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Abstract. We introduce the notion of a homotopy of product systems, and show that
the Cuntz–Nica–Pimsner algebras of homotopic product systems over Nk have isomorphic
K-theory. As an application, we give a new proof that the K-theory of a 2-graph C∗-
algebra is independent of the factorisation rules, and we further show that the K-theory
of any twisted 2-graph C∗-algebra is independent of the twisting 2-cocycle. We also
explore applications to K-theory for the C∗-algebras of single-vertex k-graphs, reducing
the question of whether the K-theory is independent of the factorisation rules to a
question about path-connectedness of the space of solutions to an equation of Yang–
Baxter type.

1. Introduction

The close link between the structure of a directed graph E and that of its associ-
ated C∗-algebra C∗(E), together with the structural restrictions on the C∗-algebras of
directed graphs (for example [18], if C∗(E) is simple, it must be either approximately
finite-dimensional or purely infinite), spurred Kumjian and Pask to introduce higher-rank
graphs (k-graphs) in [17] as more general combinatorial models for C∗-algebras. Since
then, substantial work has gone into the study of the structure of higher-rank graph
C∗-algebras. Significant progress has been made on properties like simplicity [31], ideal
structure [34, 35], pure infiniteness [35], stable finiteness and quasidiagonality [2], and
topological dimension and real rank [26]. However, there has been little progress on cal-
culating the K-theory of a k-graph C∗-algebra since the initial work of Robertson and
Steger [32] on higher-rank Cuntz–Krieger algebras, and Evans’ generalisation [4] of their
work to the C∗-algebras of 2-graphs (higher-rank graphs of rank 2).

Higher-rank graphs, or k-graphs, are a k-dimensional generalization of directed graphs.
One can view a k-graph as a directed graph with k colours of edges, together with a
factorisation rule which gives an equivalence relation on the set of paths in the graph:
each path from a vertex v to another vertex w consisting of a red edge followed by a blue
edge (a red-blue path) must be equivalent to precisely one blue-red path from v to w. While
the C∗-algebra of a k-graph depends on both the underlying edge-coloured directed graph
(its skeleton) and on the factorisation rule, Evans’ theorem shows that the K-theory of
the C∗-algebra of a row-finite 2-graph with no sources depends only on the skeleton.
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While k-graph C∗-algebras can be used to realise many classes of C∗-algebras up to
Morita equivalence [25, 33, 1]), many fundamental examples of C∗-algebras, such as the
rotation algebras Aθ, cannot be realised as k-graph C∗-algebras [5, Corollary 5.7]. How-
ever, [20, Example 7.7] established that Aθ is a twisted k-graph C∗-algebra. Furthermore,
[22] and [11] identified sufficient conditions under which the K-theory of a twisted k-graph
C∗-algebra C∗(Λ, c) agrees with that of its untwisted counterpart. Thus, substantial evi-
dence suggests that (at least when k = 2) the K-theory of a (twisted) k-graph C∗-algebra
should depend only on the k-graph’s skeleton.

Evans’ techniques from [4] also suggest the more general possibility that the K-theory
of any k-graph C∗-algebra is independent of the factorisation rules, and this was cast as a
conjecture in [1]. Intriguingly, this question arose in [1] not through the study of k-graphs
themselves, but because single-vertex k-graphs arise naturally as a framework to describe
the “torsion subalgebra” AS of the C∗-algebra QS associated to the multiplicative action
on Z of the subsemigroup of N× generated by a finite set S of primes. In the single vertex
case, every skeleton admits one set of factorisation rules under which the associated C∗-
algebra is isomorphic to a tensor product

⊗
p∈S Op of Cuntz algebras, but it also admits

many other factorisation rules. Since the C∗-algebras QS and AS are UCT Kirchberg
algebras [1], the arguments of [1] reduce the question of understanding the C∗-algebras
QS to the question of understanding K∗(AS). It is therefore very interesting, even in
the 1-vertex case, to develop new techniques for investigating the conjecture that the
K-theory of a k-graph C∗-algebra does not depend on its factorisation rules.

In this paper, we present an approach to this problem that reduces it to a question
about path-connectedness of the space of unitary solutions to an equation of Yang–Baxter
type (see, for example, [14]). Our idea is based on Elliott’s technique [3] for computing
the K-theory of a noncommutative torus. Elliott’s technique exploits the fact that the
noncommutative tori of a fixed rank assemble as the fibres of the C∗-algebra of a higher-
rank integer Heisenberg group. The base space for the fibration is a torus, hence path
connected, so any two fibres can be connected by a path, putting them at either end of a
C([0, 1])-algebra. This C([0, 1])-algebra can be viewed as a crossed product of C([0, 1]) by
Zk, and hence as an iterated crossed-product C([0, 1]) oZo · · ·oZ. Since evaluation at
each point in [0, 1] induces an isomorphism K∗(C([0, 1])) → K∗(C), it therefore suffices,
by induction, to prove that if A is a C([0, 1])-algebra such that the quotient maps A 7→ At
induce isomorphisms in K-theory, and if α is an automorphism of A that respects the
C([0, 1])-algebra structure, then AoZ is again a C([0, 1])-algebra in which the evaluation
maps induce isomorphisms in K-theory. Elliott proved this by applying the Five Lemma
to the Pimsner–Voiculescu exact sequence for the crossed product. A similar technique
was used in [22, 11] to examine the K-theory of twisted k-graph C∗-algebras, and show
that homotopic cocycles yield twisted k-graph C∗-algebras with isomorphic K-theory.

Here, we employ a similar technique, but expand the notion of homotopy to which our
results apply by regarding product systems of Hilbert modules as generalised cocycles.
Product systems (see Section 2.1 below) and their C∗-algebras were introduced by Fowler
in [8]. These families {Xp}p∈P of Hilbert A−A-bimodules, indexed by a semigroup P and
carrying a multiplication compatible with that of P , give rise to a class of C∗-algebras
including k-graph C∗-algebras and crossed products by endomorphisms.

We introduce homotopies of product systems with coefficient algebra A, defined as
product systems X with coefficient algebra C([0, 1], A) in which the canonical left and
right actions of C([0, 1]) on each fibre coincide. Proposition 3.5 verifies that this notion
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of homotopy defines an equivalence relation on (isomorphism classes of) product systems,
while Lemma 3.1 establishes that a homotopy X of product systems decomposes into
fibres X t indexed by t ∈ [0, 1] such that each X t is itself a product system over A.
Lemma 3.1 also establishes that if the left action on a homotopy of product systems is
injective and/or by compacts then the same is true in each fibre. Using this, we verify in
Proposition 3.6 that for product systems over a quasi-lattice ordered semigroup in which
each pair of elements has an upper bound, the Cuntz–Nica–Pimsner algebra of a homotopy
of product systems in which the left action is injective and by compacts itself decomposes
as a C([0, 1])-algebra whose fibres are the Cuntz–Nica–Pimsner algebras of the fibres of
the homotopy. We then focus on product systems over Nk, and use Elliott’s strategy
described above, replacing the Pimsner–Voiculescu exact sequence with Pimsner’s six-
term exact sequence for Cuntz–Pimsner algebras [27], to show in Theorem 3.9 that if X
is a homotopy of product systems over Nk, then the quotient maps NOX → NOXt all
induce isomorphisms in K-theory.

We conclude the paper by applying this machinery to the setting of k-graphs. Given a
k-graph Λ, its C∗-algebra C∗(Λ) is the Cuntz–Nica–Pimsner algebra of a product system
X(Λ) over Nk ([36, Proposition 5.4]; see also [10, 29]). In fact, if Ei is the graph with
vertices Λ0 and edges the edges of colour i in Λ, then the coordinate fibre of X(Λ) over
the ith generator ei of Nk is the graph module X(Ei). Thus, given two k-graphs with
the same skeleton but different factorisation rules, or the same skeleton and factorisation
rules but different 2-cocycles, one naturally asks whether there is a homotopy of product
systems linking them. In Section 4, we reduce this question to a question about the
path-connectedness of a certain space of systems of unitary matrices satisfying a cocycle-
like condition. To be precise, we first show (using results of [10]) that product systems
over Nk with coordinate fibres isomorphic to the graph modules X(Ei) are determined

by systems of unitary matrices Ui,j(v, w) : CvE1
jE

1
i w → CvE1

i E
1
jw, indexed by pairs v, w of

vertices and pairs 1 ≤ i < j ≤ k of indices, that collectively satisfy a cocycle condition
reminiscent of the Yang–Baxter equation. We call such a system a unitary cocycle for
E. For example, Proposition 4.6 establishes that for every row-finite k-graph Λ with
no sources, and every T-valued 2-cocycle c on Λ, there is a unitary cocycle so that the
Cuntz–Nica–Pimsner algebra of the associated product system coincides with the twisted
k-graph C∗-algebra C∗(Λ, c). We then show that a family {U t : t ∈ [0, 1]} of unitary
cocycles for E determines a homotopy of product systems if, for each fixed u, v, i, j, the
map t 7→ U t

i,j(u, v) is continuous; see Proposition 4.8. We call such a family a continuous
path of unitary cocycles for E. Using our main result (Theorem 3.9), we then deduce in
Corollary 4.9 that if Λ,Γ are k-graphs with the same skeleton E, and c, c′ are T-valued
2-cocycles on Λ and Γ, and if the unitary cocycles for E determined by (Λ, c) and (Γ, c′)
are connected by a continuous path of unitary cocycles for E, then C∗(Λ, c) and C∗(Γ, c′)
have isomorphic K-theory.

We deduce two main consequences. First, if E = (E1, E2) is a skeleton of a 2-graph,
then the cocycle condition for a unitary cocycle for E is vacuous, and so a unitary cocycle
is simply a system of unitary isomorphisms U1,2(v, w), indexed by v, w ∈ E0, of finite-
dimensional vector spaces. Since the space of n × n complex unitary matrices is path-
connected, we deduce that the space of unitary cocycles for E is path connected, and
therefore that any two product systems over N2 with coordinate fibres X(E1) and X(E2)
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are connected by a homotopy of product systems. Hence the K-theory of the Cuntz–
Nica–Pimsner algebra of any such product system is determined by Evans’ calculation
[4] of K-theory for 2-graph C∗-algebras. In particular, if Λ and Γ are row-finite 2-graphs
with no sources and the same skeleton, then K∗(C

∗(Λ, c)) ∼= K∗(C
∗(Γ, c′)) for any T-

valued cocycles c on Λ and c′ on Λ′. Second, given positive integers n1, . . . , nk, a unitary
cocycle for the k-skeleton (E1, . . . Ek) in which each graph Ei has one vertex and ni edges
reduces to a family of unitary matrices Ui,j : Cnj ⊗Cni → Cni ⊗Cnj , i < j, satisfying the
Yang–Baxter type equations

(Ui,j ⊗ 1l)(1j ⊗ Ui,l)(Uj,l ⊗ 1) = (1i ⊗ Uj,l)(Ui,l ⊗ 1j)(1l ⊗ Ui,j)

for 1 ≤ i < j < l ≤ k. In particular, if the collection of all such families of unitary
matrices is connected, then any twisted C∗-algebra of any 1-vertex k-graph Λ in which
each |Λei | = ni has K-theory isomorphic to K∗(

⊗k
i=1Oni).

