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Abstract

Computational methods are required to solve problems without closed-
form solutions in environmental and resource economics. Efficiency, sta-
bility, and accuracy are key elements for computational methods. This
review discusses state-of-the-art computational methods applied in en-
vironmental and resource economics, including optimal control methods
for deterministic models, advances in value function iteration and time
iteration for general dynamic stochastic problems, nonlinear certainty
equivalent approximation, robust decision making, real option analysis,
bilevel optimization, solution methods for continuous-time problems,
and so on. This review also clarifies so-called “curse-of-dimensionality”,
and discusses some computational techniques such as approximation
methods without “curse-of-dimensionality” and time-dependent approxi-
mation domains. Many existing economic models use simplifying and/or
unrealistic assumptions with an excuse of computational feasibility, but
these assumptions might be able to be relaxed if we choose an efficient
computational method discussed in this review.
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1 Introduction

In environmental and resource economics, problems often have no closed-form
solutions, so we have to rely on computational methods to solve them and then
provide economic analysis. While analytic results can be helpful in building
intuition, they have to make many strong and simplifying assumptions, so
sometimes their closed-form solutions may result in economic analysis that is
more confusing than clarifying.

This review focuses on computational methods, particularly general and
recent methods, more than substantive modeling and applications, although I
provide some references to applied research that focuses on environmental and
resource economics. The review also focuses on solution methods for discrete
time dynamic stochastic problems, particularly new advances and clarifica-
tions in the most popular method – value/policy function iteration. I also
review other methods including NLCEQ (NonLinear Certainty Equivalent ap-
proximation) (Cai, Judd, and Steinbuks, 2017), robust decision making, and
bilevel optimization. For general background, traditional methods, and stan-
dard rules in computational methods for economists, see Rust (1996), Judd
(1998), Ljungqvist and Sargent (2000), Miranda and Fackler (2002), Bertsekas
(2005, 2007), and Cai and Judd (2014) for details. This review will also not
discuss agent-based models (see Farmer et al. (2015) for a detailed discussion
about agent-based models in climate change economics), nor econometric and
statistical methods.1

The review is organized as follows. Section 2 discusses optimal control
methods for deterministic models, including solving a social planner’s prob-
lem and finding equilibrium under no uncertainty. Section 3 presents value
function iteration, the most popular method for solving discrete time dynamic
stochastic programming problems under a social planner’s preference. Section

1In econometrics, there are many computational issues that may lead to even opposite
solutions. For example, Cafiero et al. (2011, 2015) show that using a much finer grid to
approximate the equilibrium price function leads to positive evidence for the role of storage
arbitrage, contrary to a previous claim of Deaton and Laroque (1995, 1996) using a coarse
grid. Guerra et al. (2015) show serious differences in magnitudes of practical interest between
using annual price data and using December price data for testing a storage model.

3



4 presents time iteration, another popular method for finding dynamic gen-
eral equilibrium of discrete time dynamic stochastic programming problems.
While both value function iteration and time iteration are for general dynamic
programming problems which may have a finite or infinite time horizon and
may be non-stationary, many economic problems study infinite time horizon
stationary problems, which Section 5 specifically discusses. Section 6 briefly
reviews computational methods for robust decision making problems. Sec-
tion 7 discusses other computational methods including NLCEQ, approximate
dynamic programming, real options pricing, and bilevel optimization for solv-
ing principal-agent problems. Section 8 briefly reviews computational meth-
ods for continuous time dynamic programming problems. Section 9 provides
detailed discussions about the “curse-of-dimensionality”, boundedness, Monte
Carlo techniques, approximation, and stopping criteria. Section 10 concludes.

2 Optimal Control Methods for Deterministic

Models

2.1 Social Planner’s Problem

Most of deterministic discrete time dynamic programming (DP) problems in
environmental and resource economics can be written as

max
T−1∑
t=0

βtut(xt, at) + βTVT (xT ) (1)

s.t. xt+1 = ft(xt, at), t = 0, 1, ..., T − 1

at ∈ Dt(xt)

x0 given

where t is time (period), T is the time horizon (which can be infinite), xt is
a vector of state variables (e.g., capital or resource stock), at is a vector of
decision variables (e.g., consumption), ft is a vector of functions representing
transition laws of the state variables, β < 1 is the discount factor, ut is the
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social planner’s utility function, VT is the terminal value function (for infinite-
horizon problems, VT is zero everywhere), and Dt(xt) is the feasible set for
decision variables at time t.

The optimal control method is the most common method to solve the
deterministic problem (1) with a finite horizon. That is, if the functions
and variables are continuous, then we view (1) as a non-linear program-
ming (NLP) problem with variables (x1, ...,xT , a0, a1, ..., aT−1) and constraints
xt+1 = ft(xt, at) and at ∈ Dt(xt) for t = 0, 1, ..., T − 1, and then use an NLP
solver to solve it directly;2 if the functions and variables are discrete, then
we can use integer programming to solve (1); and if some but not all of the
functions and variables are discrete, then we can use mixed integer nonlinearly
constrained optimization (MINLP) solvers to solve (1). In MATLAB, we can
use the fmincon solver (1), and in cases where fmincon does not work well,
we use an alternative solver such as Knitro. However, GAMS (General Alge-
braic Modeling System) or AMPL (A Mathematical Programming Language)
can provide a more flexible environment than MATLAB, as there are more
professional solvers available using GAMS or AMPL (see McCarl et al. (2016)
or Fourer, Gay, and Kernighan (2003) for their user guide). For example,
CONOPT (Drud, 1994) is often more reliable and efficient than fmincon in
solving NLP problems, and SNOPT (Gill, Murray, and Saunders, 2005) is an-
other good alternative. The NEOS server (Czyzyk, Mesnier, and More (1998);
https://neos-server.org/neos/solvers/index.html) provides a long list
of free solvers for various optimization problems (e.g., NLP, MINLP, global
optimization) that can run GAMS or AMPL code. The flexibility of GAMS or
AMPL is more useful for dealing with challenging optimization problems such
as global optimization or problems with a flat objective over some decision
variables, as we can try different solvers with the same code written in GAMS
or AMPL to solve (1) or even verify accuracy of a solution of (1) obtained
from another solver. A good initial guess, scaling, and stopping criteria are
also important for solving challenging problems.

2Linear programming (LP) is a special case of NLP, and usually is easier to solve with
LP solvers such as CPLEX and Gurobi, so we do not discuss LP in this paper.
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For deterministic problems (1) with an infinite horizon, usually one can also
use the optimal control method after truncating the infinite series at a large
finite period T , because βt → 0 as t→∞ and infinite horizon problems often
require a transversality condition. In fact, if the utility function is a power
function with a marginal elasticity larger than 1, then it is upper-bounded at
zero, so βtut(xt, at)→ 0.

