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ABSTRACT

The use of millimeter waves (mmWave) for next-generation cellular systems is promising due
to the large bandwidth available in this band. Beamforming will likely be divided into RF and
baseband domains, which is called hybrid beamforming. Precoders can be designed by using a
predefined codebook or by choosing beamforming vectors arbitrarily in hybrid beamforming. The
computational complexity of finding optimal precoders grows exponentially with the number of
RF chains. In this paper, we develop a Q-learning (a form of reinforcement learning) based algo-
rithm to find the precoders jointly. We analyze the complexity of the algorithm as a function of
the number of iterations used in the training phase. We compare the spectral efficiency achieved
with unconstrained precoding, exhaustive search, and another state-of-art algorithm. Results show
that our algorithm provides better spectral efficiency than the state-of-art algorithm and has perfor-
mance close to that of exhaustive search.

INTRODUCTION

The massive amount of spectrum in the mmWave frequencies is considered as one of the key en-
ablers for next-generation cellular systems [1,2]. Large-scale antenna systems aka massive MIMO
systems can be feasible in mmWaves to provide beamforming gains since a large number of an-
tennas can be placed in small spaces at high frequencies [3, 4]. In conventional cellular systems
operating in lower frequencies, digital beamforming is implemented to have better control for
designing the precoding matrices. However, digital beamforming is not a practical solution in
mmWaves due to the complexity, energy consumption, and cost overhead [5]. In particular, each
antenna array element requires to be fed with separate transceiver and data converter, which leads
to high power consumption and cost. Analog beamforming was proposed to reduce the number
of transceivers [6, 7]. With analog beamforming, each transceiver is connected with multiple an-
tennas, and the phase of the transmitted signal at each antenna of the array is controlled by using
analog phase shifters. However, analog beamforming also has challenges, for example, the phase
shifters allow only quantized phase values for the transmitted signals. Moreover, each transceiver
forms a single beam towards a user, so a separate transceiver is required for each user in multiple-
user systems. In this case, inter-user interference would be burdensome if the spatial separation
between users is not enough [5].
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Figure 1: Hybrid beamforming architecture with RF and baseband blocks.

To overcome the bottlenecks of analog and digital beamforming, hybrid beamforming was pro-
posed in [8–10], where digital beamforming is utilized on top of analog beamforming. The sparsity
of mmWave channels was exploited in [8] to use the basis pursuit algorithm for developing a hybrid
precoding scheme based on complete channel state information (CSI). In [9], a hybrid precoding
algorithm, which uses partial CSI, was proposed. Authors of [10] proposed low-complexity chan-
nel estimation and hybrid precoding algorithms when both the base station (BS) and the mobile
station (MS) are equipped with large antenna arrays.

In hybrid beamforming, RF precoders can be designed based on the optimal (i.e., unconstrained)
or sub-optimal (i.e., constrained) solution. In unconstrained solution, the codebook of precoders
are not fixed and beam steering directions can be chosen arbitrarily. In the constrained solution
(i.e., codebook-based), RF precoders can be selected from some codebook in which beamform-
ing vectors depend on quantized directions. Codebook-based hybrid beamforming design is more
practical since it takes hardware limitations into account and it is easier to implement for arbitrary
antenna arrays. Therefore, for the scope of this paper, we focus on codebook-based hybrid beam-
forming. We consider the fully connected architecture (see Figure 1) in which each RF chain is
connected to all antennas. When codebook-based hybrid beamforming is considered, optimal RF
precoders are found by solving an optimization problem based on a metric (e.g., sum rate, mutual
information over the channel, signal-to-noise-ratio (SNR)) over all possible RF precoders that are
selected from predefined codebooks. The computational complexity of this optimization problem
by using exhaustive search grows exponentially with the number of RF chains at the transmitter
and receiver. The number of computations required for the exhaustive search solution is huge even
with a moderate number of RF chains. For example, the number of computations for a system
with 4 RF chains, and with an RF precoder codebook that consists of 4 beamforming vectors at the
transmitter and receiver would be 44 × 44 = 65536. To tackle this challenge, we develop a rein-
forcement learning based hybrid beamforming algorithm for a mmWave system with large antenna
arrays at both the transmitter and receiver. Reinforcement learning has been applied to different
problems in mmWave communication [11]. To the best of our knowledge, this is the first work to
apply reinforcement learning for hybrid beamforming in mmWaves. The main contributions of our
paper are summarized next:

1. We propose a novel reinforcement learning based hybrid beamforming algorithm which ap-
plies Q-learning to jointly design RF precoders at the transmitter and receiver.
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2. The Q-learning based approach has two phases: a training (learning) phase followed by a
testing (precoder selection) phase. In the training phase of our algorithm, Q-table, which
essentially captures optimal actions (precoder matrices) for the states (CSI) in the training
set, is iteratively learned. In the test phase of our algorithm, optimal precoders are found for
a new state by using the learned Q-table. In order to use Q-table for a new state, we find a
state in Q-table which has the closest Euclidean distance to the new state. We then select the
action for this closest state as the action for the new state.

3. We implement our proposed algorithm with both complete and partial CSI and analyze the
performance in both scenarios with different training sample sizes.

4. We then analyze the computational complexity of our algorithm as a function of iteration
steps and show that a significant reduction in computational complexity is achieved com-
pared to the exhaustive search. The performance of the proposed algorithm in terms of spec-
tral efficiency with imperfect and perfect CSI is shown and compared with existing methods
in the literature. According to the results, we improve the spectral efficiency compared to
other suboptimal algorithms and achieve a very close performance to the exhaustive search.

System Model: Hybrid Beamforming for mmWaves

We consider a mmWave system given in Figure 1 in which a transmitter with NT antennas and
NT
RF RF chains communicates with a receiver with NR antennas and NR

RF RF chains. We assume
there are NL data streams. The transmitter applies an NT

RF ×NL baseband precoder FBB followed
by an NT ×NT

RF RF precoder FRF . Then, the transmitted signal x over the mmWave channel can
be written as,

x = FRFFBBs, (1)

where s is the NL × 1 symbol vector. The average total transmit power is denoted as PL, and
the transmitted symbol vector satisfies E

[
ssH
]

=
(
PL
NL

)
INL . Analog phase shifters in the RF

precoder bring a constraint on the entries of the RF precoder such that the entries of FRF with
constant modulus are normalized to satisfy |[FRF ]i,j|2 = N−1T , where |[FRF ]i,j| corresponds to the
the magnitude of (i, j)th element of FRF . Then, the average total power is satisfied by normalizing
FBB such that ‖FRFFBB‖2F = NL. We denote the mmWave channel between the transmitter and
receiver with a NR ×NT matrix H. The received signal over NR antennas of the receiver is given
as,

r = HFRFFBBs + n, (2)

where n is the noise vector of dimension NR × 1 with i.i.d. N (0, σ2) entries. Then, the receiver
processes signal r with an NR × NR

RF RF precoder WRF and following that with an NR
RF × NL

baseband precoder WBB, which leads to the received symbol vector y of dimension NL × 1:

y = WBB
HWRF

HHFRFFBBs + WBB
HWRF

Hn. (3)

Various measurements were conducted to model mmWave channel [12, 13]. According to these
measurements, mmWave channels have limited scattering, which makes geometric channel model
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an appropriate choice. In geometric channel model, each scatterer contributes a single propagation
path between the transmitter and receiver. The channel representation based on this model is given
as,

H =

√
NTNR

ρ

S∑
s=1

gsaR(θs)aHT (φs), (4)

where S is the number of scatterers, ρ is the average path-loss between the transmitter and receiver,
and gs is the complex gain of the sth path with Rayleigh distribution, i.e., gs ∼ N (0, G) for
s = 1, 2, ..., S. G is the average power gain. aT (φs) and aR(θs) denote the array response vector
at the transmitter and receiver. Finally, θs ∈ [0, 2π] and φs ∈ [0, 2π] denote the sth path’s azimuth
Angle of Arrival (AoA) and Angle of Departure (AoD) of the transmitter and receiver.