The structure of the paper is as follows. We summarize, in Section 2, the relevant
background and known results on Hilbert bimodules and product systems. In Section 3
we introduce the notion of homotopy of product systems, and prove our main result,
Theorem 3.9, which states that the Cuntz–Nica–Pimsner algebras of homotopic product
systems have isomorphic K-theory. In Section 4 we present background on k-graphs and
their twisted C∗-algebras, introduce the notion of a unitary cocycle for a k-skeleton E,
and use this to apply our earlier results to twisted k-graph C∗-algebras.

Throughout the paper, we use the word “homomorphism” to denote a ∗-preserving,
multiplicative, norm-decreasing linear map between C∗-algebras.

2. Background on Hilbert bimodules and associated C∗-algebras

We give a quick summary of the structure of Hilbert modules and their C∗-algebras.
For details on Hilbert modules, see [24, 30] and for details on the associated C∗-algebras,
see [27, 9, 16].

Let A be a C∗-algebra. An inner product A-module is a complex vector space X
equipped with a map 〈·, ·〉A : X × X → A, linear in its second argument, and a right
action of A, such that for any x, y ∈ X and a ∈ A, we have

(i) 〈x, y〉A = 〈y, x〉∗A;
(ii) 〈x, y · a〉A = 〈x, y〉Aa;

(iii) 〈x, x〉A ≥ 0 in A; and
(iv) 〈x, x〉A = 0 if and only if x = 0.

By [24, Proposition 1.1], the formula ‖x‖X := ‖〈x, x〉A‖1/2
A defines a norm on X, and we

say that X is a Hilbert A-module if X is complete with respect to this norm.
We say that a map T : X → X is adjointable if there exists a map T ∗ : X → X such that
〈Tx, y〉A = 〈x, T ∗y〉A for all x, y ∈ X. Every adjointable operator T is automatically linear
and continuous, and the adjoint T ∗ is unique. Equipping the collection of adjointable
operators on X, denoted by L(X), with the operator norm gives a C∗-algebra. For each
x, y ∈ X, the formula Θx,y(z) := x · 〈y, z〉A defines an adjointable operator with adjoint
Θ∗x,y = Θy,x. The closed subspace K(X) := span{Θx,y : x, y ∈ X} is an essential ideal of
L(X), whose elements we refer to as compact operators.

A Hilbert A-bimodule is a Hilbert A-module X equipped with a left action of A by
adjointable operators (i.e. a homomorphism φ : A→ L(X)). We frequently write a ·x for
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φ(a)(x). Letting A act on itself by left and right multiplication, and defining an A-valued
inner product on A by 〈a, b〉A := a∗b, gives a Hilbert A-bimodule that we denote by AAA.

By the Hewitt–Cohen factorisation theorem, every Hilbert A-bimodule X is automat-
ically right-nondegenerate in the strong sense that X = X · A. So we will say that the
Hilbert A-bimodule is nondegenerate if the homomorphism φ : A → L(X) that imple-

ments the left action is nondegenerate; that is if X = φ(A)X.

Example 2.1. Let E = (E0, E1, r, s) be a row-finite graph with no sources. Let A :=

C0(E0). Define 〈·, ·〉A on Cc(E
1) by 〈ξ, η〉A(v) =

∑
e∈E1v ξ(e)η(e), and define left and

right actions of A on Cc(E
1) by (a ·ξ ·b)(e) = a(r(e))ξ(e)b(s(e)). Then ‖ξ‖ := ‖〈ξ, ξ〉A‖1/2

defines a norm on Cc(E
1). The completion X = X(E) of Cc(E) in this norm is a Hilbert

A-bimodule with A-actions extending those on Cc(E
1). This is called the graph bimodule

of E.

A Toeplitz representation (ψ, π) of a Hilbert A-bimodule X in a C∗-algebra B consists
of a linear map ψ : X → B and a homomorphism π : A→ B such that

(i) ψ(a · x) = π(a)ψ(x) for each a ∈ A, x ∈ X;
(ii) ψ(x)∗ψ(y) = π(〈x, y〉A) for each x, y ∈ X.

These relations imply that ψ(x ·a) = ψ(x)π(a) for all a ∈ A and x ∈ X, and also that ψ is
norm-decreasing, and is isometric if and only π is injective on 〈X,X〉A. The universal C∗-
algebra for Toeplitz representations of X is called the Toeplitz algebra of X. We write TX
for this C∗-algebra and denote the universal Toeplitz representation of X that generates it
by (iX , iA). By [28, Proposition 8.11], if (ψ, π) is a Toeplitz representation of X in B, then
there is a homomorphism (ψ, π)(1) : K(X)→ B such that (ψ, π)(1) (Θx,y) = ψ(x)ψ(y)∗ for
all x, y ∈ X. We say that a Toeplitz representation (ψ, π) is Cuntz–Pimsner covariant if
(ψ, π)(1)(φ(a)) = π(a) for all a ∈ JX := φ−1(K(X)) ∩ ker(φ)⊥.1 We call the universal C∗-
algebra for Cuntz–Pimsner covariant Toeplitz representations of X the Cuntz–Pimsner
algebra of X. We denote this C∗-algebra by OX and write (jX , jA) for the universal
Cuntz–Pimsner covariant Toeplitz representation of X.

The K-theory of the Toeplitz algebra of a Hilbert A-bimodule X is easy to compute:
by [16, Proposition 8.2] the homomorphism iA : A → TX induces an isomorphism at
the level of K-theory (in fact if A is separable and X is countably generated, then this
homomorphism induces a KK-equivalence [27, Theorem 4.4]). In general, the K-theory of
the Cuntz–Pimsner algebraOX is much more complicated; the primary tool for computing
it is the following 6-term exact sequence [16, Theorem 8.6]

K1(OX) K1(A) K1(JX).

K0(OX)K0(A)K0(JX)
ι∗ − [X] (jA)∗

ι∗ − [X](jA)∗

Given Hilbert A-bimodules X and Y , we can form the balanced tensor product X⊗AY
as follows (see [24] or [30]). We endow the algebraic tensor product X � Y with the
canonical actions of A given by a · (x� y) · b = (a · x)� (y · b), and with the sesquilinear

1Given an ideal I of a C∗-algebra A, we write I⊥ for the annihilator {a ∈ A : aI = 0}.
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form [x � y, x′ � y′]A := 〈y, 〈x, x′〉A · y′〉A. The space N = {ζ ∈ X � Y : [ζ, ζ]A = 0} is
a closed submodule, and [·, ·]A descends to an inner-product 〈·, ·〉A on (X � Y )/N . The
balanced tensor product X ⊗A Y is the completion of (X � Y )/N in the inner-product
norm, which is itself a Hilbert A-bimodule. We write x ⊗ y for the image x � y + N of
x � y in X ⊗A Y . A simple calculation shows that [x · a � y, ζ]A = [x � a · y, ζ] for all
x ∈ X, y ∈ Y , a ∈ A and ζ ∈ X �Y , and it follows that x · a⊗ y = x⊗ a · y for all x, y, a.
If φ : A→ L(Y ) is the homomorphism implementing the left action, we sometimes write
X ⊗φ Y rather than X ⊗A Y .

We define the balanced tensor powers of X as follows: X⊗0 := AAA, X⊗1 := X, and
X⊗n := X ⊗AX⊗n−1 for n ≥ 2. Given Hilbert A-bimodules X and Y and an adjointable
operator S ∈ L(X), the formula x ⊗ y 7→ (Sx) ⊗ y extends to an adjointable operator
on all of X ⊗A Y , which we denote by S ⊗A 1Y , or by S ⊗φ 1Y if φ : A → L(X) is the
homomorphism implementing the left action.

We can also combine a collection {Xj : j ∈ J} of Hilbert A-bimodules by forming their
direct sum. We define

⊕
j∈J Xj to be the set of sequences (xj)j∈J with xj ∈ Xj, such

that
∑

j∈J〈xj, xj〉A converges in A. We define an A-valued inner product on
⊕

j∈J Xj by

〈(xj)j∈J , (yj)j∈J〉A :=
∑

j∈J〈xj, yj〉A, which converges by [24, Proposition 1.1]. It follows

that
⊕

j∈J Xj is complete with respect to the norm induced by this inner product. Letting

A act componentwise on the left and right then gives
⊕

j∈J Xj the structure of a Hilbert
A-bimodule.

2.1. Product systems of Hilbert bimodules and their associated C∗-algebras.
A quasi-lattice ordered group (G,P ) consists of a group G and a subsemigroup P of G
such that P ∩ P−1 = {e}, and such that, with respect to the partial order on G given
by p ≤ q ⇔ p−1q ∈ P , any two elements p, q ∈ G which have a common upper bound in
P have a least common upper bound p ∨ q in P . We write p ∨ q = ∞ if p and q have
no common upper bound in P , and p ∨ q < ∞ otherwise. We say that P is directed if
p ∨ q <∞ for every p, q ∈ P .

Let (G,P ) be a quasi-lattice ordered group and A a C∗-algebra. A product system over
P with coefficient algebra A is a semigroup X =

⊔
p∈P Xp such that:

(i) Xe = AAA, and Xp ⊆ X is a Hilbert A-bimodule for each p ∈ P ;
(ii) for each p, q ∈ P with p 6= e, there exists a Hilbert A-bimodule isomorphism

Mp,q : Xp ⊗A Xq → Xpq which is associative in the sense that

Mr,pq ◦ 1Xr ⊗Mp,q = Mrp,q ◦Mr,p ⊗ 1Xq

for each p, q, r ∈ P ; and
(iii) multiplication in X by elements of Xe = A implements the left and right actions

of A on each Xp; that is xa = x · a and ax = a · x for each p ∈ P , a ∈ A, and
x ∈ Xp.

We will often write Mp,q(x⊗ y) =: xy.
We will say that the product system X is nondegenerate if each fibre Xp is nondegen-

erate as a Hilbert A-bimodule; that is, if Xp = φp(A)Xp for all p. Note that since the
multiplication maps Xe×Xp → Xp are given by the left action, the product system X is
nondegenerate if and only if condition (ii) above also holds when p = e.
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We write φp : A→ L(Xp) for the homomorphism that implements the left action of A
on Xp. Since multiplication in X is associative, φpq(a)(xy) = (φp(a)x)y for all p, q ∈ P ,
a ∈ A, x ∈ Xp, and y ∈ Xq. We write 〈·, ·〉pA for the A-valued inner-product on Xp.

For each p, q ∈ P , we define a homomorphism ιpqp : L (Xp)→ L (Xpq) by

ιpqp (S) := Mp,q ◦ (S ⊗A 1Xq) ◦M−1
p,q

for each S ∈ L (Xp). Equivalently, ιpqp is characterised by the formula ιpqp (S)(xy) = (Sx)y
for each S ∈ L (Xp), x ∈ Xp, y ∈ Xq. We define ιrp : L (Xp)→ L (Xr) to be the zero map
whenever p 6≤ r. We say that X is compactly aligned if ιp∨qp (S)ιp∨qq (T ) ∈ K(Xp∨q) whenever
S ∈ K(Xp) and T ∈ K(Xq) for some p, q ∈ P with p ∨ q < ∞. By [8, Proposition 5.8],
if A acts compactly on each fibre of X (i.e. φp(A) ⊆ K(Xp) for each p ∈ P ) or (G,P ) is
totally ordered by ≤, then X is automatically compactly aligned.