2.2 Find Equilibrium

While DP problems usually focus on intertemporal equilibrium and long-term
effects (often with hundreds of periods), another direction is to study short-
term effects and spatial or sectoral equilibrium, which typically includes many
regions or sectors (up to hundreds of sectors). The Global Trade Analysis
Project (GTAP) founded by Thomas Hertel at Purdue University is one repre-
sentative example (see an overview of GTAP in Hertel (2013)), and many other
computable general equilibrium (CGE) models are presented in Dixon and Jor-
genson (2013).3 GTAP applies on the GEMPACK (General Equilibrium Mod-
eling PACKage) platform, which is compared with GAMS and MPSGE (Math-
ematical Programming System for General Equilibrium (Rutherford, 1999)) in
Horridge et al. (2013). GTAP is also combined with other models in the liter-
ature. For example, Golub et al. (2009) extend GTAP to GTAP-AEZ-GHG,
a general equilibrium framework, to model forest carbon sequestration and
land management in agriculture and forestry, and Golub et al. (2013) extend
GTAP-AEZ-GHG to study climate policy impacts.

For multi-regional, multi-sectoral and/or multi-agent static problems, each
region, sector, or agent is assumed to optimize their objectives with budget
and market-clearing constraints and trade between regions, sectors, and/or
agents. The decentralized equilibrium can be solved using a system of first-
order conditions (and constraints). That is, the problem is to find a solution

3Also see Bergman (2005) for CGE modeling in environmental policy and resource man-
agement.
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to the system of equations and inequalitiesF(a) = 0

G(a) ≥ 0
(2)

where a contains prices, quantities of (intermediate) products, and resource
allocations. This may be solved in MATLAB using fsolve or other equation
solvers. The system (2) may also be solved as a degenerate optimization
problem

max
x

1 (3)

s.t. F(a) = 0

G(a) ≥ 0

using an optimization solver such as CONOPT and SNOPT to find a feasi-
ble point using the optimal control method. Sometimes the system (2) may
contain complementarity conditions (such as xixj = 0 with xi, xj ≥ 0), which
often make it challenging to solve. The mixed complementarity problems may
be solved using MILES (Rutherford, 1993, 1995) or PATH (Dirkse and Ferris,
1995; Ferris and Munson, 2000).

For deterministic dynamic problems, we can use the same computational
methods to solve the following system of equations and inequalities:Ft(xt,xt+1, at, at+1) = 0 ∀t

Gt(xt, at) ≥ 0 ∀t
(4)

where xt are state variables, at are other variables including decision variables
and prices, Ft represents transition laws of states, Euler equations, first-order
conditions and other equality constraints, and Gt represents all inequality
constraints. For example, Baldwin, Cai, and Kuralbayeva (2018) use the de-
generate optimization method (3) but with the constraints (4) to obtain de-
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centralized equilibrium when there is no carbon tax in the dirty energy sector
or a subsidy in the renewable energy sector. One disadvantage of this method
is that we have to derive the Euler equations and first-order conditions, and
the system (4) may be challenging to solve. Cai et al. (2018) propose an alter-
native method to find competitive equilibrium between two regions by solving
a social planner’s problem that maximizes the present value of a weighted sum
of utilities in the two regions, where the weights are Negishi weights (Negishi,
1972) that can be obtained with an iterative method.

3 Value Function Iteration

Most stochastic discrete time dynamic programming problems in environmen-
tal and resource economics can be written as

max E

{
T−1∑
t=0

βtut(xt, at) + βTVT (xT )

}
(5)

s.t. xt+1 = ft(xt, at, εt), t = 0, 1, ..., T − 1

at ∈ Dt(xt)

x0 given

where E is the expectation operator and εt is a vector of random variables at
time t. Note that some state variables may have deterministic transition laws,
e.g., the transition law of the j-th state variable is xt+1,j = gt,j(xt, at), but
here we simplify our notation by defining ft,j(xt, at, εt) = gt,j(xt, at) + 0 · εt
so that xt+1,j = ft,j(xt, at, εt). For simplicity in discussion of computational
methods, we assume xt are continuous variables (as discrete state variables
can be simply added).

Value function iteration (VFI) is the most common method to solve (5).
It transforms (5) to the following Bellman equation (Bellman, 1957):

Vt(xt) = max
at∈Dt(xt)

ut(xt, at) + βEt {Vt+1(xt+1)} (6)

s.t. xt+1 = ft(xt, at, εt)
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for t = 0, 1, ..., T − 1, where Et is the expectation operator conditional on the
time-t information. With a given terminal value function VT for finite-horizon
problems, it iterates backward over time to get all value functions and policy
functions. For infinite-horizon problems, we can truncate it at a finite horizon
T and choose

VT (xT ) ≈ ET

{
∞∑
t=T

βt−Tut(x̃t, ãt)

}
where ãt and x̃t are a series of guessed decisions and states starting from the
terminal state xT . A criterion in setting a terminal value function VT is to
check if a reasonable change in its terminal values (e.g., 10% up or down) will
result in a non-negligible change in the solutions at the periods of interest.

Each iteration of (6) contains three main parts: approximation, optimiza-
tion, and integration. These parts are computed numerically for problems with
continuous state variables, continuous random variables, and continuous deci-
sion variables. That is, with a given next-period value function approximation
V̂t+1(xt+1;bt+1), numerical VFI constructs the current-period value function
V̂t(xt;bt) by solving

V̂t(xt;bt) ≈ m̂ax
at∈Dt(xt)

ut(xt, at) + βÊt
{
V̂t+1(xt+1;bt+1)

}
(7)

s.t. xt+1 = ft(xt, at, εt)

where hatted variables refer to the numerical implementation of approxima-
tion, optimization, and integration, and b is a vector of approximation coeffi-
cients. A typical numerical approximation of a value function V is

V̂ (x;b) =
∑
j

bjφj(x), (8)

where {φj(x)} are basis functions (e.g., Chebyshev basis polynomials discussed
later in Section 9.4, or ordinary basis polynomials: 1, x, x2, x3, ..., for univari-
ate problems) and b = {bj} are approximation coefficients (see Judd (1998)
and Miranda and Fackler (2002) for a detailed discussion). Moreover, it is
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often associated with a bounded approximation domain in the state space,
which could be time-variant. To solve (7), we choose approximation nodes
{xt,i}, solve the following maximization problem

vt,i = m̂ax
at,i∈Dt(xt,i)

ut(xt,i, at,i) + βÊt
{
V̂t+1(xt+1,i;bt+1)

}
(9)

s.t. xt+1,i = ft(xt,i, at,i, εt)

for every xt,i, and then find bt such that V̂t(xt,i;bt) ≈ vt,i for all i. Nu-
merical optimization solvers include CONOPT, SNOPT, NPSOL (Gill et al.,
1994), KNITRO (Byrd, Nocedal, and Waltz, 2006), or fmincon in MAT-
LAB. Numerical integration methods include Gaussian quadrature rules (e.g.,
Gauss-Hermite quadrature for normal or log-normal distributions and Gauss-
Legendre quadrature for uniform distributions), and monomial quadrature
rules. See Judd (1998) for a detailed discussion of these.

The Bellman equation (6) applies widely to problems with separate utility
functions. There are a large number of applications in the literature, here I
provide only several recent examples in environmental and resource economics.
Daigneault, Miranda, and Sohngen (2010) use the Bellman equation to find
optimal forest management with fire risk and carbon sequestration credits.
Cai et al. (2015a) and Lontzek et al. (2015) apply VFI to solve optimal carbon
tax with an integrated assessment model with climate tipping risks.