Problem Statement - Our main goal is to design optimal hybrid precoders at the transmitter and
receiver, (FRF ,FBB,WRF ,WBB) which maximize the rate obtained over the mmWave channel
under the RF precoder constraints. This problem can be defined as in the following,

R= log2

∣∣∣INL+PL
NL

WH
BBWH

RFHFRFFBBFHBBFHRFHHWRFWBB

∣∣∣, (5)

over all possible RF and baseband precoder matrices (FRF ,FBB,WRF ,WBB) for the transmitter
and receiver.

For this paper, we use the predefined codebook structure given in [10]. In this codebook structure,
each beamforming vector in the codebook is defined in terms of the set of quantized angles. This
codebook structure is chosen because it can be easily extended to a codebook with beamform-
ing vectors of different beamwidths. According to this structure, [FRF ] :, i, i = 1, ..., NT

RF and
[WRF ] :, j for j = 1, ..., NR

RF are selected from predefined codebooks CT and CR, respectively. CT
consists of NT

Beams beamforming vectors with dimension of NT × 1, and CR consists of NR
Beams

beamforming vectors with dimension of NR × 1. The columns of CT and CR are chosen such that
they satisfy RF beamforming constraints. Elements of beamforming vectors in CT and CR are rep-
resented as quantized phase shifts, where each phase shifter is controlled by an Nq-bit input. In
this case, NT

Beams = NR
Beams = 2Nq . nth(mth) row of the RF precoding matrix at the transmitter

(receiver), which corresponds to the phase shifts of the nth(mth) antenna of the FRF (WRF ), can

be written as e
j2πnkq

2Nq or e
j2πmkq

2Nq for some kq = 0, 1, ..., 2Nq − 1.

In the next section, we will first briefly review reinforcement learning. We then present our pro-
posed approach of applying reinforcement learning for hybrid beamforming.

Brief Overview of Reinforcement Learning

Reinforcement learning is a machine learning (ML) approach in which an agent learns to choose
optimal actions to achieve its goals by observing the states of its environment through an interactive
process [14]. The main purpose of an agent in reinforcement learning is to learn a policy that from
any initial state, performs actions which maximize the reward accumulated over time. Moreover,
the agent’s sequence of actions over time affects the distribution of training samples. Therefore,
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there is a trade-off between exploration of undiscovered states and actions and exploitation of
learned states and actions which generate high rewards. General setting of a reinforcement learning
can be summarized as follows. An agent observes the states S of its environment and has a set of
actions A that it can choose. After the agent observes its current state st ∈ S, it performs an
action at ∈ A at time t. Environment responds to the agent’s action at at state st with a reward
rt = r(st, at) and generates a successor state st+1 = δ(st, at). The agent aims to select the policy
which gives the maximum cumulative discounted reward over time, i.e., the agent’s goal is to learn
a policy π : S → A, which maximizes the cumulative value:

V π(st) = rt + γrt+1 + γ2rt+2 + ... =
∞∑
i=0

γirt+i, (6)

where 0 ≤ γ < 1. Here, γ denotes a discount factor and the future rewards are discounted by this
factor exponentially. In this case, an optimal policy π∗ which maximizes discounted cumulative
reward for all states can be given as,

π∗ = argmax
π

V π(s), (∀s). (7)

If the agent has a sequence of immediate rewards r(si, ai) for i = 0, 1, 2, ... as the training infor-
mation, it is easier to learn a numerical evaluation function instead of directly learning the function
π∗ : S → A. Maximum discounted cumulative reward V ∗(s) can be learned to find the optimal
policy through the following optimization:

π∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))] . (8)

Here, the optimal action to choose in state s is a which maximizes the sum of current reward
r(s, a) and the value function V ∗(·) of the successor state δ(s, a), discounted by γ. Since V ∗(·)
can be used to learn the optimal policy if only the agent knows the reward function r and the
state transition function δ exactly, another evaluation function Q(s, a) can be defined for the agent
to learn the optimal policy even if it does not have any knowledge about r and δ. The value of
Q(·, ·) function is the sum of immediate reward obtained after executing action a at state s, and the
discounted value of following the optimal policy, i.e.,

