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Abstract

We consider the problem of estimating the location of a single change point in a network
generated by a dynamic stochastic block model mechanism. This model produces commu-
nity structure in the network that exhibits change at a single time epoch. We propose two
methods of estimating the change point, together with the model parameters, before and
after its occurrence. The first employs a least-squares criterion function and takes into con-
sideration the full structure of the stochastic block model and is evaluated at each point in
time. Hence, as an intermediate step, it requires estimating the community structure based
on a clustering algorithm at every time point. The second method comprises the following
two steps: in the first one, a least-squares function is used and evaluated at each time
point, but ignoring the community structure and only considering a random graph generat-
ing mechanism exhibiting a change point. Once the change point is identified, in the second
step, all network data before and after it are used together with a clustering algorithm to
obtain the corresponding community structures and subsequently estimate the generating
stochastic block model parameters. The first method, since it requires knowledge of the
community structure and hence clustering at every point in time, is significantly more
computationally expensive than the second one. On the other hand, it requires a signifi-
cantly less stringent identifiability condition for consistent estimation of the change point
and the model parameters than the second method; however, it also requires a condition
on the misclassification rate of misallocating network nodes to their respective communi-
ties that may fail to hold in many realistic settings. Despite the apparent stringency of
the identifiability condition for the second method, we show that networks generated by
a stochastic block mechanism exhibiting a change in their structure can easily satisfy this
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condition under a multitude of scenarios, including merging/splitting communities, nodes
joining another community, etc. Further, for both methods under their respective identifi-
ability and certain additional regularity conditions, we establish rates of convergence and
derive the asymptotic distributions of the change point estimators. The results are illus-
trated on synthetic data. In summary, this work provides an in-depth investigation of the
novel problem of change point analysis for networks generated by stochastic block models,
identifies key conditions for the consistent estimation of the change point, and proposes
a computationally fast algorithm that solves the problem in many settings that occur in
applications. Finally, it discusses challenges posed by employing clustering algorithms in
this problem, that require additional investigation for their full resolution.

Keywords: stochastic block model, Erdős-Rényi random graph, change point, edge
probability matrix, community detection, estimation, clustering algorithm, convergence
rate

1. Introduction

The modeling and analysis of network data have attracted the attention of multiple scientific
communities, due to their ubiquitous presence in many application domains; see Newman
et al. (2006), Kolaczyk and Csárdi (2014), Crane (2018) and references therein. A popular
and widely used statistical model for network data is the Stochastic Block Model (SBM)
introduced in Holland et al. (1983). It is a special case of a random graph model, where the
nodes are partitioned into K disjoint groups (communities) and the edges between them are
drawn independently with probabilities that only depend on the community membership
of the nodes. This leads to a significant reduction in the dimension of the parameter space,
from O(m2) for the random graph model, with m being the number of nodes in the network,
to O(K2) (K << m).

There has been a lot of technical work on the SBM, including (i) estimation of the
underlying community structure and the corresponding community connection probabilities,
for examples Choi and Wolfe (2014); Jin (2015); Joseph and Yu (2016); Lei and Rinaldo
(2015); Rohe et al. (2011); Sarkar and Bickel (2015); Zhao et al. (2012); (ii) establishing the
minimax rate for estimating the SBM parameters—for examples Gao et al. (2015); Klopp
et al. (2017)—and the community structure—for examples Zhang and Zhou (2016); Gao
et al. (2017)—under the assumption that the assignment problem of nodes to communities
can be solved exactly. However, the latter problem is computationally NP-hard and hence
estimates of the community structure and connection probabilities based on easy to compute
procedures compromise the minimax rate—see Zhang et al. (2015).

There has also been some recent work on understanding the evolution of community
structure over time, based on observing a sequence of network adjacency matrices—for ex-
amples Durante et al. (2017); Durante and Dunson (2016); Han et al. (2015); Kolar et al.
(2010); Matias and Miele (2017); Minhas et al. (2015); Xing et al. (2010); Xu (2015); Yang
et al. (2011); Bao and Michailidis (2018). Various modeling formalism is employed including
Markov random field models, low rank plus sparse decompositions and dynamic versions of
SBM (DSBM). These studies focus primarily on fast and scalable computational procedures
for identifying the evolution of community structure over time. Some work that investigated
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theoretical properties of the DSBM and more generally graphon models assuming that the
node assignment problem can be solved exactly includes Pensky (2019), while the theoret-
ical performance of spectral clustering for the DSBM was examined in Bhattacharyya and
Chatterjee (2017) and Pensky and Zhang (2019). The last two studies estimate the edge
probability matrices by either directly averaging adjacency matrices observed at different
time points, or by employing a kernel-type smoothing procedure and extract the group
memberships of the nodes by using spectral clustering.

The objective of this paper is to examine the offline estimation of a single change point
under a DSBM network generating mechanism. Specifically, a sequence of networks is
generated independently across time through the SBM mechanism, whose community con-
nection probabilities exhibit a change at some time epoch. Then, the problem becomes
one of identifying the change point epoch based on the observed sequence of network adja-
cency matrices, detecting the community structures before and after the change point, and
estimating the corresponding SBM model parameters.

The existence of change points and their estimation has been well-studied for many
univariate statistical models evolving independently over time and with shifts in mean and
in variance structures. A broad overview of the corresponding literature can be found
in Brodsky and Darkhovsky (2013) and Csörgö and Horváth (1997). However, in many
applications, multivariate (even high dimensional) signals are involved, while also exhibit-
ing dependence across time—see the review article by Alexander and Horváth (2013) and
references therein.

The emergence of data with network structure has accentuated the need to study change
point problems in that context. For example, in political science, the study of political
polarization has received increased attention (Moody and Mucha (2013)) and especially the
detection of regime changes (Peel and Clauset (2015)), including network-based approaches
(Bao and Michailidis (2018)). Recent work on change-point detection for network structured
data includes Wang et al. (2017) and Wang et al. (2018). Specifically, Wang et al. (2017)
considers a generalized hierarchical random graph model, whereas Wang et al. (2018) focuses
on change-point detection in sparse networks. The latter study deals with the Erdős-Rényi
random graph model. However, to the best of our knowledge, a detailed and rigorous
investigation of change-point detection for the dynamic SBM is largely lacking.

Therefore, the key contributions of this paper are threefold: first, the development of a
computational strategy for solving the problem and establishing its theoretical properties
under suitable regularity conditions, including (i) establishing the rate of convergence for
the least-squares estimate of the change-point and (ii) the DSBM parameters, as well as (iii)
deriving the asymptotic distribution of the change-point. An important step in the strategy
for obtaining an estimate of the change-point involves clustering the nodes to communities,
for which we employ a spectral clustering algorithm that exhibits cubic computational
cost in the number of edges in the adjacency matrix. However, the theoretical analysis of
the first method which involves clustering at every time point requires imposing a rather
stringent assumption on the rate of misclassifying nodes to communities. For these reasons,
the second key contribution of this work is the introduction of a two-step computational
strategy, wherein the first step, the change-point is estimated based on a procedure that
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ignores the community structure, while in the second step the pre- and post-change-point
model parameters are estimated using a spectral clustering algorithm, but at a single time
point. It is established that this strategy yields consistent estimates for the change-point
and the community connection probabilities, at a linear computational cost in the number
of edges. However, the procedure requires a stronger identifiability condition compared to
the first strategy. Naturally, no additional condition of controlling the rate of misclassifying
nodes to communities during the first step is required. The third contribution of the paper is
to show that the more stringent identifiability condition under the second strategy is easily
satisfied in a number of scenarios by the DSBM, including splitting/merging communities
and reallocating nodes to other communities before and after the change-point. Overall,
this work provides valuable insights into the technical challenges of change-point analysis for
DSBM and also an efficient computational strategy that delivers consistent estimates of all
the model parameters. Nevertheless, the challenges identified require further investigation
for their complete resolution, as discussed in Section 7.5.

The remainder of the paper is organized as follows. In Section 2, we introduce the
DSBM model together with the necessary definitions and notation for technical develop-
ment. Subsequently, we present the strategy to detect the change-point that involves a
community detection step at each time point, followed by estimation of the DSBM model
parameters together with the asymptotic properties of the estimators. In Section 3, we
introduce a 2-step computational strategy for the DSBM change-point detection problem,
which is computationally significantly less expensive and discuss the consistency of these
estimators. Section 4 involves a comparative study between the two change-point detection
strategies previously presented and also provides many realistic settings where the compu-
tationally fast 2-step algorithm is provably consistent. The numerical performance of the
two strategies based on synthetic data is illustrated in Section 4.1. We briefly discuss other
community detection methods for DSBM involving a single change-point in Section 7.5.
Finally, the asymptotic distribution of the change-point estimates along with a data-driven
procedure for identifying the correct limiting regime is presented in Section 5. Some con-
cluding remarks are drawn in Section 6. All proofs and additional technical material are
presented in Section 7.

2. The dynamic stochastic block model (DSBM)

The structure of the SBM is determined by the following parameters: (i) m the number of
nodes or vertices in the network, (ii) a symmetric K×K matrix Λ = ((λij))K×K containing
the community connection probabilities and (iii) a partition of the node set {1, 2, . . . ,m}
into K communities, which is represented by a many-to-one onto map z : {1, 2, . . . ,m} →
{1, 2, . . . ,K} for some K ≤ m. Hence, for each 1 ≤ i ≤ m, the community of node i is
determined by z(i), or equivalently

l-th community = Cl = {i ∈ {1, 2, . . . ,m} : z(i) = l} ∀1 ≤ l ≤ K.

The map z determines the community structure under the SBM. The observed edge set
of the network is obtained as follows: any two nodes i ∈ Cl and j ∈ Cl′ are connected by
an edge with probability λll′I(i 6= j), independent of any other pair of nodes. Self-loops
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are not considered and hence the probability of having an edge between nodes i and j is
0 whenever i = j. Henceforth, we use SBM(z,Λ) for denoting an SBM with community
structure z and community connection probability matrix Λ. Next, let

Edz(Λ) = ((λz(i)z(j)I(i 6= j)))m×m,

which is the edge probability matrix whose (i, j)-th entry represents the probability of
having an edge between nodes i and j. Note that we are dealing with undirected networks
and thus Λ and Edz(Λ) are symmetric matrices.

The data come in the form of an observed square symmetric matrix A = ((Aij))m×m
with entries

Aij =

{
1, if an edge between nodes i and j is observed

0, otherwise.

An adjacency matrix A is said to be generated according to SBM(z,Λ), if Aij ∼
Bernoulli(Λz(i)z(j)I(i 6= j)) independently, and is denoted by A ∼ SBM(z,Λ). It is easy to
see that all diagonal entries of A are 0.

In a DSBM, we consider a sequence of stochastic block models evolving independently
over time, with At,n = ((Aij,(t,n)))m×m denoting the adjacency matrix at time point t.
Hence, At,n ∼ SBM(zt,Λt) independently, with n being the total number of time points
available, and note {At,n : 1 ≤ t ≤ n, n ≥ 1} forms a triangular sequence of adjacency
matrices. Further, in the technical analysis we assume that both the total number of time
points and the number of nodes are growing to infinity, that is n,m → ∞. Moreover,
the number of communities depends on both the number of nodes and time, and grows to
infinity, that is, K = Km,n →∞ as m,n→∞.

We are interested in a DBSM exhibiting a single change-point and its estimation in an
offline manner. For presenting the results, we embed all the time points in the [0, 1] interval,
by dividing them by n. Suppose τm,n ∈ (c∗, 1− c∗) corresponds to the change-point epoch
in the DSBM. Hence,

At,n ∼

{
SBM(z,Λ), if 1 ≤ t ≤ bnτm,nc
SBM(w,∆), if bnτm,nc < t < n,

(2.1)

and z 6= w and/or Λ 6= ∆. Note that z and w correspond to the pre- and post-change-point
community structures, respectively. Similarly Λ and ∆ are the pre- and post-change-point
community connection probability matrices, respectively. Further, note that z, w,Λ and ∆
may depend on m and n.

Our objective is to estimate the model parameters τm,n, z, w,Λ and ∆. Throughout
this paper, we assume that 0 < c∗ < τm,n < 1 − c∗ < 1 with c∗ being known to avoid
unnecessary technical complications if the true change-point is located arbitrarily close to
boundary time points. We also assume that the total number of communities before and
after the change-point are equal. Even if they are different, our results continue to hold
after replacing K by the maximum of the number of communities to the left and the right.
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To identify the change-point, we employ the following least-squares criterion function

L̃(b, z, w,Λ,∆) =
1

n

m∑
i,j=1

[ nb∑
t=1

(Aij,(t,n) − λz(i)z(j))2 +
n∑

t=nb+1

(Aij,(t,n) − δw(i)w(j))
2

]
. (2.2)

Remark 1 Note that the Bernoulli likelihood function criterion could also be used that will
yield similar results for the change-point estimators, but it will need stronger assumptions
and will involve more technicalities compared to the least-squares criterion function adopted.
More details on the likelihood criterion function for detecting a change-point in a random
graph model can be found in Bhattacharjee et al. (2017). Results on the maximum likelihood
estimator of the change-point in a random graph model are consequences of the results in
Bhattacharjee et al. (2017). However, in DSBM one also needs to address the problem of
assigning nodes to their respective communities, which makes the problem technically more
involved as shown next. However, the main message of this paper will remain the same,
irrespective of employing a likelihood or a least-squares criterion.

Let

Su,z = {i ∈ {1, 2 . . . ,m} : z(i) = u}, su,z = |Su,z|,
Su,w = {i ∈ {1, 2 . . . ,m} : w(i) = u}, su,w = |Su,w| (2.3)

denote the u-th block and block size under the community structures z and w. Also define,

Λ̃z,(b,n),m = ((λ̃uv,z,(b,n),m))m×m, λ̃uv,z,(b,n),m =
1

nb

1

su,zsv,z

nb∑
t=1

∑
i:z(i)=u

j:z(j)=v

Aij,(t,n),

∆̃w,(b,n),m = ((δ̃uv,w,(b,n),m))m×m, δ̃uv,w,(b,n),m =
(n(1− b))−1

su,wsv,w

n∑
t=nb+1

∑
i:w(i)=u

j:w(j)=v

Aij,(t,n).(2.4)

Define the sparsity parameter ρm,n = max1≤u≤v≤K{Λu,v,∆u,v} which may depend on both
m and n. The DSBM in (2.1) is dense if infm,n ρm,n > C > 0 and sparse if ρm,n → 0 as
m,n→∞.

We start our analysis by assuming that the community structures z and w are
known. In that case, an estimate of the change-point can be obtained by solving

τ̃m,n = arg min
b∈(c∗,1−c∗)

L̃(b, z, w, Λ̃z,(b,n),m, ∆̃w,(b,n),m). (2.5)

The following signal-to-noise condition guarantees that the change-point is identifiable
under a known community structure.

SNR-DSBM: n
K2ρm,n

||Edz(Λ)− Edw(∆)||2F →∞

Intuitively, it implies that the signal per connection probability parameter, after scaling
by the sparsity parameter, needs to grow faster than 1/

√
n, which is in accordance with
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identifiability conditions for other change-point problems (for example see Kosorok (2008)
Section 14.5.1).

The following assumption on the sparsity parameter restricts its rate of decay and en-
sures consistency of τ̃m,n scaled by the sparsity parameter with details given in Remark
3.

Sparse-DSBM: ρm,n > CK−2 for some C > 0.

It is easy to see that Sparse-DSBM is always satisfied by a dense DSBM.

The following Theorem establishes asymptotic properties for τ̃m,n. Its proof is similar
(albeit much simpler in structure) to the proof of Theorem 11, where we deal with unknown
community structures. Hence, it is omitted.

Theorem 2 (Convergence rate of τ̃m,n) Suppose SNR-DSBM and Sparse-DSBM hold.
Then,

nρ−1
m,n||Edz(Λ)− Edw(∆)||2F (τ̃m,n − τm,n) = OP(1).

Remark 3 As stated in Theorem 2, the convergence rate of the appropriately centered and
scaled change-point estimator ρ−1

m,n(τ̃m,n−τm,n) is n−1||Edz(Λ)−Edw(∆)||−2
F . In the presence

of SNR-DSBM, Sparse-DSBM ensures that the convergence rate n−1||Edz(Λ)−Edw(∆)||−2
F

decays to 0. Sparse-DSBM can be weakened further under stronger signal-to-noise condition,
for example see Remark 21.

Remark 4 In the ensuing Theorem 11, we will establish that the DSBM change-point es-
timator τ̃m,n with an unknown community structure (that needs to be estimated from the
available data) has exactly the same convergence rate as the one posited in Theorem 2.
However, a much stronger identifiability condition than SNR-DSBM and Sparse-DSBM is
needed, since more parameters are involved.

Recall the estimates in (2.4) given by Λ̃ = ((λ̃ab,z,(τ̃m,n,n),m))K×K and

∆̃ = ((δ̃ab,w,(τ̃m,n,n),m))K×K . The edge probability matrices Edz(Λ) and Edw(∆) can also

be estimated by Edz(Λ̃) and Edw(∆̃), respectively. The following Theorem provides the
convergence rate of the corresponding estimators. Its proof is similar (and structurally
simpler) to the proof of Theorem 13 where we deal with unknown community structures
and hence omitted.

Theorem 5 (Convergence rate of edge probabilities when z and w are known)
Suppose SNR-DSBM holds. Let Sm,n = min(minu su,z,minu su,w). Then

1

K2
||Λ̃− Λ||2F ,

1

K2
||∆̃−∆||2F = OP

(
I(n > 1)ρ2

m,n

n2||Edz(Λ)− Edw(∆)||4F
+
ρm,n logK

nS2
m,n

)
,

1

m2
||Edz(Λ̃)− Edz(Λ)||2F ,

1

m2
||Edw(∆̃)− Edw(∆)||2F
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= OP

(
I(n > 1)ρ2

m,n

n2||Edz(Λ)− Edw(∆)||4F
+
ρm,n logm

nS2
m,n

)
. (2.6)

Note that Λ̃ = ((λ̃ab,z,(τ̃m,n,n),m))K×K . To compute the rate for 1
K2 ||Λ̃ − Λ||2F , we have

(λ̃ab,z,(τ̃m,n,n),m − λab)2 ≤ 2(λ̃ab,z,(τ̃m,n,n),m − λ̃ab,z,(τm,n,n),m)2 + 2(λ̃ab,z,(τm,n,n),m − λab)2 ≡
T1 + T2. It is easy to see that the first term T1 is dominated by (τ̃m,n − τm,n)2 and thus

by Theorem 2, (τ̃m,n − τm,n)2 = OP

(
I(n>1)ρ2m,n

n2||Edz(Λ)−Edw(∆)||4F

)
. Moreover, the rate of T2 is

ρm,n logK
nS2m,n

. Details are given in Section 7.4. Similar arguments work for the other matrices

presented in Theorem 5.

Remark 6 (Rate for n = 1). If n = 1, then there is no change-point and T1 does not
appear. In this case, we have only one community structure (say) z and one community
connection matrix (say) Λ. Moreover, the number of communities K = Km, sparsity pa-
rameter ρm = max1≤u,v≤K λuv and the minimum block size Sm = minu su,z depend only
on m. Estimation of Λ for n = 1 is studied in Zhang et al. (2015) when the community
structure z is unknown. In this remark, we assume that z is known. We estimate Λ by
Λ̃ = ((λ̃ab,z,(1/n,n),m))K×K . Then,

1

K2
||Λ̃− Λ||2F = OP

(
ρm logK

S2
m

)
,

1

m2
||Edz(Λ̃)− Edz(Λ)||2F = OP

(
ρm logm

S2
m

)
.