Recently, recursive utility (Epstein and Zin, 1989) has been used in DP.
For example, Jensen and Traeger (2014), Cai, Lenton, and Lontzek (2016);
Cai, Judd, and Lontzek (2017) and Cai et al. (2018) employ recursive utility in
climate change economics for solving dynamic stochastic integrated assessment
models (IAMs). They still apply VFI but with the more general Bellman
equation

Vt(xt) = max
at∈Dt(xt)

ut(xt, at) + βGt {Vt+1(xt+1)} (10)

s.t. xt+1 = ft(xt, at, εt)
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where

Gt {Vt+1(xt+1)} ≡
1

1− 1/ψ

(
Et
{
((1− 1/ψ)Vt+1(xt+1))

1−γ
1−1/ψ

}) 1−1/ψ
1−γ

with ψ and γ as the intertemporal elasticity of substitution and the risk aver-
sion coefficient respectively. Without loss of generality, we will use the Bellman
equation (6) for later discussion.

VFI is also used to solve problems with learning. For example, Kelly and
Kolstad (1999) employ VFI with neural network approximation to solve cli-
mate change economics problems with Bayesian learning. Leach (2007) then
extends their pioneering work to the case of learning about two correlated
uncertain parameters. Recently, Kelly and Tan (2015) investigate the impact
of learning an important uncertain parameter, climate sensitivity (which mea-
sures the temperature increase in equilibrium if carbon concentration in the
atmosphere doubles), on optimal climate policy under fat-tailed uncertainty
about climate change. Rudik (2016) combines Bayesian learning and robust
control in the context of optimal carbon taxation.

It is always important to check whether a computational method and
code are actually solving problems with the desired accuracy. Cai, Judd, and
Lontzek (2017, 2018) present how to verify and measure errors appropriately
for numerical solutions from VFI. One way for verification is to use the same
code and the same computational methods (including the same approximation
domains, and nodes) for a stochastic problem to replicate a solution of its cor-
responding deterministic model, obtained by another programming language
and/or another computational method (e.g., GAMS and the optimal control
method). Another way is to check if higher-order approximations with wider
approximation domains or higher-order quadrature rules will change results
significantly. Normalized Euler equation errors (see e.g., Cai, Judd, and Stein-
buks (2017)) and approximation errors are also important for measuring errors
(Cai, Judd, and Lontzek, 2018).
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4 Time Iteration

Time iteration, another backward iteration method, is also popular. It con-
structs policy functions with state variables as arguments, while their approxi-
mation domains are the same across decision variables. With next-period pol-
icy functions, we compute current-period policy functions by solving a system
of intertemporal Euler equations and transition laws, and temporal first-order
conditions and constraints. That is, at time t, with given next-period policy
functions At+1(xt+1), instead of solving the maximization problem (6) in VFI
we solve the following system of equations and inequalities:

Et(xt,xt+1,At(xt),At+1(xt+1)) = 0

Ft(xt,At(xt)) = 0

xt+1 = ft(xt,At(xt), εt)

Gt(xt,At(xt)) ≥ 0

(11)

where xt are state variables, At(xt) are policy functions, Et represents Euler
equations, Ft represents first-order conditions, ft represents transition laws of
state variables, and Gt represents all other constraints (e.g., nonnegativity
constraints and complementarity constraints).4 To solve (11) numerically, we
start with a given numerical approximation of next-period policy functions,
Ât+1(xt+1;Bt+1), where Bt+1 are approximation coefficients for decision vari-
ables, choose approximation nodes {xt,i}, solve

Et(xt,i,xt+1,i, at,i, Ât+1(xt+1,i;Bt+1)) = 0

Ft(xt,i, at,i) = 0

xt+1,i = ft(xt,i, at,i, εt)

Gt(xt,i, at,i) ≥ 0

(12)

for every xt,i, and then find Bt such that Ât(xt,i;Bt) ≈ at,i for all i.
4An equality constraint g(xt,At(xt)) = 0 can be represented as a combination of two

inequality constraints: g(xt,At(xt)) ≥ 0 and −g(xt,At(xt)) ≥ 0.
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For stationary infinite-horizon problems, time iteration is often faster than
VFI. However, most economic problems have monotone and concave value
functions, for such problems solving the system (12) may be more challenging
than solving the maximization problem in (6) using VFI, as the first-order
conditions and Euler equations may lose the convexity of the maximization
problem in (6).

Time iteration has been widely used in the literature. For example, re-
cently Judd et al. (2014) incorporate the Smolyak method (Smolyak, 1963)
into time iteration, and Brumm and Scheidegger (2017) introduce an adap-
tive sparse grid method into time iteration, so that time iteration can solve
large-dimensional problems.

In particular, time iteration is a typical method for non-stationary DSGE
or dynamic stochastic game problems with multiple regions, sectors, and/or
agents. That is, at each time, time iteration solves the system (11) to get
the optimal resource allocation and investment among regions, sectors, and/or
agents, prices, and quantities of goods, and then iterates backward until the ini-
tial time (for finite-horizon problems) or until convergence (for infinite-horizon
stationary problems).

5 Methods for Stationary Infinite-horizon Prob-

lems

For stationary infinite-horizon dynamic problems (i.e., all functions and exoge-
nous parameters are independent of time), the Bellman equation (6) becomes

V (x) = max
a∈D(x)

u(x, a) + βE {V (x+)} (13)

s.t. x+ = f(x, a, ε)

where x+ is the next-period state transited from current state x, and we can
choose an initial guess for the value function V and then iterate until VFI
converges.
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Let V̂k(x;bk) be the value function approximation at the k-th iteration.
We assume VFI converges numerically if two consecutive value function ap-
proximations are sufficiently close, that is,∥∥∥V̂k − V̂k+1

∥∥∥ < ε

for some functional norm ‖·‖ and a small positive number ε. The L∞ norm is
often used, i.e.,

max
x

∣∣∣V̂k(x;bk)− V̂k+1(x;bk+1)
∣∣∣ < ε.

Numerically, we can replace the above formula by

max
i

∣∣∣V̂k(xi;bk)− V̂k+1(xi;bk+1)
∣∣∣ < ε

over a large-size set of points {xi} on the state space. For example, Cai,
Judd, and Lontzek (2017, 2018) use 1,000 Monte Carlo points in the state
space of continuous state variables for every discrete state. We should also
pay attention to the magnitude of V̂ , as too large a magnitude will make it
too challenging or time consuming to stop, and too small a magnitude will
make VFI stop too early, with large errors. Thus, typically we first scale
utility by a constant such that the value function has a reasonable magnitude.
Alternatively we can use the difference of two consecutive policy functions as
a substitute for the difference of two consecutive value functions. In addition,
the value of the discount factor also matters, because a discount factor close
to 1 implies a small time increment. Since one period’s utility could then have
little contribution to the objective function, which may make VFI stop too
early, we often use ε/(1− β) instead of ε.

