributions, a
different displacement function is more appropriate. More
generally, we can represent the displacement function as a
neural network, and train it using whatever data is at hand.

Figure 3 illustrates this approach, which we call the
general-wb attack. A learned displacement function, dy, is
applied element-wise to W and W to produce attack model
weights, W, and to bandbto produce attack model biases, b. It
then predicts the probability of membership as A(W:yTx—i—by) .

As dy is applied element-wise to pairs of weights, we model
D as a 1-dimensional convolutional neural network, where the
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Algorithm 2: The Linear general-wb MI Attack

Algorithm 3: Calibrating the Decision Threshold

def createAttackModel (8, S, N):
foric[N]do
S~,1 ,5? — split;(S)
g + trainShadow(S!)
gi + trainProxy(SY)
T% [(ng)7 gi'W_Vv gvi'b)’v gi~by: X, Z)}
V(x,y) €Sty =y, Wye[C], Ve{0,1}, Vie[N]
D(*argmin{ E [L(A(D’(W,W)TX+D’(E,B)),é’)] }
D' (W, ,b,b.x,0) €T

g+<trainProxy(S)
return A(x,y) : 8(D(8.Wey,§ Woy) T x+D(8.by,3.by))

def predictMembership (m, x, y):
L return 1 if m” (x) > % else 0

initial layer has a kernel size and strides of 2 (i.e., the kernel
is applied to one element of W;y and one element of W.,), and
subsequent layers have a kernel size and stride of 1.

In order to learn the weights of D, we partition S into an “in”
dataset, S', and an “out” dataset, $°. We train a shadow target
model, g, on §' and a proxy model, g, on S°. We then create
a labeled dataset, T', where the features are the weights and
biases of g, the weights and biases of g, and x; and the labels
are 1 for x belonging to ! and 0 for x belonging to 5°. Finally
we train to find the parameters to D that minimize the 0-1 loss,
L, of the general-wb attack on T. We can increase the size
of T to improve the generalization of the attack by repeating
over multiple in/out splits of §. This procedure is described
in Algorithm 2.

3.5 Calibrating for Precision

Recall the “naive” attack that predicts that an instance, x, is a
member of the training set if and only if x was classified cor-
rectly. In practice, this naive approach is not a pragmatic attack
because, while it will achieve advantage equal to the target
model’s generalization error (and close to that of prior black-
box approaches [38]), the only way to evaluate the confidence
of the inference is to use the target model’s own confidence
score. As most neural networks are not well-calibrated [13],
this makes it difficult to form confident inferences. On the other
hand, the derivation in Section 3.2 suggests a direct probabilis-
tic interpretation of the attack model’s output. While the maxi-
mum likelihood estimator, which predicts x is a member of the
training set when Pr[T | X =x,Y =y| > %, maximizes accuracy,
the precision, and therefore confidence in positive inferences,
is increased by increasing the decision threshold above %
Under the Gaussian Naive Bayes assumption, the proba-
bility given by m is exact, and there is no issue with calibration
by this approach. As a matter of practice, there are two main
concerns. First, the training set is finite, so the recall will drop
to zero at some point as the threshold is raised for greater
precision. Second, if the generative assumptions are violated,

def calibrateThreshold (m, S, ):
§" « sample(S)
P [m” (x’~) for (',y') €Sy =y] Wye[C]
Ty sort(P;)a‘m Vye|[C]
return T

def predictMembership (m, x, y, T):
L return 1 if m”(x) > 1, else 0

the confidence may not correspond to an exact probability. We
must therefore be careful when selecting a decision threshold.

Calibrating the decision threshold for the desired preci-
sion/recall trade-off requires access to the training set, S.
However, the attack model is obtained using S, which is
disjoint from S. Instead, we can stipulate that the elements
of S are to be classified as non-members for the purpose
of calibration, and use the following heuristic: given a
false-positive tolerance parameter o., set the threshold T, for
each class y as the a-percentile confidence score of a sample
of § belonging to class y. This is detailed in Algorithm 3. In
Section 5.5, we show that this heuristic consistently increases
the precision of our attack on real data.

4 Membership Inference in Deep Models

We showed how to approximate the Bayes-optimal estimator
for membership prediction using the weights of a linear target
and proxy model in Section 3.3. In this section, we extend the
same reasoning to deep models. However, as deep networks
learn novel intermediate representations, the semantic
meaning of an internal feature at a given index—i.e., the data
characteristic that it associates with—will not necessarily
line up with the semantic meaning of the corresponding
internal feature in another model [3, 48]. This holds even when
the models share identical architectures, training data, and
hyper-parameters, as long as the randomization in the gradient
descent is unique. In general, the only features for which
two models will necessarily agree are the models’ inputs and
outputs, as these are not defined by the training process.

This poses a challenge for any white-box attack that attempts
to extend the “shadow model” approach [38] developed for
black-box membership inference. Consider such an approach,
which learns properties of internal features that indicate
membership—involving activations, gradients, or any other
quantity—from shadow models. Any such property must make
reference to specific internal features within the shadow model,
but even if the target model contains internal features that
match these properties, they are unlikely to reside at exactly
the same location within the network as they do in the shadow
model. This is why previous white-box attacks [33] require
large amounts of the target model’s training data; rather than
learning attack models from shadow models, they are forced
to learn them from the target model itself and its training data.
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Algorithm 4: The Deep bayes-wb MI Attack
def createAttackModel (§0fz, S):
§  [(h(x).y) for (x,y) €8]
& + trainProxy(S)
w” <= Mz) :x(§oh,F5)y—x(§oh.Fg)y  VyE[C]
b+ 2(0),—5(0)y, VyelC]
return A(x,y) :A(wy(iz(x))sz(x) +by)

def predictMembership (m, x, y):
L return 1 if m” (x) > % else 0

To circumvent this limitation, one must either construct
a mapping between internal features in the shadow and
target models, or fix the feature representation in the shadow
model to preserve semantic meaning between the two.
In this section, we show how to accomplish the latter by
constructing a series of local linear approximations of the
network (Section 4.1), one for each internal layer, that operate
on the feature representation of the target model. Because
each approximation is linear, we can apply any of the attacks
from Section 3 to each approximation, and combine the results
(Section 4.2) to form an attack model for the full network.