Similar results for the case of unknown communities are discussed in Remark 15 and Section
7.5.

In Theorem 13, we establish the results for the same quantities in the case of unknown
community structures. It will be seen that the convergence rate of Λ̃ and ∆̃ given above,
is much sharper compared to the case of unknown community structures, despite using
repeated observations in the latter one; see also discussion in Remark 14.

The real problem of interest is when the community structure is unkown and needs
to be estimated from the observed sequence of adjacency matrices along with the change-
point. A standard strategy in the change-point analysis is to optimize the least-squares
criterion function L̃(b, z, w,Λ,∆) posited above with respect to all the model parameters.
This becomes challenging both computationally since one needs to find a good assignment
of nodes to communities, and technically, since for any time point away from the true
change-point the node assignment problem needs to be solved under a misspecified model;
namely, the available adjacency matrices are generated according to both the pre- and
post-change-point community connection probability matrices.

A natural estimator of τm,n can be obtained by solving

˜̃τm,n = arg min
b∈(c∗,1−c∗)

L̃(b, z̃b,n,m, w̃b,n,m, Λ̃z̃b,n,m,(b,n),m, ∆̃w̃b,n,m,(b,n),m), (2.7)

where z̃b,n,m and w̃b,n,m are obtained using the clustering algorithm from Bhattacharyya and
Chatterjee (2017) (details below). While other clustering algorithms can also be employed,
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and are discussed in Section 7.5, all clustering algorithms incur some degree of misclassi-
fication (while assigning nodes to communities) which must be suitably controlled by an
appropriate assumption. The employed clustering algorithm requires a simpler and some-
what easier assumption on the misclassification rate, compared to other available clustering
methods.

Clustering Algorithm I: (proposed in Bhattacharyya and Chatterjee (2017))

1. Obtain sums of the adjacency matrices before and after b as B1 =
∑nb

t=1A
(t) and

B2 =
∑n

t=nb+1A
(t) respectively.

2. Obtain Ûm×K and V̂m×K consisting of the leading K eigenvectors of B1 and B2,
respectively, corresponding to its largest absolute eigenvalues.

3. Use an (1 + ε) approximate K-means clustering algorithm on the row vectors of Û
and V̂ to obtain z̃b,n,m and w̃b,n,m respectively.

Note that in Step 3 above, an (1+ε) approximate K-means clustering procedure is employed,
instead of the K-means. It is known that finding a global minimizer for the K-means
clustering problem is NP-hard (for example see Aloise et al. (2009)). However, efficient
algorithms such as (1+ε) approximate K-means clustering provide an approximate solution,
with the value of the objective function being minimized to within a constant fraction of
the optimal value (see Kumar et al. (2004) for more details).

Computational complexity of the procedure: Note that for each b ∈ (c∗, 1−c∗), the complexity
of computing z̃b,n,m (or w̃b,n,m) and Λ̃z̃b,n,m,(b,n),m (or ∆̃w̃b,n,m,(b,n),m) is O(m3) and O(m2n),

respectively. Hence, L̃(b, z̃b,n,m, w̃b,n,m, Λ̃z̃b,n,m,(b,n),m, ∆̃w̃b,n,m,(b,n),m) at b has computational

complexity O(m3 +m2n). Some calculations show that only finitely many binary operations
are needed to update Λ̃z̃b,n,m,(b,n),m and ∆̃w̃b,n,m,(b,n),m for the next available time point. How-

ever, computing z̃b,n,m and w̃b,n,m requires O(m3) operations for each time point. Therefore,
the computational complexity for obtaining L̃(b, z̃b,n,m, w̃b,n,m, Λ̃z̃b,n,m,(b,n),m, ∆̃w̃b,n,m,(b,n),m)

for n-many time points is O(m3n+m2n) = O(m3n).

To establish consistency results for ˜̃τm,n, an additional assumption on the misclassifica-
tion rate of z̃b,n,m and w̃b,n,m is needed, given next. We start with the following definition.

Definition 7 (Misclassification rate) A node is considered as misclassified, if it is not
allocated to its true community. The misclassification rate corresponds to the fraction of
misclassified nodes. Let M(z,z̃b,n,m) and M(w,w̃b,n,m) be the misclassification rates of esti-
mating z and w by z̃b,n,m and w̃b,n,m, respectively. Then,

M(z,z̃b,n,m) = min
π∈Sk

m∑
i=1

I(z̃b,n,m(i) 6= π(z(i)))

sz,π(z(i))
,

M(w,w̃b,n,m) = min
π∈Sk

m∑
i=1

I(w̃b,n,m(i) 6= π(w(i)))

sw,π(w(i))
(2.8)

where SK denotes the set of all permutations of {1, 2, . . . ,K}.
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Define
Mb,n,m = max(M(z,z̃b,n,m),M(w,w̃b,n,m)).

Consider the following assumption.

(NS) Λ and ∆ are non-singular.

(NS) implies that there are exactly K non-empty communities in DSBM and hence we can
use an (1 + ε) approximate K-clustering algorithm. If (NS) does not hold, then we have
K ′ (< K) non-empty communities and an (1 + ε) approximate K ′-clustering algorithm
performs better.

The following theorem provides the convergence rate of Mb,n. Its proof is given in Section
7.1. Let νm,n denote the minimum between the smallest non-zero singular values of Edz(Λ)
and Edw(∆).

Theorem 8 Suppose (NS) holds. Then, for all b ∈ (c∗, 1− c∗), we have

Mb,n,m = OP

(
K

nν2
m,n

(τm,nm+ |τm,n − b| ||Edz(Λ)− Edw(∆)||2F )

)
.

Remark 9 νm,n becomes closer to 0 (that is we have less signal) as the regime becomes
more sparse. Thus sparse regime has high misclassification rate for community detection.

Remark 10 To establish consistency of ˜̃τm,n, we require that the misclassification rate
Mb,n,m decays faster than ρ−1

m,nn
−1||Edz(Λ)− Edw(∆)||F ; see the proof of Theorem 11 and

Remark 35 for technical details. By the identifiability condition SNR-DSBM and Theorem
8, we have

Mb,n,mρm,nn||Edz(Λ)− Edw(∆)||−1
F ≤ C

Kρm,n
ν2
m,n

(
m
√
n

K
o(1) +m) ≤ Cρm,n(

m
√
n

ν2
m,n

o(1) +
Km

ν2
m,n

)

holds with probability tending to 1. Consistency of ˜̃τm,n can be achieved under the SNR-
DSBM condition and the following assumption (A1).

(A1) Km
ν2m,n

ρm,n → 0 and m
√
n

ν2m,n
ρm,n = O(1)

We note that (A1) is compatible with the clustering algorithm employed in our proce-
dure. Other clustering algorithms may also be used which would lead to modifications of
(A1), as discussed in Section 7.5.

2.1. Theoretical properties of ˜̃τm,n

Our first result establishes the convergence rate of the proposed estimate of the change-
point.

10
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Theorem 11 (Convergence rate of ˜̃τm,n)
Suppose SNR-DSBM, Sparse-DSBM, (NS) and (A1) hold. Then,

nρ−1
m,n||Edz(Λ)− Edw(∆)||2F (˜̃τm,n − τm,n) = OP(1).

The proof of the theorem is given in Section 7.3.

The next result focuses on the misclassification rate for ˜̃z = z̃˜̃τm,n,n,m
and ˜̃w = w̃˜̃τm,n,n,m

,
respectively.

Theorem 12 (Rate of misclassification)
Suppose SNR-DSBM, Sparse-DSBM, (NS) and (A1) hold. Then,

M(z,˜̃z),M(w, ˜̃w) = OP

(
Km

nν2
m,n

)
.

The proof of the Theorem is immediate from Theorems 8 and 11.

Let ˜̃Λ = ((λ̃ab,˜̃z,(˜̃τm,n,n),m))K×K and ˜̃∆ = ((δ̃ab, ˜̃w,(˜̃τm,n,n),m))K×K . The final result ob-

tained is on the convergence rate of the community connection probability matrices ˜̃Λ and
˜̃∆, respectively. Let Sm,n,˜̃z = minu su,˜̃z, Sm,n, ˜̃w = minu su, ˜̃w and S̃m,n = min(Sn,˜̃z,Sn, ˜̃w).

Theorem 13 (Convergence rate of edge probabilities ˜̃Λ and ˜̃∆)
Suppose SNR-DSBM, Sparse-DSBM, (NS) and (A1) hold. Further, for some positive se-
quence {C̃m,n}, we have that S̃m,n ≥ C̃m,n ∀m,n with probability 1. Then,

1

m2
||Ed˜̃z(

˜̃Λ)− Edz(Λ)||2F = OP

((
Km

nν2
m,n

)2

+
I(n > 1)ρ2

m,n

n2||Edz(Λ)− Edw(∆)||4F
+

logm

nC̃2
m,n

ρm,n

)
,

1

m2
||Ed ˜̃w( ˜̃∆)− Edw(∆)||2F = OP

((
Km

nν2
m,n

)2

+
I(n > 1)ρ2

m,n

n2||Edz(Λ)− Edw(∆)||4F
+

logm

nC̃2
m,n

ρm,n

)
.

The proof of the Theorem is given in Section 7.4.

Remark 14 Note that the first term in the convergence rate of Ed˜̃z(
˜̃Λ), which is the square

of the misclassification rate obtained in Theorem 12, measures the closeness of Ed ˜̃z(
˜̃Λ) to

Edz(
˜̃Λ). On the other hand, the second term is the convergence rate of Edz(

˜̃Λ) for Edz(Λ)
and coincides with the convergence rate of the edge probability matrix estimator when the
communities are known—see Theorem 5 for details.

As expected, the convergence rate of ˜̃Λ and ˜̃∆, given in Theorem 13, is slower than the
rate of Λ̃ and ∆̃ when the communities are known. The reason is that the former estimates
involve the misclassification rate of estimating z and w by ˜̃z and ˜̃w, respectively.

11
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Remark 15 (Rate for n = 1). For n = 1, we go back to the setup of Remark 6. Suppose z

is unknown. We estimate z and Λ respectively by ˜̃z and ˜̃Λ = ((λ̃ab,˜̃z,(1/n,n),m))K×K . Further,

for some positive sequence {C̃m}, suppose we have that S̃m ≥ C̃m ∀m with probability 1.
Then

1

m2
||Ed˜̃z(

˜̃Λ)− Edz(Λ)||2F = OP

((
Km

ν2
m,n

)2

+
logm

C̃2
m

ρm,n

)
.

The above rate of convergence is slower than the rate obtained in Remark 6 where com-
munities are known. This rate of convergence varies with different clustering methods em-
ployed for estimating z. Zhang et al. (2015) used a clustering algorithm for dense SBM

(that is infm,n ρm,n > C > 0) so that the square of misclassification rate is
√

logm
m and

C̃2
m =

√
m logm. A detailed discussion on the impact of the clustering algorithm is provided

in Section 7.5.

2.2. On the condition (A1)

As seen from the results in Section 2.1, condition (A1) plays a critical role. Next, we discuss
examples where it holds—Examples 1 and 3—and where it fails to do so—Example 2.

Example 1 Suppose we have K balanced communities of size m/K. Let Λ = (p1−q1)IK +
q1JK and ∆ = (p2 − q2)IK + q2JK , where p1, p2, q1, q2 may depend on both m and n, IK
is the identity matrix of order K and JK is the K ×K matrix whose entries are all equal
to 1. Also assume |p1 − q1|, |p2 − q2| > ε and 0 < C < p1, q1, p2, q2 < 1 − C < 1 for
some C, ε > 0, which implies dense regime. Then, infm,n ρm,n > C for some C > 0 and
the smallest non-zero singular value of Edz(Λ) and Edw(∆) are m

K |p1 − q1| and m
K |p2 − q2|,

respectively. Therefore, νm,n = O(mK ) and (A1) reduces to

K3

m
→ 0 and

K2√n
m

= O(1). (2.9)

If K is finite, then we need n = O(m2), which is a rather stringent requirement for most
real applications.

If K =
√
m, the condition does not hold as m,n → ∞. If K = Cm0.5−δ for some

C, δ > 0, then (2.9) holds if m0.5−3δ → 0 and n = O(m4δ). In summary, if K = Cm0.5−δ,
n = O(m4δ) for some C > 0 and δ > 1/6, then (A1) holds.

Next, define

mmax,z,mmax,w = largest community size of z and w respectively

mmin,z,mmin,w = smallest community size of z and w respectively.

The above conclusion also holds if we have lim
mmax,z

mmin,z
= lim

mmax,w

mmin,w
= 1 instead of having

balanced communities.

12
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In the sparse regime, the assumption |p1 − q1|, |p2 − q2| > ε and 0 < C < p1, q1, p2, q2 <
1−C < 1 for some C, ε > 0 do not hold. In this case, (2.9) needs to hold after multiplying
by supm,n{(min{|p1 − q1|, |p2 − q2|})−2 max{p1, q1, p2, q2}}.

Example 2 Consider the same model as in Example 1 with |p1 − q1| = |p2 − q2| = n−δ for
some δ > 0. Suppose K is finite. Then, (A1) reduces to

n2δ

m
→ 0 and

n1/2+2δ

m
= O(1). (2.10)

In this case, (A1) does not hold if m = C
√
n for some C > 0.

We can also take |p1 − q1| = |p2 − q2| = m−δ (instead of n−δ) for some δ > 0. Then
also (A1) does not hold for m = n and δ > 1/4.

Example 3 Let Λ = p1IK and ∆ = p2IK , where p1 and p2 may depend on both m and n.
Assume that there is ε > 0 such that p1, p2 > ε, that is dense regime. Then, the smallest
non-zero singular values of Edz(Λ) and Edw(∆) are mmin,zp1 and mmin,wp2 respectively.
Let mmin = min{mmin,z,mmin,w}. Therefore, νm,n = O(mmin). Let ρ̃m = mmin

m . Thus, (A1)
reduces to

K

mρ̃2
m

→ 0 and

√
n

mρ̃2
m

= O(1). (2.11)

Suppose K = Cmλ and mmin = Cmδ for some λ, δ ∈ [0, 1]. Then, ρ̃m = mδ−1 and (2.11)
reduces to

1

m2δ−λ−1
→ 0 and

√
n

m2δ−1
= O(1).

Thus, (A1) holds if K = Cmλ, mmin = Cmδ, n = m4δ−2 for some λ, δ ∈ [0, 1] and
2δ − λ− 1 > 0.

In the sparse regime, the assumption p1, p2 > ε > 0 does not hold. In this case, (2.11)
needs to hold after multiplying by supm,n{(min{p1, p2})−2 max{p1, p2}}.

Remark 16 Examples 2.1 and 2.3 provide sufficient conditions for Assumption (A1) in
specific cases. These conditions require a shorter time horizon (that means smaller value of
n) in comparison with network sizes m that are of interest in many real applications. Hence,
these sufficient conditions are easily applicable to many real-world networks. Nevertheless,
τ̂m,n (see Section 3) proves useful in many practical settings for estimating the change-point
and avoids the above trade-off between m and n.

Remark 17 A variant of the every point clustering algorithm with a weaker
assumption on the misclassification rate: Note that computation of ˜̃τm,n involves
estimation of communities at every time point. The necessity of clustering at every time-
point leads us to consider condition (A1). One may note though that since for theoretical

13
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considerations the change-point needs to be contained in the interval (c∗, 1−c∗), the following
alternative approach can be employed: use Clustering Algorithm I for the first [nc∗] and
the last [nc∗] time points for estimating z and w, respectively. Denote the corresponding
estimators by z∗ and w∗. Then, the corresponding change-point estimator τ∗m,n can be
obtained by

τ∗m,n = arg min
b∈(c∗,1−c∗)

L̃(b, z∗, w∗, Λ̃z∗,(b,n),m, ∆̃w∗,(b,n),m).

Since we are using order n-many time points in the clustering step and also for estimating
the true change-point τm,n ∈ (c∗, 1−c∗), the misclassification rates for z∗ and w∗ are similar
to those of ˜̃z and ˜̃w obtained in Theorem 12. As pointed out in the discussion preceding the
statement of assumption (A1), clustering at every time point requires the misclassification
rate Mb,n,m to decay faster than n−1ρ−1

m,n||Edz(Λ)−Edw(∆)||F . However, when computing
τ∗m,n, we use the same estimates z∗ and w∗ for all time points. As will be seen later in
Remark 35, if we use the same clustering solution (assignment of nodes to communities)
through all the time points, we only require the misclassification rate to decay faster than
ρ−1
m,n||Edz(Λ)−Edw(∆)||F (instead of n−1ρ−1

m,n||Edz(Λ)−Edw(∆)||F ) for consistency of the
change-point estimator. As a consequence, a weaker assumption on the misclassification
rate

(A1*) m√
nν2m,n

ρm,n = O(1)

together with the SNR-DSBM condition are needed to establish the consistency of τ∗m,n.
The upshot is that if node assignments z∗ and w∗ are employed, assumption (A1) becomes
weaker.

To further illustrate the latter point, note that in Example 1, (A1*) reduces to K2 =
O(m

√
n). Therefore, if K = Cmδ and n = Cmλ for some δ ∈ (0, 1) and λ > 0, then

(A1*) reduces to 1 − 2δ + λ/2 ≥ 0. For Example 2, (A1*) boils down to n2δ = O(m).
Finally, in Example 3, (A1*) holds if mmin = Cmδ, n = mλ for some λ > 0, δ ∈ [0, 1] and
2δ + λ/2− 1 ≥ 0.

Though the method in Remark 17 needs a weaker assumption on the misclassification rate
compared to (A1), this paper focuses on the “every time-point clustering algorithm” due
to the following two considerations.

Remark 18 Considerations for τ∗m,n: Note that in practice the strategy in Remark 17
requires that c∗ be known, which may not be the case in most applications. If c∗ is not known,
a reasonable practical alternative is to use only the first and last time points to estimate
z and w, respectively. Further,

mρm,n
ν2m,n

= O(1) is required for consistency of the change-

point estimator. This is stronger than (A1*) but weaker than (A1). One can argue that, in
principle, the value of c∗ is needed to compute the change-point, since for establishing the
theoretical results the search to identify it is restricted in the interval (c∗, 1− c∗). However,
in practice, one always searches throughout the entire interval, and hence the practical
alternative of using the first and last time points to estimate z and w is compatible with it.
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Finally, note that this alternative, that is known stretches of points that belong to only a
single regime, is viable for estimating a single change-point, but no longer so when multiple
change-points are involved. In the latter case, one would still assume that the first and last
change-points are separated away from the boundary by some fixed amount, but no such
restrictions on the locations of the intermediate change-points can be imposed, and hence a
full search strategy (see for example the algorithm proposed in Auger and Lawrence (1989))
combined with clustering is unavoidable. This is the reason that our analysis focuses on the
“every time-point clustering algorithm” since it provides insights on where challenges will
arise for the case of multiple change-points, appropriate treatment of which is nevertheless
beyond the scope of this paper.