A representation of a compactly aligned product system X over P in a C∗-algebra B
is a map ψ : X → B such that

(i) each ψp := ψ|Xp is a linear map, and ψe is a homomorphism;
(ii) ψp(x)ψq(y) = ψpq(xy) for all p, q ∈ P and x ∈ Xp, y ∈ Xq; and
(iii) ψp(x)∗ψp(y) = ψe(〈x, y〉pA) for all p ∈ P and x, y ∈ Xp.

For each p ∈ P , it follows that (ψp, ψe) is a Toeplitz representation of the Hilbert A-
bimodule Xp. We write ψ(p) for the resulting homomorphism (ψp, ψe)

(1) : K (Xp)→ B.
If ρ : B → C is a homomorphism of C∗-algebras and ψ : X → B is a representation,

then ρ ◦ ψ : X → C is a representation. For x, y ∈ Xp, we have (ρ ◦ ψ)(p)(θx,y) =
ρ(ψ(x))ρ(ψ(y))∗ = ρ(ψ(x)ψ(y)∗) = ρ ◦ ψ(p)(θx,y). So linearity and continuity give

(2.1) (ρ ◦ ψ)(p) = ρ ◦ ψ(p).

We say that ψ is Nica covariant if, for any p, q ∈ P and S ∈ K(Xp), T ∈ K(Xq),

ψ(p)(S)ψ(q)(T ) =

{
ψ(p∨q) (ιp∨qp (S)ιp∨qq (T )

)
if p ∨ q <∞

0 otherwise.

We denote the universal C∗-algebra for Nica covariant representations byNT X (the Nica–
Toeplitz algebra of X) and write {ip : Xp → NT X}p∈P for its generating representation.
It then follows from relations (i)–(iii) that NT X = span {iX(x)iX(y)∗ : x, y ∈ X}.

For representations of product systems we also have a notion of Cuntz–Pimsner covari-
ance (first introduced by Sims and Yeend in [36]). To formulate this covariance relation
we first require some additional definitions. We start by defining a collection of ideals of
A by setting Ie := A and Ip :=

⋂
e<q≤p ker(φq) for each p ∈ P \ {e}. For each p ∈ P , we

then define a Hilbert A-bimodule

X̃p :=
⊕
q≤p

Xq · Iq−1p,

and write φ̃p : A→ L
(
X̃p

)
for the homomorphism defined by(

φ̃p(a)(x)
)
q

:= φq(a)(xq) for a ∈ A, x ∈ X̃p, q ≤ p.

We say that X is φ̃-injective if each homomorphism φ̃p is injective. For various examples

(in particular, for product systems over Nk, or where each φp is injective) φ̃-injectivity
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is automatic by [36, Lemma 3.15]. For each p, q ∈ P , we have a homomorphism ι̃ qp :

L(Xp)→ L
(
X̃q

)
characterised by the formula(
ι̃ qp (S)(x)

)
r

= ιrp(S)(xr) for S ∈ L(Xp), x ∈ X̃p, r ≤ q.

Given a predicate statement P(s) (where s ∈ P ), we say that P(s) is true for large s if,
given any p ∈ P , there exists q ≥ p, such that P(s) is true whenever s ≥ q. We then say

that a Nica covariant representation ψ of a compactly aligned φ̃-injective product system
X is Cuntz–Pimsner covariant if, for any finite set F ⊆ P and any choice of compact
operators {Tp ∈ K (Xp) : p ∈ F}, we have that∑

p∈F

ι̃ sp (Tp) = 0 ∈ L
(
X̃s

)
for large s ⇒

∑
p∈F

ψ(p)(Tp) = 0.

We say that ψ is Cuntz–Nica–Pimsner covariant if it is both Nica covariant and Cuntz–
Pimsner covariant.

If P is directed and each φp is injective and takes values in K(Xp), then [36, Corol-
lary 5.2] shows that a representation ψ of X is Cuntz–Nica–Pimsner covariant if and only
if ψ(p) ◦ φp = ψe for each p ∈ P .

We denote the universal C∗-algebra for Cuntz–Nica–Pimsner covariant covariant rep-
resentations by NOX (the Cuntz–Nica–Pimsner algebra of X) and write {jp : Xp →
NOX}p∈P for its generating representation. It follows that NOX is a quotient of NT X ,
and we write q : NT X → NOX for the quotient homomorphism (characterised by
q ◦ iX = jX). We have NOX = span {jX(x)jX(y)∗ : x, y ∈ X}.

3. Homotopies of product systems

To define our notion of a homotopy of product systems, we begin with a little back-
ground. Suppose that A is a C∗-algebra, and that X is a right-Hilbert (A ⊗ C([0, 1]))-
module. Identifying A ⊗ C([0, 1]) with C([0, 1], A) as usual, Cohen factorisation shows
that each x ∈ X can be written as x = y · f for some y ∈ X and f ∈ C([0, 1], A). It
follows that there is an action of C([0, 1]) on the right of X such that (x · f) · g = x · (fg)
for all x ∈ X, f ∈ C([0, 1], A) and g ∈ C([0, 1]).

With X and A as above, for each t ∈ [0, 1], we write It for the ideal A⊗C0([0, 1]\{t}) ⊆
A ⊗ C([0, 1]), and we write X t for the quotient right-Hilbert A-module X/(X · It). It is
standard that there is a unique topology on X :=

⊔
tX

t under which X is a continuous
Banach bundle in which, for each x ∈ X, the map

γx : t 7→ x+X · It
is continuous. With respect to this topology, the map X 3 x 7→ γx ∈ Γ([0, 1],X ) is an
isomorphism of X onto the module of continuous sections of X .2

Now suppose that X is a nondegenerate Hilbert bimodule over A ⊗ C([0, 1]). Then φ
extends to a homomorphism fromM(A⊗C([0, 1])) =M(A)⊗C([0, 1]) to L(X), and in
particular determines a left action of C([0, 1]) on X. We say that X is fibred over [0, 1]

2For example, one could prove this by applying [37, Theorem C.26] to the linking algebra
(K(X) X
X∗ A

)
,

and then take the sub-bundle of the resulting bundle of C∗-algebras consisting of sections corresponding
to elements of the form

(
0 ξ
0 0

)
. This is a continuous, rather than upper-semicontinous, bundle because t 7→

‖f(t)‖ is continuous for f ∈ C([0, 1], A), and so for x ∈ X, the map t 7→ ‖x+X ·It‖2 = ‖〈x, x〉A⊗C([0,1])(t)‖
is continuous.
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if f · x = x · f for all x ∈ X and f ∈ C([0, 1]). If X is fibred over [0, 1], then for each
t ∈ [0, 1], the right-Hilbert module X t becomes a Hilbert A-bimodule with left action
satisfying a · (x+ It) = (f · x) + It for any f ∈ C([0, 1], A) satisfying f(t) = a.

If P is a semigroup, and X is a product system over P with coefficient algebra A ⊗
C([0, 1]), we will say that X is fibred over [0, 1] if each Xp is fibred over [0, 1].

Lemma 3.1. Let P be a semigroup, and let X be a nondegenerate product system over
P with coefficient algebra C([0, 1], A) that is fibred over [0, 1]. For each t ∈ [0, 1] the
system X t := {X t

p : p ∈ P} is a product system over P with coefficient algebra A, with
multiplication given by (x + Xp · It)(y + Xq · It) = xy + Xpq · It for all p, q ∈ P , x ∈ Xp

and y ∈ Xq. For any p ∈ P , if the left action of C([0, 1], A) on Xp is by compacts, then
the left action of A on each X t

p is by compacts. For any p ∈ P , if the action of A on
each X t

p is faithful then the action of C([0, 1], A) on Xp is faithful; and if the left action
of C([0, 1], A) on Xp is by compacts, then the converse holds.

Our proof of this lemma uses one direction of a result of [23] which is stated there as an
if and only if. The other implication is flawed, so we pause to explain the issue and why
the implication we need to use is nevertheless correct. This text originated in a sequel
to [23] currently in preparation by Patterson, Sierakowski, Taylor and the third author;
we thank the other three authors for allowing us to publish it here instead.

Remark 3.2. In our next proof, we use the “⇒” implication of [23, Lemma A.2]. The
lemma asserts that given a right-Hilbert C([0, 1], A)-module X, an element T ∈ L(X)
is compact if and only if each ε̃t(T ) is compact. This is incorrect: the “⇐” implication
fails even for full right-Hilbert C([0, 1], A)-modules: take, for example, A = C and let
X = C0([0, 1))⊕ C0((0, 1]) under its natural C([0, 1])-valued inner-product. Then ε̃t(1X)
is compact for all t, but 1X is not compact. However, the “⇒” implication—that if
T ∈ K(X), then each ε̃t(T ) ∈ K(X ⊗εt A)—and the proof of this implication given in [23]
are correct; and this is the implication that we invoke below.

Fortunately, the error mentioned above has no flow-on effects in [23]. The incorrect
characterisation of compact operators on a right-Hilbert C([0, 1], A)-module is only used
in the proof of [23, Proposition A.1] to show that if X, Y are right-Hilbert C([0, 1], A)-
modules and U : X ⊗ε1 A→ Y ⊗ε0 A is an isomorphism, and if S ∈ K(X) and T ∈ K(Y )
satisfy Uε̃1(S)U−1 = ε̃0(T ), then the operator S ⊕ T ∈ K(X ⊕ Y ) restricts to a compact
operator on the right-Hilbert C([0, 1], A)-module Z = {(ξ, η) ∈ X ⊕ Y : U(ξ ⊗ε1 1) =
η ⊗ε0 1} with ξ 7→ ξ ⊗εt 1 denoting the quotient map of X into X ⊗εt A ∼= X/{x :
εt(〈x, x〉A) = 0} and similarly for η 7→ η ⊗εt 1. A correct proof of this statement appears
as [15, Lemma 4.5] (a more direct proof that does not invoke Kasparov’s stabilisation
theorem is also possible), and this fixes the gap in the proof of [23, Proposition A.1].

Proof of Lemma 3.1. Fix t ∈ [0, 1]. Each Xt is a Hilbert A-bimodule as discussed above,
so we just have to show that the formula (x+Xp ·It)(y+Xq ·It) = xy+Xpq ·It determines
a well-defined multiplication that induces isomorphisms X t

p ⊗A X t
q
∼= X t

pq. For p, q ∈ P
let Mp,q : Xp ⊗C([0,1],A) Xq → Xpq be the multiplication map. Fix x ∈ Xp · It, and write
x = x′ · f where f(t) = 0. Since Mp,q is an isomorphism and since Xq is fibred over [0, 1],
for any y ∈ X t

q, we have

xy = Mp,q(x⊗ y) = Mp,q(x
′ ⊗ f · y)

= Mp,q

(
(x′ ⊗ y) · f

)
= Mp,q(x

′ ⊗ y) · f = x′y · f ∈ Xpq · It.



10 JAMES FLETCHER, ELIZABETH GILLASPY, AND AIDAN SIMS

So if x+Xp ·It = x′+Xp ·It then xy−x′y = (x−x′)y ∈ Xpq ·It. A simple argument using
associativity and distributivity of multiplication shows that if y + Xq · It = y′ + Xq · It,
then for any x ∈ Xq we have xy = xy′, and it follows that the formula for multiplication
is well-defined.