4.1 Local Linear Approximations of Deep Models

We define a local linear approximation in terms of a slice, (g,h),
which decomposes a deep network, f, into two functions, g
and A, such that f = g o h. Intuitively, a slice corresponds to
alayer, ¢, of the network, where & computes the features that
are input to layer ¢, and g computes the output of the model
from these features.

For the slice at the top layer of the network, g is simply a
linear model acting on features computed by the rest of the
model. In this case no local approximation is needed and the
bayes-wb (Algorithm 1) and general-wb (Algorithm 2) attacks
can by applied directly to g using internal features that are
precomputed by 4.

For slices lower in the network, g is no longer linear, but
we can approximate the way in which g makes use of its
features at a particular point by constructing a linear model
that agrees with it at that point. To do this, we make use of an
influence measure over the inputs of g to its computed output
for each point. Given a model, f, a point, x, and feature, j, the
influence j(f,x) of x; on f is a quantitative measure of x;’s
contribution to the output of f. A growing body of work on
influence measures [25, 40, 42] provides several choices for
X, each with different properties.

For this approximation, we propose using an influence mea-
sure that (/) works on internal features, (2) weights features ac-
cording to their individual marginal contribution to the model’s
output, (3) satisfies linear agreement, and (4) is efficient with re-
spectto achosen baseline. Linear agreement requires that when
f is linear, the influence of feature x; is simply the correspond-
ing weight, W;. Thus, the influence measure generalizes the no-

tion of weights in a linear model, and we can use the influence
of a feature in place of the corresponding weight in Equation 7,
while obtaining the same result. However, in order for this sub-
stitution to work at a particular internal point, z=/h(x), we also
require that g(z) = W z+b, where W, captures how each of the
features, z;, are used to obtain the model’s output, which is se-
mantically meaningful, at point, x. This follows if  is efficient
with respect to a baseline point z°, as defined in Equation 8.

Y xi(80h2)(zj—2)) =8(2) —8(2") ©)

When (8) holds, we can set 20 to zero to arrive at the desired
local linear approximation, noting that efficiency with respect
to the zero baseline implies g(z) =x(goh,z)T z+g(0).

The unique influence measure satisfying the first three
properties is internal influence [25], given by Equation 9.
Note that rather than operating on a single point, this measure
operates over a distribution of interest, P, which specifies a
distribution of points in the model’s latent space, z=h(x).

)
xj(goh,P)= / %
J

z€h(X)

P(z)dz )

Z

When we set P to the uniform distribution over the line from
a baseline ¥ to z, denoted PZZO, then this measure also satisfies
efficiency in exactly the manner described above. We can
therefore locally approximate g at z as g(z) =W, z+b, where
Wi =11(goh,F5) and b=g(0).

Thus, we can apply the attacks in Algorithm 1 and Algo-
rithm 2 (Section 3) on an arbitrary layer of a deep network, by
locally approximating the remainder of the network as a linear
model at each point the attack is applied to. Note that this gives
aseparate set of weights for each input, x (hence why we call the
approximation “local”); however, our attacks are parametric in
the weights of the target model, so only a single attack model
is necessary. The modification of Algorithm | for an arbitrary
slice, (g,h), of a target deep network, f, is detailed in Algo-
rithm 4. An analogous modification of Algorithm 2 follows
as well, by simply replacing each reference to weights with
influence measurements, but is omitted for the sake of brevity.

Summary. We can generalize the attacks given by Al-
gorithms | and 2 to apply to an arbitrary layer of a deep
target network by replacing the weights with their natural
generalization, influence. Because influence allows us to
create a faithful local linear approximation of the model for
any given point, this generalized attack follows from the same
analysis on linear models from Section 3. In Section 4.2, we
suggest a method for combining attacks on each individual
layer to create an attack that utilizes white-box information
from all the layers of a deep network.

4.2 Combining Layers

The results of Section 4.1 allow us to leverage overfitting in
each learned representation employed by the target model
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towards membership inference. Attacks on different layers
may pick up on different signals, but because the model’s
internal representations are not independent across layers, we
cannot simply concatenate the approximated weights of each
layer and treat it as an attack on a single model. Instead, we
make use of a meta model, which learns how to combine the
logistic outputs of the individual layer-wise attacks. The meta
model takes the confidences of the attack defined in Section 4.1
applied to each layer, and outputs a single decision.

To train a meta model, 7', to attack target model, f, we
partition S into two parts, S and §°. We train a shadow target
model, f ,on S. Then, for each layer, ¢, in f, we train an attack
model, my, on the o layer of f , as described in Section 4.1.
We then construct a training set, T = T! U T, such that
(¥',y') €T is constructed as (x},y") = (m)(x),1) for (x,y) €S,
and (x',)’) € T is constructed as (x},)’) = (m)(x),0) for
(x,y) €S°. We can increase the size of T by creating multiple
random partitions of S. Finally, we train 7’ on 7.

When building a meta model for the general-wb attack, we
can train m’' jointly with the displacement metric, d, rather
than first learning a general-wb attack on each layer. We also
use a separate distance metric, dy for each layer, ¢, of f.

5 Evaluation

In this section, we aim to answer several questions about the
attacks described in Sections 3 and 4 using empirical results
on several real and synthetic datasets. Section 6 presents
additional experimental results having to do with the efficacy
of several popular defenses against our attacks.

How sensitive are our attacks to the data assumptions
made in Section 3, hyperparameter choices, and amount of
data? In Section 5.2, we find that the learning-based attack
described in Section 3.4 (general-wb) recovers nearly all of the
advantage of the optimal “omniscient” attack, despite making
no generative assumptions. Additionally, we show how the
hyperparameters used in this attack can be effectively tuned
using validation data. Finally, Section 5.3 discusses attack
performance as more or less data is available both for training
and to the attacker.

Do certain layers leak more training information than
others? Section 5.4 explores the effectiveness of the meta
attack model described in Section 4.2 at combining predictions
from attacks on each layer of the model. Our results show that
while all layers play a role in leaking information, in some
cases attacks which use combined information from different
layers have greater efficacy than the corresponding sum of
layer-wise independent attacks.

Relative to prior attacks on real data: (1) are the bayes-
wb and general-wb attacks more effective in terms of
overall accuracy? (2) does the calibration step (Section 3.5)
consistently lead to more confident inferences? (3) do our
attacks work on well-generalized models? Our results in
Section 5.5 indicate that bayes-wb and general-wb improve
on the performance of prior black-box attacks, both in terms

of accuracy and to a larger extent precision. Moreover, even
on models low generalization error (< 2%), our attack can be
calibrated make high-confidence inferences, which we find
is not possible with prior approaches.