Remark 19 In this section, we used a specific clustering procedure proposed in Bhat-
tacharyya and Chatterjee (2017) to identify the communities and to locate the change-
point. Nevertheless, other clustering algorithms proposed in the literature [Pensky and Zhang
(2019); Rohe et al. (2011)] could be employed. For any given clustering algorithms the fol-
lowing statements hold.

(a) The conclusions of Theorems 11, 12 and 13 hold once we replace (NS) and (A1) by

(A9) n2M2
b,n,mρ

2
m,n||Edz(Λ)− Edw(∆)||−2

F → 0, ∀ b ∈ (c∗, 1− c∗),

where Mb,n,m is the maximum misclassification error that z̃b,n,m and w̃b,n,m in estimating
z and w, respectively, given in (2.8).

(b) Suppose (A9) and SNR-DSBM hold and in addition M2
˜̃τm,n,n,m

= OP(Em,n) for some

sequence Em,n → 0. Moreover, assume that for some positive sequence {C̃m,n}, Ŝm,n ≥
C̃m,n ∀ n with probability 1 and nC̃−2

m,n logm||Edz(Λ)− Edw(∆)||4F ≥ I(n > 1). Then

1

m2
||Ed˜̃z(

˜̃Λ)− Edz(Λ)||2F ,
1

m2
||Ed ˜̃w( ˜̃∆)− Edw(∆)||2F

= OP

(
Em,n +

I(n > 1)ρ2
m,n

n2|Ed˜̃z(
˜̃Λ)− Edz(Λ)||4F

+
logm

nC̃2
m,n

ρm,n

)
.(2.12)

The proofs of statements (a) and (b) follow immediately from those of Theorems 11−13 and
Remark 35.

The analogue of (A9) for existing clustering algorithms in the literature and their com-
parison with (A1) are discussed in Section 7.5 in more detail.

3. A fast 2-step procedure for change-point estimation in the DSBM

The starting point of our exposition is the fact that the SBM is a special form of the Erdős-
Rényi random graph model. The latter is characterized by the following edge generating
mechanism. Let pij be the probability of having an edge between nodes i and j and let
P be the m × m corresponding connectivity probability matrix. We denote this model
by ER(P ). An adjacency matrix A is said to be generated according to ER(P ), if Aij ∼
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Bernoulli(pij) independently and we denote it by A ∼ ER(P ). Clearly A ∼ SBM(z,Λ)
implies A ∼ ER(Edz(Λ)).

The DSBM with single change-point in (2.1) can be represented as a random graph
model as follows: there is a sequence τm,n ∈ (0, 1) such that for all n ≥ 1,

At,n ∼

{
ER(Edz(Λ)), if 1 ≤ t ≤ bnτm,nc
ER(Edw(∆)), if bnτm,nc < t < n

(3.1)

and Λ 6= ∆ and/or z 6= w.

In general, without any structural assumptions, a dynamic Erdős-Rényi model with a
single change-point has m(m + 1) + 1 many unknown parameters, the 0.5m(m + 1) pre-
and post- change-point edge probabilities and 1 change-point. An estimate of τm,n can be
obtained by optimizing the following least-squares criterion function.

τ̂m,n = arg minb∈(c∗,1−c∗)L(b) where

L(b) =
1

n

m∑
i,j=1

[ nb∑
t=1

(Aij,(t,n) − p̂ij,(b,n),m)2 +
n∑

t=nb+1

(Aij,(t,n) − q̂ij,(b,n),m)2

]
,

p̂ij,(b,n),m =
1

nb

nb∑
t=1

Aij,(t,n) and q̂ij,(b,n),m =
1

n(1− b)

n∑
t=nb+1

Aij,(t,n). (3.2)

Next, we present our 2-step algorithm.

2-Step Algorithm:

Step 1: In this step, we ignore the community structures and assume z(i) = w(i) = i for
all 1 ≤ i ≤ m. We compute the least-squares criterion function L(·) given in (3.2) and
obtain the estimate τ̂m,n = arg minb∈(c∗,1−c∗) L(b).

Step 2: This step involves estimation of other parameters in DSBM. We estimate z and

w by ẑ = z̃τ̂m,n,n,m and ŵ = w̃τ̂m,n,n,m, respectively, and subsequently Λ and ∆ by
ˆ̂
Λ =

Λ̃ẑ,(τ̂m,n,n),m and
ˆ̂
∆ = ∆̃ŵ,(τ̂m,n,n),m, respectively.

Computational complexity of the 2-Step Algorithm
It can easily be seen that Step 1 requires O(m2n) operations, while Step 2 due to performing
clustering requires O(m3) operations. Thus, the total computational complexity of the
entire algorithm is O(m3 + m2n) ∼ O(m2 max(m,n)), which is significantly smaller than
that of obtaining ˜̃τm,n in (2.7).

3.1. Theoretical Results for τ̂m,n

The following identifiability condition and the restriction on the sparse parameter are re-
quired.
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SNR-ER: n
m2ρm,n

||Edz(Λ)− Edw(∆)||2F →∞.

Sparse-ER: ρm,n > Cm−2 for some C > 0.

SNR-ER requires that the signal per edge parameter and scaled by the sparsity param-
eter grows faster than 1/

√
n. Clearly, SNR-ER is stronger than SNR-DSBM, as expected

since the ER model involves m2 parameters, as opposed to K2 parameters for the DSBM.

Similar to the discussed in Remark 3, in the presence of SNR-ER, Sparse-ER ensures
consistency of the change-point estimator τ̂m,n after scaling by the sparsity parameter. Also,
Sparse-ER is weaker than Sparse-DSBM.

The following Theorem provides asymptotic properties for the estimates of the DSBM
parameters obtained from the 2-Step Algorithm. Its proof is given in Section 7.6.

Theorem 20 Suppose that SNR-ER and Sparse-ER hold. Then, the conclusion of Theorem
11 holds for τ̂m,n. Similarly, under SNR-ER, Sparse-ER and (NS), the conclusions of

Theorems 12 and 13 continue to hold for ẑ, ŵ,
ˆ̂
Λ and

ˆ̂
∆.

Remark 21 As we can observe above, there is a trade-off between the signal-to-noise con-
dition and the decay rate of the sparsity parameter. Though the convergence rate of τ̃m,n and
τ̂m,n are the same, the former one needs stronger Sparse-DSBM under weaker SNR-DSBM
compared to weaker Sparse-ER under stronger SNR-ER required for the later estimator.

Remark 22 It is easy to see that the average signal per edge (m2ρm,n)−1||Edz(Λ)−Edw(∆)||2F ≤
ρm,n → 0 for sparse graphs. On the other side, ρm,n is bounded away from 0 for dense graphs
and (m2ρm,n)−1||Edz(Λ)−Edw(∆)||2F ≥ C for some C > 0 can be often satisfied. Therefore
dense regime generates more signal compared to the sparse regime and consequently the later
one needs larger sample size (number of time points) to satisfy the signal-to-noise condi-
tions SNR-DSBM and SNR-ER for detecting the change-point consistently and has slower
convergence rate of the change-point estimator.

Remark 23 One may wonder regarding dense settings (similar discussion is true for the
sparse graphs as well) where SNR-DSBM holds, but neither (A1) nor SNR-ER do. Examples
5 and 6 introduce such settings in the context of changes in the connection probabilities and
in the community structures, respectively. The methods discussed in Sections 2 and 3 fail to
detect the change-point under the above-presented settings. Therefore, alternative strategies
need to be investigated. One possibility for the case of a single change-point being present
was discussed in Remark 17 and more details are given in Example 7. Another setting that
does not require clustering is presented in Example 8 and builds on the model discussed
in Gao et al. (2015). However, the setting in Example 8 is very specific involving two
parameters only. Nevertheless, a generally applicable strategy is currently lacking for the
regime where SNR-DSBM holds, but neither SNR-ER or (A1) does. This constitutes an
interesting direction for future research.
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4. Comparison of the “Every time point clustering algorithm” vs the
2-step algorithm

Our analysis up to this point has highlighted the following key findings. If the total signal is
strong enough (that means if SNR-ER holds), then it is beneficial to use the 2-step algorithm
that provides consistent estimates of all DSBM parameters at reduced computational cost.
On the other hand, if the signal is not adequately strong (that means if SNR-ER fails to
hold, but SNR-DSBM holds) then the only option available is to use the computationally
expensive “every time point algorithm”, provided that (A1) also holds. Our discussion in
Section 2.2 indicates that (A1) (and (A1*)) is not an innocuous condition and may fail to
hold in real application settings.

For example, consider a DSBM with m = 60 nodes, K = 2 communities and n = 60
time points. Suppose that there is a break at nτn = 30, due to a change in community
connection probabilities. Further, assume that the community connection probabilities

before and after the change-point are given by Λ =

(
0.6 0.3
0.3 0.6

)
and ∆ = Λ + 1

n1/4J2

(or = Λ + 1
m1/4J2), respectively. Finally, suppose that there is no change in community

structures and z(i) = w(i) = I(1 ≤ i ≤ m/2) + 2I(m/2 + 1 ≤ i ≤ m). In this case, one can

check that infm,n ρm,n > C > 0, n
m2 ||Edz(Λ) − Edw(∆)||22 = 7.75, Km

ν2m,n
= 1.48, m

√
n

ν2m,n
= 5.7

and hence SNR-ER holds but (A1) fails. Figure 1 plots the least-squares criterion function
against time scaled by 1/n, corresponding to the 2-step, known communities, and “every
time point” algorithms, respectively. The plots show that the trajectory of the least-squares
criterion function is much smoother and the change-point is easily detectable when known
community structures are assumed. It is also the case for the 2-step algorithm, albeit with
more variability. However, since (A1) fails to hold, the objective function depicted in Figure
1 (bottom middle panel) clearly illustrates that the change-point is not detectable for the
“every time point” algorithm.

The next question to address is “How stringent is SNR-ER” under the DSBM model.
As the following discussion shows, the reallocation of nodes to new communities generates
strong enough signal, and therefore SNR-ER may be easier to satisfy in practice than one
might suppose.

Sufficient conditions for SNR-ER under the DSBM model.

We examine a number of settings where SNR-ER holds under the DSBM network gen-
erating mechanisms and hence the 2-step algorithm can be employed. Specifically, the
following proposition provides sufficient conditions for SNR-ER to hold. Let N be the set
of all natural numbers. Define the classes of functions F := {f

∣∣f : N × N → (0, 1)} and
Gm := {g = ((m2f) ∨ 1) ∧ 0.5m(m− 1)

∣∣f ∈ F} for all m ≥ 1. For any f ∈ F , let

A(f) = {(i, j) : |λz(i)z(j) − δw(i)w(j)| > f(m,n)}.

Hence, A(f) corresponds to the set of all edges for which the connection probability changes
at least by an f(m,n) amount.
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Figure 1: A plot of the least-squares criterion function against time scaled by 1/n. Top
left and right panels correspond to the 2-step and known communities algorithm,
while the bottom middle depicts the “every time point” algorithm, respectively.
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Proposition 24 Suppose |A(f)| ≥ Cg(m,n) for some f ∈ F , g ∈ Gm such that
nm−2g(m,n)(f(m,n))2 →∞. Then, SNR-ER holds.

The above proposition follows from the fact that

n

m2ρm,n
||Edz(Λ)− Edw(∆)||2F ≥ nm−2g(m,n)(f(m,n))2 →∞.

This implies that at least g(m,n)-many edges need to change their connection probability
by at least f(m,n) amount for SNR-ER to be satisfied. This leads us to the following
scenarios (A)-(D) that often arise in practice.

The following example provides a choice for f and g, respectively.

Example 4 Let A(ε, δ1) = {(i, j) : |λz(i)z(j) − δw(i)w(j)| > εm−λ1/2n−δ1/2}, |A(ε, δ1)| ≥
max{Cm2−λ2n−δ2 , 1} and mλ1+λ2 = o(n(1−δ1−δ2)) for some C, ε > 0 and 0 ≤ δ1 + δ2 <
1, λ1 ≥ 0, 0 ≤ λ2 ≤ 2. This implies that at least m2−λ2n−δ2-many edges need to change
their connection probability by at least εm−λ1/2n−δ1/2 amount. Then Proposition 24, by
setting f = εm−λ1/2n−δ1/2 and g = max{Cm2−λ2n−δ2 , 1}, establishes that SNR-ER holds.
As λ1, λ2, δ1, δ2 increase, the signal ||Edz(Λ)− Edw(∆)||2F due to the change decreases and
therefore a large number of time points n is required to accumulate adequate signal (that is
to satisfy the SNR condition) for detecting the change-point.

Next, we discuss settings motivated by real-world applications, wherein the SNR-ER
condition holds for DSBM.

(A) Reallocation of nodes: Suppose that the pre- and post-community connection proba-
bilities are the same; that is Λ = ∆. This also implies that the total number of communities
before and after the change-point are equal. Suppose that some of the nodes are reallocated
to new communities after the change-point epoch.
A motivating example for this scenario comes from voting patterns of legislative bodies as
analyzed in Bao and Michailidis (2018). In this setting, one is interested in identifying
when voting patterns of legislators change significantly. By considering the legislators as
the nodes of the network, an edge between two of them indicates voting similarly on a leg-
islative measure (for examples bill, resolution), while the communities reflect their political
affiliations, it can be seen that after an election the composition of the communities may
be altered—reassignment of nodes.

In this situation, SNR-ER holds if the entries of Λ (or ∆) are adequately separated
and enough nodes are reallocated. Specifically, for some ε, C > 0 and 0 ≤ δ1 + δ2 <
1, λ1 ≥ 0, 0 ≤ λ2 ≤ 2, suppose we have |Λij − Λi′j′ | > εm−λ1/2n−δ1/2 ∀(i, j) 6= (i′, j′)
and max{Cm2−λ2n−δ2 , 1}-many nodes change their community after time nτn. Then, by
Proposition 24 and Example 4, SNR-ER holds.

(B) Change in connectivity: Suppose that the community structures remain the same
before and after the change-point (that implies z = w), but their community connection
probabilities change (therefore Λ 6= ∆). This scenario is motivated by the following ex-
amples: in transportation networks, when service is reduced or even halted between two
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service locations, in social media platforms (for example Facebook) when a new online game
launches, or in collaboration networks when a large scale project is completed.

Then, SNR-ER holds if entries of Λ are adequately separated from those of ∆. Specifi-
cally, for some ε > 0 and 0 ≤ δ < 1, λ ≥ 0, suppose we have |λij−δij | > εm−λ/2n−δ/2 ∀i, j =
1, 2, . . . ,K and m2+λ = o(n1−δ). Then, by Proposition 24 and Examples 4, SNR-ER holds.

(C) Merging Communities: Sometimes, when two user communities cover the same
subject matter and share similar contributors, they may wish to merge their communities
to push their efforts forward in a desired direction. Suppose that the 1st and the Kth
communities in z merge into the 1st community in w. In this situation, SNR-ER holds if
the pre-connection probability between the 1st and the K-th communities and the post-
connection probability within the 1st community are adequately separated and if the sizes
of the 1st and the K-th communities are large before the change. Precisely, suppose |λ1K −
δ11| > Cm−λ1/2n−δ1/2, s1,zsK,z ≥ Cm2−λ2n−δ2 and mλ1+λ2 = o(n1−δ1−δ2) for some C > 0
and 0 ≤ δ1 + δ2 < 1, λ1 ≥ 0, 0 ≤ λ2 ≤ 2. Then, by Proposition 24 and Example 4, SNR-ER
holds.

(D) Splitting communities: One community often splits into two communities when
conflicts and disagreements arise among its members. Suppose that the 1st community
in z splits into the 1st and Kth communities in w. In this case, SNR-ER holds if the
pre-connection probability within the 1st community and the post-connection probability
between the 1st and the Kth communities are adequately separated and the size of the 1st
and the Kth communities are large after the change. Suppose |λ11−δ1K | > Cm−λ1/2n−δ1/2,
s1,wsK,w ≥ Cm2−λ2n−δ2 and mλ1+λ2 = o(n1−δ1−δ2) for some C > 0 and 0 ≤ δ1+δ2 < 1, λ1 ≥
0, 0 ≤ λ2 ≤ 2. Then, by Proposition 24 and Example 4, SNR-ER holds.

Remark 25 Examples (A)-(D) above and Proposition 24 hold for both dense and sparse
networks. However, as discussed in Remark 22, for sparse networks, a large enough number
of time points n is required compared to the total number of nodes m. This is because
that in a sparse network, there are relatively few edges to contribute to the total signal in
Proposition 24.

Next, we discuss two examples for a dense network regime wherein the SNR-ER condi-
tion fails to hold, but SNR-DSBM does.

(E) If most edges change their connection probabilities by an amount of C1/
√
n for some

C1 > 0, then SNR-ER does not hold, but SNR-DSBM does. Specifically, let A(C1) =
{(i, j) : |λz(i)z(j) − δw(i)w(j)| = C1/

√
n}. Suppose |A(C1)| = C2m

2 for some C1, C2 > 0,
|λz(i)z(j) − δw(i)w(j)| = 0 ∀(i, j) ∈ Ac and min(min

u
su,z,min

u
su,w)→∞. Then n

m2 ||Edz(Λ)−

Edw(∆)||2F = C2
1C2 6−→ ∞ but n

K2 ||Edz(Λ)− Edw(∆)||2F = C2
1C2

m2

K2 →∞.

(F) If the connection probabilities between the smallest community and the remaining
ones change by C/

√
n for some C > 0, then for an appropriate choice of K and smallest

community size, SNR-ER does not hold, but SNR-DSBM does. Specifically, suppose z = w,
K = C1m

δ1/2, min
u
su,z = s1,z = C2m

δ2/2, |λ1j − δ1j | = C3/
√
n ∀j and |λij − δij | = 0 ∀i 6=
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1, j 6= 1 for some C1, C2, C3 > 0 and 0 < δ1 + δ2 ≤ 2, δ1 < δ2. Then n
m2 ||Edz(Λ) −

Edw(∆)||2F = C2
3C2m

−(2−δ2) → 0 but n
K2 ||Edz(Λ)− Edw(∆)||2F = C2

3C2C
−2
1 mδ2−δ1 →∞.

Note that examples (E)-(F) only deal with the SNR-DBSM condition and do not address
the equally important (A1) condition for the “every time point clustering algorithm” to
work. The next example provides a dense setting where SNR-ER does not hold, but both
SNR-DSBM and (A1) hold.

(G) Consider the model and assumptions in Example 3. Suppose p2 = p1 + 1√
n

. Then,

mn−1 ≤ ||Edz(Λ) − Edw(∆)||2F ≤ m2n−1. Hence, SNR-ER does not hold. Further, if
K2 = o(m), then SNR-DSBM holds. Thus, SNR-DSBM and (A1) hold if K = Cmλ,
mmin = Cmδ and n = m4δ−2 for some λ ∈ [0, 0.5), δ ∈ [0, 1] and 2δ − λ− 1 > 0.

The upshot of the above examples is that due to the structure of the DSBM, there
are many instances arising in real settings where SNR-ER holds. On the other hand, as
an example (G) illustrates, some rather special settings are required for SNR-ER to fail,
while both SNR-DSBM and (A1) hold. Thus, it is relatively safe to assume that the 2-step
algorithm is applicable across a wide range of network settings, making it a very attractive
option to practitioners.