However, for infinite-horizon stationary DSGE problems, perturbation meth-
ods (see e.g., Judd and Guu (1993)) and projection methods (see e.g., Judd
(1992)) may be more efficient, though perturbation methods can only provide
locally accurate solutions around the non-stochastic steady state, and projec-
tion methods may be challenging for high-dimensional problems or problems

14



with strong nonlinearity.5 Moreover, both perturbation and projection cannot
solve problems with kinks in general, except the OccBin method (Guerrieri and
Iacoviello, 2015), which can solve some low-dimensional problems with occa-
sionally binding constraints. See Fernandez-Villaverde, Rubio-Ramirez, and
Schorfheide (2016) for a detailed discussion about perturbation and projec-
tion. Recently, Levintal (2018) proposes an efficient Taylor projection method
to solve DSGE models. The algorithm is a hybrid of perturbation and pro-
jection, and it can obtain a locally accurate solution around any point on the
state space. Fernandez-Villaverde and Levintal (2018) apply the Taylor pro-
jection method to solve a DSGE model with Epstein–Zin preferences and rare
disasters. Other models include NLCEQ (Cai, Judd, and Steinbuks, 2017),
which will be discussed later, and simulation-based methods including GSSA
(Judd, Maliar, and Maliar, 2011) and EDS(Maliar and Maliar, 2015), which
unfortunately cannot guarantee convergence. In addition, Dynare (Adjemian
et al., 2011), a Matlab toolbox, is used for solving DSGE models, particularly
for problems in macroeconomics.

6 Robust Decision Making

Experts often provide different models, projected paths, or estimated parame-
ter values, so policymakers have to face Knightian uncertainty, where a partic-
ular probability distribution cannot be assigned across the models, projected
paths, or parameter values. A typical method to deal with problems involving
Knightian uncertainty is sensitivity analysis, and uncertainty quantification
is another method (see Harenberg et al. (forthcoming) and Cai, Judd, and
Lontzek (2018)). But neither can provide a robust solution for decision mak-
ers.

Robust decision making methods help decision makers who face Knightian
uncertainty. The max-min method is the most well-known robust decision
making method. It tries to maximize the minimal welfare across the uncertain

5We can transform non-stationary problems into stationary problem by adding some
extra state variables, so that perturbation or projection methods could be applied.
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models, projected paths, or estimated parameter values; that is, the max-min
method corresponds to the worst case analysis. Thus, the robust decision from
the max-min method is often too conservative.

Recently, a min-max regret (MMR) method, a less conservative robust
decision making method, has been applied in environmental and resource eco-
nomics for policy analysis. For an unknown but true model, there is an optimal
solution to achieve the maximal welfare under the model. Other models will
also propose their corresponding solution. If we implement the proposed deci-
sions from the other models in reality (i.e., the true model), it gives us realized
welfare. MMR defines regret to be the difference between the maximal welfare
using the optimal decisions under the true model and the realized welfare us-
ing the proposed decisions under the other models, and then chooses a robust
decision to minimize the maximal regret.

Iverson (2012) implements an iterative approach and applies MMR to cli-
mate policy analysis using DICE-2007 (Nordhaus, 2008) under Knightian un-
certainty across weights on environmental or growth objectives, climate sen-
sitivity, and the coefficient of the damage function of DICE. Iverson (2013)
uses MMR to consider a robust environmental policy decision in the face of
Knightian uncertainty about the discount rate. Anthoff and Tol (2014b) also
analyze MMR using the “FUND” integrated assessment model (Anthoff and
Tol, 2014a).

Cai and Sanstad (2016) introduce an efficient computational method to
solve min-max regret (MMR) problems and make robust decisions over Knigh-
tian uncertainty, and apply it to the Goulder-Mathai model (Goulder and
Mathai, 2000) for studying carbon emissions abatement from the energy sec-
tor in the face of model uncertainty about technical change. Cai, Golub, and
Hertel (2017) apply the efficient MMR method to study robust decisions of
agricultural research and development under uncertainty in population, in-
come and temperature using five Shared Socio-Economic Pathways (O’Neill
et al., 2014). Cai, Golub, and Hertel (2016) extend the efficient MMR method
to study robust decisions of agricultural research and development under am-
biguity over risk of economic growth (i.e., Knightian uncertainty across proba-
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bility distributions of economic growth), based on a survey of economics about
economic growth in the next century(Christensen, Gillingham, and Nordhaus,
2018; Gillingham et al., 2018).

The MMR methods cannot change the level of ambiguity aversion, and
have no risk aversion (except in Cai, Golub, and Hertel (2016)). Hansen
and Sargent (2008) introduce a robust control framework in the face of both
risk and ambiguity (misspecification), with both risk aversion and ambiguity
aversion. Athanassoglou and Xepapadeas (2012) implement the robust control
framework to consider an analytical pollution control problem, and Rudik
(2016) incorporates it numerically in DICE to include learning, and solves his
model using VFI with sparse grid approximation. Drouet, Bosetti, and Tavoni
(2015) disentangle model uncertainty and risks to economic production due to
mitigation costs, climate dynamics, and climate damages. Berger, Emmerling,
and Tavoni (2017) apply the robust tools in Cerreia-Vioglio et al. (2013) and
Marinacci (2015) to disentangle the role of preferences from the structure of
model uncertainty in order to study the impact on optimal mitigation policy.

7 Other Computational Methods

7.1 NLCEQ

It is often challenging to solve dynamic stochastic programming problems with
high dimensions or occasionally binding constraints. Cai, Judd, and Steinbuks
(2017) introduce a new computational method, called Non-Linear Certainty
Equivalent approximation (NLCEQ), to solve these kinds of problems. NL-
CEQ can solve deterministic infinite-horizon stationary problems accurately,
and stochastic infinite-horizon stationary problems with acceptable accuracy,
including a social planner’s problems and competitive equilibrium. It is sim-
ple for coding, naturally parallelizable, and is also very stable, particularly for
solving a social planner’s problems. For example, NLCEQ can solve a stochas-
tic multi-country optimal growth problem with up to 400 state variables using
Smolyak grids and parallelism, a dynamic model of food and clean energy
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with a stochastic jump process, and a New Keynesian DSGE model with a
zero lower bound. See Cai, Judd, and Steinbuks (2017) for a comparison
between NLCEQ and perturbation, OccBin, GSSA, and EDS methods.

