Building An Elastic Query Engine on Disaggregated Storage

Midhul Vuppalapati
Cornell University

Dan Truong
Snowflake Computing

Abstract

We present operational experience running Snowflake, a cloud-
based data warehousing system with SQL support similar to
state-of-the-art databases. Snowflake design is motivated by
three goals: (1) compute and storage elasticity; (2) support for
multi-tenancy; and, (3) high performance. Over the last few
years, Snowflake has grown to serve thousands of customers
executing millions of queries on petabytes of data every day.

We discuss Snowflake design with a particular focus on
ephemeral storage system design, query scheduling, elastic-
ity and efficiently supporting multi-tenancy. Using statistics
collected during execution of 70 million queries over a 14
day period, our study highlights how recent changes in cloud
infrastructure have altered the many assumptions that guided
the design and optimization of Snowflake, and outlines several
interesting avenues of future research.

1 Introduction

Shared-nothing architectures have been the foundation of
traditional query execution engines and data warehousing
systems. In such architectures, persistent data (e.g., customer
data stored as tables) is partitioned across a set of compute
nodes, each of which is responsible only for its local data.
Such shared-nothing architectures have enabled query execu-
tion engines that scale well, provide cross-job isolation and
good data locality resulting in high performance for a variety
of workloads. However, these benefits come at the cost of
several major disadvantages:

o Hardware-workload mismatch: Shared-nothing archi-
tectures make it hard to strike a perfect balance between
CPU, memory, storage and bandwidth resources provided
by compute nodes, and those required by workloads. For
instance, a node configuration that is ideal for bandwidth-
intensive compute-light bulk loading may be a poor fit for
compute-extensive bandwidth-light complex queries. Many
customers, however, want to run a mix of queries without
setting up a separate cluster for each query type. Thus, to

Justin Miron
Cornell University

Ashish Motivala
Snowflake Computing

Rachit Agarwal
Cornell University

Thierry Cruanes
Snowflake Computing

meet performance goals, resources usually have to be over-
provisioned; this results in resource underutilization on an
average and in higher operational costs.

e Lack of Elasticity: Even if one could match the hardware
resources at compute nodes with workload demands, static
parallelism and data partitioning inherent to (inelastic)
shared-nothing architectures constrain adaptation to data
skew and time-varying workloads. For instance, queries
run by our customers have extremely skewed intermedi-
ate data sizes that vary over five orders of magnitude (§4),
and have CPU requirements that change by as much as
an order of magnitude within the same hour (§7). More-
over, shared-nothing architectures do not admit efficient
elasticity; the usual approach of adding/removing nodes to
elastically scale resources requires large amounts of data to
be reshuffled. This not only increases network bandwidth
requirements but also results in significant performance
degradation since the set of nodes participating in data
reshuffling are also responsible for query processing.

Traditional data warehousing systems were designed to oper-
ate on recurring queries on data with predictable volume and
rate, e.g., data coming from within the organization: trans-
actional systems, enterprise resource planning application,
customer relationship management applications, etc. The sit-
uation has changed significantly. Today, an increasingly large
fraction of data comes from less controllable, external sources
(e.g., application logs, social media, web applications, mobile
systems, etc.) resulting in ad-hoc, time-varying, and unpre-
dictable query workloads. For such workloads, shared-nothing
architectures beget high cost, inflexibility, poor performance
and inefficiency, which hurts production applications and clus-
ter deployments.

To overcome these limitations, we designed Snowflake —
an elastic, transactional query execution engine with SQL sup-
port comparable to state-of-the-art databases. The key insight
in Snowflake design is that the aforementioned limitations
of shared-nothing architectures are rooted in tight coupling
of compute and storage, and the solution is to decouple the

two! Snowflake thus disaggregates compute from persistent
storage; customer data is stored in a persistent data store (e.g.,
Amazon S3 [5], Azure Blob Storage [8], etc.) that provides
high availability and on-demand elasticity. Compute elasticity
is achieved using a pool of pre-warmed nodes, that can be
assigned to customers on an on-demand basis.