For x, x′ ∈ Xp and y, y′ ∈ Xq, blurring, where appropriate, the distinction betwen
C([0, 1], A)/It and A, we have

〈xy +Xpq · It, x′y′ +Xpq · It〉A
= 〈xy, x′y′〉C([0,1],A) + It

=
〈
x⊗ y, x′ ⊗ y′

〉
C([0,1],A)

+ It

=
〈
x⊗ y + (Xp ⊗C([0,1],A) Xq) · It,

x′ ⊗ y′ + (Xp ⊗C([0,1],A) Xq) · It
〉
C([0,1],A)

+ It

=
〈
(x+Xp · It)⊗ (y +Xq · It), (x′ +Xp · It)⊗ (y′ +Xq · It)

〉
A
.

So the multiplication map described above defines isomorphisms X t
p ⊗A X t

q
∼= X t

pq of
Hilbert modules. Associativity follows from associativity of multiplication in X.

For the second-last assertion, first recall from the “⇒” implication of [23, Lemma A.2]
(see Remark 3.2) that if T ∈ K(Xp) is compact and εt : C([0, 1], A) → A is induced
by evaluation at t, then T ⊗εt 1 belongs to K(Xp ⊗εt A) for all t ∈ [0, 1]. The map
x⊗ a 7→ (x+X · It) · a is an isomorphism Xp⊗εt A ∼= X t

p that intertwines φp(f)⊗ 1 with
φtp(f(t)) for f ∈ C([0, 1], A) and t ∈ [0, 1]. So we deduce that if φp(f) is compact then
each φtp(f(t)) is compact. Thus if A ⊗ C([0, 1]) acts by compacts on Xp, then A acts by
compacts on each X t

p.
For the last assertion, first note that if each φtp is injective, then each φtp is isometric, and

so ‖φp(f)‖ = supt∈[0,1] ‖φtp(f(t))‖ = supt∈[0,1] ‖f(t)‖ = ‖f‖. For the converse implication,
suppose that C([0, 1], A) acts by compacts on Xp. We will first show that for any f ∈
C([0, 1], A) and any p ∈ P , the map t 7→ ‖φtp(f(t))‖ is continuous. To this end, note
that the second paragraph of the proof of [23, Lemma A.2] shows that, writing IXp :=
〈Xp, Xp〉C([0,1],A) ⊆ C([0, 1], A), the module Xp is a K(Xp)–IXp-imprimitivity bimodule,
and the open map Prim(K(Xp)) → [0, 1] arising from the C([0, 1])-structure as in [37,
Theorem C.26] is the composition of the Rieffel homeomorphism for Xp with the canonical
map Prim(C([0, 1], A)) → [0, 1]. Since this final map is open, so is the composition, and
we deduce from the final assertion of [37, Theorem C.26] that K(Xp) is a C([0, 1])-algebra
with norm-continuous sections. Consequently, if T ∈ K(Xp), the map t 7→ ‖T ⊗εt 1‖ is
continuous. Since we are assuming that the left action of C([0, 1], A) on Xp is by compacts,
we see that t 7→ ‖φtp(f(t))‖ is continuous for each f ∈ C([0, 1], A).

Now suppose that there exists t ∈ [0, 1] such that φtp is not injective. Then there exists
a ∈ A with ‖a‖ = 1 such that φtp(a) = 0. By continuity of the norm, there exists an
open neighbourhood U of t in [0, 1] such that ‖φsp(a)‖ < 1/2 for all s ∈ U . Choose
f ∈ C0(U) ⊆ C([0, 1]) with 0 ≤ f ≤ 1 and f(t) = 1. The function fa ∈ C([0, 1], A) given
by (fa)(s) = f(s)a satisfies ‖fa‖ = ‖a‖ = 1, and ‖φp(fa)‖ = sups∈[0,1] ‖φsp((fa)(s))‖ =
sups∈U f(s)‖φsp(a)‖ < 1/2. So φp is not isometric and therefore not injective. �

The previous Lemma enables us to adopt the following definition of a homotopy of
product systems.
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Definition 3.3. Let A be a C∗-algebra, and let P be a semigroup. Let Y and Z be
product systems over P with coefficient algebra A. A homotopy of product systems from
Y to Z is a nondegenerate product system X over P with coefficient algebra C([0, 1], A)
that is fibred over [0, 1] such that the product system X0 is isomorphic to Y and the
product system X1 is isomorphic to Z. We say that Y and Z are homotopic.

Example 3.4. Let X be a product system over P with coefficient algebra A. For each
p ∈ P , define Yp := Xp ⊗ C([0, 1]). Define multiplication on Y = {Yp}p∈P by

(x⊗ f)(y ⊗ g) := xy ⊗ fg.
We first claim that Y is a homotopy of product systems from X to X. It is easy

to check that Y is a nondegenerate product system over A ⊗ C([0, 1]), using that the
external tensor product factors through the internal tensor product of Hilbert bimodules.
It is then a homotopy of product systems by definition, and it is standard that the quotient
Xp ⊗ C([0, 1])/(Xp ⊗ C0([0, 1] \ {t}) ∼= Xp, so Y is a homotopy of product systems from
X to X.

We now claim that

NOY ∼= NOX ⊗ C([0, 1]) and NT Y ∼= NT X ⊗ C([0, 1]).

The universal property of NOX gives a homomorphism ρ : NOX → NOY such that
ρ(jp(x)) = jp(x ⊗ 1C([0,1])) for all p ∈ P and x ∈ X. It is routine to check that there is
a homomorphim σ : C([0, 1]) → ZM(NOY ) such that σ(f)jp(x ⊗ g) = jp(x ⊗ fg). The
universal property of the tensor product then gives a homomorphism (ρ ⊗ π) : NOX ⊗
C([0, 1])→ NOY such that (ρ⊗ π)(jp(x)⊗ f) = ρ(jp(x))σ(f) = jp(x⊗ f).

For each p the map x ⊗ f 7→ jp(x) ⊗ f is a module map from Yp to NOX ⊗ C([0, 1]),
and routine calculations show that these assemble into a representation τ of Y in NOX⊗
C([0, 1]). The modules Ỹp invoked in the definition of Cuntz–Pimsner covariance are

canonically isomorphic with the corresponding modules X̃p ⊗ C([0, 1]). Likewise, each
K(Xp⊗C([0, 1])) is canonically isomorphic to K(Xp)⊗C([0, 1]). A sum

∑
p∈F ι̃

s
p(Tp⊗ fp)

is zero in L(Ỹs) for large s if and only if each
∑

p∈F ι
s
p(fp(t)Tp) is eventually zero in

L(X̃s), and we deduce that τ is Cuntz–Nica–Pimsner covariant, and therefore induces a
homomorphism Πτ : NOY → NOX ⊗ C([0, 1]). It is routine to see that Πτ and (ρ⊗ π)
are mutually inverse, and hence isomorphisms.

Proposition 3.5. Let A be a C∗-algebra and let P be a semigroup. Then homotopy of
product systems is an equivalence relation on the collection of product systems over P of
Hilbert bimodules over A.

Proof. Example 3.4 shows that the external tensor product Y ⊗ C([0, 1]) is a homotopy
from Y to Y . let F : [0, 1] → [0, 1] be the flip homeomorphism F (t) = 1 − t, and
let X be a homotopy from Y to Z. Then there is a product system F∗X given by
setting (F∗X)p = Xp as a vector space, but with inner-product and actions given by
a : x = (a ◦ F ) · x, x : a = x · (a ◦ F ) and 〈〈x, y〉〉C([0,1],A) = 〈x, y〉C([0,1],A) ◦ F . This F∗(X)
is a homotopy from Z to Y .

Finally, suppose that W is a homotopy from Y1 to Y2, and X is a homotopy from Y2

to Y3. Then, by definition, there are isomorphisms of product systems U : W 1 → Y2 and
V : X0 → Y2. Define subspaces Zp ≤ Wp ⊕Xp by

Zp := {(w, x) ∈ Wp ⊕Xp : U(w +Wp · I1) = V (x+Xp · I0)}.
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Routine calculations show that each Zp is invariant for the left and right actions of
the subalgebra B := {(a, b) ∈ C([0, 1], A) ⊕ C([0, 1], A) : a(1) = b(0)}, and also that
〈Zp, Zp〉C([0,1],A)⊕C([0,1],A) ⊆ B. It is straightforward to check that the product-system
structure on W ⊕X restricts to give Z the structure of a nondegenerate product system
over P of Hilbert bimodules over B. We have an isomorphism ϕ : B → C([0, 1], A) given
by

ϕ(a, b)(t) =

{
a(2t) if t ≤ 1/2

b(2t− 1) if t > 1/2.

Using this to view Z as a product system of Hilbert bimodules over C([0, 1], A), we see
that Z is fibred over [0, 1] and that Z0 = W 0 ∼= Y1 while Z1 = X1 ∼= Y3; so Z is a
homotopy from Y1 to Y3. �

We now begin exploring the relation between NT X and NT Xt for a homotopy X of
product systems. Our goal is to show the commutativity of the following diagram, where
εt : X → X t is induced by the “evaluation at t” map C([0, 1], A) → A on the coefficient
algebras.

NT X NOX

NT Xt NOXt

X

X t

iX

iXt qt

q

εt εt∗ ε̃t∗

jX

jXt

Proposition 3.6. Let A be a C∗-algebra, let P be a quasi-lattice ordered semigroup, and
let X be a nondegenerate, compactly aligned product system over P of Hilbert bimodules
over C([0, 1], A). Suppose that X is fibred over [0, 1].

(1) There is a unique homomorphism ι : C([0, 1])→ ZM(NT X) such that ι(f)ie(g) =
ie(t 7→ f(t)g(t)) for all g ∈ C([0, 1], A), and this ι is unital.

(2) For each t ∈ [0, 1], let ITt be the ideal {ι(f)b : f ∈ C([0, 1]), f(t) = 0, and b ∈
NT X}. There is a surjective homomorphism εt∗ : NT X → NT Xt such that
εt∗(ip(x)) = ip(x+Xp · It) for all p ∈ P and x ∈ Xp, and we have ker(εt∗) = ITt .

(3) Let q : NT X → NOX and qt : NT Xt → NOXt be the quotient maps. Then
 := q ◦ ι is a unital homomorphism  : C([0, 1])→ ZM(NOX), each εt∗ descends
to a homormophism ε̃t∗ : NOX → NOXt, and if we write IOt := q(ITt ) then we
have IOt = {(f)b : f ∈ C([0, 1]), f(t) = 0, and b ∈ NOX}.

(4) Suppose that P is directed, and that for each p ∈ P the left action of C([0, 1], A)
on Xp is injective and by compacts. Then ker(ε̃t∗) = IOt .