7.2 Approximate Dynamic Programming

Simulation-based methods (e.g., GSSA (Judd, Maliar, and Maliar, 2011)) can
avoid the so-called “curse-of-dimensionality”, based on the property of Monte
Carlo simulation methods. Approximate dynamic programming (ADP) (e.g.,
Powell (2007)) is a simulation-based and nested inner-outer iteration method.
It is originally designed for problems with discrete states. It starts with a given
initial guess of value functions at all times, V̂ 0

t (xt), where xt are discrete state
variables, then updates them by the outer iteration. In each outer iteration,
it generates a new sample path of stochastic variables and then runs an inner
forward iteration over time using the Bellman equation. That is, after the
(n− 1)-th outer iteration, we have V̂ n−1

t (xt) for all t, then the inner iteration
starts with the initial state xn0 and a simulated εn0 , uses the Bellman equation
and V̂ n−1

1 (x1) to compute the optimal decision an0 , computes V̂ n
0 (x

n
0 ) as a

weighted sum of V̂ n−1
0 (xn0 ) and the optimal objective value at xn0 , lets V̂ n

0 (x0) =

V̂ n−1
0 (x0) for all x0 6= xn0 , and then obtains the next-period state using the

transition laws xn1 = f0(x
n
0 , a

n
0 , ε

n
0 ). With xn1 and a simulated εn1 , it can similarly

obtain V̂ n
1 (x1) and xn2 . Continue this forward iteration until the terminal time

and then the inner iteration obtains V̂ n
t (xt) for all t. Thus, in the n-th outer

iteration, V̂ n
t (xt) differentiates with V̂ n−1

t (xt) at only one visited state xnt at
each time t. The inner-outer iteration process stops until the value functions
converge, that is, V̂ n

t (xt) and V̂ n+1
t (xt) are sufficiently close for all t and all

states xt. Since this is based on Monte Carlo simulation, it requires a large
number of outer iterations, otherwise many states may not be visited with
enough frequency or even never be visited, limiting the accuracy of ADP.

For problems with continuous state variables xt, a standard ADP needs
to discretize them, but discretization makes it inaccurate for high-dimensional
problems.However, ADP can also employ value function approximation V̂t(xt;Bn

t ),
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whereBn
t are approximation coefficients over some basis functions, so the outer

iteration updates Bn
t instead of values at a large discretized state space. Thus,

ADP can be fast in some cases, although it may be unstable in other cases.
A good choice of basis functions can significantly improve the performance of
ADP. Shayegh and Thomas (2015) design a two-step-ahead approximation in
ADP to solve problems with continuous state variables, in which they choose
utility functions of subsequent states in the next two periods as the basis func-
tions. The two-step-ahead algorithm is then applied in Heutel, Moreno-Cruz,
and Shayegh (2016) and its extended four-step-ahead algorithm is applied in
Heutel, Moreno-Cruz, and Shayegh (2018) to study the impact of solar geo-
engineering on climate policy under uncertainty. However, it is important to
check errors (e.g., Euler errors), because the multiple-step-ahead approxima-
tion may be limited in accuracy for approximating value functions, and ADP
with the multiple-step-ahead approximation cannot guarantee that it actually
solves the original dynamic stochastic problems even if it converges.

7.3 Real Options Analysis

The costs and benefits of an action in a decision making problem are often
uncertain, particularly in a dynamic environment as future management and
policy can respond to new information. Real options analysis can take into ac-
count uncertainty and also flexibility, so it is often used to value the flexibility
in an investment project, including allowances for future deferral, abandon-
ment, or expansion of the project (see e.g., Brennan and Schwartz (1985),
Dixit and Pindyck (1994)).

The most common methods for evaluating options are Monte Carlo simu-
lation, decision trees, and partial differential equations (PDEs). For instance,
Albers, Fisher, and Hanemann (1996) use a real options approach with a de-
cision tree to discuss the impact of uncertainty and irreversibility on the valu-
ation and management of tropical forests, assuming that there are three types
of land use: preservation, an intermediate use, and development. Insley (2002)
introduces a real options approach based on a PDE to model the optimal tree
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harvesting decision, by implementing an implicit finite difference method to
discretize a linear complementarity equation for determining the value of the
option in a backward iteration. Hansen, Howitt, and Williams (2008) evaluate
an annual dry-year option, under which a water agency buys the right to pur-
chase water at a later date with a prespecified strike price, by constructing a
distribution of shadow prices that reflect the economic value of water under a
simulation–optimization framework. Anda, Golub, and Strukova (2009) apply
real options analysis based on Monte Carlo simulation to select a future-flexible
climate policy that can be corrected in the future in response to new knowl-
edge. Leroux, Martin, and Goeschl (2009) uses a real options approach based
on a PDE and its finite difference solution to find optimal levels of conservation
and land development under future stochastic natural damages, with the eco-
logical mechanism of extinction debt as an illustration. Nadolnyak, Miranda,
and Sheldon (2011) employ real options to market entry of genetically modi-
fied crops using VFI with Chebyshev polynomial approximation, while Monte
Carlo simulation can be problematic in econometric estimation for their cases.
Linquiti and Vonortas (2012) formulate a Monte Carlo model with real options
analysis to test adaptation strategies for defending against sea level rise due to
global warming. Ryu et al. (2018) apply real options analysis with a binomial
tree to study flood mitigation strategies under uncertainty in global climate
change.

7.4 Solving Principal-Agent Models

Baldwin, Cai, and Kuralbayeva (2018) apply the Mathematical Programming
with Equilibrium Conditions (MPEC) method to solve a dynamic principal-
agent model, where the principal decides dynamic carbon taxes and/or sub-
sidies to maximize social welfare, and the agents maximize their respective
utility functions: the representative household maximizes the present value of
utilities; the final good firms, fossil fuel firms, and renewable energy firms max-
imize their present value of profits. MPEC approaches have also been applied
in other fields of economics. For example, Su and Judd (2012) apply MPEC in
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structural estimation to maximize the likelihood subject to equilibrium condi-
tions from a Bellman equation, which is a bilevel optimization problem like the
principal-agent structure, and then compare it with the nested fixed-point ap-
proach (Rust, 1987). Recently, a polynomial optimization approach has been
introduced to solve principal-agent models; see Renner and Schmedders (2015,
2016).

8 Continuous Time Dynamic Programming Prob-

lems

Researchers often use continuous time dynamic programming for modeling.
Deterministic problems can be formulated as

max

∫ T

0

e−ρtu(x(t), a(t), t)dt+ e−ρTW (x(T )) (14)

s.t. ẋ(t) = f(x(t), a(t), t),

where ρ is the discount rate, a(t) is the vector of decision variables at time
t, ẋ(t) is the derivative of the state variables x over time t, and the terminal
time T can be infinite. Under some conditions that economic problems often
satisfy, the above problem can be reformulated as the following Hamilton-
Jacobi-Bellman (HJB) partial differential equation (PDE):

∂V

∂t
(x, t)− ρV (x, t) + max

a
{∇V (x, t) · f(x, a, t) + u(x, a, t)} = 0 (15)

subject to the terminal condition V (x, T ) = W (x), where ∇V (x, t) denotes
the gradient vector of V on x.

Sometimes it is easy to derive an analytical formula for the maximizer in
(15), so the HJB equation can be transformed to a standard PDE which can
be solved by standard computational methods, such as finite element meth-
ods and finite difference methods. Pontryagin’s maximum principle can also be

21



implemented to derive a set of equations for us to solve and obtain optimal pol-
icy functions. For example, Sohngen and Mendelsohn (1998) uses this method
and a shooting algorithm for solving equations to find equilibrium prices and
timber harvests under climate change. Sohngen and Mendelsohn (2003) later
combine a continuous-time global timber model (Sohngen, Mendelsohn, and
Sedjo, 1999) with the discrete-time DICE model (Nordhaus and Boyer, 2000),
and implement an iteration method to calculate carbon rental rates and then
solve the two models simultaneously.