5.1 Experimental Setup

We now present details on the datasets, target models,
methodology, and attack methods used in our experiments.

Datasets. We performed experiments over both synthetic
data and nine classification datasets derived from real data. In
general, we chose datasets from domains, such as medicine
and finance, for which membership inference is likely to be
areal concern. To facilitate a baseline for comparison against
prior work, we also included three common image datasets
(MNIST, CIFAR10, and CIFAR100) that are less-plausibly
connected to privacy, but serve as effective benchmarks,
particularly because they have been studied in nearly all
published membership inference experiments.

The synthetic data were generated with 10 classes, 75
features, and 400, 800, or 1,600, records, with an equal number
of records per class. The features, x;, of the synthetic data were
drawn randomly from a multivariate Gaussian distribution
with parameters, u, (for each class, y) and X, where uy; was
drawn uniformly at random from [0,1], and X was a diagonal
matrix with £ ;; drawn uniformly at random from [0.5,1.5].

Among the classification datasets were Adult, Pima Dia-
betes (obtained from the UCI Machine Learning Repository);
Breast Cancer Wisconsin, Hepatitis, German Credit, Labeled
Faces in the Wild (obtained from scikit-learn’s datasets
API); MNIST [24], CIFARI0, and CIFARI00 [23]. Figure 4
shows the characteristics of each of these datasets.

Target Models. The target models we used to conduct our
experiments include linear models, multi-layer perceptrons,
and convolutional neural networks. Each model was trained
until convergence with categorical cross-entropy loss, using
SGD with a learning rate of 0.1, a decay rate of 10~%, and
Nesterov momentum.

Linear models were implemented as a single-layer network
in Keras [6] using a softmax activation. We used linear models
only for the synthetic data. For non-image real data, we used a
multi-layer perceptron (MLP) with one hidden layer and ReLU
non-linearities, implemented in Keras. For datasets with n fea-
tures, we employed 2n hidden units, followed by a softmax
layer with one unit per class. For image data, we used a CNN ar-
chitecture based on LeNet, with two convolutional layers with
5 x 5 filters and 20 and 50 output channels respectively (each
convolutional layer is followed by a max pooling layer), fol-
lowed by a fully connected layer with 500 neurons. We trained
CNNs with a 25% dropout rate following each pooling layer,
and a 50% dropout rate following the fully connected layer.

Each target model is a pair containing an architecture
and a dataset. We refer to each target model by its dataset
abbreviation given in Figure 4. The train and test accuracy for
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model # row #feat.  #class  trainacc.  testacc.
Synthetic 400-1.6k 75 10 1.000 1.000
Breast Cancer (BCW) 569 30 2 0.987 0.944
Pima Diabetes (PD) 768 8 2 0.789 0.756
Hepatitis (Hep) 155 19 2 0.997 0.810
German Credit (GC) 1000 20 2 0.937 0.701
Adult 48841 99 2 0.861 0.849
MNIST 70k 784 10 0.998 0.987
LFW 1140 1850 5 0.993 0.829
CIFAR10 60k 3072 10 0.996 0.664
CIFAR100 60k 3072 100 0.977 0.312

Figure 4: Characteristics of the datasets and models used in our experiments.

each of the target models used in our evaluation are given in
the final two columns of Figure 4.

Methodology. When evaluating each attack, we randomly

split the data into three disjoint groups: train, test, and hold-out.

The train and test groups were each comprised of one fourth of
the total number of instances, and the hold-out group contained
the remaining one half of the instances. The target model was
trained on the train group, while the attacks were allowed
to make use of the hold-out group only. The attack model’s
predictions were evaluated on the train group (members) and
the test group (non-members). Each experiment was repeated
10 times over different random samplings of the data split, and
the results were averaged.

Attack Methods. Throughout our evaluation, we assess
four different attacks: naive, bayes-wb, general-wb, and
shadow-bb. The naive attack refers to the simple attack
introduced in Section I, in which the attack model predicts
an instance, x, is a member of the training set if and only if x
was classified correctly.

For the bayes-wb attack (introduced in Section 3.3), we
trained 10 proxy models on random samples from the hold-out
group, and took the mean of their approximated weights at
each point for added robustness. When attacking MLP models,
we performed the attack on the final layer of the MLP using
Algorithm 1. When attacking LeNet models, we used a meta
attack model (described in Section 4.2) that was trained on
data from 10 shadow models trained on 10 samples from the
hold-out group. We used a MLP with 16 internal neurons for
the meta model and trained it for 32 epochs with Adam [20].

For the general-wb attack (introduced in Section 3.4), we
construct an attack model that learns a displacement function,
D, (Algorithm 2), for each layer, ¢, of the network, and
combines the results with a meta attack model, M. The attack
model was trained for 32 epochs with Adam, using data from
10 shadow models trained on the hold-out group. As suggested
in Section 3.4, we modeled each Dy as a convolutional neural
network. In each experiment, the networks modeling M
and each Dy had at most one hidden layer, with ny, and np
hidden units, respectively (in our experiments each D, used
the same architecture, though this need not be the case in
general). In order to determine ny, and np for each dataset, we
created a validation set using 10 shadow models trained on

— l-wb l-wb
omniscient  bayeswb (TN (o dva capaciny)
n=100 0618 0.605 0.602 0.590
n=200 0577 0.570 0.563 0.562
n=400  0.568 0.550 0.547 0.542

Figure 5: Comparison of the bayes-wb and general-wb attacks to an
omniscient attack, which has knowledge of I, u*, and G, and thus can use
Theorem 1 directly without the use of a proxy model. In one case, the
general-wb attack was given the minimum capacity to reproduce the bayes-wb
attack, i.e., d is simply a weighted sum of W, and W;. In another case, the
general-wb attack was given excess capacity, with 16 hidden units in d. Three
target models, trained on synthetic Gaussian naive-Bayes data with training
set sizes of 100, 200, and 400, were attacked.

different random splits of the hold-out group, and performed
a parameter sweep over nyy,np. We then took the nys and np
yielding the highest validation accuracy for each target model.
We find that because the attack model is highly regularized
via its restrictive architecture, the validation accuracy is a
reasonably good indicator of the test accuracy, making it a
useful tool for hyper-parameter tuning (see Figure 6).