Proof. (1) Since X is nondegenerate, any approximate identity (ai) for C([0, 1], A) satisfies
ai · x, x · ai → x for all x ∈ X. Hence ie(ai)ip(x), ip(x)ie(ai) → ip(x) for all p ∈ P and
x ∈ Xp, and we deduce that ie : C([0, 1], A) → NT X is nondegenerate, and so extends

to a unital homomorphism ĩe : M(C([0, 1], A)) → M(NT X). Since M(C([0, 1], A)) =
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C([0, 1],M(A)), this ĩe restricts to a unital homomorphism ι : C([0, 1])→M(NT X). The
range of ι is central because for each x ∈ Xp we have ι(f)ip(x) = ip(f · x) = ip(x · f) =
ip(x)ι(f) because Xp is fibred over [0, 1]. This homomorphism clearly satisfies ι(f)ie(g) =
ie(t 7→ f(t)g(t)), and for uniqueness, we observe that if ι′ : C([0, 1]) → ZM(NT X)
satisfies the same formula, then for any x ∈ X we can use Cohen factorisation to write
x = y · g for some g ∈ C([0, 1], A), and then ι′(f)ip(x) = ι′(f)ip(y)ie(g) = ip(y)ι′(f)ie(g)
by centrality, and since ι′(f)ie(g) = ie(fg) by assumption, we then have ι′(f)ip(x) =
ip(y)ie(fg) = ip(y · (fg)) = ip(x · f), and the same calculation applied to ι instead of ι′

shows that this is also equal to ι(f)ip(x). Since elements of the form ip(x)iq(y)∗ are dense
in NT X , it follows that ι = ι′.

(2) We first show that {εt∗ ◦ ip}p∈P is a Nica covariant representation of X in NT Xt . It
is a representation because i is a representation; in particular, if x ∈ Xp, y ∈ Xq we have

(εt∗ ◦ ip(x))(εt∗ ◦ iq(y)) = ip(x+Xp · It)iq(y +Xq · It) = ipq(xy +Xpq · It) = εt∗(ipq(xy)),

and (for x, y ∈ Xp)

ie(〈x, y〉A⊗C([0,1]) +Xe · It) = ip(x+Xp · It)∗ip(y +Xp · It) = (εt∗ ◦ ip(x))∗(εt∗ ◦ ip(y))

= εt∗ ◦ ie(〈x, y〉A⊗C([0,1]).

To see that it is Nica covariant, first note that for x, y ∈ Xp, Equation (2.1) shows that
(εt∗ ◦ i)(p) = εt∗ ◦ i(p). Now fix S ∈ K(Xp) and T ∈ K(Xq). Then

(εt∗ ◦ i)(p)(S)(εt∗ ◦ i)(q)(T ) = εt∗(i
(p)(S)i(q)(T ))

and (εt∗◦i)(p∨q)(ιp∨qp (S)ιp∨qq (T )) = εt∗(i
(p∨q)(ιp∨qp (S)ιp∨qq (T ))), and so εt∗◦i is Nica covariant

because i is.
The universal property ofNT X now yields a homomorphism εt∗ : NT X → NT Xt . This

homomorphism is surjective because each ip(x + Xp · It) = εt∗(ip(x)) and each ie(a) =
εt∗(ie(a⊗ 1C([0,1]))) belongs to its range.

To see that ker(εt∗) = ITt , we first observe that for any f ∈ C0([0, 1] \ {t}), x ∈ Xp,

εt∗(ι(f)ip(x)) = εt∗(ip((f ⊗ 1A) · x) = ip(x · (f ⊗ 1A) +Xp · It) = 0,

since x ·(f⊗1A) ∈ Xp ·It. Consequently, ITt ⊆ ker εt∗. To establish the other containment,
we will construct a Nica-covariant representation ψ of X t in NT X/ITt , such that the
resulting homomorphism Πψ : NT Xt → NT X/ITt satisfies εt∗ ◦ Πψ = id. We aim to
define

ψ(ip(x+Xp · It)) = ip(x) + ITt .

To see that this is well defined, observe that for all x, y ∈ Xp, we have

(ip(x) + ITt )∗(ip(y) + ITt ) = ip(x)∗ip(y) + ITt = ie(〈x, y〉A⊗C([0,1])) + ITt

= 〈ip(x+Xp · It), ip(y +Xp · It)〉A.

Hence the formula for ψ determines an isometric map from X t
p to NT X/ITt . An argument

like that given for εt∗ ◦ i above shows that ψ is a Nica-covariant representation. To see
that εt∗ ◦ ψ = id, we compute:

εt∗(ψ(ip(x+Xp · It)) = εt∗(ip(x) + ITt ) = εt∗(ip(x)) = ip(x+Xp · It).
(3) To see that εt∗ descends to a homomorphism ε̃t∗ : NOX → NOXt , it suffices to

show that if qt : NT Xt → NOXt is the quotient map, then qt ◦ εt∗ ◦ ip is a Cuntz–Pimsner
covariant representation of X. Since the actions of A ⊗ C([0, 1]) on the modules Xp are
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implemented by injective homomorphisms, the modules X̃p of [36] are just the original

modules Xp, and the homomorphisms ι̃pqp : L(Xp) → L(X̃pq) are the standard inclusions
ιpqp : L(Xp)→ L(Xpq) characterised by ιpqp (S)(xy) = (Sx)y for x ∈ Xp and y ∈ Xq. Write
ι[t]pqp : L(X t

p)→ L(X t
pq) for the corresponding inclusions for the product system X t; and

as usual for T ∈ L(Xp) write Tt for the map in L(X t
p) given by Tt(x+X ·It) = Tx+X ·It.

A routine calculation shows that for T ∈ L(Xp) we have ι[t]pqp (Tt) = ιpqp (T )t. So if F ⊆ P
is finite and Tp ∈ K(Xp) for each p ∈ F , then

(3.1)
(∑
p∈F

ιsp(Tp)
)
t

=
∑
p∈F

ι[t]sp((Tp)t) for every s ≥ p in P .

Assume
∑

p∈F ι
s
p(Tp) = 0 for large s; we will show that

∑
p∈F (qt ◦ εt∗ ◦ i)(p)(Tp) = 0.

From (3.1) we see that
∑

p∈F ι[t]
s
p((Tp)t) = 0 for large s, and consequently

qt

(∑
p∈F

i
(p)
t ((Tp)t)

)
= qt

(∑
p∈F

ιsp[t]((Tp)t)
)

= 0.

Equation 2.1 shows that (qt ◦ εt∗ ◦ i)(p) = (qt ◦ εt∗) ◦ i(p). Hence∑
p∈F

(qt ◦ εt∗ ◦ i)(p)((Tp)t) =
∑
p∈F

(qt ◦ εt∗) ◦ i(p)(Tp) = 0.

That IOt = {(f)b : f ∈ C([0, 1]), f(t) = 0, and b ∈ NOX} follows from the definition of
ITt .

(4) Since IOt = q(ITt ) = q(ker(εt∗)), we clearly have IOt ⊆ ker(ε̃t∗). To see that ker(ε̃t∗) =
q(ITt ), it suffices to show that if qt : NT X/ITt → NOX/IOt is the quotient map, then the
Nica-covariant representation ψ : X t → NT X/ITt defined above has the property that qt◦
ψ is Cuntz–Nica–Pimsner covariant. For each p ∈ P , let φtp : A→ K(X t

p) be the injective
homomorphism that implements the left action; and let φp : A⊗C([0, 1])→ K(Xp) be the
corresponding map for X. We invoke [36, Proposition 5.1(2)], which says that it suffices
to show that for each a ∈ A and each p ∈ P , we have (qt ◦ ψ)(p)(φtp(a))− (qt ◦ ψe)(a) = 0.

By [36, Proposition 5.1(2)], we have i(p)(φp(a⊗ 1[0,1]))− ie(a⊗ 1[0,1]) ∈ ker(q). Since the
identification of A⊗ C([0, 1]))/A⊗ C0([0, 1] \ {t}) with A carries a⊗ 1[0,1] to a, we have

(qt ◦ ψ)(p)(φtp(a))− (qt ◦ ψe)(a) = qt(ψ
(p)(φtp(a))− ψe(a))

= qt
(
i(p)(φp(a⊗ 1[0,1]))− ie(a⊗ 1[0,1]) + ITt

)
= q
(
i(p)(φp(a⊗ 1[0,1]))− ie(a⊗ 1[0,1])

)
+ IOt = 0. �

Remark 3.7. It is unclear whether the hypothesis that p ∨ q < ∞ for all p, q ∈ P is
necessary for the final assertion of Proposition 3.6(3). The issue is that to establish
the final assertion without this hypothesis, we would need to verify the Cuntz–Pimsner
relation for the map q◦ψ in the final paragraph of the proof. That is, given a finite F ⊆ P
and elements T tp ∈ K(X t

p) such that
∑

p ι[t]
s
p(T

t
p) = 0 for large s, we would need to show

that we could find representatives Tp ∈ K(Xp) of the operators T tp with the property that∑
p ι
s
p(Tp) = 0 for large s; it is not clear to us whether this is so.

We now prove that the evaluation maps εt for a homotopy of product systems over Nk

induce KK-equivalences of Nica–Toeplitz algebras.
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Corollary 3.8. Let X be a homotopy of product systems over Nk with coefficient algebra
A. Suppose that A is σ-unital and each Xn is countably generated. For any t ∈ [0, 1], the
class of the homomorphism εt∗ of Proposition 3.6(2) is a KK-equivalence from NT X to
NT Xt, and in particular defines an isomorphism

K∗(NT X) ∼= K∗(NT Xt).

Proof. By [7, Corollary 4.18], the classes of i : C([0, 1], A) → NT X and it : A → NT Xt

are KK-equivalences. Since [0, 1] is contractible, the evaluation map ε0
t : C([0, 1], A)→ A

also induces a KK-equivalence. We have it ◦ ε0
t = εt∗ ◦ i, and so in KK-theory, we have

[εt∗] = [it] ⊗̂ [ε0
t ] ⊗̂ [i]−1.

Since the three factors on the right-hand side are KK-equivalences, we deduce that [εt∗]
is a KK-equivalence as well. �

Our main theorem states that homotopy of product systems over Nk preserves the
K-theory of their Cuntz–Nica–Pimsner algebras.

Theorem 3.9. Let X be a homotopy of product systems over Nk whose coefficient algebra
A⊗ C([0, 1]) acts faithfully by compact operators. For any t ∈ [0, 1], the evaluation map
εt induces an isomorphism

K∗(NOXt) ∼= K∗(NOX).

In particular, if A satisfies the UCT and each Xn is countably generated, then each NOXt

is KK-equivalent to NOX .

Proof. We will proceed by induction on k. Recall that X0
∼= C([0, 1], A), and so X t

0
∼= A.

Hence, if k = 0 then NOX = C([0, 1], A) and NOXt = A, and ε̃t∗ is just the evaluation
map εt : C([0, 1], A)→ A. Thus ε̃t∗ induces a KK-equivalence.

Now suppose that the result holds for all product systems over Nk−1. Let X<k be the
product system over Nk−1 obtained by restriction of X, which is also a homotopy of prod-
uct systems with coefficient algebra A. Theorem 4.7 of [7] (see also [6, Theorem 3.4.21])
shows that there is a product system Y of Hilbert NOX<k-bimodules over N in which the
left action is faithful and by compact operators and such that NOX ∼= NOY . As Y is a
product system over N, NOY = OY1 .