When there are occasionally binding constraints in (14), HJB equations
may be challenging to solve, or the value function V (x, t) may not even be
twice differentiable over the state variables x. Cai, Judd, and Lontzek (2012)
apply finite difference methods to solve a continuous time DICE problem where
the emission control rate will hit its upper bound after some years. They
implement explicit, implicit, or trapezoid finite difference rules to discretize
the ordinary differential equation in (14), and employ corresponding numerical
integration rules to replace the integration in (14) by summation. They can
efficiently solve their problem with weekly time steps, a 600-year horizon,
and six continuous state variables. Moreover, their method avoids the kink
problems that arise from the transformation to an HJB equation.

The stochastic version of (14) is

max E
{∫ T

0

e−ρtu(x(t), a(t), t)dt+ e−ρTW (x(T ))

}
(16)

s.t. ẋ(t) = f(x(t), a(t), ε(t), t),

where ε(t) is a continuous time stochastic process (and can be multi-dimensional).
The time discretization method used in Cai, Judd, and Lontzek (2012) can still
be applied, and then we can implement NLCEQ, value function iteration, or
other computational methods for discrete time problems. The model (16) can
also be converted to an HJB PDE equation under some conditions (e.g., ε(t)
is normal, log-normal, or binary). For example, in finance, the Black-Scholes
equation for pricing a derivative is derived under a number of assumptions,
including the assumption that the underlying asset’s price follows a geometric
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Brownian motion. Polasky, de Zeeuw, and Wagener (2011) build a system of
HJB equations for problems with potential regime shifts with exogenous or
endogenous probabilities. van der Ploeg and de Zeeuw (2016) use a system
of HJB equations to investigate cooperative and non-cooperative responses to
climate change with a North-South model of the global economy in the face
of stochastic tipping points of productivity. Since the expectation operator
disappears in the converted HJB equation, we can again implement standard
computational methods for solving PDE on the HJB equations.

The time discretization method may be time consuming if the time horizon
is large and time increments used are small, but it is becoming feasible with
modern computational power, as shown in Cai, Judd, and Lontzek (2012).
However, if there are multiple optimal solutions, it is still challenging to find
the global optimizer or all local optimizers.

8.1 Deterministic Infinite-horizon Stationary Problems

In the literature of continuous time dynamic programming problems in en-
vironmental and resource economics, many problems are deterministic and
stationary assuming an infinite time horizon. For such a deterministic infinite-
horizon stationary problem,

max

∫ ∞
0

e−ρtu(x(t), a(t))dt (17)

s.t. ẋ(t) = f(x(t), a(t)),

its corresponding HJB equation becomes

max
a
{∇V (x) · f(x, a) + u(x, a)} = ρV (x) (18)

Instead of solving the HJB equation to get a fixed point for the unknown value
function V , we often form a current value Hamiltonian:

H(x, a, λ) = λ>f(x, a) + u(x, a)
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and then implement Pontryagin’s maximum principle to obtain the following
modified Hamiltonian system of ordinary differential equations (ODEs):

λ̇ = −∇xH(x, a, λ) + ρλ

0 = ∇aH(x, a, λ)

ẋ = f(x, a)

(19)

where λ is the co-state vector. Together with the transversality condition and
initial/boundary conditions, we can solve the system of ODEs numerically.
For example, the Matlab ODE packages (e.g., ode45, ode15s and bvp4c) or
Mathematica’s NDSolve routine can be applied to solve ODE problems. In
the literature, this deterministic infinite-horizon stationary problem appears
in the management of a dynamic ecological system such as lake eutrophica-
tion (Carpenter, Ludwig, and Brock (1999), Brock and Starrett (2003), Mäler,
Xepapadeas, and de Zeeuw (2003), and Wagener (2003)), and a socioeconomic
system of a lake district for fishery (Carpenter and Brock, 2004). Grimsrud
and Huffaker (2006) apply singular-perturbation reduction methods to reduce
the multidimensional solution space to a lower-dimensional subspace confining
longterm dynamics, and then use the Mathematica’s NDSolve routine to solve
for optimal management of pest resistance to pesticidal crops. Fenichel and
Horan (2016) apply numerical function approximation and collocation method,
a type of projection methods, to solve their system of ODEs, to show the im-
portance of institutions for managing convex-concave systems with thresholds
and tipping points.

When there are multiple agents in the model, it often becomes a differential
game. The ODE system (19) provides a solution to the optimal management
problem under a social planner’s preference, but not under decentralized equi-
librium. The literature often discusses two types of differential games for
decentralized equilibrium: open-loop Nash equilibrium (OLNE) and feedback
Nash equilibrium (FBNE). In OLNE, agents make their decisions ignoring
feedback from physical processes and strategies of other economic agents, so
that OLNE has no Markov properties. We can solve OLNE via a similar sys-

24



tem of ODEs by deriving a modified Hamiltonian system of ODEs for every
agent. FBNE takes into account the feedback in the model, so agents’ deci-
sions depend on both time and state (i.e., FBNE has Markov properties), and
finding a numerical solution becomes more challenging. Kossioris et al. (2008)
provide a more detailed discussion about OLNE and FBNE with an applica-
tion to the eutrophication of lakes, and also introduce a numerical algorithm
to solve FBNE, which incorporates the ode15s solver of Matlab. Gopalakrish-
nan et al. (2017) implement the bvp4c routine of Matlab to find OLNE for the
spatial beach nourishment and coastal climate adaptation of two neighboring
coastal communities.

Grass (2012) uses information about the long-run behavior of the system
to derive appropriate boundary conditions at infinity, and then to reformulate
the conditions in a finite time setting. His numerical algorithm is exemplified
by a one-dimensional fishery model, using his Matlab package OCMat. Grass,
Xepapadeas, and de Zeeuw (2017) apply the algorithm and OCMat to solve
for the optimal management of ecosystem services with pollution, using a lake
model with fast-slow dynamics, and to find Skiba manifolds and solution paths
under full cooperation (i.e., under a social planner’s preference) or OLNE.

9 Discussions

9.1 Curse of Dimensionality

For multi-dimensional problems, the “curse-of-dimensionality” is often an ex-
cuse to not use VFI or time iteration (see, e.g., Traeger (2014)). However,
whether VFI or time iteration has the “curse-of-dimensionality” depends on
the methods used. If a simple product rule6 is used, then VFI or time it-
eration has the “curse-of-dimensionality”, but may not if a non-product rule

6For example, if Chebyshev basis functions Tk(xi) with 0 ≤ k ≤ n and 1 ≤ i ≤ d are used
in (8) for a d-dimensional state space, then the simple product rule uses all of their product,
Tα1

(x1) · · · Tαd
(xd), as the basis functions for all 0 ≤ αi ≤ n and 1 ≤ i ≤ d in (8), so that

the number of terms in the approximation is (n+1)d. This method is called tensor-product
Chebyshev approximation.
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is used. There are three potential levels of the “curse-of-dimensionality”. The
first two are on the state space, and the last is on the space of random variables.

