
PuzzleFlex: kinematic motion of chains with loose joints

Samuel Lensgraf, Karim Itani, Yinan Zhang, Zezhou Sun, Yijia Wu,

Alberto Quattrini Li, Bo Zhu, Emily Whiting, Weifu Wang, Devin Balkcom

Abstract— This paper presents a method of computing free
motions of a planar assembly of rigid bodies connected by
loose joints. Joints are modeled using local distance constraints,
which are then linearized with respect to configuration space ve-
locities, yielding a linear programming formulation that allows
analysis of systems with thousands of rigid bodies. Potential
applications include analysis of collections of modular robots,
structural stability perturbation analysis, tolerance analysis for
mechanical systems, and formation control of mobile robots.

I. INTRODUCTION

Like a human skeleton, structures assembled by or out of

robots may be composed of rigid bodies loosely connected at

the joints. A many-jointed robot arm flexes like the backbone

of a snake; a wooden jigsaw puzzle may flex slightly as

one edge is pulled, particularly before assembly is complete.

Joints may be real or virtual: enforced by the physics of

collision, or by robot control laws that prevent the breaking

of formation.

This paper studies a model of the kinematics of collections

of rigid bodies that are flexible in the aggregate. It presents a

simple, fast, linearized method to quickly estimate potential

motions of the system that maximize deviation from the

initial configuration in a considered direction. First, a set

of linear constraints is derived that approximates the shape

of the local configuration space; then linear programming

is used in various ways to optimize or analyze potential

motions of the system. Figure 1 shows an example of a

planar puzzle flexing in such a way that the upper right block

moves maximally in the positive x direction. Because of the

linearization, there is some violation of the constraints; the

paper presents time-stepping and other methods to verify the

estimate while respecting constraints.

Flexibility analysis may enable wise design decisions

about robot systems or about structures that robots build.

Flexibility may be good, allowing compliance with external

forces, or bad, reducing the sturdiness and predictability of

the system. What joint tolerances enable assembly, while

providing either enough flexibility for Lego-like bricks or

modular robots to comply to an external structure, or enough

rigidity for the robots to resist external loads? What ar-

rangements of bodies provide the desired level of flexibility?

How much motion, and in which direction, can a system of

flocking robots achieve while maintaining constraints such

as mutual visibility?

The work is motivated by methods for building modular

interlocking structures such as those presented by Zhang et

This project was partially supported by NSF Grant 1813043, as well as
by the Dubai Future Foundation.

Fig. 1: A system of eight rigid blocks (left), with the upper-

right block flexing to the right.

al. [1], [2] and by Werfel et al. [3]. Figure 2 shows a system

of particular interest to the authors: a chair created from

Lego-like blocks held together by a puzzle-like arrangement,

rather than by friction or glue. We imagine constructing

such structures automatically with robots, or from systems

of modular robots. The chair flexes slightly, but remains as a

single component as long as the final block assembled is held

in place. Fast analysis of flexibility will allow specific design

decisions: reinforcing the chair by adding other blocks, or

increasing tolerance at joints to allow easier manufacturing

and assembly, while maintaining acceptable rigidity. For

simplicity, this paper focuses on planar systems.

We developed a Julia library to build the linear constraint

matrix based on geometric descriptions of part geometry1,

and and used Gurobi [4] to solve linear programs. Though

we compute and present distance function gradients in the

paper for reference, we used automatic differentiation in the

implementation for simplicity [5]. Figure 9 shows a structure

with 1703 blocks, with y displacement of the upper right

block maximized using this implementation.

While the present work makes use of sparse linear pro-

gramming to solve for maximal motions in a direction in the

configuration space of the chain, the convex polytope that

approximates the shape of the local configuration space is

interesting in itself. We note that global optimization tech-

niques over the configuration space without first estimating

the local constraint region, are in some ways too strong –

they may find solutions that are not connected to the initial

configuration space, and are thus not reachable. Ultimately,

we would like to move beyond optimizaton and explore

ways of measuring properties of this polytope, and use these

properties to automatically design structures, in much the

same way as the manipulablity elipsoid constructed from the

Jacobian has long been used in robot arm design [6]–[9].

1Software available from rlab.cs.dartmouth.edu



Fig. 2: Interlocking puzzle blocks, from [1].