The shadow-bb attack refers to the black-box shadow model
attack [38], explained briefly in Section 7. In each experiment,
the shadow-bb attack was trained using 10 shadow models
trained on 10 samples from the hold-out group.

5.2 Sensitivity to Assumptions & Hyper-parameters

In Section 3.2, we derive the Bayes-optimal membership
inference attack on Gaussian data satisfying the naive-Bayes
condition. The weights of the optimal membership predictor
for this case, given by Theorem 1, are a function of the
empirical training distribution parameters and true distribution
of the data, which, of course, would be unknown to an attacker.
Section 3.3 describes how to address this, using a proxy model
to capture the difference between the data used to train the
target model and the general population.

Figure 5 demonstrates the effectiveness of the proxy model
in our attack, by comparing our bayes-wb attack using a
proxy model to an “omniscient” attack, which uses Equation 6
directly, with knowledge of the train and general distribution.
We can consider the omniscient attack as giving an upper
bound on the expected accuracy of a white-box attack on
Gaussian naive-Bayes data, as it is the true Bayes-optimal
attack (while bayes-wb is the approximate Bayes-optimal
attack according to Proposition 1). Our attack achieves on
average 84% of the advantage of the omniscient attack,
suggesting that the proxy model was able to approximately
capture the general distribution as necessary for the purpose
of detecting the target model’s idiosyncratic use of features.

In Section 3.4, we further generalize the bayes-wb attack
to use a learned displacement function that may be more
appropriate for distributions that don’t resemble the Gaussian
naive-Bayes assumption. While we find that this general-wb
attack often generalizes to arbitrary distributions better than
the bayes-wb attack, because its displacement function is

1614 29th USENIX Security Symposium

USENIX Association



65 ‘ a--vyalidation @ test
a\‘ A . A A LA A
S el AL
560 e . 2. " TR ®
S ®
S 55

V7 0 0 D o e 1D o 9

oY @f 069 OF @ e o @? 0670

Figure 6: Plot showing the validation (known to the attacker) and test
(unknown to the attacker) accuracies of the general-wb attack for various
attack model architectures on the Hepatitis dataset. Each architecture, listed
on the x-axis, is represented by a pair, (np,ny), where np and ny are the
number of hidden units in the distance function network and meta model
network respectively (see Section 5.1).

learned, it is possible for the general-wb attack to overfit.

Figure 5 also shows the accuracy of the general-wb attack
on Gaussian naive-Bayes data. When the neural network
representing the displacement function is given exactly
enough capacity to reproduce the bayes-wb attack, general-wb
recovers on average 94% of the advantage of the bayes-wb
attack. Upon inspecting the weights of the displacement
network, we find that general-wb learns almost exactly
element-wise subtraction, demonstrating its potential to
learn the optimal displacement function. When given excess
capacity, the general-wb attack performs only marginally
worse, achieving on average 92% of the minimal general-wb
attack’s advantage (86% of bayes-wb), suggesting that
general-wb is not highly prone to overfitting.

Tuning the general-wb Attack. As mentioned, even an
over-parameterized displacement function may be able to
perform nearly optimally on models trained on simple datasets,
like the Synthetic dataset. However, as the general-wb attack
involves several hyper-parameters, it may be useful to tune
these parameters in a reliable way. We note that an arbitrary
number of shadow models can be produced by sampling from
the hold-out data, allowing us to construct a validation set
on which to evaluate various architectures for implementing
the distance function, Dy, and meta model, M, comprising the
general-wb attack. Figure 6 shows an example of the validation
accuracy obtained using various architectures for D, and M,
along with the corresponding test accuracy (unknown to the
attacker). We see that the test accuracy fairly closely follows
the validation accuracy, with the maximum for both metrics
occurring for the same architecture. This suggests that the
validation accuracy is a reasonably good indicator of the test
accuracy making it a useful tool for hyper-parameter tuning.
This is perhaps not too surprising, as the attack model is highly
regularized via its restrictive architecture.

5.3 Data Scaling

The “omniscient” attack developed in Section 3.2 relies on
measuring a difference between the parameters of the true
data-generating distribution, D* and the empirical distribution,
D. Because D is derived from a sample drawn from D*, i
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Figure 7: Accuracy of the bayes-wb and general-wb attacks on the Adult
dataset, as the amount of data is scaled from 6,105 records (1/8 of the full
dataset) to 48,841 records.
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Figure 8: Accuracy of the bayes-wb and general-wb attacks on each of the
datasets in our evaluation, plotted against the size of the respective dataset.

expectation D= D, that is, as the number of samples in the
training set goes to infinity, the true and empirical distributions
will converge, rendering even the optimal attack ineffective (0
advantage). We would therefore expect that for a sufficiently
large training set, the success of any MI attack would decline.
Conversely, we may expect the opportunity for better MI per-
formance for smaller training sets. Indeed, in accordance with
this observation, we see that even the omniscient attack sees
accuracy inversely proportional to the dataset size (Figure 5).

We find that this pattern persists for real-world datasets as
well. Figure 7 shows the accuracy of our attacks on models
trained on subsets of various sizes of the Adult dataset (the
dataset containing the most records as compared to the number
of parameters in the respective model). We observe that as
more data becomes available for training, the advantage of
the attack diminishes, becoming quite small (< 4%) on the
entire dataset (48,841 records). This may suggest that the
Adult dataset is sufficiently large to preclude any significant
information leakage via a modestly-sized MLP model
obtained through standard training.

Figure 8 shows the accuracy of our attacks on each of the
datasets used in our evaluation, plotted against the size of the
respective dataset. We see to some extent the same downwards
trend as dataset size increases, though there is more noise,
and some of the image datasets (especially CIFAR10 and
CIFAR100) provide notable exceptions. This is likely due to
the variation in the number of features, the network capacity,
and the generalization error across datasets.
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Figure 9: Accuracy of the bayes-wb attack on each individual layer of LeNet,
compared with the accuracy using the combined meta-model.

5.4 Combining Layers

For deep models in particular, we want to be able to use
information from each layer in our attack. In Section 4.2,
we describe a meta attack that combines the outputs of an
individual attack on each layer. Figure 9 shows the accuracy of
the bayes-wb attack on each individual layer and of the meta
attack on each LeNet target model.

In every instance, the meta attack is able to substantially
outperform any individual attack, indicating that the infor-
mation it receives from each layer is not entirely redundant.
Moreover, this suggests that information leakage occurs in the
representations learned by layers throughout the model—that
is, each layer plays some role in the leakage of information
about the training data. A possible consequence of this that we
hypothesize in Section 6 is that models trained with transfer
learning may leak less information about the training data
used to tune the model.