Q(s, a) = r(s, a) + γV ∗(δ(s, a)). (9)

Then, the optimal policy can be rewritten as,

π∗(s) = argmax
a

Q(s, a). (10)

By using the definition of optimal policy π∗ as in (10), relationship between Q(·, ·) and V ∗(·) can
be given as,

V ∗(s) = max
a′

Q(s, a′). (11)

In this case, (9) can be also rewritten as,

Q(s, a) = r(s, a) + γmax
a′

Q(δ(s, a), a′). (12)

Then, Q(·, ·) can be iteratively approximated with Algorithm 1 by using (12). With this Algorithm,
the agent estimates Q(s, a) for state-action pair s and a, and the agent’s estimate for this state-
action pair is denoted by Q̂(s, a).
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Algorithm 1 An algorithm for learning Q
Set time to t = 0.
for each state-action pair s and a do

Initialize the table entry Q̂t(s, a) to zero
end for
Observe the current state s at time t = 0
while Q̂t+1(s, a) does not converge Q(s, a) for each s, a do

Choose an action a, perform it, and get a reward r
Observe the new state s′

Update Q̂t+1(s, a)← r + γmaxa′ Q̂t(s
′, a′)

Set time to t = t+ 1
Set the current state as s′ at time t = t+ 1

end while

Q-Learning Based Hybrid Beamforming

We propose a novel hybrid beamforming algorithm which uses Q-learning to find the optimal RF
precoders at the transmitter and receiver. In the setting of our problem, the environment is the
mmWave channel, which is described by a continuous state space H. Considering an agent exists
in this environment, the agent can perform any of a set of possible actions V , where V consists of
a finite set of RF precoder pairs for the transmitter and receiver. At time t, the agent can select
possible RF precoder pair vt = {(FRF )t, (WRF )t} ∈ V for the transmitter and receiver in some
channel state Ht ∈ H. Then, the agent receives a real-valued reward Rt, which is the rate achieved
over the mmWave channel at time t.

The Q-learning algorithm given in Algorithm 1 cannot be directly applied to hybrid precoding de-
sign problem since the state space has infinite continuous valued elements. Therefore, we propose
a modified Q-learning algorithm for hybrid beamforming. In Q-learning based hybrid beamform-
ing algorithm, we assume that the elements of state space, which consists of channel matrices at
different time instances, are chosen from a finite training set. In other words, training set consists
of NS channel matrices such that H = {H1,H2, ...,HNS}. Action space V is a finite set of all
possible RF precoder pairs so that it can be used directly in Q-learning algorithm.

Our proposed algorithm consists of two phases. The first phase is the training phase of the algo-
rithm. During training, the table entries Q̂(Hi, vj), where Hi ∈ H and vj ∈ V , are updated by
using Algorithm 1. It is also important to decide for a strategy for the agent to choose from all
possible RF precoders in channel state H. We use a probabilistic approach for the agent in channel
state H to select a possible pair of RF precoders. In this case, every RF precoder pair would have a
nonzero probability to be selected, but RF precoder pairs with higher Q̂ values are assigned higher
probabilities. We define the probability of selecting a precoder pair vi, given that the agent is in
channel state H as,

P (vi|H) =
cQ̂(H,vi)∑
j c

Q̂(H,vj)
, (13)
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where c > 0 is a constant that determines how strongly the agent would exploit RF precoder
pairs with high Q̂ values instead of exploring undiscovered RF precoder pairs. Once the learner’s
estimate Q̂(H, v) converges to Q(H, v) for all H and v pairs, Q-table can be used to find optimal
RF precoders.