II. RELATED WORK

A slightly extended version of this paper is available as a

technical report [10]. The work closest to the present in spirit

is on compaction of planar polygons [11]; the present work

differs in assumptions in allowing rotation of the polygons,

motivating a linear-algebraic approach.

Flexibility analysis and simulation of continuous materials

such as cloth [12], string [13], [14], and flexible volumes [15]

has a rich history. Models may include finite elements

(e.g. [16]), or may be inherently spatially continuous (e.g.

Cosserat models [17]). The present work differs in that

the component modules are rigid and of irregular shape,

requiring explicit consideration of the possible configurations

of the chain.

The motions in the present paper allow points and edges

to approach, while balancing the rates so as to optimize net

motion in some direction. The distance constraints are similar

to those used in recent motion planning work [18], as well

as in Linear Complementarity Problem (LCP) formulations

of dynamics [19]–[21] and in study of The Carpenter’s Rule

Problem [22].

Linearizing motion around an initial configuration allows

for the study of systems of blocks with many thousand

degrees of freedom; our approach draws inspiration from

early linear grasp analysis techniques [23], [24]. In contrast

to manipulability and grasping problems, the blocks which

we consider are only loosely connected. Caging grasps [25]–

[31] study how robot hands may loosely capture an object;

the present paper studies motion of structures in which

either pairs of blocks or combinations of many blocks may

cage each other. Direct construction of configuration spaces

of pairs of blocks has a long history; Sacks et al. [32]

provides a recent approach, and gives a much higher-fidelity

representation of the free motions of small numbers of blocks

than our edge/point distance function model. Eckstein et

al. [33] analyze how forgiving a connector design is using

an approximation of the configuration space of the joint.

Tolerance analysis of mechanical assemblies is utilized in

mechanical engineering to determine how frequently small

manufacturing errors in the component parts of an assembly

will result in unacceptable deviations in the final assem-

bly [34]. The Direct Linearization Method [35] linearizes

the homogeneous transformation matrices describing the

kinematics of an assembly, and applies statistical techniques

to determine what percentage of assemblies are able to be

assembled. The Jacobian method and other related methods

for tolerance analysis [36], [37] models a mechanical assem-

bly using a set of virtual joints between each element of the

kinematic chain representing the assembly.

Once the local configuration space of the chain has been

modeled, we solve linear programs to analyze motion; effec-

tively, this is a line search method for numerical optimiza-

tion [38]. Unlike most algorithms for numerical optimization,

our method finds a feasible path through configuration space

rather than a single point, since the constraint polyhedron

is convex. In the simplex method [39], an n-dimensional

simplex is constructed that satisfies the constraints and is

used as a domain for the next guess in each step, but it is

not guaranteed that the path through parameter space taken

from the initial guess to the final solution is entirely within

feasible space.

Although swarms are not the focus of this work, we briefly

explore an example of how the technical approach can be

used to find motions for swarms of planar polygon robots.

Techniques for robot swarm control typically must handle

thousands of simple robots collectively performing some

tasks, e.g., object transport [40], shape generation [41], self-

assembly [42], [43], and network connectivity [44]; perhaps

the closest work in spirit to the present is [45], which

controls swarms of robots by allowing robots to bounce off

of frictionless walls.

III. LINEARIZED DISTANCE FUNCTIONS

Let the configuration of the chain be given by q ∈ Q.

Define two types of points of interest: vertices of the poly-

gons describing each body in the chain o(q) and collision

points p(q). Define a vector of signed distance functions

that represents the distance of each collision point from its

neighboring edges: d(o,p). Components of the vector d will

be notated by di,j , where i is the index of the edge and

j is the index of the point. To enforce that there are no

collisions, d(q) ≥ 0. (We abuse the notation to write the

distance function in terms of the configuration as both o, p

are functions of q.)