4.1. Numerical Illustration

Next, we discuss the performance of the three change-point estimates τ̃m,n, τ̂m,n and ˜̃τm,n
based on synthetic data generated according to the following mechanism, focusing on the
impact of the parameters m, n and small community connection probabilities on their
performance.

Effect of m and n: We simulate from the following DSBMs (1), (2), (3) for three choices of
(m,n, nτn) = (60, 60, 30), (500, 20, 10), (500, 100, 50) and two choices of λ = 0, 1/20. These
results are presented in Tables 1-6. Although the following DSBMs satisfy the assumptions
in Proposition 24, SNR-ER may be small for dealing with finite samples.1

(1) Reallocation of nodes: K = 2, z(i) = I(1 ≤ i ≤ m/2) + 2I(m/2 + 1 ≤ i ≤ m),

w(2i − 1) = 1, w(2i) = 2 ∀1 ≤ i ≤ m/2. Λ = ∆ =

(
0.6 0.6− 1

nδmλ

0.6− 1
nδmλ

0.6

)
for

δ = 1/20, 1/10, 1/4.

(2) Change in connectivity: K = 2, z(i) = w(i) = I(1 ≤ i ≤ m/2)+2I(m/2+1 ≤ i ≤ m),

Λ =

(
0.6 0.3
0.3 0.6

)
, ∆ = Λ + 1

n1/4mλ
J2.

1. Note that by Proposition 24 and Example 4, for finite number of communities (K is finite), n
m2 ||Edz(Λ)−

Edw(∆)||2F = O(m−λ1−λ2n1−δ1−δ2) and n
K2 ||Edz(Λ) − Edw(∆)||2F = O(m2−λ1−λ2n1−δ1−δ2) and for

balanced community with min{|λij − λi′j′ |, |δij − δi′j′ | : (i, j) 6= (i′, j′), (i, j) 6= (j′, i′)} ≥ Cn−δm−λ

(C > 0, δ ≥ 0, λ ≥ 0), we have νm,n = O(m
1−λn−δ

K
), we have Km

ν2m,n
= O(n2δ/m1−2λ) and m

√
n

ν2m,n
=

O(n
0.5+2δ

m1−2λ ). Thus, for small n and large m, SNR-ER becomes small, but SNR-DSBM and (A1) hold.
Moreover, (A1) is not satisfied for large δ and λ and small m.
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(3) Merging communities: K = 3, z(i) = I(1 ≤ i ≤ 20) + 2I(21 ≤ i ≤ 40) +
3I(41 ≤ i ≤ 60), w(i) = I(1 ≤ i ≤ 20, 41 ≤ i ≤ 60) + 2I(21 ≤ i ≤ 40), Λ = 0.6 0.3 0.6− 1

n1/20mλ

0.3 0.6 0.3
0.6− 1

n1/20mλ
0.3 0.6

, ∆ =

 0.6 0.3 0
0.3 0.6 0
0 0 0

.

Splitting communities and merging communities are similar once we interchange z, w, and
Λ, ∆.

Table 1: Illustrating the performance of the change-point estimators with m = 60, n =
60, nτm,n = 30, λ = 0 based on 100 replicates and DSBMs (1), (2) and (3). Fig-
ures in brackets are frequencies of the number of change-points the corresponding
change-point is observed. Further, Fn := ||Edz(Λ)− Edw(∆)||2F .

Reallocation of nodes,in (1)
Change
in connectivity,
in (2)

Merging
communities,
in (3)

δ = 1/20 δ = 1/10 δ = 1/4

Fn 1195.246 793.6742 232.379 2390.49 531.2205
n
m2Fn 19.92077 13.2279 3.873 39.84 8.8537
n
K2Fn 17928.69 11905.11 3485.685 35837.39 3541.47
Km
ν2m,n

0.198 0.3 1.2 1.03 3.11
m
√
n

ν2m,n
0.7777 1.1712 4 5.738 8.03

τ̃m,n

30(90),
29(4),
28(2),
31(4)

30(85),
29(6),
28(4),
31(5)

30(88), 29(7),
28(5)

30(85), 29(5),
28(6), 31(4)

30(88), 29(3),
28(4), 31(5)

τ̂m,n

30(88),
28(5),
31(3),
34(4)

30(83),
29(3),
28(7),
31(7)

30(80), 29(9),
28(7), 31(4)

30(83),
28(10), 31(7)

30(88), 29(8),
28(4)

˜̃τm,n

30(85),
28(5),
31(6),
32(4)

30(80),
28(8),
31(6),
32(4),
33(2)

30(34),
22(42),
25(10), 33(14)

30(40),
21(30),
28(18), 26(12)

30(21),
19(10),
23(48),
26(14), 38(7)

The following conclusions are in accordance with the results presented in Tables 1
through 6.
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Table 2: Illustrating the performance of the change-point estimators with m = 500, n =
20, nτm,n = 10, λ = 0 based on 100 replicates and DSBMs (1), (2) and (3). Figures
in brackets are frequencies of the number of times the corresponding change-point
is observed. Further, Fn := ||Edz(Λ)− Edw(∆)||2F .

Reallocation of nodes, in (1)
Change
in connectivity,
in (2)

Merging
communities,
in (3)

δ = 1/20 δ = 1/10 δ = 1/4

Fn 92641.81 68660.03 27950.85 185283.6 41174.14
n
m2Fn 7.411 5.49 2.24 14.82 3.294
n
K2Fn 463209 343300.2 139754.2 926418.1 91498.08
Km
ν2m,n

0.0216 0.0291 0.0716 0.072 0.3732
m
√
n

ν2m,n
0.0483 0.0651 0.16 0.16 0.576

τ̃m,n
10(88),
9(6), 11(6)

10 (85),
9(5), 8(3),
11(6),
12(1)

10(90), 9(5),
8(1), 12(4)

10(89), 9(5),
11(4), 12(2)

10(88), 9(6),
8(4), 12(2)

τ̂m,n
10(90),
8(6), 11(4)

10(88),
8(5), 11(7)

10(39), 3(23),
7(30), 13(8)

10(85), 9(7),
8(8)

10(83), 9(7),
8(4) 11(4),
12(2)

˜̃τm,n

10(85),
9(7), 11(5),
12(3)

10(82),
8(6), 11(5),
12(7)

10(77), 8(11),
9(4), 11(8)

10(83), 9(9),
8(4), 11(4)

10(80), 8(9),
9(7) 11(4)

(a) SNR-ER holds for large n, small δ, λ and large signal ||Edz(Λ)−Edw(∆)||2F . We observe
large SNR-ER and consequently good performance of τ̂m,n, throughout Tables 1-6 except
Column 3 in Table 2 and Column 3 and 5 of Table 5, which involve a small n and large δ,
λ, leading to poor performance of τ̂m,n.

(b) SNR-ER implies SNR-DSBM and thus a large SNR-DSBM is observed throughout

Tables 1-6. Moreover, if νm,n = O(m
1−λn−δ

K ) for some δ > 0, then (A1) holds for small δ, λ,

n, small K and large m. Thus, (A1) holds and ˜̃τm,n exhibits good performance throughout
Tables 1-6 except Columns 3 − 5 in Table 1 and Columns 2 − 5 in Table 4 where δ and λ
are large and m small.

(c) Throughout Tables 1-6, SNR-DSBM holds and τ̃m,n exhibits good performance, as
expected. The estimator τ̃m,n performs equally well to τ̂m,n and ˜̃τm,n, whenever SNR-ER
and (A1) are satisfied. In all other settings, τ̃m,n clearly outperforms them. For example,
τ̃m,n performs better than ˜̃τm,n in Columns 3-5 of Table 1 and Columns 2-5 of Table 4 and
better than τ̂m,n in Column 3 of Table 2 and Columns 3 and 5 of Table 5.

The above numerical results amply demonstrate the competitive nature of the compu-
tationally inexpensive 2-step algorithm under the settings posited. However, note that the
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Table 3: Illustrating the performance of the change-point estimators with m = 500, n =
100, nτm,n = 50, λ = 0, based on 100 replicates and DSBMs (1), (2) and (3). Fig-
ures in brackets are frequencies of the number of times the corresponding change-
point is observed. Further, Fn := ||Edz(Λ)− Edw(∆)||2F .

Reallocation of nodes, in (1)
Change
in connectivity,
in (2)

Merging
communities,
in (3)

δ = 1/20 δ = 1/10 δ = 1/4

Fn 78869.67 49763.4 12500 157739.3 35053.19
n
m2Fn 31.548 19.905 5 63.1 14.0213
n
K2Fn 1971742 1244085 312500 3943483 1389479.8
Km
ν2m,n

0.02536 0.04019 0.16 0.1778 0.3732
m
√
n

ν2m,n
0.1268 0.201 0.8 0.889 1.244

τ̃m,n

50(90),
49(4),
48(4),
51(2)

50(89),
49(8),
51(3)

50(93), 49(5),
48(1), 51(1)

50(91), 49(6),
48(3)

50(89), 49(7),
48(1), 51(3)

τ̂m,n

50(92),
48(3),
51(5)

50(88),
49(7),
48(3),
47(1),
51(1)

50(82), 49(5),
47(3), 52(7),
53(3)

50(84), 49(4),
47(2), 51(6),
52(4)

50(87), 49(6),
51(3), 52(4)

˜̃τm,n

50(87),
49(7),
48(5),
91(1)

50(88),
48(6),
47(2),
51(4)

50(82), 49(7),
48(5), 51(4),
52(2)

50(82), 49(7),
48(5), 52(6)

50(87), 49(4),
47(3), 51(6)

connection probabilities assumed are in general strong that leads to a large Fn signal. Next,
we illustrate the performance for the case of excessively small connection probabilities.

Effect of excessively small connection probabilities: In this paper, we assume that
the entries of Λ and ∆ are bounded away from 0 and 1, to establish results on the asymptotic
distribution of the change-point estimators (see Section 5). This assumption is, however,
not needed for establishing consistency and the convergence rate of the estimators. Here we
consider DSBMs with small entries in Λ and ∆ and illustrate their effect on the performance
of the change-point estimators based on simulated results. For DSBMs (4) and (5), we
consider (m,n, nτm,n) = (60, 60, 30).

(4) Reallocation of nodes: Let K = 2, z(i) = I(1 ≤ i ≤ m/2) + 2I(m/2 + 1 ≤ i ≤ m),
w(2i− 1) = 1, w(2i) = 2 ∀1 ≤ i ≤ m/2.

Further, Λ = ∆ =

( 1
nλ1mλ2

1
nλ1mλ2

− 1
nδ1mδ2

1
nλ1mλ2

− 1
nδ1mδ2

1
nλ1mλ2

)
for (δ1, δ2, λ1, λ2) = (3/8, 3/8, 1/4, 1/4), (5/8, 1/4, 1/4, 3/8).
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Table 4: Illustrating the performance of the change-point estimators with m = 60, n =
60, nτm,n = 30, λ = 1/20 based on 100 replicates and DSBMs (1), (2) and (3).
Figures in brackets are frequencies of the number of change-points the correspond-
ing change-point is observed. Further, Fn := ||Edz(Λ)− Edw(∆)||2F .

Reallocation of nodes,in (1)
Change
in connectivity,
in (2)

Merging
communities,
in (3)

δ = 1/20 δ = 1/10 δ = 1/4

Fn 793.67 527.82 154.31 187.35 231.02
n
m2Fn 13.23 8.784 2.572 26.456 3.85
n
K2Fn 11905.11 7905.3 2314.58 23810.26 1540.12
Km
ν2m,n

0.3 0.455 1.56 6.024 1.021
m
√
n

ν2m,n
1.17 1.764 6.024 5.738 2.64

τ̃m,n

30(88),
29(7),
28(3),
32(2)

30(91),
29(5),
28(1),
31(3)

30(92), 28(2),
31(6)

30(88), 29(8),
28(2), 31(2)

30(89), 29(3),
31(7), 32(1)

τ̂m,n

30(84),
29(7),
32(5),
28(4)

30(87),
29(6),
31(7)

30(78),
29(11), 28(8),
32(3)

30(90), 28(2),
29(8)

30(88), 31(7),
28(5)

˜̃τm,n

30(83),
29(5),
28(7),
31(5)

30(23),
26(23),
41(34),
22(14),
23(6)

30(29),
22(45),
19(10), 41(16)

30(35),
22(21), 24(6),
19(18), 42(20)

30(21),
22(20),
17(48), 37(11)

(5) Change in connectivity: Let K = 2, z(i) = w(i) = I(1 ≤ i ≤ m/2) + 2I(m/2 + 1 ≤

i ≤ m), Λ =

( 2
nλ1mλ2

1
nλ1mλ2

1
nλ1mλ2

2
nλ1mλ2

)
, ∆ = Λ + 1

n1/8m1/8J2, (λ1, λ2) = (1/4, 1/4), (1/4, 3/8).

The results are presented in Table 7. For models (4) and (5), SNR-ER is proportional
to n−2δ1m−2δ2 and n−1/4m−1/4 respectively. The choices of δ1 and δ2 taken in (4) suffice to
make the connection probabilities in Λ and ∆ small enough, so that the resulting SNR-ER
is small. Consequently, τ̂m,n does not perform well in Columns 1 and 2 of Table 7. On
the other hand, δ1 = 1/8 and δ2 = 1/8 in (5) are adequate to induce a large SNR-ER,
as reflected in the improved performance of τ̂m,n for τm,n in Columns 3 and 4 of Table 7.
On the other hand, while m/K in Table 7 is large enough to satisfy SNR-DSBM, νm,n is
proportional to n−λ1m−λ2 and by the choices of λ1, λ2 in models (4) and (5), quite small,
as a consequence of which (A1) does not hold for the settings depicted in Table 7, and the
performance of ˜̃τn suffers. The estimator τ̃m,n performs very well throughout Table 7, since
SNR-DSBM holds.
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Table 5: Illustrating the performance of the change-point estimators with m = 500, n =
20, nτm,n = 10, λ = 1/20 based on 100 replicates and DSBMs (1), (2) and (3). Fig-
ures in brackets are frequencies of the number of times the corresponding change-
point is observed. Further, Fn := ||Edz(Λ)− Edw(∆)||2F .

Reallocation of nodes, in (1)
Change
in connectivity,
in (2)

Merging
communities,
in (3)

δ = 1/20 δ = 1/10 δ = 1/4

Fn 49763.4 36881.4 15014.7 99526.8 14501.2
n
m2Fn 3.98 2.95 1.2 7.96 1.13
n
K2Fn 24881.7 184406.8 75070.2 497634 32224.9
Km
ν2m,n

0.04 0.054 0.13 0.13 0.13
m
√
n

ν2m,n
0.089 0.121 0.298 0.298 0.1997

τ̃m,n
10(89),
9(8), 8(3)

10(87),
9(5), 8(3),
11(5)

10(88), 9(3),
8(2), 11(6),
12(1)

10(90), 9(8),
8(2)

10(89), 9(4),
8(1), 11(6)

τ̂m,n
10(87),
8(4), 11(9)

10(85),
8(8), 11(7)

10(29), 3(23),
6(35), 15(13)

10(85), 9(9),
8(6)

10(28), 7(33),
4(14), 15(25)

˜̃τm,n
10(88),
9(8), 11(4)

10(89),
8(6), 11(5)

10(79), 8(9),
9(5), 11(7)

10(83), 9(10),
8(7)

10(85), 8(7),
9(5) 11(3)

Simulation on setting (G): Consider the setup in setting (G) previously presented and
let n = 20, nτm,n = 10, m = 20, K = 2, z(i) = w(i) = I(1 ≤ i ≤ 9) + 2I(10 ≤ i ≤ 20),
p2

1 = 0.8, p2 = p1 + 1/
√
n, Λ = p1I2, ∆ = p2I2. Simulation results are given in Table 8.

In this case, both SNR-DSBM and (A1) hold. Hence, both τ̃m,n and ˜̃τm,n perform well as
expected. However, due to the failure of SNR-ER to hold, the performance of τ̂m,n suffers.

5. Asymptotic distribution of change-point estimators and adaptive
inference

Up to this point, the analysis focused on establishing consistency results for the derived
change-point estimators and the corresponding convergence rates. Nevertheless, it is also of
interest to provide confidence intervals, primarily for the change-point estimates. This issue
is addressed next for τ̃m,n, ˜̃τm,n, τ∗m,n and τ̂m,n, and as will be shortly seen the distributions
are different depending on the behavior of the norm difference of the parameters before and
after the change-point. Since this norm difference is not usually known a priori, we solve
this problem through a data-based adaptive procedure to determine the quantiles of the
asymptotic distribution, irrespective of the specific regime pertaining to the data at hand.
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Table 6: Illustrating the performance of the change-point estimators with m = 500, n =
100, nτm,n = 50, λ = 1/20, based on 100 replicates and DSBMs (1), (2) and
(3). Figures in brackets are frequencies of the number of times the corresponding
change-point is observed. Further, Fn := ||Edz(Λ)− Edw(∆)||2F .

Reallocation of nodes, in (1)
Change
in connectivity,
in (2)

Merging
communities,
in (3)

δ = 1/20 δ = 1/10 δ = 1/4

Fn 42365.37 26730.8 67145 84731.13 11943.6
n
m2Fn 16.94 10.69 2.686 33.89 4.65
n
K2Fn 1059139 668271.6 167862.2 2118278 132706.8
Km
ν2m,n

0.047 0.0748 0.298 0.298 0.157
m
√
n

ν2m,n
0.236 0.374 0.49 1.49 0.524

τ̃m,n

50(88),
49(6),
48(3),
51(3)

50(90),
49(3),
51(5),
52(2)

50(88), 49(4),
48(2), 51(4),
52(2)

50(92), 49(3),
51(5)

50(87), 49(7),
48(2), 51(4)

τ̂m,n

50(88),
48(5),
49(7)

50(91),
49(6),
48(3)

50(78), 49(7),
48(5), 52(8),
53(2)

50(90), 49(6),
48(2), 51(2)

50(87), 49(8),
51(5)

˜̃τm,n

50(83),
49(8),
48(7),
53(2)

50(88),
48(9),
47(2),
51(1)

50(85), 49(5),
48(5), 51(5)

50(82), 49(5),
48(8), 51(2),
52(3)

50(85), 49(8),
48(2), 51(5)

5.1. Form of asymptotic distribution

For ease of presentation, we focus on τ̂m,n, but analogous results hold for τ∗m,n, τ̃m,n and ˜̃τm,n.
As previously mentioned, there are three different regimes for its asymptotic distribution
depending on:—(I) ||Edz(Λ) − Edw(∆)||2F → ∞, (II) ||Edz(Λ) − Edw(∆)||2F → 0 and (III)
||Edz(Λ)− Edw(∆)||F → c > 0.

We need additional regularity assumptions (A2)-(A7) for the other regimes. Assumption
(A2) stated below ensures that the connection probabilities are bounded away from 0 and
1, which gives rise to a dense graph and ensures the positive asymptotic variance of the
change-point estimators.

(A2) For some c > 0, 0 < c < infu,v λuv, infu,v δuv ≤ supu,v λuv, supu,v δuv < 1− c < 1.

The precise statements of (A3)-(A7) are given in Section 7.10, but a brief discussion of their
roles is presented below.