By definition (see [7, Proposition 4.3] or [6, Proposition 3.4.7]), if  : NOX<k → NOX
is the homomorphism induced by the inclusion X<k ↪→ X, then the module Y1 is equal
to span{iek(ξ)(b) : ξ ∈ Xek , b ∈ NOX<k} ⊆ NOX , and similarly for Y t

1 for each fixed t.
So the map ε̃t∗ : NOX → NOXt restricts to a bimodule map (εYt , ε

<k
t∗ ) : (Y1,NOX<k)→

(Y t
1 ,NOXt

<k
), and by definition the homomorphism NOX → NOXt induced by this

bimodule map is the original ε̃t∗. Hence the final statement (concerning naturality) of
[23, Theorem 4.4], shows that Pimsner’s six-term exact sequences in KK-theory [27,
Theorem 4.9(1)] applied with B = C to each of Y1 and Y t

1 , assemble into the following
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commuting diagram:

K1(NOX<k).K1(NOX<k)K1(NOX)

K0(NOX)K0(NOX<k)K0(NOX<k)

1− [Y1][i0]

1− [Y1] [i0]

K1(NOXt
<k

)K1(NOXt
<k

)K1(NOXt)

K0(NOXt)K0(NOXt
<k

)K0(NOXt
<k

)

1− [Y t
1 ][it0]

1− [Y t
1 ] [it0]

[ε<kt∗ ][ε<kt∗ ]
[εt∗]

[ε̃<kt∗ ]
[ε<kt∗ ]

[ε̃t∗]

The inductive hypothesis implies that the upper-left, upper-middle, lower-right and
lower-middle outside-to-inside maps are isomorphisms, and so the Five Lemma shows
that the remaining two outside-to-inside maps are isomorphisms as well.

Corollary 5.21 of [7] establishes that if A satisfies the Universal Coefficient Theorem,
then our hypotheses on A and X imply that NOX and NOXt also satisfy the UCT.
Consequently, the above isomorphisms in K-theory give a KK-equivalence in this case.

�

4. Applications to k-graphs

The main result of this section, Theorem 4.1, uses Theorem 3.9 to show that any two
twisted Cuntz–Krieger algebras of 2-graphs with isomorphic skeletons have isomorphic
K-groups. Our approach relies on casting the notion of homotopy of 2-cocycles for k-
graphs (previously studied in relation to K-theory in [22, 11]) in the language of product
systems. Most of the section is aimed at proving this result about 2-graphs, but we also
pause to investigate some potential applications to k-graphs for k ≥ 2. Consequently,
many of the results that contribute to the proof of Theorem 4.1 are stated for arbitrary
k.

We begin by introducing the notation and definitions needed for our construction of
the product systems associated to twisted k-graph C∗-algebras.

4.1. Background and notation for twisted k-graph C∗-algebras. We write Nk for
the monoid of k-tuples of nonnegative integers under coordinatewise addition, and some-
times regard it as a small category with one object. We write {e1, . . . , ek} for the canon-
ical generators of Nk. Recall from [17] that a k-graph, or a higher-rank graph of rank
k, is a countable small category Λ equipped with a functor d : Λ → Nk that satis-
fies the factorisation property: whenever d(λ) = m + n there exist unique µ ∈ d−1(m)
and ν ∈ d−1(n) such that λ = µν. We write Λn := d−1(n). The factorisation prop-
erty guarantees that Λ0 = {ido : o ∈ Obj(Λ)}. Given subsets E,F ⊆ Λ, we write
EF = {µν : µ ∈ E, ν ∈ F, s(µ) = r(ν)}. In the instance of singleton sets, we simplify
notation by writing µF rather than {µ}F and Eν rather than E{ν}.
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We say that the k-graph Λ is row finite with no sources if 0 < |vΛn| <∞ for all v ∈ Λ0

and n ∈ Nk. This hypothesis, which we will assume throughout this paper, facilitates the
construction and analysis of the C∗-algebra associated to the k-graph.

As introduced in [20, 21], there are two types of 2-cocycle on a k-graph Λ: categorical
and cubical. However, [21, Theorem 4.15] exhibits an isomorphism between the cubical
and categorical second cohomology groups (see also [12]). Moreover, by [21, Corollary 5.7],
this isomorphism induces an isomorphism of the associated twisted C∗-algebras, so one
may freely choose to work with categorical or cubical 2-cocycles without loss of generality.
We have found cubical 2-cocycles to be a more natural framework for describing the
product systems associated to k-graphs.

To define cubical cocycles, observe that if 1 ≤ i1 < i2 < i3 ≤ k, and if d(λ) =
ei1 + ei2 + ei3 , then the factorisation property shows that for each j ∈ {1, 2, 3} there are
factorisations λ = F 0

j (λ)βj = αjF
1
j (λ) such that d(αj) = d(βj) = eij .

F 1
1 (λ)

α1

F 0
1 (λ)

β1

F 0
2 (λ)

β2

F 1
2 (λ)

α2

F 1
3 (λ)

α3

F 0
3 (λ)

β3

A cubical 2-cocycle on a k-graph Λ is a function φ :
⊔
i 6=j Λei+ej → T that satisfies the

following cocycle identity: whenever 1 ≤ i1 < i2 < i3 ≤ k and d(λ) = ei1 + ei2 + ei3 as
above, we have

φ(F 0
1 (λ))φ(F 1

2 (λ))φ(F 0
3 (λ)) = φ(F 1

1 (λ))φ(F 0
2 (λ))φ(F 1

3 (λ)).

Intuitively, the products of the values over the opposing hemispheres centred on the top-
front-left vertex (the bottom row above) and the bottom-back-right vertex (the top row
above) of a cube are equal.

If φ is a cubical 2-cocycle on a row-finite k-graph Λ with no sources, then a Cuntz–
Krieger φ-representation of Λ in a C∗-algebra consists of mutually orthogonal projections
{pv : v ∈ Λ0} and partial isometries {sµ : µ ∈

⊔
i Λ

ei} satisfying

(1) s∗µsµ = ps(µ) for all µ ∈
⊔
i Λ

ei ,
(2) sµ′sν′ = φ(µν)sµsν whenever 1 ≤ i < j ≤ k and µ, µ′ ∈ Λei and ν, ν ′ ∈ Λej satisfy

µν = ν ′µ′, and
(3) pv =

∑
µ∈vΛei sµs

∗
µ for all v ∈ Λ0 and i ≤ k.

The twisted C∗-algebra C∗φ(Λ) is the universal C∗-algebra generated by a Cuntz–Krieger
φ-representation of Λ. If φ is the trivial 2-cocycle, so that φ(λ) = 1 for all λ ∈

⊔
i 6=j Λei+ej ,

then C∗φ(Λ) ∼= C∗(Λ) is the usual k-graph C∗-algebra.
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The following notions, while not standard in the literature on k-graphs, underlie our
results in this section. Given directed graphs E,F with common vertex set E0 = F 0, and
given v, w ∈ E0, we write

E1F 1 := {ef : e ∈ E1, f ∈ F 1, and s(e) = r(f)},
and for v, w ∈ E0 we write

vE1F 1w = {ef ∈ E1F 1 : r(e) = v and s(f) = w}.
By a k-skeleton, we mean a tuple E = (E1, . . . , Ek) of row-finite directed graphs with

no sources and with common vertex set E0 such that for all v, w ∈ E0 and all i 6= j ≤ k,
we have

|vE1
iE

1
jw| = |vE1

jE
1
i w|.

We say that two k-skeletons (E1, . . . , Ek) and (F1, . . . , Fk) are isomorphic if there exist
bijections ρ0 : E0 → F0 and ρi : Ei → Fi such that ρ0 ◦ s = s ◦ ρi, ρ0 ◦ r = r ◦ ρi for
1 ≤ i ≤ k.

Every k-graph Λ gives rise to a k-skeleton (namely Ei = Λei). The converse is not
true; however, the additional structure needed for a k-skeleton to give rise to a k-graph
is described in [13].

4.2. Unitary cocycles and higher-rank graphs. The main result of this section is
the following.

Theorem 4.1. Suppose that Λ and Γ are row-finite 2-graphs with isomorphic skeletons.
Let φ : Λ(1,1) → T and ψ : Γ(1,1) → T be cubical 2-cocycles. Then K∗(C

∗
φ(Λ)) ∼= K∗(C

∗
ψ(Γ)).

The next lemma underlies Definition 4.3 below.

Lemma 4.2. Let E = (E1, E2) be a 2-skeleton. For each v, w ∈ E0 suppose that U(v, w) is

a unitary operator U(v, w) ∈ U(CvE1
2E

1
1w,CvE1

1E
1
2w). Let A := C0(E0), and for i = 1, 2, let

Xi := X(Ei) be the graph bimodule of Ei as in Example 2.1. Then there is an isomorphism
U : X2⊗AX1 → X1⊗AX2 such that U(δf⊗δe) = U(r(f), s(e))(δf⊗δe) for all fe ∈ E1

2E
1
2 .

Proof. Let X12 and X21 be the graph modules for the directed graphs (E0, E1
1E

1
2 , r, s) and

(E0, E1
2E

1
1 , r, s) respectively. Routine calculations with inner products (see the proof of

[29, Proposition 3.2]) show that Xij
∼= Xi ⊗AXj via a map satisfying δef 7→ δe ⊗ δf , so it

suffices to show that there is an isomorphism X21 → X12 satisfying δfe 7→ U(r(f), s(e))δfe
for all fe ∈ E1

2E
1
1 . For this, fix fe, hg ∈ E1

2E
1
1 . For w ∈ E0, we calculate:

〈U(r(f), s(e))δfe, U(r(h), s(g))δhg〉A(w)

=
∑

β∈E1
1E

2
1w

(U(r(f), s(e))δfe)(β)(U(r(h), s(g))δhg)(β).

This is equal to zero unless r(h) = r(f) and s(g) = s(e), in which case, U(r(h), s(g)) =
U(r(f), s(e)), and since this is a unitary operator, we may continue the calculation

= δr(f),r(h)δs(e),s(g)〈U(r(f), s(e))δfe, U(r(f), s(e))δhg〉A(w)

= 〈δfe, δhg〉A(w).

It follows by linearity and continuity that there is an inner-product-preserving linear
operator

(4.1) U : X21 → X12
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such that U |δv ·X21·δw = U(v, w) for all v, w. Since each U |δv ·X21·δw is surjective onto δv ·
X12 · δw, and since these subspaces span X12, we see that U is surjective and hence an
isomorphism. �

Definition 4.3. Let E = (E1, . . . , Ek) be a k-skeleton and A = C0(E0). By a unitary
cocycle for E, we mean a collection {Ui,j(v, w) : v, w ∈ E0, 1 ≤ i < j ≤ k} of unitary

operators Ui,j(v, w) ∈ U(CvE1
jE

1
i w,CvE1

i E
1
jw) such that the isomorphisms Ui,j : X(Ej) ⊗A

X(Ei)→ X(Ei)⊗A X(Ej) for i < j given by Lemma 4.2 satisfy the cocycle identity

(Ui,j ⊗ 1Xl)(1Xj ⊗ Ui,l)(Uj,l ⊗ 1Xi)

= (1Xi ⊗ Uj,l)(Ui,l ⊗ 1Xj)(1Xl ⊗ Ui,j) for all 1 ≤ i < j < l ≤ k.
(4.2)

Remark 4.4. If k = 2 then the condition (4.2) is vacuous because the inequality 1 ≤
i < j < l ≤ 2 has no solutions. So a unitary cocycle for a 2-skeleton (E1, E2) is noth-
ing more than a collection {U1,2(v, w) : v, w ∈ E0} of unitary operators U1,2(v, w) ∈
U(CvE1

2E
1
1w,CvE1

1E
1
2w). In particular, since each |vE1

2E
1
1w| = |vE1

1E
1
2w|, every 2-skeleton

admits many unitary cocycles.
By contrast, [19, Example 5.15(ii)] presents an example, due to Jack Spielberg, of a

3-skeleton that cannot be the skeleton of a 3-graph, and it is straightforward to extend
the arguments used in that example to see that this 3-skeleton does not admit any unitary
cocycles. In particular, for k ≥ 3 the existence of a unitary cocycle for (E1, . . . , Ek) is
a nontrivial additional hypothesis in our results henceforth. However, Proposition 4.6
below shows that there are plenty of k-skeletons that do admit unitary cocycles.