To analyze legal motion and legal nearby configurations of

the chain, we may consider the configuration to be a function

of time: q(t). Let q̇ ∈ TQ be a configuration-space direction

indicating possible motion of the system. The instantaneous

rate of change of the distance function is

ḋ(q, q̇) = Jd(q)q̇, (1)

where Jd is the Jacobian of the distance function. For a small

enough time step ∆t, an Euler step approximates the change

in distances:

∆d(t) ≈ ∆tḋ(q, q̇). (2)

Let d0 = d(o0,p0) be the distances computed at the

initial configuration. We would like to choose motions such

that the change in distances from each collision point to each



0.0 0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1

2

3

4

Fig. 3: 1R planar arm, and estimates of end-effector colli-

sions.

edge does not cause collision: ∆d(t) ≤ d0. Combining with

Equations 1 and 2,

Jd(q)q̇+ d0 ≥ 0. (3)

The scalar ∆t has been dropped, since we may equivalently

linearly scale q̇ and scale time units such that ∆t = 1.

With this time scaling, the change of q over a time step

is approximated by ∆q = q̇. Thus, Equation 3 bounds the

change in configuration to a polyhedron.

IV. A SIMPLE EXAMPLE

Consider a 1R robot arm with base at the origin, and a

single link of length 2, shown in Figure 3. The configuration

q is the angle θ; let the initial configuration be θ = π/4.

Constrain the endpoint of the arm to lie in a square region

with vertices o = ((1, 1), (2, 1), (2, 2), (1, 2)). The end

effector coordinates are

p(q) = (2 cos θ, 2 sin θ). (4)

There are four distance functions:

d1 = py − o1y = 2 sin θ − 1 (5)

d2 = −(px − o2x) = −2 cos θ + 2 (6)

d3 = −(py − o3y = −2 sin θ + 2 (7)

d4 = px − o4x = 2 cos θ − 1, (8)

corresponding to distances from the bottom, right, top, and

left walls. Computing the partial derivatives with respect to

θ,

Jd(q)q̇+ d0 =









2 cos θ
2 sin θ
−2 cos θ
−2 sin θ









q̇+ d0 ≥ 0 (9)









√
2√
2

−
√
2

−
√
2









q̇+









√
2− 1

2−
√
2

2−
√
2√

2− 1









≥ 0. (10)

p1

p2

o1

o2

e1

e2 e3 e4

(a) The edge-vertex distance
constraints limit the valid mo-
tions in a small convex region.

(b) The distance constraints
generated for a pair of rigid
bodies. Blue line segments are
vectors from green vertices to
red edges.

Fig. 4: Local distance functions model the free space.

Candidate boundary values for values for q̇, or equivalently,

∆θ, are ≈ (−.29,−.41, .41, .29). The value ∆θ = −.29
corresponds to collision with the bottom wall, and the value

∆θ = .29 corresponds to collision with the left wall; these

would be the first collisions to occur. These values are of

course approximate, due to the linearization of J around the

initial configuration.

V. FLEXIBILITY ANALYSIS USING LINEAR

PROGRAMMING

We discover approximate extreme configurations of very

large 2D systems of loosely connected rigid bodies by

solving the linear program

max
q̇

cT q̇

subject to J(q)q̇+ d0 ≥ 0,
(11)

where c is a vector of weights. The choice of c allows us to

tune the direction we wish to displace elements.

We use signed distance functions between vertices on one

body and edges on another to simply model the permissible

local motions of the bodies. For each pair of bodies in the

structure, we choose one body to provide the edges, and

one body to provide vertices, as shown in Figure 4a. Since

the linearized analysis is only valid for local motions of

the bodies, only edges and points that are initially near one

another are potential sources of collision; we choose a small

positive value ǫ and select edge/vertex pairs that are initially

closer than this value.

Let the configurations of the current pair of bodies under

consideration be q1 = (x1, y1, θ1) and q2 = (x2, y2, θ2).
For each object pair, we expect there to be many distance

functions, representing the distances of vertices from edges

over some region of near-contact between the bodies. For

simplicity, consider a distance function dij such that object

1 provides the edge, and object 2 provides the vertex. Let n

be the outwards-pointing normal from the edge and o be the

origin. Then

dij(q1,q2) = n(q1) · (p(q2)− o(q1)). (12)

Let the length of the edge be ℓ, the first and second

endpoints of the edge be e0 and e1, the distance from

the origin of object 1 to the endpoints of the edges be



re0 and re1 and the angle from the x axis in the local

frame of object 1 to the edge endpoints be αe0 and αe1 .