The first potential level is in the choice of approximation methods for
V̂ (x;b) depending on the state space, as V̂ (x;b) has to be computed on the
objective function of the maximization problem (7). A tensor product approx-
imation such as piecewise linear interpolation and cubic spline interpolation
will suffer from this level of “curse-of-dimensionality” of the state space, as
their number of basis functions {φj(x)} (and approximation coefficients b) in
V̂ (x;b) grows exponentially in the dimension of the state space. But if we
use a non-product approximation method, such as complete Chebyshev poly-
nomials and simplicial complete Chebyshev polynomials described in Section
9.4, or sparse-grid interpolation (Krueger and Kubler, 2004; Malin, Krueger,
and Kubler, 2011; Judd et al., 2014; Brumm and Scheidegger, 2017), then this
level of “curse-of-dimensionality” can disappear.

The second potential level is in the choice of approximation nodes on the
state space. To obtain approximation coefficients, we need to provide data
{(xi, vi)}, where vi is the objective at the optimal solution of the maximization
problem (7) with current-period state xi. If tensor grids {xi} in the state
space are used, then VFI or time iteration suffers from this level of “curse-of-
dimensionality” of the state space, unless parallelism is also used (Cai et al.,
2015b). Sparse grids, e.g., Smolyak grids (Smolyak, 1963), or adaptive sparse
grids (Brumm and Scheidegger, 2017) can also break this level of “curse-of-
dimensionality”. Note that if there is the first level of “curse-of-dimensionality”,
then the second level will also exist, but not vice versa, as the number of
approximation coefficients could be less than the number of Lagrange data
(but not vice versa) to avoid overfitting.

The last potential level is in the choice of numerical integration meth-
ods. If a tensor-product integration rule is used in computing expectations or
random variables are discrete, then VFI or time iteration has the “curse-of-
dimensionality” on the space of random variables εt.7 However, when random

7We often let the expectations operate on the space of next states, as the next states are
random due to the randomness of εt. But in many cases the number of random variables
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variables are continuous, this level of “curse-of-dimensionality” can be broken
by monomial quadrature rules (Stroud, 1971; Judd, 1998), sparse grid integra-
tion (Gerstner and Griebel, 1999; Heiss and Winschel, 2008), or Monte Carlo
integration methods. Monte Carlo integration methods have to use a large
number of simulated points as they only have O(1/

√
N) accuracy with N sim-

ulated points, while the optimization solver often needs six-digit accuracy, or
even higher accuracy for problems with flat objective functions in the maxi-
mization problem (7). Thus, in practice numerical quadrature rules are often
more efficient for problems with continuous random variables (Skrainka and
Judd, 2011). In addition, even if random variables are discrete, it is still pos-
sible to break this level of “curse-of-dimensionality”. For example, Doraszelski
and Judd (2012) avoid the “curse-of-dimensionality” in discrete-time dynamic
stochastic games by transforming into a continuous-time problem.

Thus, we see that all potential levels of “curse-of-dimensionality” may not
exist if we choose efficient methods in VFI or time iteration.

9.2 Boundedness

The dismal theorem of Weitzman (2009) shows that the risk premium can be
infinite for unboundedly distributed uncertainties. Costello et al. (2010) use
a truncation method to get bounded uncertainty and obtain a finite risk pre-
mium. Thus, numerical solutions with truncation of unbounded distributions
could be qualitatively inconsistent with theoretical results without truncation.
However, in the literature, researchers often do not consider this inconsis-
tency issue when they solve dynamic stochastic programming problems with
an unbounded distribution. For example, a normal or log-normal distribution
is often assumed for Bayesian learning when deriving Bayes’ updating rules,
and then researchers use a truncation method (or a bounded quadrature or
simulation rule) to estimate the integration in the objective function of the

εt in the same period t is smaller than the dimensionality of state space, for example we
may consider only one systematic shock affecting all agents, so it is beneficial to use εt.
Even if the number of random variables εt is larger than the dimensionality of state space,
it is often hard to construct the joint distribution of next state variables from a given joint
distribution of εt.
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maximization problem in the Bellman equation (6).
Recently, to avoid the inconsistency between theory and numerical imple-

mentation, Cai, Judd, and Lontzek (2017) replace a continuous long-run risk
stochastic process by a two-dimensional dense Markov chain in their DSICE
model and then solve it numerically using VFI. Cai and Judd (2015) define a
bounded distribution that is close to normal and then implement it in their
model and numerical methods using Hermite information. In fact, it is often
reasonable to assume bounded distributions instead of unbounded distribu-
tions in environmental and resource economics. For example, the climate
sensitivity parameter is considered to be positive and less than ten (IPCC,
2007, 2013).

9.3 Monte Carlo techniques

The previous discussion assumes stochastic processes, but there are also un-
certain parameters which are constant but unknown across time. These pa-
rameter values are often estimated from an econometric analysis, so we may
know their distributions. Thus, if a distribution can be assigned to an un-
certain parameter, then we can solve it using expected welfare maximization,
which mimics the expected cost minimization method described in Cai and
Sanstad (2016). Some researchers use a Monte Carlo method, which obtains
an optimal policy by solving a deterministic welfare maximization problem for
each sampled realization of the uncertain parameters under the distributions
and then averages over the policies as an approximate solution in the face
of the uncertainty. For example, New and Hulme (2000), Nordhaus (2008),
Ackerman, Stanton, and Bueno (2010), and Anthoff and Tol (2013) implement
this Monte Carlo method to analyze the impact of uncertainty on climate pol-
icy. While this Monte Carlo analysis can be helpful in some cases, it does not
solve the real problem of a decision maker facing the parameter uncertainty,
and it may even lead to the opposite sign for the effect of uncertainty (Crost
and Traeger, 2013).8 Here I use a simple portfolio optimization problem with

8Lemoine and Rudik (2017) also discuss this Monte Carlo method in detail.
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one stock and one bond to illustrate this point. Assume that the bond has
a riskless 3% return, and the stock’s return parameter is uncertain but we
know that it has a 70% probability of being larger than 3%. The Monte Carlo
method will always find it optimal to invest around 70% of wealth on the stock
and the remaining 30% on the bond, no matter which risk aversion coefficient
or utility function is used in the objective function.

9.4 Approximation

Value function approximation is used in the objective function of the max-
imization problem (7). For example, Chebyshev basis functions Tk(x) =

cos(k cos−1(Z(x))) with

Z (x) =
2x− xmin − xmax

xmax − xmin

are used for Chebyshev approximation on the one-dimensional state space
[xmin, xmax], for k = 0, 1, 2, .... Piecewise linear interpolation and cubic spline
interpolation are also often used in the literature (see e.g., Judd (1998) and
Miranda and Fackler (2002)). Kelly and Kolstad (1999) apply neural networks
for approximation. Sometimes value functions have special properties, so spe-
cial basis functions can be chosen. For example, Hwang (2017) presents a
log-linearization method that approximates value functions by a linear com-
bination of the logarithm of state variables, but this method only works for
problems with value functions that can be approximated well on a reason-
able domain by the log-linearization, while most problems do not have this
property.9

For multi-dimensional approximation, an efficient approximation method
is complete Chebyshev approximation (see e.g., Cai and Judd (2010, 2014)) or

9A linearization or log-linearization method may work locally on a narrow domain, but
it is often not enough to obtain a globally accurate solution, see Cai, Judd, and Steinbuks
(2017) for more discussion. In fact, from a numerical result of Hwang (2017), we can see
that his solution from the log-linearization method may lead to an error of around 100% in
carbon emission control compared to the solution from the optimal control method, which
can be treated as the true solution.
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simplicial complete Chebyshev approximation introduced by Cai, Judd, and
Lontzek (2018), as both methods have no “curse-of-dimensionality”. Moreover,
Chebyshev coefficients can be efficiently computed by the Chebyshev regression
algorithm (see e.g., Judd (1998) and Cai, Judd, and Lontzek (2018)) if we
choose Chebyshev nodes as approximation nodes. See Appendix for detailed
discussion.