Algorithm 2 Training Phase of Q-Learning Based Hybrid Beamforming Algorithm
Input: V ,H,PL,NL,c,T
Set time to t = 0
for each state-action pair H and v do

Initialize the table entry Q̂t(H, v) to zero
end for
Observe the current state H at time t = 0
for t = 0, 1, ..., T do

Choose v = {(FRF ), (WRF )} from V with probability p(v|H) = cQ̂(H,v)∑
w c

Q̂(H,w)

H=UΣV∗, U=[U1U2], V=[V1V2], U1∈CNR×NL , V1 ∈ CNT×NL

Fopt = V1 and Wopt = U1

FBB = (F∗RFFRF )−1F∗RFFopt and WBB = (W∗
RFWRF )−1W∗

RFWopt

FBB =
√
NL

FBB
‖FRF FBB‖F

and WBB =
√
NL

WBB

‖WRFWBB‖F
Calculate rate R by using Equation (5)
Observe the new state H′
Update Q̂t+1(H, v)← R + γmaxv′ Q̂t(H′, v′)
Set time to t = t+ 1
Set the current state as H′ at time t = t+ 1

end for

In the second phase, optimal RF precoders at the transmitter and receiver are designed by using
the table entries Q̂(H, v) according to given CSI, which can be complete or partial. Let us as-
sume that given CSI is H at a certain time, the Q-learning based hybrid beamforming algorithm
searches over the all states in training setH = {H1,H2, ...,HNS} and selects the channel H̃, where
minH̃∈H

∥∥H̃−H
∥∥
2
. H̃ corresponds to a minimum Euclidean distance estimate of the channel H

by one of the elements in the training set. By using the table entries Q̂(H, v), the RF precoder pair
v′ for the transmitter and receiver, which gives the maximum Q-value for the state H̃, are selected.

Algorithm 3 RF Precoders Selection Phase of Q-Learning Based Hybrid Beamforming Algorithm

Input: H,H,V ,Q̂(H, v),
H̃ = minH̃∈H

∥∥H̃−H
∥∥
2

Choose v = {(FRF ), (WRF )}, where v = maxv Q̂(H̃, v)
H = UΣV∗, U = [U1U2], V = [V1V2], U1 ∈ CNR×NL , V1 ∈ CNT×NL

Fopt = V1 and Wopt = U1

FBB = (F∗RFFRF )−1F∗RFFopt and WBB = (W∗
RFWRF )−1W∗

RFWopt

FBB =
√
NL

FBB
‖FRF FBB‖F

and WBB =
√
NL

WBB

‖WRFWBB‖F
return FBB, FRF , WBB, WRF

Two phases of our proposed algorithm are summarized in Algorithm 2 and Algorithm 3.
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Results

In this section, we first give the computational complexity analysis of Q-learning based hybrid
beamforming algorithm. Then, we present our Matlab based simulation results.

A. Computational Complexity Analysis of Q-Learning Based Hybrid Beamforming

Total computation complexity results from the two phases of Q-learning based hybrid beam-
forming. Computational complexity1 of training and optimal RF precoders selection phases are
O(T (NR(NT )2+NS(NT

Beams)
NT
RF (NR

Beams)
NR
RF +(NT

RF )3+NLN
R
RFNR+NLNRNT+NLN

T
RFNT+

(NL)3)) and O(NTNRNS + (NT
Beams)

NT
RF (NR

Beams)
NR
RF + NR(NT )2 + (NT

RF )3 + NT
RFNTNL +

(NR
RF )3 + NR

RFNRNL), respectively. It is important to note that the computational complexity
of exhaustive search is O(((NT

Beams)
NT
RF (NR

Beams)
NR
RF )(NLN

R
RFNR + NLNRNT + NLN

T
RFNT +

(NL)3 + NR(NT )2 + (NT
RF )3 + NT

RFNTNL + (NR
RF )3 + NR

RFNRNL)). For T = 100, NS = 20,
NT = NR = 64, NT

Beams = NR
Beams = 8, NT

RF = NR
RF = 4, NL = 3, number of operations

for training and optimal RF precoders selection phases are 3.4× 1010 and 1.7× 107, respectively.
Therefore, the total number of operations for our proposed algorithm is approximately 3.4× 1010.
With the exhaustive search, 4.7 × 1012 number of operations is required for the same NT , NR,
NT
Beams, N

R
Beams, N

T
RF , NR

RF , and NL. In this case, 138 times reduction is achieved with the pro-
posed algorithm compared to the exhaustive search. The computational complexity of the training
phase of the proposed algorithm increases linearly with the number of iterations T . However, this
computation cost is compensated with a large number of RF chains at the transmitter and receiver.