Assumption (A3) is required in Regime II and guarantees the existence of the asymptotic
variance of the change-point estimator. In Theorem 26(b), this variance is denoted by γ2.
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Table 7: Illustrating the performance of the change-point estimators with m = 60, n =
60, nτm,n = 30, based on 100 replicates and DSBMs (4) and (5). Figures in
brackets are frequencies of the number of times the corresponding change-point is
observed. Further, Fn := ||Edz(Λ)− Edw(∆)||2F .

Reallocation of nodes, in (4) Change in connectivity, in (5)

(δ1, δ2, λ1, λ2) =
(3/8, 3/8, 1/4, 1/4)

(δ1, δ2, λ1, λ2) =
(5/8, 1/4, 1/4, 3/8)

(λ1, λ2) =
(1/4, 1/4)

(λ1, λ2) =
(1/4, 3/8)

Fn 3.873 1.3915 464.758 464.758
n
m2Fn 0.0645 0.0232 7.746 7.746
n
K2Fn 58.095 20.874 6971.37 6971.37
Km
ν2m,n

61.968 172.466 8 22.265
m
√
n

ν2m,n
240 667.96 30.984 86.232

τ̃m,n

30(85), 29(6),
28(3), 31(5),
32(1)

30(88), 29(4),
31(8)

30(91), 29(8),
28(1)

30(89), 29(5),
28(2), 31(4)

τ̂m,n

30(15), 27(18),
24(38), 22(19),
41(10)

30(21), 28(4),
18(31), 39(14),
47(19), 49(11)

30(88), 29(9),
32(3)

30(88), 28(6),
31(6)

˜̃τm,n

30(7), 28(23),
22(13), 18(18),
38(20),43(19)

26(15), 22(23),
32(27), 39(25),
43(10)

30(14), 25(8),
23(28), 38(34),
43(16)

30(15), 26(10),
21(25), 21(28),
39(14), 44(8)

Table 8: Illustrating the performance of change-point estimators with m = 20, n =
20, nτm,n = 10 based on 100 replicates for DSBMs in setting (G). Figures in
brackets are frequencies of the number of times the corresponding change-point is
observed. Further, Fn := ||Edz(Λ)− Edw(∆)||2F .

Fn
n
m2Fn

n
K2Fn

Km
ν2m,n

m
√
n

ν2m,n
τ̃m,n τ̂m,n ˜̃τm,n

On (G) 10.1 0.51 50.5 0.62 1.38
10(90), 9(5),
8(2), 11(4)

4(42), 5(33),
8(12),
10(5), 14(8)

10(78), 9(15),
8(5), 12(2)

In Regime III, we consider the following set of edges

Kn = {(i, j) : 1 ≤ i, j ≤ m, |λz(i)z(j) − δw(i)w(j)| → 0} (5.1)

and treat edges in Kn and K0 = Kcn separately. Note that in Regime II, Kn = {(i, j) :
1 ≤ i, j ≤ m} is the set of all edges. Hence, we can treat Kn in a similar way as in
Regime II. The role of (A4) in Regime III is analogous to that of (A3) in Regime II. In
the limit, Kn contributes a Gaussian process with a triangular drift term. (A4) ensures
the existence of the asymptotic variance γ̃2 of the limiting Gaussian process as well as
the drift c2

1. (A5) is a technical assumption and is required for establishing asymptotic
normality on Kn. Moreover, K0 is a finite set. (A6) guarantees that K0 does not vary
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with n. (A7) guarantees that τm,n → τ∗ for some τ∗ ∈ (c∗, 1 − c∗), λz(i)z(j) → a∗ij,1
and δw(i)w(j) → a∗ij,2 for all (i, j) ∈ K0. Consider the collection of independent Bernoulli
random variables {A∗ij,l : (i, j) ∈ K0, l = 1, 2} with E(A∗ij,l) = a∗ij,l. Then, (A7) implies

Aij,(bnfc,n)
D→ A∗ij,1I(f < τ∗) +A∗ij,2I(f > τ∗) ∀(i, j) ∈ K0.

The following Theorem summarizes the asymptotic distribution results.

Theorem 26 Suppose SNR-ER holds for τ̂m,n, SNR-DSBM, (NS) and (A1) hold for ˜̃τm,n,
SNR-DSBM, (NS) and (A1*) hold for τ∗m,n and SNR-DSBM holds for τ̃m,n. Then, the
following statements are true. Let η̂m,n denote generically any of the following change-point
estimators: τ̂m,n, τ̃m,n, ˜̃τm,n and τ∗m,n.

(a) If ||Edz(Λ)− Edw(∆)||2F →∞, then limn→∞ P (η̂m,n = τm,n) = 1.

(b) If (A2) and (A3) hold and ||Edz(Λ)− Edw(∆)||2F → 0, then

n||Edz(Λ)− Edw(∆)||2F (η̂m,n − τm,n)
D→ γ2 arg max

h∈R
(−0.5|h|+Bh), (5.2)

where Bh denotes the standard Brownian motion.

(c) Suppose (A2), (A4)-(A7) hold and ||Edz(Λ)− Edw(∆)||F → c > 0, then

n(η̂m,n − τm,n)
D→ arg max

h∈Z
(D(h) + C(h) + A(h))

where for each h ∈ Z,

D(h+ 1)−D(h) = 0.5Sign(−h)c2
1, (5.3)

C(h+ 1)− C(h) = γ̃Wh, Wh
i.i.d.∼ N (0, 1), (5.4)

A(h+ 1)−A(h) =
∑
k∈K0

[
(Zij,h − a∗ij,1)2 − (Zij,h − a∗ij,2)2

]
, (5.5)

{Zij,h} are independently distributed with Zij,h
d
= A∗ij,1I(h < 0) + A∗ij,2I(h ≥ 0) for all

(i, j) ∈ K0.

Remark 27 As we have already noted, consistency of the change-point estimators holds for
both dense and sparse graphs. The same conclusion holds for the asymptotic distribution
under Regime I. However, (A2) is a crucial assumption for establishing the asymptotic
distribution of the change-point estimator under Regimes II and III. (A2) implies that the
random graph is dense. The different statistical and probabilistic aspects of sparse random
graphs constitute a growing area of research in the recent literature. Most of the results
in the sparse setting do not follow from the dense case and different tools and techniques
are needed for their analysis; see Remark 36 for examples. Though the convergence rate
results established in Sections 2 and 3 hold for the sparse setting, deriving the asymptotic
distribution of the change-point estimator under Regimes II and III in sparse random graphs
requires further investigation.
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5.2. Adaptive Inference

Next, we present a data adaptive procedure that does not require a priori knowledge of

the limiting regime. Recall the estimators τ̂m,n,
ˆ̂
Λ,

ˆ̂
∆, ẑ and ŵ of the parameters in the

DSBM model given in (2.1). We generate independent m×m adjacency matrices At,n,DSBM,
1 ≤ t ≤ n, where

At,n,DSBM = ((Aij,(t,n),DSBM)) ∼

{
SBM(ẑ,

ˆ̂
Λ), if 1 ≤ t ≤ bnτ̂m,nc

SBM(ŵ,
ˆ̂
∆), if bnτ̂m,nc < t < n.

(5.6)

Obtain

ĥDSBM = arg max
h∈(n(c∗−τ̂m,n),n(1−c∗−τ̂m,n))

L̃∗(τ̂m,n + h/n, ẑ, ŵ,
ˆ̂
Λ,

ˆ̂
∆) (5.7)

where

L̃∗(τ̂m,n + h/n, ẑ, ŵ,
ˆ̂
Λ,

ˆ̂
∆) =

1

n

m∑
i,j=1

[ nτ̂m,n+h∑
t=1

(Aij,(t,n),DSBM −
ˆ̂
λẑ(i),ẑ(j))

2

+
n∑

t=nτ̂m,n+h+1

(Aij,(t,n),DSBM −
ˆ̂
δŵ(i),ŵ(j))

2

]
. (5.8)

Theorem 28 states the asymptotic distribution of ĥDSBM under a stronger identifiability
condition. Specifically,

SNR-ER-ADAP:
√
n

m2
√

logm
||Edz(Λ)− Edw(∆)||2F →∞

It is easy to show that SNR-ER-ADAP holds if all assumptions in Proposition 24 hold and

(AD) m = en
δ3 for some δ1, δ2, δ3 > 0 and 0 < δ1 + δ2 + δ3/2 < 1/2 (δ1, δ2 are as in

Proposition 24)
is satisfied.

Specifically, Examples (A)-(D) in Section 4 satisfy SNR-ER-ADAP in the presence of con-
dition (AD).

We also need the following condition to ensure that ẑ and ŵ are consistent estimates for z
and w, respectively.

(A1-ADAP) Km
nν2m,n

||Edz(Λ)− Edw(∆)||−1
2 → 0.

Under SNR-ER-ADAP, one can reduce A1-ADAP to K
(n3 logm)1/4ν2m,n

→ O(1). This holds

whenever within and between community connection probabilities are equal (that is λij =
q1, δij = q2 ∀ i 6= j and λii = p1, δii = p2 ∀i), balanced communities of size O(m/K) are
present, and their number is K = O(m2/3). This is because the first two conditions implies
νm,n = O(m/k) (for example see Example 1).

We also require logm = o(
√
n), so that the entries of Edẑ(

ˆ̂
Λ) and Edŵ(

ˆ̂
∆) are bounded

away from 0 and 1. Note that this assumption implies 0 < δ3 < 1/2 in (AD).
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Theorem 28 (Asymptotic distribution of ĥDSBM) Suppose (A2), SNR-ER-ADAP and
A1-ADAP hold and logm = o(

√
n). Then, the following results are true.

(a) If ||Edz(Λ)− Edw(∆)||F →∞, then limn→∞ P (ĥDSBM = 0) = 1

(b) If (A3) holds and ||Edz(Λ)− Edw(∆)||F → 0, then

||Edz(Λ)− Edw(∆)||2F ĥDSBM
D→ γ−2 arg max

h∈R
(−0.5|h|+Bh) (5.9)

where Bh corresponds to a standard Brownian motion.

(c) If (A4)-(A7) hold and ||Edz(Λ)− Edw(∆)||F → c > 0, then

ĥDSBM
D→ arg max

h∈Z
(D(h) + C(h) + A(h)),

where D(·), C(·) and A(·) are same as (5.3)-(5.5).

The proof of the Theorem is given in Section 7.9.

Remark 29 Though SNR-ER-ADAP is stronger than SNR-ER, we have not been able to
relax it. Data-driven methods usually require stronger assumptions even in simple mod-
els like the Erdős-Rényi random graph one, with a single change-point—see for example
Bhattacharjee et al. (2017). To establish the form of the asymptotic distribution of ĥDSBM,
we need to establish convergence in probability as stated in Lemma 34 which do not occur
without SNR-ER-ADAP.

Remark 30 Similar conclusions as in Theorem 28 hold for ˜̃τm,n and τ∗m,n, but under the
stronger assumptions (A1) and (A1*), respectively, instead of A1-ADAP. Details are omit-
ted to avoid repetition. Moreover, as discussed in Sections 2 and 4, (A1) and (A1*) are
difficult to satisfy whereas SNR-ER-ADAP may often hold (see discussion after stating the
assumption). Also computation of ˜̃τm,n is itself expensive and performing adaptive inference
for it will make it even more so. For these reasons, we have mainly focused on adaptive
inference for τ̂m,n.

Remark 31 Note that the asymptotic distribution of ĥDSBM is identical to the asymptotic
distribution of τ̂m,n. Therefore, in practice we can simulate ĥDSBM for a large number
of replicates and use their empirical quantiles as estimates of the quantiles of the limiting
distribution under the (unknown) true regime. Moreover, the adaptive inference is a compu-
tationally expensive procedure and comes at a certain cost, namely the stronger assumption
SNR-ER-ADAP.

6. Concluding Remarks

In this paper, we have addressed the change-point problem in the context of DSBM. We
establish consistency of the change-point estimator under a suitable identifiability condition
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and a second condition that controls the misclassification rate arising from using cluster-
ing for assigning nodes to communities and discuss the stringency of the latter condition.
Further, we propose a fast computational strategy that ignores the underlying community
structure but provides a consistent estimate of the change-point. Further, for both meth-
ods under their respective identifiability and certain additional regularity conditions, we
establish rates of convergence and derive the asymptotic distributions of the change-point
estimators.

In addition, this work identifies an interesting issue that requires further research;
namely, a range of models where the SNR-DSBM identifiability condition holds, but the
misclassification rate condition (A1) needed for the “every time point clustering algorithm”
and the identifiability condition (SNR-ER) of the alternative strategy fails to hold. In that
range, no general strategy for solving the change-point problem for DSBM seems to be
currently available.

Note that even adopting a very simple (almost toy-like) structure for the DSBM (for
example the framework in Gao et al. (2017)), detecting the change-point remains a hard
problem if neither (A1) or (SNR-ER) hold. The modified algorithm proposed in Remark
17 is a good possibility, but the limitations discussed in Remark 18 remain a concern. At
present, we are not aware of any detection algorithm that works by imposing only SNR-
DSBM type assumptions for the change-point problem in DSBM.
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7. Proofs and Other Technical Material

Throughout this section, C is a generic positive constant. Often we write τm,n as τ .

7.1. Proof of Theorem 8

Without loss of generality, assume τ < b. By Lemmas 5.1 and 5.3 of Lei and Rinaldo (2015),
with probability tending to 1, we have

Mb,n,m ≤ C
K

nν2
m,n

[
|| 1
n

nτ∑
t=1

(At,n − Edz(Λ))||2F + || 1
n

nb∑
t=nτ+1

(At,n − Edw(∆))||2F
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+|| 1
n

nb∑
t=nτ+1

(Edz(Λ)− Edw(∆))||2F
]

= C
K

nν2
m,n

(A1 +A2 + |τ − b| ||Edz(Λ)− Edw(∆)||2F ), say.

Now by Theorem 5.2 of Lei and Rinaldo (2015), A1, A2 = OP(m). Thus,

Mb,n,m = OP

(
K

nν2
m,n

(m+ |τ − b|||Edz(Λ)− Edw(∆)||2F )

)
.

This completes the proof of Theorem 8. �

7.2. Selected useful lemmas

The following two lemmas directly quoted from van der Vaart and Wellner (1996) are needed
to establish Theorems 11 and 26.

Lemma 32 For each n, let Mn and M̃n be stochastic processes indexed by a set T . Let
τn (possibly random) ∈ Tn ⊂ T and dn(b, τn) be a map (possibly random) from T to [0,∞).
Suppose that for every large n and δ ∈ (0,∞)

sup
δ/2<dn(b,τn)<δ, b∈T

(M̃n(b)− M̃n(τn)) ≤ −Cδ2, (7.1)

E sup
δ/2<dn(b,τn)<δ, b∈T

√
n|Mn(b)−Mn(τn)− (M̃n(b)− M̃n(τn))| ≤ Cφn(δ), (7.2)

for some C > 0 and for function φn such that δ−αφn(δ) is decreasing in δ on (0,∞) for
some α < 2. Let rn satisfy

r2
nφ(r−1

n ) ≤
√
n for every n. (7.3)

Further, suppose that the sequence {τ̂m,n} takes its values in Tn and satisfies Mn(τ̂n) ≥
Mn(τn)−OP (r−2

n ) for large enough n. Then, rndn(τ̂n, τn) = OP (1).

Lemma 33 Let Mn and M be two stochastic processes indexed by a metric space T , such
that Mn ⇒M in l∞(C) for every compact set C ⊂ T , that is,

sup
h∈C
|Mn(h)−M(h)| P→ 0. (7.4)

Suppose that almost all sample paths h → M(h) are upper semi-continuous and possess
a unique maximum at a (random) point ĥ, which as a random map in T is tight. If the

sequence ĥn is uniformly tight and satisfies Mn(ĥn) ≥ supnMn(h)− oP (1), then ĥn
D→ ĥ in

T .

The following lemma is needed in the proof of Theorem 28.
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Lemma 34 Suppose SNR-ER-ADAP, A1-ADAP holds and logm = o(
√
n). Then, the

following statements hold.

(a)
||Edẑ(

ˆ̂
Λ)−Edŵ(

ˆ̂
∆)||2F

||Edz(Λ)−Edw(∆)||2F
P→ 1.

(b) If ||Edz(Λ)− Edw(∆)||2F → 0, then∑m
i,j=1(λz(i)z(j) − δw(i)w(j))

2λz(i)z(j)(1− λz(i)z(j))
||Edz(Λ)− Edw(∆)||2F

P→ γ2,∑m
i,j=1(λz(i)z(j) − δw(i)w(j))

2δw(i)w(j)(1− δw(i)w(j))

||Edz(Λ)− Edw(∆)||2F
P→ γ2.

(c) If ||Edz(Λ)− Edw(∆)||2F → c2 > 0, then∑
i,j∈Kn

(λz(i)z(j) − δw(i)w(j))
2λz(i)z(j)(1− λz(i)z(j))

P→ γ̃2,

∑
i,j∈Kn

(λz(i)z(j) − δw(i)w(j))
2δw(i)w(j)(1− δw(i)w(j))

P→ γ̃2.

Proof We only show the proof of part (a), since parts (b) and (c) follow employing similar
arguments.∣∣∣∣ ||Edẑ(

ˆ̂
Λ)− Edŵ(

ˆ̂
∆)||2F

||Edz(Λ)− Edw(∆)||2F
− 1

∣∣∣∣ =
|||Edẑ(

ˆ̂
Λ)− Edŵ(

ˆ̂
∆)||2F − ||Edz(Λ)− Edw(∆)||2F |

||Edz(Λ)− Edw(∆)||2F

≤
||Edẑ(

ˆ̂
Λ)− Edz(Λ)− Edŵ(

ˆ̂
∆) + Edw(∆)||2F

||Edz(Λ)− Edw(∆)||2F

≤
||Edẑ(

ˆ̂
Λ)− Edz(Λ)||2F + ||Edŵ(

ˆ̂
∆)− Edw(∆)||2F

||Edz(Λ)− Edw(∆)||2F
Therefore, part (a) follows from Theorem 13, SNR-ER-ADAP, A1-ADAP and logm =
o(
√
n).