Let the distance from p to the origin in the local frame

of object 2 be rp and the angle from the x axis to p be

αp. To make the equations more readable, we define the

helper variables se1 = sin (θ1 + αe1), ce1 = cos (θ1 + αe1),
se0 = sin (θ0 + αe0), ce0 = cos θ1 + αe0 , a = 1

ℓ
. Then

p(q2) =

(

x2 + rpcp
y2 + rpsp

)

(13)

n(q1) = a

(

re1se1 − re0se0
−re1ce1 + re0ce0

)

(14)

o(q1) =

(

x1 + re0ce0
y1 + re0se0

)

. (15)

The non-zero entries of each row of the Jacobian are

computed using the gradients of the distance function,

substituting the appropriate blocks for blocks 1 and 2:

∂x1
dij = a (−re0se0 + re1se1)

∂y1
dij = a (ce0re0 − ce1re1)

∂θ1dij = a(ce0re0 (ce0re0 − ce1re1)

− re0se0 (−re0se0 + re1se1)

+ (−ce0re0 + ce1re1) (−cprp + ce0re0 + x1 − x2)

+ (−re0se0 + re1se1) (−rpsp + re0se0 + y1 − y2))

∂x2
dij = −a (−re0se0 + re1se1)

∂y2
dij = −a (ce0re0 − ce1re1)

∂θ2dij = a(−cprp (ce0re0 − ce1re1)

+ rpsp (−re0se0 + re1se1))

(16)

A. Modeling convex corners

The distance-function approximation of the local configu-

ration space is particularly bad for some object geometries.

In Figure 4a, point p1 is closest to point o1, a convex

corner. Two distance functions are created, one for each of

the extension into lines of the edges e1 and e2. Maintaining

these constraints unnecessarily restricts p1; p1 will remain

in the polygonal region defined by the extensions of e1 and

e2. This problem seems fundamental. Rows of the Jacobian

express an and relationship; all constraints must be satisfied.

But in the example, it is enough that p1 be on the “correct”

side of only one of the extended edges.

If only one of the nearby vertices is convex, the problem is

easily solvable. For example, in Figure 4a, points o2 and p2

may be swapped, so that we compute the distance of a point

relative to a concave corner. To mitigate the problem in the

case where both corners are convex, we may take a simple,

though not entirely satisfactory, approach. Take the normals

of each edge, and average them, yielding a half-plane con-

straint that at least allows p1 to cross over the extended

edges. One promising avenue for a deeper exploration of this

issue is formulation as a Linear Complementarity Problem

(LCP), allowing or relationships between constraints.

Fig. 5: Example of adding a cross beam into a structure at

a point of maximum flex.

B. Time-stepping and re-enforcement of constraints

Solutions to the linear program in Equation 11 are ex-

treme vertices of the constraint polyhedron. Because of the

linearization around the initial configuration, the constraints

may be violated when the resulting solution is used to

compute a new configuration.

A common approach for dealing with truncation error

in finite difference methods is to find the net change over

several time steps. Although there are sophisticated ways to

compute an optimal time step for finite difference methods,

for this problem, the cost of computing the linear program

solution far outweighs the cost of Euler-step integration and

forward kinematics distance computation. We take a simple

approach, and do a linear or binary search for a time step,

multiplying the displacement vector ∆q by an increasingly

larger scalar until the maximum distance constraint violation

exceeds a user-defined threshold. After a time step is found

and applied, a new linear program may be formulated and

solved around the new configuration q. Usefully, the new

linear program re-enforces the constraints, potentially taking

a backward step with ∆q. This means that error does not

accumulate across time steps.

VI. EXAMPLE PROBLEMS

In this section, we present some informal examples –

preliminary work that suggests interesting applications.

A. Structure and block design problems

The linear optimization approach may be fast enough

for rapid consideration of different potential designs for a

structure, including the number and locations of blocks,

and on the the geometry of individual blocks, including the

tightness of the joints.

As an example, we consider how to add blocks to brace

a structure and limit maximum flex. Figure 5 shows an

example of adding such a beam to a structure; c was chosen

to maximize radial flex of each block outwards from the

center. We find the pair of mutually visible vertices which has

changed the most in the predicted configuration of maximum

flex, an O(n2) operation for n vertices. In this example, this

approach suggested adding a vertical cross-beam of blocks,

which we did by hand. In a completely automated algorithm,

structural limitations of the blocks would need to be taken

into account when selecting a cross beam.



Fig. 6: Crushing a soda can with tight and loose joints. Red

polygons denote the initial configuration.