Remarkably, for MNIST, the advantage of the meta attack
is greater than that of all the individual layers combined.

5.5 Comparison to Prior Work

Finally, we compare our approach to previous work, namely,
shadow-bb [38]. In particular, we compare (/) performance in
terms of accuracy, precision, and recall; and (2) the reliability
of the attack confidence when used to calibrate for higher
precision. In short, our results show that both bayes-wb and
general-wb outperform shadow-bb, and can be more reliably
calibrated to achieve confident inferences for the attacker.
Furthermore, even on some well-generalized models, on which
shadow-bb and naive fare poorly, our attacks can be calibrated
to make confident inferences, and sometimes also achieve
non-trivial advantage. Finally, we find that there is often little
advantage to shadow-bb over naive, both because shadow-bb
often performs comparably to naive, and because shadow-bb
does not always produce calibrated confidence scores.

Performance. Figure 10 shows the accuracy, precision,
and recall of naive, bayes-wb, general-wb, and shadow-bb.
The precision shown is before calibration attack (calibration
results are shown in Figure 11). We see that both bayes-wb and
general-wb are consistently more accurate and precise than
naive and shadow-bb. At least one of bayes-wb or general-wb
obtains the highest accuracy of the four methods on each target

except Adult, and both outperform the other two methods in
terms of precision in all cases. In some cases, the improvement
in accuracy of at least one of our attacks over prior work
is by as much as seven percentage points, though in others
our accuracy is only modestly better; however, in terms of
precision, the difference is more pronounced in almost every
case (typically greater by at least five percentage points).

Typically naive or shadow-bb achieve the highest recall, but
we note that both methods do so with lower precision; and at
least in the case of naive, this is merely a consequence of the
fact that most of the models have a high training accuracy.

Our results for the performance of shadow-bb are roughly
in line with previously reported results for shadow-bb on the
datasets which have been used for evaluation in prior work
(Adult, MNIST, LFW, CIFAR10, and CIFAR100) [35, 38]. On
CIFAR10 and CIFAR100, our results are slightly lower than
the results reported for shadow-bb by Shokri et al., however,
our target models trained on CIFAR10 and CIFAR100 use
dropout and have a lower generalization error than the models
in the attacks reported by Shokri et al., which most likely
accounts for this small discrepancy.

Calibration. As argued in Sections | and 2, one of the key
desiderata of a membership inference attack is precision.
In order to calibrate an attack for precision, the confidence
outputted by the attack must be informative. Here, we examine
the calibration of the confidence outputs of our attacks
compared to shadow-bb (naive does not provide a confidence
score with which to calibrate).

We find that increasing the decision threshold of the bayes-
wb and general-wb attacks has a positive effect on precision.
In particular, using the heuristic defined in Algorithm 3, we
are able to consistently improve the precision of our attacks.
Figure 11 shows the precision of our attack as the decision
threshold is raised according to Algorithm 3, for ¢ =0.90, and
o = 0.99, compared to the uncalibrated attack. In each case
the precision increases, often by 10 or more percentage points.
Though in practice, an attacker would not be easily able to
tune the calibration hyper-parameter, ., the consistency of the
results in Figure 11 suggest that values of 0.90 and 0.99 serve
as a practical “rule-of-thumb” for reliable calibration.

On all convolutional models, general-wb is able to be
calibrated to upwards of 75% precision. Notably, this
includes the model trained on MNIST, which has only 1.1%
generalization error. This implies that privacy violations are
a threat even to well-generalized models, since our attack is
able to confidently (with at least 75% confidence) identify a
subset of training set members.

On the MLP models, the calibration is slightly less
consistent; however, here bayes-wb is able to obtain over
70% precision on the models trained on the Breast Cancer
Wisconsin and Hepatitis datasets.

In Figure 10, we see that the recall of the uncalibrated
attack is frequently over 90%. When calibrating, the recall
drops as precision increases, however, we believe this does not
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accuracy precision recall
model naive shadow-bb bayes-wb general-wb | naive shadow-bb bayes-wb general-wb | naive shadow-bb bayes-wb  general-wb
BCW 0.522 0.500 0.514 0.523 0.511 0.500 0.545 0.528 0.987 1.000 0.962 0.505
PD 0.517 0.508 0.517 0.519 0.511 0.515 0.537 0.561 0.789 0.592 0.641 0.641
Hep 0.595 0.553 0.605 0.618 0.552 0.528 0.562 0.609 0.997 1.000 0.977 0.639
GC 0.618 0.582 0.623 0.622 0.572 0.547 0.603 0.637 0.937 0.788 0.982 0.623
Adult 0.506 0.524 0.507 0.516 0.504 0.514 0.512 0.516 0.861 1.000 0.525 0.566
MNIST 0.506 0.506 0.575 0.521 0.503 0.506 0.578 0.640 0.998 0.925 0.627 0.421
LFW 0.582 0.597 0.618 0.619 0.545 0.557 0.581 0.586 0.993 1.000 0.925 0.919
CIFARI10 0.666 0.684 0.686 0.709 0.600 0.605 0.638 0.646 0.996 0.909 0.853 0.881
CIFAR100 0.831 0.847 0.847 0.872 0.757 0.766 0.770 0.792 0.977 0.999 0.962 0.976
Figure 10: Comparison of the accuracy, precision, and recall of bayes-wb and general-wb with naive and shadow-bb.
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Figure 11: Precision of the bayes-wb, general-wb, and shadow-bb attacks, calibrated using the heuristic outlined described in Algorithm 3 (with &« =0.90 and

0.=0.99), compared to the precision with no calibration (default threshold).

diminish the threat of the attacks because a privacy violation
occurs if even a few points are confidently inferred.

While Figure | | demonstrates that applying our calibration
heuristic to bayes-wb and general-wb consistently increases
the precision, we see that this is not always the case for shadow-
bb. In some cases, the precision of shadow-bb is decreased by
increasing the decision threshold. In fact, occasionally, the av-
erage confidence on non-members is higher than that of mem-
bers, leading to a precision slightly less than 50%. This may
be a result of the shadow model overfitting to the hold-out data.
When we are able to increase the precision of shadow-bb using
its confidence output, the gains are less impressive, suggesting
the probability outputs of shadow-bb are less well-calibrated.