B. Simulation Results

In our simulation, we consider a mmWave system with one transmitter-receiver pair. We use
the hybrid architecture given in Figure 1. The carrier frequency and the bandwidth of the mmWave
system are chosen as 28 GHz and 100 MHz, respectively. The transmitter has NT = 64 antennas
and 2 RF chains, and the receiver has NR = 32 antennas and 2 RF chains. Uniform Linear Arrays
(ULAs) are used as the antenna arrays in which the spacing between antennas are λ

2
. The RF

phase shifters have quantized phases, and the number of inputs to the phase shifters is Nq = 3.
Size of the space V equals to 4096. The channel model given in (4) is used in the simulations. In
the channel model, G = 1 and the number of paths S = 3. The AoAs/AoDs of the channel are
continuous-valued random variables with uniform distribution [0, 2π].

Figure 2-a shows the spectral efficiency of the proposed algorithm with different number of train-
ing samples NS = 50, NS = 100, and NS = 300 for channel states when SNR increases from
−40 dB to 0 dB. Figure 2-a also includes spectral efficiency of the suboptimal solution proposed
in [10], exhaustive search, and unconstrained precoding. In Figure 2-a, it is assumed that CSI is
incomplete. Therefore, estimated channel matrices are used in the training phase. In RF precoders
selection phase of the proposed algorithm, observed channel states in real-time are also the esti-
mated channel matrices. It can be seen in Figure 2-a that unconstrained precoding outperforms all
of the other hybrid beamforming algorithms. However, the mmWave system achieves higher spec-

1Analysis of the computational complexity of the algorithm is omitted due to space limitation.
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Figure 2: Spectral efficiency achieved by the proposed algorithm for different training sizes, the method
in [10], exhaustive search, and unconstrained precoding.

tral efficiency with our proposed algorithm for all training sizes than the algorithm given in [10].
The spectral efficiency achieved with our algorithm when training size equals to 300 is very close
to the exhaustive search based solution.

Figure 2-b shows the spectral efficiency of the proposed algorithm with different number of training
samples NS = 50, NS = 100, and NS = 300 for channel states when SNR increases from −40
dB to 0 dB. Results of the proposed algorithm are also compared with the algorithm proposed
in [10], exhaustive search, and unconstrained precoding in Figure 2-b. In this case, it is considered
that CSI is complete. Unconstrained precoding outperforms all of the other hybrid beamforming
algorithms as it is shown in Figure 2-b. The mmWave system achieves higher spectral efficiency
with our algorithm for all training sizes than the algorithm given in [10] for smaller values of
SNR. However, the algorithm proposed in [10] starts to achieve better spectral efficiency than our
algorithm for higher values of SNR. Furthermore, spectral efficiency achieved with our algorithm
with an increasing number of training samples is still less than the exhaustive search.

Conclusion

In this paper, we presented a reinforcement learning approach for the hybrid beamforming prob-
lem. We give a computational complexity analysis for our proposed algorithm. Finally, we com-
pare the performance of our algorithm in terms of achieved rate over the mmWave channel with
unconstrained precoding, exhaustive search, and a suboptimal hybrid beamforming algorithm. We
show the results of our algorithm with different sized training sets. We also compare the perfor-
mance of our algorithm when CSI is perfect and imperfect. It is seen that the performance of the
proposed algorithm improves with larger training sets. The results of the proposed algorithm are
promising since it gives better spectral efficiency than other suboptimal algorithms and has a very
close performance to exhaustive search when the available CSI is not perfect. Future directions
include providing a theoretical analysis to show our Euclidean distance-based approach for using
Q-table is guaranteed to converge and adapting the proposed algorithm for multi-user scenarios.
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