Fig. 7: A linear programming solution for a flock of 1024

robots which must maintain sensor contact squeezing to-

gether to fit through a doorway or hallway.

The linear programming approach can also be used to

explore joint geometry. Looser joints simplify assembly; if

the joints in Figure 2 are too tight, the chair cannot be

assembled due to limits on the precision of assembly and

fabrication. However, if joints are too loose, the structure

will flex unacceptably, particularly if there is wear on the

connectors over time. Figure 6 (right) shows a planar exam-

ple of the soda can with loosened joints, with flex computed

using linear programming.

One simple strategy to explore joint tolerance is to param-

eterize the tightness of a joint with a single value and binary

search for maximum tolerance. To simulate such a process,

we utilize the Clipper library [46] to simulate loosening joints

by insetting the boundary of the rigid bodies. A more general

approach might choose several parameters to describe joint

geometry, and search over this parameter space.

B. Flock formations

Figure 7 shows a flock of 1024 robots; the magnified inset

shows the geometry. Gray square robots are forbidden from

physical collision, and the yellow cone shows a requirement

that each robot’s camera must maintain view of a marker (red

dot) on the robot in front of it. We can drive the flock into

interesting configurations by selecting an objective function.

Figure 7 shows an example: driving the diffuse flock into

a tighter configuration (perhaps so that the robots can pass

Fig. 8: A small time step in a direction of separation.

through a doorway) by finding a displacement that moves all

of the robots toward the x value of the leader robot.

We add field-of-view constraints for each robot except the

leader, and collision constraints that require that vertices of

each robot do not cross the half planes described by the

edges of its five nearest robots. We added a constraining

square around the leader at the tip of the tree so that the

constraint polyhedron is bounded. Large rotations are poorly

approximated by the linear method, so we place an arbitrary

limit on the rotation displacement of each robot in a time

step, using auxiliary linear constraints. After each configura-

tion update, we re-select distance constraints between swarm

neighbors.

C. Unbounded separation and (dis-)assembly planning

The classic assembly problem [47], [48] is to discover

motions that separate or assemble a collection of rigid bodies.

For simple versions of this problem, we might like to dis-

cover a velocity direction q̇ for which the linear constraints

we formulated are unbounded. With some minor modifica-

tions, our approach is able to discover such a motion.

Linear program solvers are capable of detecting whether

the feasible polyhedron is unbounded in the direction of a

given cost vector; in contrast, we would like to discover such

a cost vector automatically. Our approach is based on the

observation that for almost every non-zero vector, the linear

sum of the elements is either positive or negative, but not

zero. We may compute the sum of the x and y elements of

q̇ by adding a row of the form (1, 1, 0, 1, 1, 0, . . . ) to J . We

may constrain that sum to be very large, by adding an addi-

tional large element k to d0. Choose the objective function

c arbitrarily. We must also upper bound the motion so that

the solution is not unbounded; we add a row (−1,−1, 0, . . .)
and an element −2k to d0.

If a solution is found to this linear program, then the

resulting q̇ removes at least one block far enough from

the assembly that it is unconstrained, allowing unbounded

motion. If not, then we may look for negative motions

by changing the signs on the last two elements of d0. If

both of these linear programs are infeasible, then the only

separating motions must be such that the sum of the x and

y velocity elements is exactly 0. Our study of this approach

is preliminary; Figure 8 shows an example of a direction of

separation found.



Rigid Bodies Jacobian Size Iterations Runtime (seconds)

36 666 x 105 5 0.358
50 907 x 147 8 0.363
90 2220 x 267 7 1.621
153 3147 x 456 8 1.866
223 5273 x 666 5 2.987
332 6309 x 993 5 2.761
392 10932 x 1173 8 10.649
396 7326 x 1185 4 2.002
688 14615 x 2061 4 5.951

1703 52655 x 5106 14 233.341
2497 66363 x 7488 7 166.582

TABLE I: Performance results for several structures, using

Gurobi with sparse matrices.

Fig. 9: Structure composed of 1703 rigid bodies flexing

upwards. Red polygons denote the initial configuration.