Performance on Well-Generalized Models. While some
of the models we used to evaluate our attacks had a generaliza-
tion error of 10% or more, we also evaluated on several datasets
for which the learned model was far less overfit, including
MNIST (1.1% generalization error), Adult (1.2%), Pima
Diabetes (3.4%), and Breast Cancer Wisconsin (4.3%). While
on PD and BCW, our attacks only slightly outperform naive, on
MNIST and Adult, our attacks do substantially better: on the
model trained on Adult, general-wb achieves an advantage 2.6
times greater than the advantage achieved by naive. Even more
impressively, on MNIST, general-wb and bayes-wb achieves
an advantage 3.5 and 12.5 times greater than the advantage
achieved by naive, respectively. On the other hand, shadow-bb
fares poorly on all of these datasets except for Adult, typically
achieving less than 2% advantage. Finally, we note that the
bayes-wb attack on the synthetic data model (Section 5.2)

achieves a non-trivial 60% accuracy (20% advantage), despite
the fact that the model has zero generalization error.

In addition to the cases where our attacks achieve relatively
high advantage against well-generalized models, we find
that when calibrated, our attacks achieve as high as 75%
precision on MNIST, and 70% precision on Breast Cancer
Wisconsin, again underscoring the threat of privacy violations
for well-generalized models.

While it is clear that a greater degree of overfitting makes it
easier for an adversary to mount any attack, the relative success
of our attacks over naive on well-generalized models suggests
that the white-box information is useful even when the model
does not leak information through incorrect predictions on
the test set.

Similarity of shadow-bb and naive Results. Figure 10
reveals that often, shadow-bb has performance comparable
or even worse than naive, particularly on well-generalized
target models. This is likely a product of the attack model
overfitting to idiosyncrasies in the shadow model’s output
that are unrelated to the target model. On deep models with
significant overfitting, shadow-bb performs slightly better
than naive, however, we found that its behavior was not
significantly different from that of naive; for example, on LFW,
naive recovers 88% of the exact correct predictions made by
shadow-bb. This supports the intuition that the features used
by the shadow model approach (i.e., the softmax outputs) are
not fundamentally more well-suited to membership inference
than those used by the naive method (i.e., the correctness of
the predictions). This is perhaps unsurprising, as the softmax
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dataset no defense  dropout €=025 e=1 e=4 e=16
BCW train 0.987 0.982 0.601 0.654 0.767  0.778
test 0.944 0.961 0.609 0.675 0.763  0.808
PD train 0.789 0.784 0.680 0.678  0.681  0.683
test 0.756 0.783 0.673 0.651 0.649  0.654
Hep train 0.997 0.992 0.534 0.695 0.700  0.729
test 0.810 0.849 0.555 0.786  0.803  0.817
GC train 0.937 0.932 0.625 0.656  0.680  0.707
test 0.701 0.730 0.610 0.661  0.687  0.698
Adult train 0.861 0.860 0.501 0.500 0.500  0.501
test 0.849 0.859 0.500 0.501  0.500  0.499
MNIST train 1.000 0.998 0.107 0.129 0243 0.330
test 0.973 0.987 0.106 0.132 0251  0.331
LFW train 1.000 0.999 0.109 0.137 0214 0428
test 0.842 0.835 0.116 0.119 0200  0.463
CIFAR10 train 0.999 0.996 0.100 0.098 0.103  0.100
test 0.621 0.664 0.101 0.100  0.105  0.093
CIFAR100  train 0.999 0.977 0.010 0.010 0.010 0.011
test 0.257 0.312 0.010 0.010 0.011  0.011

Figure 13: Train and test accuracies for models trained with either dropout
or (g,8)-differential privacy for various values of €.

outputs are likely to coincide largely with the correctness of
the prediction—for correct predictions, the softmax will likely
have high confidence on the correct class, regardless of whether
the point was a member or not; and similarly for incorrect
predictions, the softmax will likely have more entropy.

6 Defenses

Concerns about privacy, underscored by concrete threats
such as the attacks developed in this paper, have also
motivated research to provide adequate defenses against such
threats. In this section we explore the ability of some of the
commonly-proposed mitigation techniques to defend against
our attack. In particular, we focus on differential privacy [8]
and regularization. We find that, while both are useful to a
degree, neither dropout nor e-differentially private training
with a large €, are necessarily sufficient for mitigating the
privacy risk posed by our attack.

Differential Privacy. Differential privacy (DP) [8] is often
seen as the gold standard for private models, as models trained
with differential privacy have provable guarantees against
membership inference. Namely, Yeom et al. [47] showed
that, given an e-differentially private learning algorithm,

mmmn |

CIFAR100

Adult MNIST LFW
Figure 12: Attack accuracies against models trained with either dropout or (g,8)-differential privacy for various values of €.

CIFAR10

an adversary can achieve an advantage of at most ¢ — 1.
Differential privacy has been applied to many areas of machine
learning, including logistic regression [5], SVMs [34], and
more recently, deep learning [1, 37]. However, current
methods for ensuring differential privacy are typically costly
with respect to the accuracy of the model, particularly for
small values of €, which give a better privacy guarantee. For
this reason, in practice, € is often chosen to be quite large; for
example, in 2017, Apple was found to use an effective epsilon
as high as 16 in some of its routines [43].

We used the Tensorflow Privacy library [29], an implementa-
tion of the moments accountant method [1], which guarantees
(g, 0)-differential privacy, to study the practical efficacy of
our attack on protected models. This method utilizes several
hyperparameters from which € is derived; for uniformity, we
modified only the noise multiplier to achieve the desired &,
and used heuristics described in the original paper [1] to select
the remaining hyperparameters. While a different tuning of
the hyperparameters may result in a different privacy-utility
trade-off, the privacy guarantee depends only on € and §, not
the hyperparameters directly. In each case, 8 was selected to
be smaller than 1 /N where N is the size of the dataset.

Figure 12 shows the effectiveness the general-wb attack
against models trained with differential privacy for various
values of € on each dataset. The train and test accuracies of the
corresponding differentially-private target models are shown
in Figure 13. First, we note that as expected, when € decreases
the adversary’s effectiveness quickly declines. However, when
eis large (€ =16), our attack occasionally performs essentially
the same on the differentially-private model as on the unde-
fended model. For example,on BCW, PD, and LFW, 16-DP pro-
vided less defense than simple regularization, while harming
the accuracy of the model. Similarly, on Hep, 16-DP reduced
the effectiveness of general-wb, but not below the effective-
ness of shadow-bb on the corresponding undefended model.
These findings suggest that the practical benefits of large-¢-
differential privacy cannot be taken for granted; in general, dif-
ferential privacy may only be effective for sufficiently small €.