We are interested in unitary cocycles because they correspond exactly with product
systems over Nk with generating fibres Xei = X(Ei). To be precise, the results of [10]
(in particular [10, Remark 2.3]) imply that every unitary cocycle determines a product
system. This is the content of the next lemma.

Lemma 4.5. Let E = (E1, . . . , Ek) be a k-skeleton, and let A = C0(E0).

(1) Let U = {Ui,j(v, w) : v, w ∈ E0, 1 ≤ i < j ≤ k} be a unitary cocycle for E.
There is a unique product system XU over Nk with coefficient algebra A such that:
Xei = X(Ei) for i ≤ k; for all 1 ≤ i < j ≤ k, we have Xei+ej = Xei ⊗A Xej ; and
the multiplication in X satisfies, for 1 ≤ i < j ≤ k, ξ ∈ Xei and η ∈ Xej ,

(4.3) ξη = ξ ⊗ η and ηξ = Ui,j(η ⊗ ξ).

(2) Suppose that X is a product system over Nk with coefficient algebra A such that
Xei
∼= X(Ei) for all i ≤ k. Then there exists a unitary cocycle U for E such that

X ∼= XU .

Proof. (1) This follows immediately from [10, Theorem 2.1].
(2) Let W : Xe2 ⊗AXe1 → Xe1 ⊗AXe2 be the isomorphism determined by the composi-

tion of the multiplication map Xe2 ⊗AXe1 → X(1,1) with the inverse of the multiplication
map Xe1 ⊗AXe2 → X(1,1). Write E12 for the graph (E0, E1

1E
1
2 , r, s) and E21 for the graph

(E0, E1
2E

1
1 , r, s). By identifying each Xei with X(Ei), we can regard W as an isomor-

phism X(E2) ⊗A X(E1) → X(E1) ⊗A X(E2). A straightforward calculation shows that
there are isomorphisms Mi,j : X(Ei) ⊗A X(Ej) → X(Eij) such that Mi,j(δe ⊗ δf ) = δef
whenever s(e) = r(f). So we obtain an isomorphism W̃ : X(E21) → X(E12) given
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by W̃ = M1,2 ◦ W ◦ M−1
2,1 . Since this is an isomorphism of Hilbert modules, it re-

stricts to isomorphisms W̃ (v, w) : δv · X(E21) · δw → δv · X(E12) · δw. These spaces

are canonically isomorphic to CvE1
2E

1
1w and CvE1

1E
1
2w, and so W̃ (v, w) determines a unitary

U1,2(v, w) ∈ U(CvE1
2E

1
2w,CvE1

1E
1
2w).

The isomorphism U1,2 : X(E2)⊗A X(E1)→ X(E1)⊗A X(E2) obtained from the maps

{U1,2(v, w)}v,w as in Lemma 4.2 satisfies M1,2(U1,2(δf ⊗ δe)) = W̃ (M2,1(δf ⊗ δe)) whenever
s(f) = r(e), and therefore U1,2 = W . So the uniqueness result [10, Theorem 2.2] shows
that the product system X is isomorphic to XU as claimed. �

Our next result shows that for any row-finite k-graph Λ with no sources, and for any
2-cocycle on Λ, we obtain a unitary cocycle such that the twisted k-graph C∗-algebra
coincides with the Cuntz–Nica–Pimsner algebra of the product system over Nk determined
by the unitary cocycle.

Proposition 4.6. Let Λ be a row-finite k-graph with no sources and suppose that φ :⊔
i<j≤k Λei+ej → T is a cubical 2-cocycle. For i ≤ k, let Ei be the directed graph Ei =

(Λ0,Λei , r, s). Then E = (E1, . . . , Ek) is a k-skeleton. There is a unitary cocycle U = UΛ,φ

for E such that for all v, w ∈ Λ0 and 1 ≤ i < j ≤ k, and for all e, e′ ∈ E1
i and f, f ′ ∈ E1

j

satisfying ef = f ′e′ in Λ, we have

Ui,j(v, w)(δf ′e′) = φ(ef)δef .

Let XU be the product system associated to U in Lemma 4.5. Then there is an isomorphism
π : C∗φ(Λ) ∼= NOXU such that π(pv) = i0(δv) for all v ∈ Λ0, and such that π(sλ)iei(δλ) for
all i ≤ k and λ ∈ Λei.

Proof. The factorisation rules in Λ determine bijections fij : vΛeiΛejw → vΛei+ejw, and
hence bijections Fij := f−1

ij ◦ fji : vΛejΛeiw → vΛeiΛejw for i < j, such that if e, e′ ∈
Λej = E1

i and f, f ′ ∈ Λei = E1
j satisfy ef = f ′e′, then Fij(ef) = f ′e′. In particular, E is

a k-skeleton. The maps Fij induce a unitary (in fact a permutation matrix) Vij(v, w) :

CvE1
jE

1
i w → CvE1

i E
1
jw for each v, w ∈ E0, and post-composing Vi,j(v, w) with the diagonal

unitary diag(φ(λ))λ∈vE1
i E

1
jw

yields a unitary U(v, w)i,j satisfying the desired formula. If

efg ∈ E1
iE

1
jE

1
l with 1 ≤ l < j < i ≤ k, and if the factorisation rules give efg = f 1e1g =

f 1g1e2 = g2f 2e2 and also efg = eg1f1 = g2e1f1 = g2f2e2, then associativity of composition
in Λ gives e2 = e2, f 2 = f2 and g2 = g2:

f 1

e

f

e1 gg1

g1g2

e2

f 2

e1

f1

Quick calculations then give

(Ui,j ⊗ 1Xl)(1Xj ⊗ Ui,l)(Uj,l ⊗ 1Xi)(δe ⊗ δf ⊗ δg) = φ(ef)φ(e1g)φ(f 1g1)δg2 ⊗ δf2 ⊗ δe2 ,
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and

(1Xi ⊗ Uj,l)(Ui,l ⊗ 1Xj)(1Xl ⊗ Ui,j)(δe ⊗ δf ⊗ δg) = φ(fg)φ(eg1)φ(e1f1)δg2 ⊗ δf2 ⊗ δe2
= φ(fg)φ(eg1)φ(e1f1)δg2 ⊗ δf2 ⊗ δe2 .

The cubical cocycle condition shows that c(ef)c(e1g)c(f 1g1) = c(fg)c(eg1)c(e1f1). Thus
condition (4.2) holds when both sides are applied to an elementary tensor δe ⊗ δf ⊗ δg
corresponding to a path efg ∈ E1

iE
1
jE

1
l . Since these are the only elementary tensors of

basis vectors that are nonzero, they span Xi ⊗A Xj ⊗A Xk, and therefore U is a unitary
cocycle for E as claimed.

For v ∈ Λ0, define Pv := i0(δv) and for λ ∈ Λei define Sλ := iei(δλ). We claim that
these form a Cuntz–Krieger φ-representation of Λ as in [20, Definition 7.4]. The Pv are
mutually orthogonal projections because the δv are. For λ ∈ Λei , we have

S∗λSλ = iei(δλ)
∗iei(δλ) = i0(〈δλ, δλ〉A) = i0(δs(λ)) = Ps(λ)

which is condition (1) of [20, Definition 7.4].
To check condition (2), fix 1 ≤ i < j ≤ k and fix µ, µ′ ∈ Λei and ν, ν ′ ∈ Λej such

that µν = ν ′µ′. Using (4.3) at the second and fifth equalities, and using the definition of
Ur(ν′),s(µ′) at the fourth, we calculate:

s′νs
′
µ = ie2(δν′)ie1(δµ′) = i(1,1)(U(δν′ ⊗ δµ′)) = i(1,1)(Ur(ν′),s(µ′)(δν′ ⊗ δµ′))

= i(1,1)(φ(µν)δµ ⊗ δν) = φ(µν)ie1(δµ)ie2(δν) = φ(µν)sµsν .

Finally, to check condition (3), fix v ∈ E0. Writing α : A → K(Xi) for the ho-
momorphism implementing the left action, we have

∑
e∈vΛei θδe,δe = α(δv), and so the

Cuntz–Pimsner covariance condition gives
∑

e∈vΛei SeS
∗
e = i(ei)

(∑
e θδe,δe

)
= i0(δv) = Pv.

Thus the operators {Pv}v∈Λ0 and {Sλ}λ∈Λei form a Cuntz–Krieger φ-representation of Λ
as claimed.

The universal property of C∗φ(Λ) now gives a homomorphism π : C∗φ(Λ) → NOX that
carries pv to Pv and sλ to Sλ for λ ∈

⊔
i≤k Λei . Since A is spanned by the δv and each Xi

is spanned by {δλ : λ ∈ Λei} we see that the range of π contains C∗(i0(A) ∪
⋃
i iei(Xi)).

Since multiplication gives isomorphisms Xn
∼= X⊗n1

1 ⊗AX⊗n2
2 ⊗A · · ·⊗AX⊗nkk , we see that

in(Xn) = span{Sλ1
1
. . . Sλ1

n1
Sλ2

1
. . . Sλ2

n2
. . . Sλk1 . . . Sλknk

: λij ∈ Λei}

and so is contained in the image of π. Since i0 is injective [36, Lemma 3.5 and Theo-
rem 4.1], the Pv are all nonzero. Using [21, Theorem 4.15 and Proposition 5.7] we see
that there is an isomorphism ω : C∗φ(Λ) ∼= C∗(Λ, c), for some categorical 2-cocycle c, such

that ω carries pv to pv for each v ∈ Λ0, and then an application of the gauge-invariant
uniqueness theorem [21, Corollary 7.7] shows that π ◦ ω−1 is injective, and therefore π is
injective. So C∗φ(Λ) ∼= NOY 0 as claimed. �

Lemma 4.5 also allows us to construct homotopies of product systems using continuous
paths of unitary cocycles.

Definition 4.7. Let E = (E1, . . . , Ek) be a k-skeleton. A continuous path of unitary
cocycles for E is a family

{U t
i,j(v, w) : v, w ∈ E0, 1 ≤ i < j ≤ k, t ∈ [0, 1]}
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such that for each t, the family {U t
i,j(v, w) : v, w ∈ E0, 1 ≤ i < j ≤ k} is a unitary cocycle

for E, and such that for each i < j and each v, w ∈ E0, the function t 7→ U t
i,j(v, w) is a

continuous function from [0, 1] to U(CvE1
jE

1
i w,CvE1

i E
1
jw).