7.3. Proof of Theorem 11

Throughout this proof, we use the following simplified notation for ease of exposition: Aijt =
Aij,(t,n), z1 = z̃b,n,m, z2 = z̃τm,n,n,m, w1 = w̃b,n,m, w2 = w̃τm,n,n,m, Λ1 = Λ̃z̃b,n,m,(b,n),m, Λ2 =

Λ̃z̃τm,n,n,m,(τm,n,n),m, Λ3 = Λ̃z̃τm,n,n,(b,n),m, ∆1 = ∆̃w̃b,n,m,(b,n),m, ∆2 = ∆̃w̃τm,n,n,m,(τn,n),m,

∆w = ∆̃w,(b,n),m, λuv,1 = λ̃uv,z̃b,n,m,(b,n),m, λuv,2 = λ̃uv,z̃τm,n,n,m,(τm,n,n),m,

λuv,3 = λ̃uv,z̃τm,n,n,(b,n),m, δuv,1 = δ̃uv,w̃b,n,m,(b,n),m, δuv,2 = δ̃uv,w̃τm,n,n,m,(τm,n,n),m, δuv,w =

δ̃uv,w,(b,n),m. Suppose b < τm,n. Similar arguments work when b > τm,n. Note that

˜̃τm,n = arg min
b∈(c∗,1−c∗)

L̃(b, z1, w1,Λ1,∆1)
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where

L̃(b, z1, w1,Λ1,∆1) =
1

n

m∑
i,j=1

[ nb∑
t=1

(Aijt − λz1(i)z1(j),1)2 +
n∑

t=nb+1

(Aijt − δ̂w1(i)w1(i),1)2

]
. (7.5)

To prove Theorem 11, we need Lemma 32 quoted from van der Vaart and Wellner (1996).
For our purpose, we make use of the above lemma with Mn(·) = L̃(·, z̃·,n,m, w̃·,n,m,
Λ̃z̃·,n,m,(·,n),m, ∆̃w̃·,n,m,(·,n),m), M̃n(·) = EL̃(·, z̃·,n,m, w̃·,n,m, Λ̃z̃·,n,m,(·,n),m, ∆̃w̃·,n,m,(·,n),m), T =
[0, 1], Tn = {1/n, 2/n, . . . , (n− 1)/n, 1} ∩ [c∗, 1− c∗], dn(b, τm,n) = ||Edz(Λ)− Edw(∆)||F√
|b− τm,n|, φn(δ) = δ, α = 1.5, rn =

√
n(ρm,n)−1/2 and τ̂n = ˜̃τm,n. Thus, to prove

Theorem 11, it suffices to establish that for some C > 0,

E(Mn(b)−Mn(τm,n)) ≤ −C||Edz(Λ)− Edw(∆)||2F |b− τm,n| and (7.6)

E sup
δ/2<dn(b,τm,n)<δ,

b∈T

|Mn(b)−Mn(τm,n)− E(Mn(b)−Mn(τm,n))| ≤ C
δ
√
ρm,n√
n

. (7.7)

As the right side of (7.6) and (7.7) are independent of z1, z2, w1, w2, it suffices to show

E∗(Mn(b)−Mn(τm,n)) ≤ −C||Edz(Λ)− Edw(∆)||2F |b− τm,n| and (7.8)

E∗ sup
δ/2<dn(b,τm,n)<δ,

b∈T

|Mn(b)−Mn(τm,n)− E(Mn(b)−Mn(τm,n))| ≤ C
δ
√
ρm,n√
n

. (7.9)

where E∗(·) = E(·|z1, w1, z2, w2). Similarly denote V ∗ = V (·|z1, z2, w1, w2) and Cov∗(·) =
Cov(·|z1, z2, w1, w2).

Note that the left hand side of (7.9) is dominated by(
E∗ sup

δ/2<dn(b,τm,n)<δ, b∈T
(Mn(b)−Mn(τm,n)− E(Mn(b)−Mn(τm,n)))2

)1/2

. (7.10)

By Doob’s martingale inequality, (7.10) is further dominated by

(V∗(Mn(b)−Mn(τm,n)))1/2 where dn(b, τm,n) = δ. (7.11)

Thus, to prove Theorem 11, it suffices to show that for some C > 0,

V∗(Mn(b)−Mn(τm,n)) ≤ Cn−1d2
n(b, τm,n)ρm,n. (7.12)

Hence, it sufficies to prove (7.8) and (7.12) to establish Theorem 11. We shall prove these
for b < τm,n. Similar arguments work when b ≥ τm,n.

Denote by L1 = L̃(b, z1, w1,Λ1,∆1) and L2 = L̃(τ, z2, w2,Λ2,∆2). Hence,

L1 − L2 = A(b) +B(b) +D(b), (7.13)

where

A(b) =
1

n

m∑
i,j=1

nb∑
t=1

[
(Aijt − λz1(i)z1(j),1)2 − (Aijt − λz2(i)z2(j),2)2

]
,
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B(b) =
1

n

m∑
i,j=1

nτ∑
t=nb+1

[
(Aijt − δw1(i)w1(j),1)2 − (Aijt − δz2(i)z2(j),2)2

]
,

D(b) =
1

n

m∑
i,j=1

n∑
t=nτ+1

[
(Aijt − δw1(i)w1(j),1)2 − (Aijt − δw2(i)w2(j),2)2

]
.

Consider the first term of A(b) as follows.

1

nb

nb∑
t=1

m∑
i,j=1

(Aijt − λz1(i)z1(j),1)2

=
1

nb

nb∑
t=1

m∑
i,j=1

A2
ijt +

K∑
u,v=1

su,z1sv,z1(λuv,1)2 −
K∑

u,v=1

su,z1sv,z1(λz1(i)z1(j),1)
∑

i:z1(i)=u

j:z1(j)=v

nb∑
t=1

Aijt
nb

=
1

nb

nb∑
t=1

m∑
i,j=1

A2
ijt −

K∑
u,v=1

su,z1sv,z1(λuv,1)2.

Similarly, the second term of A(b) is

1

nb

nb∑
t=1

m∑
i,j=1

(Aijt − λz2(i)z2(j),2)2 =
1

nb

nb∑
t=1

m∑
i,j=1

A2
ijt +

K∑
u,v=1

su,z2sv,z2(λuv,2)2

−2
K∑

u,v=1

su,z2sv,z2λuv,2λuv,3.

Therefore,

bE∗(A(b)) = −
K∑

u,v=1

su,z2sv,z2E
∗(λuv,2)2 − b

K∑
u,v=1

su,z1sv,z1E
∗(λuv,1)2

+2
K∑

u,v=1

su,z2sv,z2E
∗(λuv,2λuv,3).

Let S((u, v, f), (a, b, g)) be the total number of edges which connect communities u and v
under community structure f , and also communities a and b under community structure g.
Therefore,

E∗(λuv,1)2 = V ∗(λuv,1) + (E(λuv,1))2

=
1

nb

1

(su,z1sv,z1)2

K∑
a,b=1

S((u, v, z1), (a, b, z))λab(1− λab)

+

 1

su,z1sv,z1

K∑
a,b=1

S((u, v, z1), (a, b, z))λab

2

,
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E∗(λuv,2)2 = V ∗(λuv,2) + (E(λuv,2))2 (7.14)

=
1

nτ

1

(su,z2sv,z2)2

K∑
a,b=1

S((u, v, z2), (a, b, z))λab(1− λab)

+

 1

su,z2sv,z2

K∑
a,b=1

S((u, v, z2), (a, b, z))λab

2

,

E∗(λuv,2λuv,3) = Cov∗(λuv,2, λuv,3) + (E(λuv,2))(E(λuv,3))

=
1

nτ

1

(su,z2sv,z2)2

K∑
a,b=1

S((u, v, z2), (a, b, z))λab(1− λab)

+

 1

su,z2sv,z2

K∑
a,b=1

S((u, v, z2), (a, b, z))λab

2

.

Hence,

bE∗(A(b)) = b(A1(b) + A2(b))

where

A1(b) = −
K∑

u,v=1

1

nb

1

su,z1sv,z1

K∑
a,b=1

S((u, v, z1), (a, b, z))λab(1− λab)

+
K∑

u,v=1

1

nτ

1

su,z2sv,z2

K∑
a,b=1

S((u, v, z2), (a, b, z))λab(1− λab),

A2(b) = −
K∑

u,v=1

1

su,z1sv,z1

 K∑
a,b=1

S((u, v, z1), (a, b, z))λab

2

+
K∑

u,v=1

1

su,z2sv,z2

 K∑
a,b=1

S((u, v, z2), (a, b, z))λab

2

. (7.15)

Note that

A1(b) ≥ −
K∑

u,v=1

(
1

nb
− 1

nτ

)
1

su,z1sv,z1

K∑
a,b=1

S((u, v, z1), (a, b, z))λab(1− λab) (7.16)

−
K∑

u,v=1

1

nτ

1

su,z1sv,z1

K∑
a,b=1

S((u, v, z1), (a, b, z))λab(1− λab)

+
K∑

u,v=1

1

nτ

1

su,z2sv,z2

K∑
a,b=1

S((u, v, z2), (a, b, z))λab(1− λab)

≥ −C
(

1

nb
− 1

nτ

)
K2ρm,n
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−C
K∑

u,v=1

1

n

1

su,z1sv,z1

∑
(a,b)6=(u,v)

S((u, v, z1), (a, b, z))

−C
K∑

u,v=1

1

n

1

su,z2sv,z2

∑
(a,b)6=(u,v)

S((u, v, z2), (a, b, z))

−C 1

n

K∑
u,v=1

(S((u, v, z1), (u, v, z)))|(su,z1sv,z1)−1 − (su,zsv,z)
−1|

−C 1

n

K∑
u,v=1

(S((u, v, z2), (u, v, z)))|(su,z2sv,z2)−1 − (su,zsv,z)
−1|

−C 1

n

K∑
u,v=1

(su,zsv,z)
−1|(S((u, v, z1), (u, v, z)))− (S((u, v, z2), (u, v, z))|

≥ −C(τ − b)K
2

n
ρm,n − C(τ − b)M2

b,n,mρ
2
m,n. (7.17)

Further,

A2(b) ≥ −C
K∑

u,v=1

1

su,z1sv,z1

 ∑
(a,b)6=(u,v)

S((u, v, z1), (a, b, z))

2

ρ2
m,n

−C
K∑

u,v=1

1

su,z1sv,z1
(S((u, v, z1), (u, v, z)))2 ρ2

m,n

−C
K∑

u,v=1

1

su,z2sv,z2

 ∑
(a,b)6=(u,v)

S((u, v, z2), (a, b, z))

2

ρ2
m,n

−C
K∑

u,v=1

1

su,z2sv,z2
(S((u, v, z2), (u, v, z)))2 ρ2

m,n

≥ −C(τ − b)n2M2
b,n,mρ

2
m,n

−C
K∑

u,v=1

(S((u, v, z1), (u, v, z)))2|(su,z1sv,z1)−1 − (su,zsv,z)
−1|ρ2

m,n

−C
K∑

u,v=1

(S((u, v, z2), (u, v, z)))2|(su,z2sv,z2)−1 − (su,zsv,z)
−1|ρ2

m,n

−C
K∑

u,v=1

(su,zsv,z)
−1|(S((u, v, z1), (u, v, z)))2 − (S((u, v, z2), (u, v, z))2|ρ2

m,n

≥ −C(τ − b)n2M2
b,n,mρ

2
m,n. (7.18)

This proves

E∗(A(b)) ≥ −C(τ − b)(K
2

n
+ n2M2

b,n,mρ
2
m,n). (7.19)
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Next, consider B(b). Define

µuv,1 =
1

n(τ − b)

nτ∑
t=nb+1

1

su,z2sv,z2

∑
i:z2(i)=u

j:z2(j)=v

Aijt,

µuv,2 =
1

n(τ − b)

nτ∑
t=nb+1

1

su,w1sv,w1

∑
i:w1(i)=u

j:w1(j)=v

Aijt.

Note that

B(b) =
1

n

nτ∑
t=nb+1

m∑
i,j=1

[
(Aijt − δw1(i)w1(j),1)2 − (Aijt − λz2(i)z2(j),2)2

]

=
1

n

nτ∑
t=nb+1

m∑
i,j=1

[
(δw1(i)w1(j),1)2 − (λz2(i)z2(j),2)2 − 2Aijt(δw1(i)w1(j),1)

+2Aijt(λz2(i)z2(j),2))

]
= (τ − b)

K∑
u,v=1

(su,w1sv,w1(δuv,1)2 − su,z2sv,z2(λuv,2)2 − 2µuv,2δuv,1 + 2µuv,1λuv,2).

Therefore,

E∗(B(b)) = B1(b) +B2(b) (7.20)

where

B1(b) = (τ − b)
K∑

u,v=1

[
su,w1sv,w1V

∗(δuv,1)− su,z2sv,z2V ∗(λuv,2)

−2su,w1sv,w1Cov∗(µuv,2, δuv,1) + 2su,z2sv,z2Cov∗(µuv,1, λuv,2)

]
,

B2(b) = (τ − b)
K∑

u,v=1

[
su,w1sv,w1(E∗(δuv,1))2 − su,z2sv,z2(E∗(λuv,2))2

−2su,w1sv,w1E
∗(µuv,2)E∗(δuv,1) + 2su,z2sv,z2E

∗(µuv,1)E∗(λuv,2)

]
= (τ − b)(B21 +B22 +B23 +B24). (7.21)

Now, V ∗(λuv,2) is given in (7.14) and

V ∗(δuv,1) =
1

(n(1− b))2

[
n(τ − b)
su,w1sv,w1

K∑
a,b=1

S((u, v, w1), (a, b, z))λab(1− λab)

+
n(1− τ)

su,w1sv,w1

K∑
a,b=1

S((u, v, w1), (a, b, w))δab(1− δab)
]
,
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Cov∗(µuv,2, δuv,1) =
1

n2(τ − b)(1− b)

[
n(τ − b)
su,w1sv,w1

K∑
a,b=1

S((u, v, w1), (a, b, z))λab(1− λab)
]
,

Cov∗(µuv,1, λuv,2) =
1

n2(τ − b)τ

[
n(τ − b)
su,z2sv,z2

K∑
a,b=1

S((u, v, z2), (a, b, z))λab(1− λab)
]
.

Using similar calculations as in (7.16), we obtain

B1(b) ≥ −C(τ − b)
(
K2

n
ρm,n +M2

b,n,mρ
2
m,n

)
. (7.22)

Next, consider B2(b).

B21 =
K∑

u,v=1

(su,w1sv,w1 − su,wsv,w)(E∗(δuv,1))2

+

K∑
u,v=1

su,wsv,w((E∗(δuv,1))2 − (E∗(δuv,w))2) +

K∑
u,v=1

su,wsv,w(E∗(δuv,w))2

≥ −CM2
b,n,m − C

K∑
u,v=1

su,wsv,w|(E∗(δuv,1))− (E∗(δuv,w))|+
K∑

u,v=1

su,wsv,wδ
2
uv

≥ −CM2
b,n,mρ

2
m,n −B211 +

K∑
u,v=1

su,wsv,wδ
2
uv. (7.23)

We then get

B211 =
K∑

u,v=1

su,wsv,w|(E∗(δuv,1))− (E∗(δuv,w))|

≤
K∑

u,v=1

su,wsv,w

∣∣∣∣ 1

n(1− b)

[
n(τ − b) 1

su,w1sv,w1

K∑
a,b=1

S((u, v, w1), (a, b, z))λab

+n(1− τ)
1

su,w1sv,w1

K∑
a,b=1

S((u, v, w1), (a, b, w))δab

]
− δuv

∣∣∣∣
≤ C

τ − b
1− b

∣∣∣∣ K∑
u,v=1

[
su,wsv,w
su,w1sv,w1

K∑
a,b=1

S((u, v, w1), (a, b, z))λab − su,wsv,wδuv
]∣∣∣∣

+C
1− τ
1− b

∣∣∣∣ K∑
u,v=1

[
su,wsv,w
su,w1sv,w1

K∑
a,b=1

S((u, v, w1), (a, b, w))δab − su,wsv,wδuv
]∣∣∣∣

= B211a +B211b, say. (7.24)

It is easy to see that

B211a ≤ Cρ2
m,n

K∑
u,v=1

∣∣∣∣ su,wsv,wsu,w1sv,w1

− 1

∣∣∣∣su,w1sv,w1
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+Cρ2
m,n

K∑
u,v=1

K∑
a,b=1

|S((u, v, w1), (a, b, z))− S((u, v, w), (a, b, z))|

≤ CM2
b,n,mρ

2
m,n.

Similarly, B211b ≤ CM2
b,n,mρ

2
m,n. Thus, by (7.23) and (7.24), we get

B21 ≥ −CM2
b,n,mρ

2
m,n +

K∑
u,v=1

su,wsv,wδ
2
uv.

Using similar arguments as above, we also have

B22 ≥ −CM2
b,n,mρ

2
m,n −

K∑
u,v=1

su,zsv,zλ
2
uv,

B23 ≥ −CM2
b,n,mρ

2
m,n − 2

K∑
u,v=1

su,wsv,wδuv

K∑
a,b=1

S((u, v, w), (a, b, z))λab

≥ −CM2
b,n,mρ

2
m,n − 2

m∑
i,j=1

λz(i)z(j)δw(i)w(j),

B24 ≥ −CM2
b,n,mρ

2
m,n + 2

K∑
u,v=1

su,zsv,zλ
2
uv.

Hence, by (7.21)

B2(b) ≥ −C(τ − b)M2
b,n,mρ

2
m,n + C(τ − b)||Edz(Λ)− Edw(∆)||2F .

Consequently, by (7.20) and (7.22), we have

E∗(B(b)) ≥ −C(τ − b)K
2

n
ρm,n − C(τ − b)M2

b,n,mρ
2
m,n

+C(τ − b)||Edz(Λ)− Edw(∆)||2F . (7.25)

Recall D(b) in (7.13). Similar arguments as above also lead us to conclude

E∗(D(b)) ≥ −C(τ − b)K
2

n
ρm,n − C(τ − b)n2M2

b,n,mρ
2
m,n. (7.26)

Hence by (7.13), (7.19), (7.25) and (7.26), we have

E∗(L1 − L2) ≥ −C(τ − b)K
2

n
ρm,n − C(τ − b)n2M2

b,n,mρ
2
m,n

+C(τ − b)||Edz(Λ)− Edw(∆)||2F
≥ −C(τ − b)||Edz(Λ)− Edw(∆)||2F , by SNR-DSBM and (A1).(7.27)

This proves (7.8).
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Next, we compute variances. By (7.13),

V ∗(L1 − L2) = V ∗(A(b)) + V ∗(B(b)) + V ∗(D(b)).

We only show the computation for V ∗(A(b)). Other terms can be handled similarly.

V ∗(A(b)) ≤ C

K∑
u,v=1

su,z2sv,z2V
∗(λuv,2)2 + C

K∑
u,v=1

su,z1sv,z1V
∗(λuv,1)2

+2C

K∑
u,v=1

su,z2sv,z2V
∗(λuv,2λuv,3). (7.28)

Let Cumr(X) denote the r-th order cumulant of X. Then,

V ∗(λuv,2)2 ≤ C

n4(su,z2sv,z2)4
E

[ nτ∑
t=1

∑
i:z2(i)=u

j:z2(j)=v

(Aijt − EAijt)
]4

≤ C

n4(su,z2sv,z2)4

[ nτ∑
t=1

∑
i:z2(i)=u

j:z2(j)=v

Cum4(Aijt − EAijt)

+

( nτ∑
t=1

∑
i:z2(i)=u

j:z2(j)=v

Cum4(Aijt − EAijt)
)( nτ∑

t=1

∑
i:z2(i)=u

j:z2(j)=v

Cum4(Aijt − EAijt)
)]

≤ Cρm,n
n2(su,z2sv,z2)2

.

Similarly, V ∗(λuv,1) ≤ Cρm,n
n2(su,z1sv,z1 )2

and V ∗(λuv,2λuv,3) ≤ Cρm,n
n2(su,z2sv,z2 )2

. Hence,

V ∗(A(b)) ≤ Cρm,n
K2

n2
≤ C(τ − b)ρm,n

K2

n
.

Using similar arguments as above, we also have

V ∗(B(b)), V ∗(D(b)) ≤ Cρm,n
K2

n2
≤ C(τ − b)ρm,n

K2

n
.

Hence,

V ∗(L1 − L2) ≤ CK
2

n2
ρm,n ≤ C(τ − b)ρm,n

||Edz(Λ)− Edw(∆)||2F
n

. (7.29)

This proves (7.12).