Nevertheless, it is clear that a practical adversary is unlikely
to achieve performance that is tight with the theoretical bound.
For both the undefended model and the models trained with
DP for € >1n2 ~0.69, the theoretical bound on the adversary’s
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accuracy is 100%, which no attack was able to achieve. On the
other hand, for € = (.25, the theoretical maximum accuracy
of the adversary is 64.2%. In most such cases, our attack fared
far poorer than this, coming closest on LFW, where our attack
achieved 53.5% accuracy (25% of the theoretical maximum
advantage) on the 0.25-DP model. Thus, we conclude that
because the accuracy of a real adversary is not likely to be
tight with the worst-case guarantee, it is indeed pragmatic to
select a somewhat large €. However, our evaluation shows that
€ should not be chosen to be too large, or else the operative
benefits of differential privacy may be lost. Furthermore, the
success of a given value of € appears to vary across different
datasets and models. One must therefore be careful when
making a practical selection for €; to this end, we suggest that
our attack may be useful in assessing which values of € are
appropriate for a given application.

An apparent drawback of the examined method for
obtaining differential privacy, revealed in our evaluation, is the
steep cost in performance (Figure 13), which is particularly
high for small €. Despite the fact that our attack became far
less effective for small €, this cost limits the practicality of the
defense, highlighting the need for more research in this area.
The results we find here align with recent work [19], in which
Jayaraman and Evans showed that the privacy leakage tends
to increase as € becomes large enough to avoid a significant
loss in accuracy. Indeed, only on the German Credit dataset
did 16-DP provide a good defense while nearly maintaining
the accuracy of the unprotected model. In the other cases we
evaluated, either our attack performed comparably on the DP
and unprotected models, or the accuracy of the private model
was significantly lower than that of the unprotected model.

Abadi et al. [1] mitigate the high cost in accuracy by first pre-
training on public data, and then fine-tuning only the top layers
with differential privacy on the private training set. While this
public transfer learning approach may not always be possible,
it has two key benefits, the first being that the resulting model’s
performance is far less poor. Second, only the final layers
of such a model are trained on the private data, and thus our
attack may only be able to effectively target those layers. Our
experiments in Section 5.4 show that our attack is far more
effective when all layers are leveraged, and that the earlier
layers often account for a sizable portion of the information
leakage. This suggests that, when possible, a transfer learning
scheme like that of Abadi et al. could be a practical defense.

Regularization. Given the connection between mem-
bership inference and overfitting, regularization, such as
dropout [41], which aims to reduce overfitting, has also been
proposed to combat membership inference. Generalization
alone is not sufficient to protect against membership infer-
ence [47], and in fact, our empirical results (Section 5) show
that we can successfully attack even models with negligible
generalization error; however, dropout has been shown not
only to reduce overfitting, but to strengthen privacy guarantees
in neural networks [18]. Figure 12 shows the accuracy of our

attack with and without dropout. We find that dropout does not
significantly impact the accuracy of our attack in most cases.
However, as opposed to DP, dropout is typically beneficial
to the performance of the model, while providing a modest
defense. In this light, regularization (including dropout) may
in fact be the more practical defensive measure, insofar as
it improves test accuracy, because better generalization does
appear to make membership more difficult, though clearly not
impossible, for an attacker.

Still, we warn that this may not be universally true of all
forms of regularization, even regularization that improves
generalization—as we have demonstrated, a model can still
leak membership information through its parameters while
making correct predictions on unseen points.

Defenses in the Black-box Setting. For membership infer-
ence in the black-box setting, Shokri et al. [38] also propose
a number of other possible defenses, such as restricting the
prediction vector to the top k classes, or increasing the entropy
of the prediction vector via increasing the normalization
temperature of the softmax. However, these defenses are easily
circumvented in the white-box setting, as the pre-modified
outputs are still available to an attacker in this threat model.

Similarly, Salem et al. [35] propose a defense called model
stacking, in which two models are trained separately on the
training data and a third model makes predictions based on the
outputs of the first two. While Salem et al. found this to be an
effective defense against black-box approaches, this defense
is likewise circumvented in the white-box setting, as the initial
two models are available to the attacker.

7 Related Work

There is extensive prior literature on privacy attacks on
statistical summaries. Homer et al. [17] proposed what is
considered the first membership inference attack on genomic
data in 2008. Following the work by Homer et al., a number
of studies [9, 14, 36, 39, 44] have looked into membership
attacks on statistics commonly published in genome-wide
association studies. In a similar vein, Komarova et al. [22]
looked into partial disclosure scenarios, where an adversary
is given fixed statistical estimates from combined public and
private sources and attempts to infer the sensitive feature of
an individual referenced in those sources.

More recently, membership inference attacks have been
applied to machine learning models. Ateniese et al. [2]
demonstrated that given access to the parameters of support
vector machines (SVMs) or Hidden Markov Models (HMMs),
an adversary can extract information about the training data.

As deep learning has become more ubiquitous, membership
inference attacks have been particularly directed at deep
neural networks. A number of different recent works [27, 28,
33, 35, 38, 47] have taken different approaches to membership
inference against deep networks in a standard supervised
learning setting. Additionally, Hayes et al. [15] have studied
membership inference against generative adversarial networks
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(GANSs); and others [16, 30, 33] have studied membership
inference in the context of collaborative, or federated, learning.