Proposition 4.8. Let E = (E1, . . . , Ek) be a k-skeleton, and suppose that the family
U = {U t

i,j(v, w) : v, w ∈ E0, 1 ≤ i < j ≤ k, t ∈ [0, 1]} is a continuous path of unitary

cocycles for E. Let A = C0(E0), and for each i, let Xi = X(Ei) the graph bimodule for Ei.
Define B := C([0, 1], A) and for each i, define Yi := C([0, 1], Xi) regarded as a Hilbert B-
bimodule under the actions (f ·F ·g)(t) = f(t) ·F (t) ·g(t) and 〈F,G〉B(t) = 〈F (t), G(t)〉A.
Then there is a unique product system Y over Nk with coefficient algebra B such that:
Yei = Yi for i ≤ k; for all 1 ≤ i < j ≤ k, we have Yei+ej = Yi⊗B Yj; and multiplication in
Y satisfies

(4.4) (FG)(t) = F (t)⊗A G(t) and (GF )(t) = U t
i,j(G(t)⊗ F (t))

whenever 1 ≤ i < j ≤ k, F ∈ Yi, G ∈ Yj and t ∈ [0, 1]. The product system Y is a
homotopy of product systems from XU0 to XU1.

Proof. Since each U t
i,j gives an isomorphism Xj⊗AXi → Xi⊗AXj, and U is a continuous

path of unitary cocycles, the map G ⊗ F 7→ (t 7→ U t
i,j(G(t) ⊗ F (t))) determines an

isomorphism Ui,j : Yj ⊗B Yi → Yi ⊗B Yj. Since the U t
i,j satisfy the cocycle identity, so do

the induced isomorphisms Ui,j. So the first statement follows from [10, Theorem 2.1].
The formulas for the actions show immediately that Y is nondegenerate, and is fibred

over [0, 1]. Thus, it suffices to show that Y t = XUt . Let It be the ideal of B generated
by C0([0, 1] \ {t}) ⊆ C([0, 1]). For F,G ∈ Yi, we have F + Yi · It = G+ Yi · It if and only
if F (t) = G(t). Routine calculations then show that the map ηt : F + Yi · It 7→ F (t) is a
bimodule morphism (in fact an isomorphism) from Y t

i to Xi. Since each Yi is fibred over
[0, 1] we see that (Yi⊗B Yj) · It = (Yi · It)⊗B (Yj · It) for all i, j and t, and that ηt induces
an isomorphism (also denoted ηt) from Y t

i ⊗AY t
j to Xi⊗AXj. These isomorphisms satisfy

U t
i,j(ηt((G+ Yj · It)⊗ (F + Yi · It))) = U t

i,j(G(t)⊗ F (t)) = (Ui,j(G⊗ F ))(t)

= ηt(Ui,j(G⊗ F ) + (Yi ⊗B Yj) · It),
and so it follows from the uniqueness theorem [10, Theorem 2.2] that the product system
Y t is isomorphic to XUt . In particular Y 0 ∼= XU0 and Y 1 ∼= XU1 . �

Corollary 4.9. Let E = (E1, . . . , Ek) be a k-skeleton. If U = {U t
i,j(v, w)} is a continuous

path of unitary cocycles for E, then K∗(NOXU0 ) ∼= K∗(NOXU1 ). In particular, suppose

that Λ1 and Λ2 are k-graphs with the same skeleton and that φl :
⊔
i<j≤k Λ

ei+ej
l → T is a

cubical cocycle for i = 1, 2. If there is a continuous path of unitary cocycles from Uφ1 to
Uφ2, then K∗(C

∗
φ1

(Λ1)) ∼= K∗(C
∗
φ2

(Λ2)).

Proof. Proposition 4.8 gives a homotopy of product systems from XU0 to XU1 , and then
Theorem 3.9 implies that K∗(NOXU0 ) ∼= K∗(NOXU1 ) as required. The final statement
follows from the first statement and Proposition 4.6. �

The next result demonstrates that Corollary 4.9 is particularly useful when k = 2.

Proposition 4.10. Let E = (E1, E2) be a 2-skeleton. Then the space of unitary cocycles
for E is path-connected in the sense that for any two unitary cocycles V,W for E there
is a continuous path U t of unitary cocycles for E such that U0 = V and U1 = W .
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Proof. Fix v, w ∈ E0. The space

U(CvE1
jE

1
i w,CvE1

i E
1
jw)

is homeomorphic to the finite-dimensional unitary group U|vΛ(1,1)w|, and therefore path-

connected. So we can choose a continuous path U t
1,2(v, w) in U(CvE1

jE
1
i w,CvE1

i E
1
jw) such

that U0
1,2(v, w) = V1,2(v, w) and such that U1

1,2(v, w) = W1,2(v, w). Since k = 2, the
resulting isomorphisms U t

i,j : X(Ej)⊗AX(Ei)→ X(Ei)⊗AX(Ej) indexed by 1 ≤ i < j ≤
2 all vacuously satisfy the condition (4.2) (see Remark 4.4). So the U t

i,j(v, w) constitute
a continuous path of unitary cocycles for E. �

We can now prove the main theorem of the section.

Proof of Theorem 4.1. For i = 1, 2 let Ei be the graph (Λ0,Λei , r, s). Proposition 4.6
shows that there are product systems XΛ,φ and XΓ,ψ over N2 with coefficient algebra
C0(E0) such that XΛ,φ

ei
∼= XΓ,ψ

ei
∼= X(Ei) for i = 1, 2 and such that NOXΛ,φ

∼= C∗φ(Λ) and

NOXΓ,ψ
∼= C∗ψ(Γ). By Lemma 4.5, there are unitary cocycles UΛ,φ, UΓ,ψ for E = (E1, E2)

such that XΛ,φ ∼= XUΛ,φ and XΓ,ψ ∼= XUΓ,ψ . Proposition 4.10 then shows that there is
a continuous path of unitaries connecting UΛ,φ and UΓ,ψ. Hence Corollary 4.9 gives the
result. �

Remark 4.11. Let E = (E1, E2) be a 2-skeleton. By [17, Section 6] (see also [10, Re-
mark 2.3]), any range-and-source-preserving bijection E1

2E
1
1 → E1

1E
1
2 determines a 2-

graph with skeleton E. In particular, there is at least one such 2-graph Λ. Let M1 and
M2 be the E0 × E0 adjacency matrices of E1 and E2; that is Mi(v, w) = |vE1

i w|. We
regard the transpose matrices MT

i as homomorphisms MT
i : ZE0 → ZE0, and then we

obtain homomorphisms(
1−M t

1, 1−M t
2

)
: ZE0 ⊕ ZE0 → ZE0 and

(
M t

2 − 1
1−M t

1

)
: ZE0 → ZE0 ⊕ ZE0

Evans’ calculation [4, Proposition 3.16] of the K-theory of the C∗-algebra of a row-finite
2-graph shows that

K0(C∗(Λ)) ∼= coker
(
1−M t

1, 1−M t
2

)
⊕ ker

(
M t

2 − 1
1−M t

1

)
, and

K1(C∗(Λ)) ∼= ker
(
1−M t

1, 1−M t
2

)
/ image

(
M t

2 − 1
1−M t

1

)
.

(4.5)

Combining this with Proposition 4.6 and Theorem 4.1, we deduce that if Γ is any 2-graph
with skeleton E and φ is any 2-cocycle on Γ, then K∗(C

∗
φ(Γ) ∼= K∗(C

∗(Λ)) is given by the
formulas (4.5).

We can also say a little about the situation of single-vertex k-graphs. Although we
do not have an entirely satisfactory result in this situation, we indicate what we can
say since there has been some interest (see Corollary 5.8, Remark 5.9, and the following
paragraph of [1]) in deciding whether the K-theory of the C∗-algebra of a 1-vertex k-graph
is independent of the factorisation rules.

Fix k ≥ 0 and integers n1, . . . , nk ≥ 1. Suppose that, for each 1 ≤ i < j ≤ k, we have
a unitary transformation Ui,j : Cnj ⊗ Cni → Cni ⊗ Cnj . We say that the system Ui,j is a
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unitary cocycle for (n1, . . . , nk) if, for all 1 ≤ i < j < l ≤ k, we have

(4.6) (Ui,j ⊗ 1nl)(1nj ⊗ Ui,l)(Uj,l ⊗ 1ni) = (1ni ⊗ Uj,l)(Ui,l ⊗ 1nj)(1nl ⊗ Ui,j).
A continuous path of unitary cocycles for (n1, . . . , nk) is a family {U t

i,j : t ∈ [0, 1], 1 ≤ i <
j ≤ k} of unitary cocycles for (n1, . . . , nk) such that the map t 7→ U t

i,j is continuous for
each 1 ≤ i < j ≤ k. These definitions are the translation of Definitions 4.3 and 4.7 to the
simpler setting of k-skeletons with one vertex and ni edges of colour i.

Example 4.12. Let Λ be a k-graph with a single vertex v and satisfying |Λei | = ni for
1 ≤ i ≤ k. Let φ :

⊔
i 6=j Λei+ej → T be a cubical 2-cocycle. Identifying Cni ⊗ Cnj with

CΛeiΛej for all i 6= j, we obtain from Proposition 4.6 a unitary cocycle UΛ,φ for (n1, . . . , nk).

Corollary 4.13. Fix integers k ≥ 0 and n1, . . . , nk ≥ 1.

(1) Let Λ1 and Λ2 be single-vertex k-graphs such that |Λei
1 | = |Λei

2 | =: ni for all i. If
there is a continuous path of unitary cocycles for (n1, . . . , nk) from UΛ1,1 to UΛ2,1,
then K∗(C

∗(Λ1)) ∼= K∗(C
∗(Λ2)).

(2) If the space of all unitary cocycles for (n1, . . . , nk) is path-connected, then we have
K∗(C

∗(Λ1, c1)) ∼= K∗(C
∗(Λ2, c2)) for any single vertex k-graphs Λi with |Λej

i | = nj
and any categorical 2-cocycles ci on Λi.

Proof. This follows immediately from Corollary 4.9. �

Unfortunately, we do not know whether the space of unitary cocycles for (n1, . . . , nk)
is connected: certainly given any two unitary cocycles U and V , we can find continuous
paths W t

i,j from Ui,j to Vi,j for all i, j, but it is not at all clear that these can be chosen so
that, for each t, {W t

i,j : 1 ≤ i < j ≤ k} satisfies the cocycle condition (4.6). This seems
closely related to the question of whether the space of solutions to the Yang–Baxter
equation is path-connected (see [38]).

Remark 4.14. More generally, if E = (E1, . . . , Ek) is a k-skeleton such that the space
of unitary cocycles for E is path-connected, then for any two k-graphs Λ and Γ with
common skeleton Λei = Ei = Γei , and any cubical cocycles φ for Λ and ψ for Γ, we have
K∗(C

∗
φ(Λ)) ∼= K∗(C

∗
ψ(Γ)). Again, since each CvEjEiw is finite dimensional, for each u, v, i, j

we can find a continuous path of unitaries from UΛ,φ
i,j (u, v) to UΓ,φ

i,j (u, v), but it is not at
all clear that these can be chosen to satisfy the cocycle identity (4.2).
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