Therefore, by Lemma 32 the proof of Theorem 11 is complete. �

Remark 35 Following the proof of Theorem 11 (see (7.27)), it is easy to see that Assump-
tion (A9) n2M2

b,n,mρ
2
m,n||Edz(Λ)−Edw(∆)||−2

F → 0 ∀b ∈ (c∗, 1−c∗) on the misclassification
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rate due to clustering is required for achieving consistency of ˜̃τm,n. The rate ofMb,n,m varies
for different clustering procedures. For Clustering Algorithm I presented in Section 2, the
rate of M2

b,n,m is given in Theorem 8 and hence (A9) reduces to (A1). Details are given
before stating (A1). Two variants together with Assumption (A9) and their corresponding
misclassification error rates have also been presented and discussed in Section 7.5.

Note that Assumption (A9) is needed when used in conjunction with the every time
point algorithm. However, the assumption can be weakened if we only cluster the nodes
once before and after the change pont. Note that we assume that the change-point lies in
the interval (c∗, 1− c∗), which implies that we can cluster nodes using all time points before
c and obtain z and similarly cluster nodes using all time points after (1 − c∗ to obtain w.

Then, A2(b) = 0 and as a consequence E∗(A(b)) ≥ −C(τ − b)(K2

n ρm,n +M2
b,n,mρ

2
m,n) holds

which is a sharper lower bound for E∗(A(b)) than the one provided in (7.19). Analogously,

for w we get E∗(D(b)) ≥ −C(τ − b)(K2

n ρm,n +M2
b,n,mρ

2
m,n), This provides E∗(L1 − L2) ≥

−C(τ − b)K
2

n ρm,n − C(τ − b)M2
b,n,mρ

2
m,n + C(τ − b)||Edz(Λ) − Edw(∆)||2F and a weaker

version (A9*) is needed [M2
b,n,mρ

2
m,n||Edz(Λ)− Edw(∆)||−2

F → 0 ∀ b ∈ (c∗, 1− c∗) (instead
of (A9))] along with SNR-DSBM to establish (7.8).

7.4. Proof of Theorem 13

Next, we focus on establishing the convergence rate for ˜̃Λ, while analogous arguments are

applicable for ˜̃∆.

Without loss of generality, assume ˜̃τm,n > τm,n. For some clustering function f and b ∈
(c∗, 1− c∗), recall that λ̃uv,f,(b,n),m = 1

nb

∑nb
t=1

1
su,f sv,f

∑
f(i)=u

f(j)=v

Aij,(t,n).

For some C > 0, we have

||Ed˜̃z(
˜̃Λ)− Edz(Λ)||2F =

m∑
i,j=1

(λ̃˜̃z(i)˜̃z(j),˜̃z,(˜̃τm,n,n),m − λz(i)z(j))
2

≤ 2

m∑
i,j=1

(λ̃˜̃z(i)˜̃z(j),˜̃z,(˜̃τm,n,n),m − λ̃˜̃z(i)˜̃z(j),˜̃z,(τm,n,n),m)2

+2
m∑

i,j=1

(λ̃˜̃z(i)˜̃z(j),˜̃z,(τm,n,n),m − λz(i)z(j))
2

≤ Cm2(ˆ̂τm,n − τm,n)2

+C

m∑
i,j=1

(λ̃˜̃z(i)˜̃z(j),˜̃z,(τm,n,n),m − E
∗λ̃˜̃z(i)˜̃z(j),˜̃z,(τm,n,n),m)2

C

m∑
i,j=1

(E∗λ̃˜̃z(i)˜̃z(j),˜̃z,(τm,n,n),m − λz(i)z(j))
2

= T1 + T2 + T3 (say).

Note that by Theorem 11 we have m−2T1 = OP(I(n > 1)n−2||Edz(Λ)− Edw(∆)||−4
F ρ2

m,n).
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Let P ∗(·) = P (·|˜̃z, ˜̃w). By the sub-Gaussian property of Bernoulli random variables and
since for some positive sequence {C̃m,n}, Ŝm,n ≥ C̃m,n ∀ n with probability 1, we get

P ∗(m−2T2 ≥ t) = P ∗

 1

m2

m∑
i,j=1

(λ̃˜̃z(i)˜̃z(j),˜̃z,(τm,n,n),m − E
∗λ̃˜̃z(i)˜̃z(j),˜̃z,(τm,n,n),m)2 ≥ t


≤

m∑
i,j=1

P ∗
(
|λ̃˜̃z(i)˜̃z(j),˜̃z,(τm,n,n),m − E

∗λ̃˜̃z(i)˜̃z(j),˜̃z,(τm,n,n),m| ≥ C
√
t
)

≤ m2C1e
−C2nŜ2m,nt ≤ m2C1e

−C2nC̃2
m,nt.

Therefore, P
(
m−2T2 ≥ t

)
≤ m2C1e

−C2nC̃m,nt → 0 for t = logm

nC̃2
m,n

ρm,n. Hence, m−2T2 =

OP

(
logm

nC̃2
m,n

ρm,n

)
. Finally,

m−2T3 =
1

m2

m∑
i,j=1

(E∗λ̃˜̃z(i)˜̃z(j),˜̃z,(τm,n,n),m − λz(i)z(j))
2

=
1

m2

m∑
i,j=1

(
1

s˜̃z(i),˜̃z(j)s˜̃z(j),˜̃z

K∑
a,b=1

S((˜̃z(i), ˜̃z(j), ˜̃z), (a, b, z))(λab − λz(i)z(j))
)2

≤ CM2
˜̃τm,n,n,m

= OP

((
Km

nν2
m,n

)2
)
.

Thus, combining the convergence rate of T1, T2 and T3 derived above, establishes the

convergence rate of Edz(
˜̃Λ) when ˜̃τm,n > τm,n. Similar arguments work for ˜̃τm,n ≤ τm,n.

This completes the proof of Theorem 13. �

7.5. More on Remark 19

A key step in using the “all time point clustering” algorithm involves clustering. A specific
clustering procedure proposed in Bhattacharyya and Chatterjee (2017) was used to identify
the communities and for locating the change-point in Section 2. Nevertheless, other clus-
tering algorithms proposed in the literature [Pensky and Zhang (2019); Rohe et al. (2011)]
could be employed. For any given clustering algorithms, (a) and (b) in Remark 19 hold.

However, for (A9) to hold, the corresponding misclassification rate in the dense regime
needs to satisfyMb,n,mn||Edz(Λ)−Edw(∆)||−1

F → 0 for consistency of the estimators. Next,
we elaborate on these alternative clustering algorithms.

Clustering Algorithm II. Instead of doing a spectral decomposition of the average ad-
jacency matrices B1 and B2, the spectral decompositon is applied to their corresponding
Laplcian matrices.
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An appropriate modification of the Proof of Theorem 2.1 in Rohe et al. (2011) implies

Mb,n,m = OP

(
Pm,n
ξ4
Km,n

(
(logm)2

nm
+m2|τm,n − b|||Edz(Λ)− Edw(∆)||2F

))
, (7.30)

where Pm,n = max{su,z, su,w : u = 1, 2, . . . ,Km,n} is the maximum community size and
ξKm,n is the minimum between the Km,n-th smallest eigenvalue of the Laplacians of B1 and

B2. A proof is given in Section 7.5.1. Therefore, to satisfyMb,n,mn||Edz(Λ)−Edw(∆)||−1
F →

0 for the above spectral clustering, we need
n1/2Pm,n(logm)2

ξ4Km,nmKm,n
= O(1) and

Pm,nm3n

ξ4Km,n
→ 0.

However, the latter condition seems excessively stringent in practical settings. For example,
suppose Λ = (p1 − q1)IKm,n + q1JKm,n and ∆ = (p2 − q2)IKm,n + q2JKm,n where IKm,n is
the identity matrix of order Km,n and JKm,n is the Km,n ×Km,n matrix whose entries all
equal 1. Further, suppose 0 < C < p1, q1, p2, q2 < 1 − C < 1 and that the communities
are of equal size. Then, Pn = O(m/Km,n). Moreover, Rohe et al. (2011) established that

ξKm,n = O(Km,n
−1). Hence,

n1/2Pm,n(logm)2

ξ4Km,nmKm,n
= O(

√
nK2

m,n(logm)2) → ∞ and
Pm,nm3n

ξ4Km,n
=

O(m4nKm,n
3) → ∞. On the other hand, as we have seen in Example 1, (A1) is satisfied

for this example.

Clustering Algorithm III. In this case, the following modification of Rohe et al. (2011)’s
algorithm for community detection is employed as follows. Define

Di,(t,n) =

m∑
j=1

Aij,(t,n), D(t,n) = Diag{Di,(t,n) : 1 ≤ i ≤ n}, (7.31)

L(t,n) = D
−1/2
(t,n) At,nD

−1/2
(t,n) , LΛ,(b,n) =

1

nb

nb∑
t=1

L(t,n), L∆,(b,n) =
1

n(1− b)

n∑
t=nb+1

L(t,n).

Note that I − L(t,n) is the Laplacian of At,n. Next, run the spectral clustering algorithm
introduced in Rohe et al. (2011) after replacing L respectively by LΛ,(b,n) and L∆,(b,n) for
estimating z, w.

In this case,

Mb,n,m = OP

(
Pm,n
ξ4
Km,n

(
(logm

√
n)2

√
nm

+m2|τm,n − b|||Edz(Λ)− Edw(∆)||2F

+|τm,n − b|
(logm)2

m

))
, (7.32)

where Pm,n and ξKm,n are as described after (7.30). A proof is given in Section 7.5.2. There-

fore, to satisfy Mb,n,mn||Edz(Λ)− Edw(∆)||−1
F → 0 for this variant of the spectral cluster-

ing algorithm, we require
n3/2Pm,n(logm)2

ξ4Km,nmKm,n
= O(1),

nPm,n(logm
√
n)2

ξ4Km,nmKm,n
= O(1) and

Pm,nm3n

ξ4Km,n
→ 0.

However, these are much stronger conditions that the one required for Clustering Algorithm
II.

The upshot of the previous discussion is that Clustering Algorithm I requires a milder
assumption (A1) on the misclassification rate compared to Clustering Algorithms II and
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III. This is the reason that the results established in Sections 2 and 3 leverage the former
algorithm.

7.5.1. Justification of (7.30)

Let L(A) denote the Laplacian of A. Also without loss of generality, assume b > τ . Using
similar arguments as in Appendix B, C and D of Rohe et al. (2011), we can easily show
that for some C > 0 and with probability tending 1,

Mb,n,m ≤ C
Pm,n
ξ4
Km,n

||(L(
1

n

nb∑
t=1

At,n))2 − (L(Edz(Λ)))2||2F

≤ C
Pm,n
ξ4
Km,n

(
||(L(

1

n

nτ∑
t=1

At,n))2 − (L(Edz(Λ)))2||2F

+||(L(
1

n

nb∑
t=nτ+1

At,n))2 − (L(Edz(∆)))2||2F

+|τ − b| ||(L(Edz(∆)))2 − (L(Edz(Λ)))2||2F
)

= C
Pm,n
ξ4
Km,n

(A1 +A2 +A3), say. (7.33)

Then,using similar arguments as in Lemma A.1 of Rohe et al. (2011), we obtain

A1, A2 = OP(
(logm)2

mn
).

Define,

Di,Λ =

m∑
j=1

λz(i)z(j), DΛ = Diag{Di,Λ : 1 ≤ i ≤ m},

Di,∆ =
m∑
j=1

δw(i)w(j), D∆ = Diag{Di,∆ : 1 ≤ i ≤ m}.

Then,

A3 ≤ Cm||L(Edz(Λ))− L(Edw(∆))||2F
≤ Cm||D−1/2

Λ Edz(Λ)D−1/2
Λ −D−1/2

∆ Edz(∆)D1/2
∆ ||

2
F

≤ Cm

[
||Edz(Λ)− Edz(∆)||2F ||D

1/2
Λ ||

4
F + 2||D−1/2

Λ −D−1/2
∆ ||2F ||Edz(∆)||2F ||D

−1/2
∆ ||2F

]
≤ Cm(||Edz(Λ)− Edz(∆)||2F +

C

m
||Edz(Λ)− Edz(∆)||2Fm2)

≤ Cm2||Edz(Λ)− Edz(∆)||2F .
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Hence,

Mb,n,m = OP

(
Pm,n
ξ4
Km,n

(
(logm)2

mn
+ |τ − b|m2||Edz(Λ)− Edz(∆)||2F

))
.

This completes the justification of (7.30).

7.5.2. Justification of (7.32)

Using similar arguments to those presented in Section 7.5.1, with probability tending to 1,
we have

Mb,n,m ≤ C
Pm,n
ξ4
Km,n

||(LΛ,(b,n))
2 − (L(Edz(Λ)))2||2F

≤ C
Pm,n
ξ4
Km,n

[
||(LΛ,(τ,n))

2 − (L(Edz(Λ)))2||2F +
1

n

nb∑
t=nτ+1

||(L(At,n))2 − (L(Edw(∆)))2||2F

+|τ − b|||(L(Edz(∆)))2 − (L(Edz(Λ)))2||2F
]

≤ C
Pm,n
ξ4
Km,n

(A1 +A2 + |τ − b|m2||Edz(Λ)− Edz(∆)||2F ), say.

Then, by Theorem 2.1 in Rohe et al. (2011), we have

A1 = OP(
(logm

√
n)2

m
√
n

) and A2 = OP(|τ − b|(logm)2

m
).

Hence,

Mb,n,m = OP

(
Pm,n
ξ4
Km,n

(
(logm

√
n)2

√
nm

+m2|τ − b|||Edz(Λ)− Edw(∆)||2F + |τ − b|(logm)2

m

))
.

This completes the justification of (7.32).

7.6. Proof of Theorem 20

To prove Theorem 20, note that the proof of Theorem 11 in Section 7.3 goes through once
we use Mb,n,m = 0, z1 = z2 = z, w1 = w2 = w and K = m. In this case, (7.27) and (7.29)
implies

E∗(L1 − L2) ≥ −C(τ − b)m
2ρm,n
n

+ C(τ − b)||Edz(Λ)− Edw(∆)||2F ,

V ∗(L1 − L2) ≤ C(τ − b)ρm,n||Edz(Λ)− Edw(∆)||2F .

Therefore, by SNR-ER and Lemma 32, Theorem 20 follows. �
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7.7. More on Remark 23

In this section, we focus on the dense network regime. A similar discussion is applicable for
the sparse regime as well. As pointed out in Remark 23, one may wonder regarding settings
where SNR-DSBM holds, but neither (A1) nor SNR-ER do. The following Examples 5 and
6 introduce such settings in the context of changes in the connection probabilities and in
the community structures, respectively.

Example 5 (Change in connection probabilities) Consider a DSBM where

z = w and Λ = ∆− 1√
n
. (7.34)

In this case ||Edz(Λ) − Edw(∆)||2F = m2

n . Therefore, SNR-ER does not hold. However,
SNR-DSBM holds if K = o(m). Cases (a)-(c) presented below provide settings where (A1)
does not hold, but SNR-DSBM does.

(a) Consider the setting in Example 1 with K = Cm0.5−δ (that is K = o(m)) and n = Cm4δ

for some C > 0 and δ < 1/6. It can easily be seen that (A1) does not hold, but SNR-DSBM
does.

(b) Suppose all assumptions in Example 2 hold, K is finite and m = Cn2δ. In this case,
(A1) does not hold, but SNR-DSBM does.

(c) Finally, consider the setup in Example 3 with K = o(m), mmin = Cmδ, n = mλ for
some λ > 0, δ ∈ [0, 1] and −λ/2 ≤ 2δ − 1 < λ/2. The same conclusion on (A1) failing to
hold, while SNR-DSBM holding is reached.

Therefore, in each of the (a)-(c) cases, together with (7.34) do not satisfy (A1) and SNR-
ER, whereas SNR-DSBM holds.

Example 6 (Change in communities) Consider a DSBM where for 0 < p < 1,

K = 2, z(i) =

{
1 if i is odd

2 if i is even,
w(i) =

{
1 if 1 ≤ i ≤ [m/2]

2 if [m/2] < i ≤ m,
(7.35)

Λ = ∆ =

(
p p− 1√

n

p− 1√
n

p

)
.

This gives ||Edz(Λ) − Edw(∆)||2F = m2

n . Hence, SNR-ER does not hold, but SNR-DSBM
does. Also suppose m = Cnδ for some C > 0 and δ ∈ [1, 1.5). In this case (A1) is not
satisfied.

The methods discussed in Sections 2 and 3 fail to detect the change-point under the
above presented settings. Therefore, alternative strategies not based on clustering and hence
assumption (A1) need to be investigated.

One possibility for the case of a single change-point being present was discussed in
Remark 17.
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Example 7 As the true change-point τm,n ∈ (c∗, 1− c∗), we can use τ∗m,n to estimate τm,n
and its consistency follows from SNR-DSBM and (A1*) m√

nν2m,n
= O(1) which is much

weaker than (A1). As we have seen before, (A1) and SNR-ER do not hold in Examples 6
and 7 whereas SNR-DSBM is satisfied. Based on the discussion in Remark 17, it is easy
to see that (A1*) holds for these examples. Therefore, for the settings posited in Examples
6 and 7, τ∗m,n estimates τm,n consistently. Nevertheless, as mentioned in Remark 17, this
strategy is not easy to extend to a setting involving multiple change-points.

Another setting that does not require clustering is presented next and builds on the
model discussed in Gao et al. (2015).

Example 8 Consider a DSBM with K = 2 communities. Further, let B1z and B1w be

the blocks where node 1 belongs to under z and w, respectively, and let Λ =

(
a1 d1

d1 a1

)
,

∆ =

(
a2 d2

d2 a2

)
with 0 < c < a1, a2, d1, d2 < 1− c < 1, a1 > d1, a2 > d2, a1− d1 = a2− d2

and the true change-point τ ∈ (c∗, 1 − c∗). Recall p̂ij,(b,n) and q̂ij,(b,n) from (3.2). Let
γj = p̂11,(b,n) − p̂1j,(b,n) and δj = q̂11,(b,n) − q̂1j,(b,n). One can use the following algorithm to

detect communities. Chose B,B∗ > 0 and δ ∈ (0, 1) such that B√
nδ
≤ c∗

1−c∗ (a1 − d1).

1. If γj ≤ B√
nδ

and δj ≤ B√
nδ

, then put node j in B1z ∩B1w.

2. If γj ≤ B√
nδ

and δj >
B√
nδ

, then put node j in B1z ∩Bc
1w.

3. If γj >
B√
nδ

and δj ≤ B√
nδ

, then put node j in Bc
1z ∩B1w.

4. If γj >
B√
nδ

and δj >
B√
nδ

, then we need further investigation.

(4a) If
γj
δj
≤ 1− B∗√

nδ
, then put node j in B1z ∩Bc

1w.

(4b) If
γj
δj
> 1 + B∗√

nδ
, then put node j in Bc

1z ∩B1w.

(4c) If
γj
δj
∈ (1− B∗√

nδ
, 1 + B∗√

nδ
), then put node j in Bc

1z ∩Bc
1w.

In this algorithm, it is easy to see that P(no node is misclassifed) → 1. Therefore, an
alternative condition (A9) is satisfied (see details about it in Section 7.7.1) and ˜̃τn estimates
τn consistently.