VII. EVALUATION AND COMPARISONS

The size of the linear program depends on the number

of blocks, the complexity of their shape, and the ways in

which they are connected; the number of time-step iterations

depends on the flexibility of the structure with respect to

angular motions in configuration space. While there do not

appear to be existing competing methods to solve exactly

the problem under consideration, we explore the time costs

for various problem sizes to serve as a baseline for future

comparison.

For n blocks with one block held fixed, the Jacobian has

3(n − 1) columns and c(n − 1) rows, if c is the average

number of distance constraints generated for each block.

However, the matrix is quite sparse, which may reduce

memory and computational costs of solution; there are only

six non-zero entries per row, yielding O(n) non-zero entries

in the matrix. We omit formal O() asymptotic run-time

analysis of the solution, since linear programming techniques

are standard.

In Table I we show the result of tests on several systems

of rigid bodies of varying size. For each structure, we report

the amount of time and number of iterations required for

our time stepping procedure to converge. The run time of

our approach is dominated by the solution of the constraint

Jacobian linear program. In our experiments, we found that

certain instances were especially hard for the linear program

solver. For instance, the 392 rigid body structure takes five

times as long the 396 body structure to solve and two times

as long as the 688 body structure. The 392 body structure is

a very dense structure, making the placement of each rigid

body dependent on a larger number of other rigid bodies than

in less dense structures.

VIII. LIMITATIONS AND FUTURE WORK

We presented a simple linear-constraint method for com-

puting the motion of a loosely-connected chain of rigid

bodies. Like robot kinematics formulations, the approach is

geometric, and does not model dynamics and contact. This

is both a strength and a weakness; dynamics simulators may

provide realistic motions, but the linear constraints describe

a space of possible motion of the system, allowing fast and

interesting optimizations. The linear constraint method may

also be more useful for a worst-case analysis; just because a

simulator provides a trajectory does not mean that trajectory

will occur in the real world.

The linear-constraint method assumes that the configura-

tion space is tight enough that linearization of the change

in distance functions with respect to configuration-space

motion is not too inaccurate. For more flexible systems, the

computed motions violate the distance constraints. Repeated

enforcement of the constraints by time-stepping and re-

solving the linear program gives results that seem empirically

reasonable, but there is much to be done to put this approach

on firmer mathematical footing, perhaps by analyzing Taylor

series approximations [49].

The use of a linear objective function is also limiting.

For example, while we can analyze separability of objects

(Section VI-C), there is little control over which separating

motion is discovered.We might like to separate objects in an

assembly one at time (if we have only one robot arm), or

simultaneously, for speed; it is unclear how these preferences

might be encoded with linear objective functions.

The use of the union of edge-vertex distance constraints to

approximate the local configuration space also needs further

study; as pointed out in Section V-A, convex corners of

objects pose a particular problem when used as edges for

the distance function. Extension to 3D, an obvious next

step for the work, seems mostly straight-forward, but we

expect expressing the geometry of convex vertices, saddles,

and ridges using a union of linear constraints to be more

problematic than in the 2D case.

REFERENCES

[1] Y. Zhang and D. Balkcom, “Interlocking block assembly,”
in Proc. WAFR, Dec. 2018.

[2] ——, “Interlocking structure assembly with voxels,” in Proc.
IROS, 2016.

[3] J. Werfel, Y. Bar-Yam, D. Rus, and R. Nagpal, “Dis-
tributed construction by mobile robots with enhanced build-
ing blocks,” in Proc. ICRA, 2006, pp. 2787–2794.

[4] L. Gurobi Optimization, Gurobi optimizer reference manual,
2018. [Online]. Available: http://www.gurobi.com.



[5] J. Revels, M. Lubin, and T. Papamarkou, “Forward-mode au-
tomatic differentiation in julia,” arXiv:1607.07892 [cs.MS],
2016.

[6] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano,
“Global task space manipulability ellipsoids for multiple-
arm systems,” IEEE Trans. Robot. Autom., vol. 7, no. 5,
pp. 678–685, 1991.

[7] F. C. Park and J. W. Kim, “Manipulability and singularity
analysis of multiple robot systems: A geometric approach,”
in Proc. ICRA, 1998, pp. 1032–1037.

[8] S. Kim, “Adjustable manipulability of closed-chain mecha-
nisms through joint freezing and joint unactuation,” in Proc.
ICRA, 1998, pp. 2627–2632.