9.4.1 Approximation Domains

Since most approximation methods are defined on hyperrectangles, we often
have to truncate an unbounded or too-large state space into a bounded hyper-
rectangle [xmin,xmax] that is wide enough to contain all necessary states. If
the hyperrectangle is too narrow, then it may lead to a bad approximation for
points outside the hyperrectangle as extrapolation often does not work well.
Thus, solutions using VFI with narrow hyperrectangles may not be reliable.
If the hyperrectangle is too wide, then it requires more approximation nodes
and higher degree of approximation to achieve the necessary accuracy, so the
problem may be too time-consuming or even infeasible to run with a modern
computer. Since an initial state x0 is given in dynamic stochastic program-
ming problems (5), we can choose a very narrow initial state space and then
expand it gradually in the next periods to contain all states originated from
any states in the initial state space and reasonable decisions. Cai and Judd
(2012) use time-dependent state spaces to solve a simple dynamic portfolio ex-
ample, where next period’s state space is chosen to contain all possible states
transited from any states in current-period state space, defined as an interval
of wealth.

Cai et al. (2015a); Cai, Lenton, and Lontzek (2016); Cai, Judd, and Lontzek
(2017, 2018); and Lontzek et al. (2015) choose a series of approximation do-
mains by setting consumption-output ratios and emission control rates in rea-
sonable ranges, e.g., the optimal states and decisions of their corresponding
deterministic dynamic programming models should be well inside the approxi-
mation domains and the ranges of decisions at each time; and simulated paths
of states for the stochastic model should be well within the approximation
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domains. They then efficiently solve large-dimensional (from 7 to 15 dimen-
sions) dynamic stochastic integrated assessment models (IAMs) based on the
framework of DSICE (Dynamic Stochastic Integration of Climate and Econ-
omy), in which its corresponding deterministic IAM is the annual analog of the
Dynamic Integrated Climate-Economy (DICE) model (Nordhaus, 2008). The
largest example in Cai, Judd, and Lontzek (2017) has six continuous state
variables (corresponding to DICE) and three dense discrete stochastic state
variables. Its horizon is 600 years and it uses annual time steps. It is solved
it in less than eight hours using 110,688 cores in parallel on the Blue Waters
supercomputer. The smallest example in Cai et al. (2015a) has six continuous
state variables (corresponding to DICE) and one binary stochastic state vari-
able indicating whether a tipping event happens or not, and it has 600 annual
time steps, but it took only minutes to get an accurate solution on a laptop.
Cai, Lenton, and Lontzek (2016) solve DSICE with five interacting tipping
elements in the climate system, which has ten continuous state variables and
five binary stochastic state variables. Although the problems in Cai, Lenton,
and Lontzek (2016) have more state variables than in Cai, Judd, and Lontzek
(2017), they can use narrower approximation domains and then lower-degree
Chebyshev approximation methods as well as a much smaller number of dis-
crete states, so they can be solved in about three hours using 10,560 cores of
the BlueWaters supercomputer. All of these problems have 0.1-1% estimated
errors for policy functions, and 0.01-0.1% for the value functions.

The stationary problems (13) require only one hyperrectangle for all it-
erations until VFI converges. Some researchers transform the non-stationary
problems (6) into the following problem

V (x, τ) = max
aτ∈Dτ (x)

uτ (x, aτ ) + βEτ {V (x+, τ+)} (20)

s.t. x+ = fτ (x, aτ , ετ )

τ+ = g(τ)

by adding τ as an extra continuous state variable in the value function V ,
where τ is bounded and has a one-to-one monotonic map to time t. For exam-
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ple, Lemoine and Traeger (2014) apply this trick to solve a four-dimensional
dynamic stochastic IAM based on a reduced system of DICE. However, this
trick increases one dimension and also has to expand its approximation do-
main significantly because it has to contain the minimal and maximal states
along time, while states could increase significantly along time. Thus, the
approximation domain would be significantly much wider than the largest do-
main using the time-dependent state spaces. Therefore, this trick makes VFI
much more time consuming. In addition, Lemoine and Traeger (2014) imple-
ment tensor-product Chebyshev approximation and MATLAB. These reasons
explain why their run took days using a laptop.

9.5 Stopping Criterion

Infinite horizon stationary dynamic programming problems (as in 13) require a
stopping criterion for value function iteration or time iteration. If researchers
do not pay careful attention to the choice of stopping criteria, it may lead to
large numerical errors, even if the value function has a proper magnitude and
the discount factor β is not very close to 1. For example, Lemoine and Traeger
(2014) use the following stopping criterion

max
j=1,...,N

|bk,j − bk+1,j| ≤ 10−4,

where {bi,j : j = 1, ..., N} are value function approximation coefficients of
tensor-product Chebyshev polynomials at the k-th iteration. However,

∣∣∣V̂k(x;bk)− V̂k+1(x;bk+1)
∣∣∣ =

∣∣∣∣∣
N∑
j=1

bk,jφj(x)−
N∑
j=1

bk+1,jφj(x)

∣∣∣∣∣
≤ N max

j=1,...,N
|bk,j − bk+1,j| ≤ 10−4N,

where φj(x) are Chebyshev basis functions with 1 as the maximal value. Thus
the upper bound of

∣∣∣V̂i(x;bi)− V̂i+1(x;bi+1)
∣∣∣ is 10−4N , not 10−4. If N is

huge, then the errors could be huge too. Lemoine and Traeger (2014) uses
N = 10, 000, so the upper bound of

∣∣∣V̂i(x;bi)− V̂i+1(x;bi+1)
∣∣∣ could be 1.
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10 Conclusion

I have reviewed various state-of-the-art computational methods and their ap-
plication in environmental and resource economics. Each computational method
has its advantages and disadvantages. For example, VFI and time iteration are
quite general, but require more complicated computational techniques such as
efficient approximation, appropriate approximation domains, efficient numeri-
cal integration, and/or a suitable stopping criterion. NLCEQ is relatively sim-
ple and robust, but is limited when obtaining very high accuracy for stochastic
problems. Researchers should choose a proper algorithm for their specific prob-
lem, and it will also be important to verify and check accuracy of the solution,
because it is often hard to guarantee that the numerical solution found via
computational methods is actually close to the true solution (for reasons such
as nonlinearity, multiplicity of local optimizers, numerical errors, or bugs in
code).
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