However, the setting in Example 8 is very specific involving two parameters only for each
connection probability matrix), which in turn allows one to use statistics based on the
degree connectivity of each node and thus avoid using a clustering algorithm. Nevertheless,
a generally applicable strategy is currently lacking for the regime where SNR-DSBM holds,
but neither SNR-ER or (A1) do. This constitutes an interesting direction of further research.
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7.7.1. justification of Example 8

It is easy to see that the following results (a)-(d) hold under the assumptions in Example
8.

(a) γj , δj = OP( 1√
n

) when j ∈ B1z ∩B1w.

(b) γj − b−τ
b (a2 − d2), δj − (a2 − d2),

γj
δj
− b−τ

b = OP( 1√
n

) when j ∈ B1z ∩Bc
1w.

(c) γj − τ
b (a1 − d1), δj = OP( 1√

n
) when j ∈ Bc

1z ∩B1w.

(d) γj − (a1 − d1), δj − (a1 − d1),
γj
δj
− 1 = OP( 1√

n
) when j ∈ Bc

1z ∩Bc
1w.

Using the above results, we have

(a) P (j is classified in B1z ∩ B2w | j ∈ B1z ∩ B2w) ≤ P (γj <
B√
nδ
, δj <

B√
nδ
| j ∈

B1z ∩B2w)→ 1.

(b) P (j is classified in Bc
1z ∩ B2w | j ∈ Bc

1z ∩ B2w) ≤ P (γj >
B√
nδ
, δj <

B√
nδ
| j ∈ Bc

1z ∩
B2w) + P (

γj
δj
> 1 + B∗√

nδ
| j ∈ Bc

1z ∩B2w)→ 1.

(c) P (j is classified in B1z ∩ Bc
2w | j ∈ B1z ∩ Bc

2w) ≤ P (γj <
B√
nδ
, δj >

B√
nδ
| j ∈ B1z ∩

Bc
2w) + P (

γj
δj
< 1− B∗√

nδ
| j ∈ B1z ∩Bc

2w)→ 1.

(d) P (j is classified in Bc
1z ∩ Bc

2w | j ∈ Bc
1z ∩ Bc

2w) ≤ P (
γj
δj
∈ (1 − B∗√

nδ
, 1 + B∗√

nδ
) | j ∈

Bc
1z ∩Bc

2w)→ 1.

These all together implies P (no node is misclassified)→ 1.

7.8. Proof of Theorem 26

Next, we prove Theorem 26 for ˜̃τm,n.Note that the proof for τ̂m,n is much simpler, once we
use z1 = z2 = z, w1 = w2 = w, K = m and Mb,n,m = 0 in the following proof.

Suppose ||Edz(λ)−Edw(∆)||F →∞. Then by Theorem 11, it is easy to see that P (˜̃τm,n =
τm,n)→ 1.

Lemma 33 from van der Vaart and Wellner (1996) proves useful for establishing the asymp-
totic distribution of the change-point estimate, when ||Edz(Λ)− Edw(∆)||F → c ≥ 0.

Next, suppose ||Edz(λ)− Edw(∆)||F → c ≥ 0. Take h = n|τ − b|||Edz(λ)− Edw(∆)||2F .

Recall the definitions of A(b) and D(b) from (7.13). Using expectations in (7.19) and (7.26),
it is easy to see that by SNR-DSBM, (A1) and as ||Edz(λ)− Edw(∆)||F → c ≥ 0, we have

E sup
h∈C
|nA(b)|, E sup

h∈C
|nD(b)| ≤ C K2

n||Edz(λ)− Edw(∆)||2F
+ C

nM2
b,n,m

|Edz(λ)− Edw(∆)||2F
→ 0
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for some compact set C ⊂ R.

This establishes that if ||Edz(λ)− Edw(∆)||F → c ≥ 0 and SNR-DSBM and (A1) hold,
then

sup
h∈C
|nA(b)|, sup

h∈C
|nD(b)| P→ 0. (7.36)

Next, recall the definition of B(b) from (7.13). Using similar arguments in Section 7.3, it is
easy to show that

B(b) =
nτ∑

t=nb+1

m∑
i,j=1

(2Aijt − 2λz(i)z(j))(λz(i)z(j) − δw(i)w(j))

+n|τ − b|||Edz(Λ)− Edw(∆)||2F +R(b)

where R(b) ≤ C|τ − b|n2M2
b,n,m. Therefore, by (A1)

sup
h∈C
|R(b)| P→ 0. (7.37)

Suppose ||Edz(Λ)−Edw(∆)||F → 0. Applying the Central Limit Theorem, it is easy to see
that

sup
h∈C
|B(b)−R(b) + |h|+ 2γBh|

P→ 0. (7.38)

Thus, by (7.36)-(7.38) and Lemma 33,

n||Edz(Λ)− Edw(∆)||2F (˜̃τm,n − τm,n)
D→ arg min

h∈R
(|h|+ 2γBh)

D
= arg max

h∈R
(−0.5|h|+ γBh)

D
= γ2 arg max

h∈R
(−0.5|h|+Bh).

This proves Part(b) of Theorem 26.

Suppose ||Edz(Λ)− Edw(∆)||F → c > 0. Then,

B(b)−R(b) =

m∑
i,j=1

nτ∑
t=nb+1

[
− (Aij,(t,n) − λz(i)z(j))2 + (Aij,(t,n) − δw(i)w(j))

2

]

=
∑
i,j∈Kn

nτ∑
t=nb+1

[
− (Aij,(t,n) − λz(i)z(j))2 + (Aij,(t,n) − δw(i)w(j))

2

]

+
∑
i,j∈K0

nτ∑
t=nb+1

[
− (Aij,(t,n) − λz(i)z(j))2 + (Aij,(t,n) − δw(i)w(j))

2

]
= Ta + Tb (say). (7.39)

By (A6) and (A7) and if ||Edz(Λ)− Edw(∆)||F → c > 0, we obtain

sup
h∈C
|Tb −A∗(h)| P→ 0 (7.40)
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where each h ∈ Z, A∗(c2(h + 1)) − A∗(c2h) =
∑

k∈K0

[
(Zij,h − a∗ij,1)2 − (Zij,h − a∗ij,2)2

]
and {Zij,h} are independently distributed with Zij,h

d
= A∗ij,1I(h < 0) +A∗ij,2I(h ≥ 0) for all

(i, j) ∈ K0.

Next, Ta = 2
∑nτ

t=nb+1

∑
i,j∈Kn(Aij,(t,n)− λz(i)z(j))(δw(i)w(j)− λz(i)z(j)) + |h|. An application

of the Central Limit Theorem together with (A4) and (A5) yields

sup
h∈C
|Ta −D∗(h)− C∗(h)| P→ 0. (7.41)

where for each h ∈ Z, D∗(c2(h+1))−D∗(c2h) = 0.5Sign(−h)c2
1 and C∗(c2(h+1))−C∗(c2h) =

γ̃LSEWh, Wh
i.i.d.∼ N (0, 1).

Therefore, by (7.36), (7.37), (7.40), (7.41) and Lemma 33, Part (c) of Theorem 26 is estab-
lished.

This completes the proof of Theorem 26. �

7.9. Proof of Theorem 28

Suppose h > 0. Then,

L̃∗(τ̂m,n + h/n, ẑ, ŵ,
ˆ̂
Λ,

ˆ̂
∆) =

1

n

m∑
i,j=1

[ nτ̂m,n+h∑
t=1

(Aij,(t,n),DSBM −
ˆ̂
λẑ(i)ẑ(j))

2

+

n∑
t=nτ̂m,n+h+1

(Aij,(t,n),DSBM −
ˆ̂
δŵ(i)ŵ(j))

2

]
.

We then have

L̃∗(τ̂m,n + h/n, ẑ, ŵ,
ˆ̂
Λ,

ˆ̂
∆)− L̃∗(τ̂m,n, ẑ, ŵ, ˆ̂

Λ,
ˆ̂
∆)

=
1

n

m∑
i,j=1

nτ̂m,n+h∑
t=nτ̂m,n+1

[
(Aij,(t,n),DSBM −

ˆ̂
λẑ(i)ẑ(j))

2 − (Aij,(t,n),DSBM −
ˆ̂
δŵ(i)ŵ(j))

2

]

=
1

n

m∑
i,j=1

nτ̂m,n+h∑
t=nτ̂m,n+1

[
(
ˆ̂
δŵ(i)ŵ(j) −

ˆ̂
λẑ(i)ẑ(j))

2

+2(Aij,(t,n),DSBM −
ˆ̂
δŵ(i)ŵ(j))(

ˆ̂
δŵ(i)ŵ(j) −

ˆ̂
λẑ(i)ẑ(j))

]
.

Let E∗∗(·) = E(·|ẑ, ŵ), V ∗∗ = V (·|ẑ, ŵ) and Cov∗∗(·) = Cov(·|ẑ, ŵ).

Therefore,

E∗∗(L̃∗(τ̂n + h/n, ẑ, ŵ,
ˆ̂
Λ,

ˆ̂
∆)− L̃∗(τ̂n, ẑ, ŵ, ˆ̂

Λ,
ˆ̂
∆)) =

h

n
||Edẑ(

ˆ̂
Λ)− Edŵ(

ˆ̂
∆)||2F .
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Note that all entries of
ˆ̂
Λ and

ˆ̂
∆ are bounded away from 0 and 1, since logm = o(

√
n).

Therefore,

V ∗∗(L̃∗(τ̂m,n + h/n, ẑ, ŵ,
ˆ̂
Λ,

ˆ̂
∆)− L̃∗(τ̂m,n, ẑ, ŵ, ˆ̂

Λ,
ˆ̂
∆))

=
h

n2

m∑
i,j=1

(
ˆ̂
λẑ(i)ẑ(j) −

ˆ̂
δŵ(i)ŵ(j))

2 ˆ̂
δŵ(i)ŵ(j)(1−

ˆ̂
δŵ(i)ŵ(j))

≤ h

n2
||Edẑ(

ˆ̂
Λ)− Edŵ(

ˆ̂
∆)||2F .

Hence, by Lemma 32 and similar arguments to those made at the beginning of Section 7.3,
we have

||Edẑ(
ˆ̂
Λ)− Edŵ(

ˆ̂
∆)||2Fh = OP(1).

Then, by Lemma 34(a),

||Edz(Λ)− Edw(∆)||2Fh = OP(1).

This implies Theorem 28(a).

Next, we establish Theorem 28(b). Note that

n(L̃∗(τ̂m,n + h||Edẑ(
ˆ̂
Λ)− Edŵ(

ˆ̂
∆)||−2

F /n, ẑ, ŵ,
ˆ̂
Λ,

ˆ̂
∆)− L̃∗(τ̂m,n, ẑ, ŵ, ˆ̂

Λ,
ˆ̂
∆))

= −|h| − 2

nτ̂m,n+h∑
t=nτ̂m,n+1

m∑
i,j=1

(
ˆ̂
λẑ(i)ẑ(j) −

ˆ̂
δŵ(i)ŵ(j))(Aij,(t,n),DSBM −

ˆ̂
δŵ(i)ŵ(j))

+oP(1), (7.42)

Further, note that given {At,n}, {
∑m

i,j=1(
ˆ̂
λẑ(i)ẑ(j)−

ˆ̂
δŵ(i)ŵ(j))(Aij,(t,n),DSBM−

ˆ̂
δŵ(i)ŵ(j))} is a

collection of independent random variables. By Lemma 34(b), we have

E

nτ̂m,n+h∑
t=nτ̂m,n+1

m∑
i,j=1

(
ˆ̂
λẑ(i)ẑ(j) −

ˆ̂
δŵ(i)ŵ(j))(Aij,(t,n),DSBM −

ˆ̂
δŵ(i)ŵ(j))

= E

[ nτ̂m,n+h∑
t=nτ̂m,n+1

m∑
i,j=1

(
ˆ̂
λẑ(i)ẑ(j) −

ˆ̂
δŵ(i)ŵ(j))E

∗∗(Aij,(t,n),DSBM −
ˆ̂
δŵ(i)ŵ(j))

]
= 0,

V

( nτ̂m,n+h∑
t=nτ̂m,n+1

m∑
i,j=1

(
ˆ̂
λẑ(i)ẑ(j) −

ˆ̂
δŵ(i)ŵ(j))(Aij,(t,n),DSBM −

ˆ̂
δŵ(i)ŵ(j))

)

= hE

(
||Edẑ(

ˆ̂
Λ)− Edŵ(

ˆ̂
∆)||−2

F

m∑
i,j=1

(
ˆ̂
Λẑ(i)ẑ(i) −

ˆ̂
∆ŵ(i)ŵ(i))

2 ˆ̂
δŵ(i)ŵ(i)(1−

ˆ̂
δŵ(i)ŵ(i))

)
→ hγ2,
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E

[∑nτ̂m,n+h
t=nτ̂m,n+1

∑m
i,j=1(

ˆ̂
λẑ(i)ẑ(j) −

ˆ̂
δŵ(i)ŵ(j))(Aij,(t,n),DSBM −

ˆ̂
δŵ(i)ŵ(j))

]3

[
V

(∑nτ̂m,n+h
t=nτ̂m,n+1

∑m
i,j=1(

ˆ̂
λẑ(i)ẑ(j) −

ˆ̂
δŵ(i)ŵ(j))(Aij,(t,n),DSBM −

ˆ̂
δŵ(i)ŵ(j))

)]3/2

≤ CE

∑m
i,j=1 |

ˆ̂
λẑ(i)ẑ(j) −

ˆ̂
δŵ(i)ŵ(j)|3

||Edẑ(
ˆ̂
Λ)− Edŵ(

ˆ̂
∆)||2F


≤ C(E||Edẑ(

ˆ̂
Λ)− Edŵ(

ˆ̂
∆)||2F )1/2

≤ C
(
E(||Edz(Λ)− Edẑ

ˆ̂
Λ||2F ) + E(||Edw(∆)− Edŵ(

ˆ̂
∆)||2F ) + ||Edz(Λ)− Edw(∆)||2F

)
→ 0.

Hence, an application of Lyapunov’s Central Limit Theorem together with (A1)-(A4) and
SNR**-DSBM-ADAP yields

n(L̃∗(τ̂m,n + h||Edẑ(
ˆ̂
Λ)− Edŵ(

ˆ̂
∆)||−2

F /n, ẑ, ŵ,
ˆ̂
Λ,

ˆ̂
∆)− L̃∗(τ̂m,n, ẑ, ŵ, ˆ̂

Λ,
ˆ̂
∆))

⇒ −|h|+ γBh (7.43)

Similar arguments are applicable for the case of h < 0.

Finally, (7.43) in conjunction with Lemma 33 establish Theorem 28(b).

An analogous argument to that in the proof of Theorem 26(c) together with similar ap-
proximations as in the proof of Theorem 28(b) establish Theorem 28(c) and hence they are
omitted. Hence, Theorem 28 is established. �

7.10. Assumptions for the asymptotic distribution of change-point estimators

Next, we provide precise statements of Assumptions (A3)-(A7) required for establishing the
asymptotic distribution of the change point estimators in Theorem 26. A brief comment on
these assumptions is given after stating them. We refer to Bhattacharjee et al. (2017) for
more in depth explanation.

For Regime II, we define

γ2 = lim

∑m
i,j=1(λz(i)z(j) − δw(i)w(j))

2λz(i)z(j)(1− λz(i)z(j))∑m
i,j=1(λz(i)z(j) − δw(i)w(j))2

= lim

∑m
i,j=1(λz(i)z(j) − δw(i)w(j))

2δw(i)w(j)(1− δw(i)w(j))∑m
i,j=1(λz(i)z(j) − δw(i)w(j))2

,

and assume that

(A3) γ2 exists.

In Regime II, the asymptotic variance of the change-point estimator is proportional to γ2.
Hence, we require (A3) for its existence and (A2) for the non-degeneracy of the asymptotic
distribution.
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In Regime III, we consider the following set of edges

Kn = {(i, j) : 1 ≤ i, j ≤ m, |λz(i)z(j) − δw(i)w(j)| → 0}. (7.44)

Define

c2
1 = lim

∑
i,j∈Kn

(λz(i)z(j) − δw(i)w(j))
2 and (7.45)

γ̃2 = lim
∑
i,j∈Kn

(λz(i)z(j) − δw(i)w(j))
2λz(i)z(j)(1− λz(i)z(j))

= lim
∑
i,j∈Kn

(λz(i)z(j) − δw(i)w(j))
2δw(i)w(j)(1− δw(i)w(j)).

Consider the following assumptions.
(A4) c1 and γ̃ exist.
(A5) supij∈Kn |λz(i)z(j) − δw(i)w(j)| → 0.
(A6) K0 = Kcn does not vary with n.
(A7) For some τ∗ ∈ (c∗, 1 − c∗), τn → τ∗ as n → ∞. Suppose λz(i)z(j) → a∗ij,1 and
δw(i)w(j) → a∗ij,2 for all (i, j) ∈ K0.

In Regime III, we need to treat edges in Kn and K0 = Kcn separately. Note that in Regime
II, Kn = {(i, j) : 1 ≤ i, j ≤ m} is the set of all edges. Hence, we can treat Kn in a similar
way as in Regime II and hence we need (A4) in Regime III analogous to (A3) in Regime
II. (A5) is a technical assumption and is required for establishing asymptotic normality on
Kn. Moreover, K0 is a finite set. (A6) guarantees that K0 does not vary with n. Consider
the collection of independent Bernoulli random variables {A∗ij,l : (i, j) ∈ K0, l = 1, 2} with

E(A∗ij,l) = a∗ij,l. (A7) ensures that Aij,(bnfc,n)
D→ A∗ij,1I(f < τ∗)+A∗ij,2I(f > τ∗) ∀(i, j) ∈ K0.

Remark 36 Note that (A2) is a crucial assumption for establishing the asymptotic distribu-
tion of the change-point estimator. It indicates that the resulting random graphi’s topology.
However, another regime of interest is that where the expected degree of each node grows
slower than the total number of nodes in the graph, which gives rise to a sparse regime.
A number of technical results both from probabilistic and statistical viewpoints have been
considered in the recent literature - see, for examples Sarkar and Bickel (2015) and Le et al.
(2017). Note that results strongly diverge in their conclusions under these two regimes. For
example, Oliveira (2009) showed that the inhomogeneous Erdős-Rényi model satisfies

||L(A)− L(EA)|| = O

(√
logm

d0

)

with high probability, where m is the total number of nodes in the graph, d0 = mini
∑m

j=1EAij,
A is the observed adjacency matrix, L(·) is the Laplacian and || · || is the operator norm.
Therefore, if the expected degrees are growing slower than logm, L(A) will not be concen-
trated around L(EA). Le et al. (2017) established a different concentration inequality for the
case d0 = o(logm) after appropriate regularization on the Laplacian and the edge probability
matrix. Sarkar and Bickel (2015) also established the convergence rate of the eigenvectors

56



Change Point Estimation in DSBM

of the Laplacian for SBM with two communities, which deviates from existing results for
dense random graphs. The upshot is that results for the sparse regime are markedly different
than those for the dense one.

It is worth noting that the convergence rate results established in Sections 2 and 3 hold
also for the sparse setting; however, establishing the asymptotic distribution of the change-
point estimate in a sparse setting, together with issues of adaptive inference will require
further work.
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