[9] A. Bicchi and D. Prattichizzo, “Manipulability of cooperat-
ing robots with unactuated joints and closed-chain mecha-
nisms,” IEEE Trans. Robot. Autom., vol. 16, no. 4, pp. 336–
345, Aug. 2006.

[10] S. Lensgraf, K. Itani, Y. Zhang, Z. Sun, Y. Wu, A. Q. Li,
B. Zhu, E. Whiting, W. Wang, and D. Balkcom, Puzzleflex:
Kinematic motion of chains with loose joints, 2019. arXiv:
1906.08708 [cs.RO].

[11] Z. Li and V. Milenkovic, “A compaction algorithm for non-
convex polygons and its application,” in Proceedings of
the Ninth Annual Symposium on Computational Geometry,
ser. SCG ’93, 1993, pp. 153–162.

[12] D. Baraff and A. Witkin, “Large steps in cloth simulation,”
in Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’98,
New York, NY, USA: ACM, 1998, pp. 43–54, ISBN: 0-
89791-999-8. DOI: 10.1145/280814.280821. [On-
line]. Available: http://doi.acm.org/10.1145/
280814.280821.

[13] D. K. Pai, “STRANDS: Interactive simulation of thin solids
using cosserat models,” in Eurographics, 2002.

[14] D. Berenson, “Manipulation of deformable objects without
modeling and simulating deformation,” in Proc. IROS, 2013,
pp. 4525–4532.

[15] D. L. James and D. K. Pai, “Multiresolution Green’s
function methods for interactive simulation of large-scale
elastostatic objects,” ACM Trans. Graph., vol. 22, no. 1,
pp. 47–82, 2003, ISSN: 0730-0301. DOI: http://doi.
acm.org/10.1145/588272.588278.

[16] K.-J. Choi and H.-S. Ko, “Stable but responsive cloth,” in
SIGGRAPH, 2002.

[17] M. Rubin, Cosserat Theories: Shells, Rods, and Points.
Kluwer Academic Publishers, 2000.

[18] K. Hauser, “Semi-infinite programming for trajectory op-
timization with nonconvex obstacles,” in Workshop on the
Algorithmic Foundations of Robotics (WAFR), Dec. 2018.

[19] D. Stewart and J. Trinkle, “Dynamics, friction, and com-
plementarity problems,” in Complementarity and Varia-
tional Problems, M. Ferris and J. Pang, Eds., SIAM, 1997,
pp. 425–439.

[20] J. Trinkle, J. Tzitzouris, and J. Pang, “Dynamic multi-rigid-
body systems with concurrent distributed contacts: Theory
and examples,” Philosophical Transactions: Mathematical,
Physical, and Engineering Sciences, A, vol. 359, no. 1789,
pp. 2575–2593, Dec. 2001.

[21] D. Balkcom and J. C. Trinkle, “Computing wrench cones for
planar rigid body contact tasks,” Int. J. Robot. Res., vol. 21,
no. 12, pp. 1053–1066, 2002.

[22] R. Connelly, E. D. Demaine, and G. Rote, “Straightening
polygonal arcs and convexifying polygonal cycles,” Discrete
and Computational Geometry, vol. 30, no. 2, pp. 205–239,
Sep. 2003.

[23] F. Reuleaux, The kinematics of machinery. 1876.

[24] B. Mishra, J. T. Schwartz, and M. Sharir, “On the existence
and synthesis of multifinger positive grips,” Algorithmica,
vol. 2, pp. 541–558, 1987.

[25] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to
grasping,” Int. J. Robot. Res., vol. 31, no. 7, pp. 886–900,
2012.

[26] S. Makita and Y. Maeda, “3d multifingered caging: Basic
formulation and planning,” in Proc. IROS, 2008, pp. 2697–
2702.

[27] M. Vahedi and A. F. van der Stappen, “Caging polygons
with two and three fingers,” Int. J. Robot. Res., vol. 27,
no. 11-12, pp. 1308–1324, 2008.

[28] J. Erickson, S. Thite, F. Rothganger, and J. Ponce, “Captur-
ing a convex object with three discs,” in Proc. ICRA, vol. 2,
2003, pp. 2242–2247.

[29] E. Rimon and A. Blake, “Caging 2d bodies by 1-parameter
two-fingered gripping systems,” in Proc. ICRA, 1996,
pp. 1458–1464.