Black-box attacks. We study membership inference as it
applies to deep networks in classic supervised learning prob-
lems. Most of the prior work in this area [27, 28, 35, 38, 47]
has used the black-box threat model. Yeom et al. [47] showed
that generalization error necessarily leads to membership vul-
nerability; a natural consequence of this is that a simple “naive”
attack (naive), which predicts a point is a member if and only
if it was classified correctly, can be found to be quite effective
on models that overfit to a large degree. Other approaches have
leveraged not only the predictions of the model, but the confi-
dence outputs. A particularly canonical approach, along these
lines, is the attack introduced by Shokri et al. [38] (shadow-bb).
In this approach, a shadow model is trained on half of S, S;,,
and an attack model is trained on the the outputs of the shadow
model on its training data, Sin (labeled 1), and the remaining
data §\ S;, (labeled 0). Shadow models leverage the disparity
in prediction confidences on training instances the target
model has overfit to, and have been shown to be successful
at membership inference on models that have sufficiently
high generalization error. A few other membership inference
approaches [15, 35] have made use of this same technique.
Despite the fact that shadow model attacks leverage more
information than the naive attack, we find in our evaluation
(Section 5) that often, the shadow model attack fails to
outperform the naive attack. One potential reason for this
finding is that the learned attack model used by this approach
to distinguish between the shadow model’s outputs on
members and non-members may be itself subject to overfitting.
This may be especially true if the attack model picks up on
behavior particular to one of the shadow models rather than
the true target model. Furthermore, the confidence and entropy
of the target model’s softmax output is likely to be closely
related to whether the target model’s prediction was correct
or not, meaning that the softmax outputs may not provide
substantially different information from that used by naive.

White-box attacks. In some settings, it may be realistic
for an attacker to have white-box access to the target model.
Intuitively, while some information is leaked via the behavior
of a model, the details of the structure and the parameters of
the model are clear culprits for information leakage. Few prior
approaches have successfully leveraged this extra information.
While Hayes et al. [15] describe a white-box attack in their
work on membership inference attacks applied to GANS,
the attack uses access only the outputs of the discriminator
portion of the GAN, rather than the learned weights of either
the discriminator or the generator; thus their approach is not
white-box in the same sense. Meanwhile, Nasr et al. [33]
demonstrated that a simple extension of the black-box shadow
model approach to utilize internal activations does not result
in higher membership inference accuracies than the original
black-box approach. This is perhaps unsurprising, as the

internal units of the shadow models are not likely to have any
relation to those of the target model (see Section 4).

Recently, Nasr et al. [33] provided a white-box attack that
leverages the gradients of the target model’s loss function with
respect to its weights, which SGD approximately brings to
zero on the training points at convergence. In contrast to our
work, Nasr et al. use a further relaxed threat model, in which
the attacker has access to as much as half of the target model’s
training data. We suggest an approach that is quite different
from that of Nasr et al.. Our approach does not require this
extra knowledge for the attacker, and thus falls under a more
restrictive threat model, in which, to our knowledge, no other
effective white-box attacks have been proposed.

8 Conclusions and Future Work

Our work is the first to fully leverage white-box information to
improve membership inference attacks against deep networks
(in the standard threat model where the adversary is assumed
not to have any examples of true training points). In particular,
our analysis sheds light on a fundamental mechanism
of overfitting that can be leveraged by an adversary to
compromise a model’s privacy in a concrete way. We use this
analysis of how feature usage can lead to information leakage
to construct a new white-box attack, which our evaluation
demonstrates improves upon the previous state-of-the-art,
particularly because it can be reliably calibrated for high
precision, even on some well-generalized models.
Subsequently, we used our attack to evaluate commonly-
proposed privacy defenses. Perhaps most interestingly,
experiments utilizing our attack reveal a nuanced story
regarding differential privacy. When setting € to small
values, the attack was successfully mitigated but the utility
of the resulting model quickly diminished; while when €
was increased sufficiently to mitigate the loss in utility, the
attack sometimes achieved close to the same accuracy as
on the undefended model. This suggests that there is still
considerable work to be done in developing effective defenses
against privacy attacks—we anticipate that the insights gained
from our approach will contribute to designing such defenses.
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A Proof of Theorem 1

We begin with the expression for m” (x) and apply Bayes’ rule

to obtain Equation 10.

Pr[X=x|T,Y =y|Pr[T]
Pr[X=x|Y =y]

m’ (x)=Pr[T | X=x,Y =y|= (10)

Next, we express Equation 10 as a logistic (or, sig-
moid) function, 4(x) := (1 + ¢°)~!. We assume that
Pr[T] = 1, and thus Pr[X=x|Y=y] can be written as
3 (PrX=x|TY=y|+Pr[X=x|-T.Y=y]), by the law
of total probability. We then divide by the numerator in
Equation 10, yielding an expression that can be written as a
logistic function (11) by noting that for x> 0, exp(log x) =

PrX=x|TY =y)|
(Pr[X=x|T,Y =y|+Pr[X=x|-T,Y =y])

B 1+Pr[X:x|ﬂT,Y:y] !
N Pr[X =x|T,Y =y]

Pr[X =x|-T,Y =y \
=1 1
( +exp< °8 Pr[X =x|T.Y =y]
PrX=x|T,Y=
Pr[X=x|-T)Y =y)

(10)=

(1)

We notice that Pr [X=x|T,Y=y] is the probability of
having drawn x from QA), given class, y, and similarly,
Pr[X =x | =T,Y =y] is the probability of having drawn x from
D*, given class, y. Using the Naive-Bayes assumption, i.e.,
that conditioned on the class, y, the individual features, x;, are
independent, we obtain Equation 12.

xj | fy;, 2)
=l E) o

We then re-write the log of the product as a sum over the log,
and observe that the sum can be written as a dot product as in
Equation 13, which gives the parameters of the Bayes-optimal
model for m”(x).

(=857 (xj—fy)? o;
12) = Yio\7J Y] _J
(12) ”(Z 2672 262 +1°g<6~>

J J J J
=s(W T +w Tx4") (13)
where
L By My
7205 263 767 of

*2 ~2 *

, wio i o’
b}':§ Yoo "y 1 J
- (26;2 267 Tog 6,

Finally, by assumption the variance is the same in § as in
the general distribution, i.e., 6j = (S;‘. =0, for all features, j.
Thus, v» from Equation 13 becomes zero, so we are left with
a linear model for m”, with weights, w”, and bias, b”, given by
Equation 5.

1622 29th USENIX Security Symposium

USENIX Association



	Introduction
	Background
	Supervised Learning and Target Models
	Membership Inference

	White-box Membership Inference
	Overview of the attack
	A Bayes-Optimal Attack
	Obtaining MI Parameters from Proxy Models
	Learning to Generalize to Arbitrary Distributions
	Calibrating for Precision

	Membership Inference in Deep Models
	Local Linear Approximations of Deep Models
	Combining Layers

	Evaluation
	Experimental Setup
	Sensitivity to Assumptions & Hyper-parameters
	Data Scaling
	Combining Layers
	Comparison to Prior Work

	Defenses
	Related Work
	Conclusions and Future Work
	Proof of Theorem 1