[30] T. F. Allen, J. W. Burdick, and E. Rimon, “Two-finger
caging of polygonal objects using contact space search,”
IEEE Trans. Robot., vol. 31, no. 5, pp. 1164–1179, 2015.

[31] S. Makita and W. Wan, “A survey of robotic caging and
its applications,” Advanced Robotics, vol. 31, no. 19-20,
pp. 1071–1085, 2017.

[32] E. Sacks, N. Butt, and V. Milenkovic, “Robust free
space construction for a polyhedron with planar motion,”
Computer-Aided Design, vol. 90, pp. 18–26, 2017.

[33] N. Eckenstein and M. Yim, “Modular robot connector area
of acceptance from configuration space obstacles,” in Proc.
IROS, 2017, pp. 3550–3555.

[34] K. W. Chase and A. R. Parki nson, “A survey of research
in the application of tolerance analysis to the design of
mechanical assemblies,” Research in Engineering Design,
vol. 3, no. 1, pp. 23–37, Mar. 1991.

[35] K. W. Chase, J. Gao, S. P. Magleby, and C. D. Sorensen,
“Including geometric feature variations in tolerance analysis
of mechanical assemblies,” IIE Transactions, vol. 28, no. 10,
pp. 795–807, 1996.

[36] L. Laperrière and P. Lafond, “Modeling dispersions affecting
pre-defined functional requirements of mechanical assem-
blies using jacobian transforms,” in Integrated Design and
Manufacturing in Mechanical Engineering ’98, J.-L. Batoz,
P. Chedmail, G. Cognet, and C. Fortin, Eds., 1999.

[37] X. Zuo, B. Li, J. Yang, and X. Jiang, “Application of
the jacobian–torsor theory into error propagation analy-
sis for machining processes,” The International Journal
of Advanced Manufacturing Technology, vol. 69, no. 5,
pp. 1557–1568, 2013.

[38] M. J. D. Powell, Direct search algorithms for optimization
calculations, 1998.

[39] J. A. Nelder and R. Mead, “A Simplex Method for Func-
tion Minimization,” The Computer Journal, vol. 7, no. 4,
pp. 308–313, Jan. 1965.

[40] J. Alonso-Mora, S. Baker, and D. Rus, “Multi-robot forma-
tion control and object transport in dynamic environments
via constrained optimization,” Int. J. Robot. Res., vol. 36,
no. 9, pp. 1000–1021, 2017.

[41] M. A. Hsieh, V. Kumar, and L. Chaimowicz, “Decentral-
ized controllers for shape generation with robotic swarms,”
Robotica, vol. 26, no. 5, pp. 691–701, 2008.

[42] I. O’Hara, J. Paulos, J. Davey, N. Eckenstein, N. Doshi,
T. Tosun, J. Greco, J. Seo, M. Turpin, V. Kumar, et al.,
“Self-assembly of a swarm of autonomous boats into floating
structures,” in Proc. ICRA, 2014, pp. 1234–1240.

[43] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable
self-assembly in a thousand-robot swarm,” Science, vol. 345,
no. 6198, pp. 795–799, 2014.



[44] J. M. Esposito and T. W. Dunbar, “Maintaining wireless
connectivity constraints for swarms in the presence of ob-
stacles,” in Proc. ICRA, 2006, pp. 946–951.

[45] S. Shahrokhi, A. Mahadev, and A. T. Becker, “Algorithms
for shaping a particle swarm with a shared input by exploit-
ing non-slip wall contacts,” in Proc. IROS, 2017, pp. 4304–
4311.

[46] A. Johnson, Clipper - an open source freeware library
for clipping and offsetting lines and polygons. [Online].
Available: http://angusj.com/delphi/clipper.
php.

[47] D. Halperin, J. Latombe, and R. H. Wilson, “A general
framework for assembly planning: The motion space ap-
proach,” Algorithmica, vol. 26, no. 3-4, pp. 577–601, 2000.

[48] J. Snoeyink and J. Stolfi, “Objects that cannot be taken apart
with two hands,” Discrete and Computational Geometry,
vol. 12, pp. 367–384, 1994.

[49] J. J. Duistermaat and J. A. C. Kolk, “Taylor expansion in
several variables,” in Distributions: Theory and Applica-
tions. Birkhäuser, 2010, pp. 59–63.