Snowflake system design uses two key ideas (§2). First, it
uses a custom-designed storage system for management and
exchange of ephemeral/intermediate data that is exchanged
between compute nodes during query execution (e.g., tables
exchanged during joins). Such an ephemeral storage system
was necessary because existing persistent data stores [5, 8]
have two main limitations: (1) they fall short of providing the
necessary latency and throughput performance to avoid com-
pute tasks being blocks on exchange of intermediate data; and
(2) they provide stronger availability and durability semantics
than what is needed for intermediate data. Second, Snowflake
uses its ephemeral storage system not only for intermediate
data, but also as a write-through “cache” for persistent data.
Combined with a custom-designed query scheduling mecha-
nism for disaggregated storage, Snowflake is able to reduce
the additional network load caused by compute-storage disag-
gregation as well as alleviate the performance overheads of
reduced data locality.

Snowflake system has now been active for several years
and today, serves thousands of customers executing millions
of queries over petabytes of data, on a daily basis. This paper
describes Snowflake system design, with a particular focus on
ephemeral storage system design, query scheduling, elasticity
and efficiently supporting multi-tenancy. We also use statistics
collected during execution of ~70 million queries over a
period of 14 contiguous days in February 2018 to present a
detailed study of network, compute and storage characteristics
in Snowflake. Our key findings are:

o Customers submit a wide variety of query types; for exam-
ple, read-only queries, write-only queries and read-write
queries, each of which contribute to ~28%, ~13% and
~59%, respectively, of all customer queries.

e Intermediate data sizes can vary over multiple orders of
magnitude across queries, with some queries exchanging
hundreds of gigabytes or even terabytes of intermediate
data. The amount of intermediate data generated by a query
has little or no correlation with the amount of persistent
data read by the query or the execution time of the query.

e Even with a small amount of local storage capacity, skewed
access distributions and temporal access patterns common
in data warehouses enable reasonably high average cache
hit rates (60-80% depending on the type of query) for per-
sistent data accesses.

e Several of our customers exploit our support for elasticity
(for ~20% of the clusters). For cases where customers do
request elastic scaling of resources, the number of compute

nodes in their cluster can change by as much as two orders
of magnitude during the lifetime of the cluster.

e While the peak resource utilization can be high, the average
resource utilization is usually low. We observe average
CPU, Memory, Network Tx and Network Rx utilizations
of ~51%, ~19%, ~11%, ~32%, respectively.

Our study both corroborates exciting ongoing research direc-
tions in the community, as well as highlights several interest-
ing venues for future research:

e Decoupling of compute and ephemeral storage:
Snowflake decouples compute from persistent storage
to achieve elasticity. However, currently, compute and
ephemeral storage are still tightly coupled. As we show
in §4, the ratio of compute capacity and ephemeral stor-
age capacity in our production clusters can vary by several
orders of magnitude, leading to either under utilization of
CPU or thrashing of ephemeral storage, for ad-hoc query
processing workloads. To that end, recent academic work
on decoupling compute from ephemeral storage [22, 27]
is of extreme interest. However, more work is needed in
ephemeral storage system design, especially in terms of
providing fine-grained elasticity, multi-tenancy, and cross-
query isolation (§4, §7).

e Deep storage hierarchy: Snowflake ephemeral storage
system, similar to recent work on compute-storage disag-
gregation [14, 15], uses caching of frequently read persis-
tent data to both reduce the network traffic and to improve
data locality. However, existing mechanisms for improving
caching and data locality were designed for two-tier storage
systems (memory as the main tier and HDD/SSD as the
second tier). As we discuss in §4, the storage hierarchy in
our production clusters is getting increasingly deeper, and
new mechanisms are needed that can efficiently exploit the
emerging deep storage hierarchy.

e Pricing at sub-second timescales: Snowflake achieves
compute elasticity at fine-grained timescales by serving
customers using a pool of pre-warmed nodes. This was
cost-efficient with cloud pricing at hourly granularity. How-
ever, most cloud providers have recently transitioned to
sub-second pricing [6], leading to new technical challenges
in efficiently achieving resource elasticity and resource
sharing across multiple tenants. Resolving these challenges
may require design decisions and tradeoffs that may be
different from those in Snowflake’s current design (§7).

This paper focuses on Snowflake system architecture along
with compute, storage and network characteristics observed
in our production clusters. Accordingly, we focus on details
that are necessary to make the paper self-contained (§2). For
details on Snowflake query planning, optimization, concur-
rency control mechanisms, etc., please refer to [12]. To aid
future research and studies, we are releasing an anonymized

version of the dataset used in this paper; this dataset compris-
ing statistics collected per-query for ~70 million queries. The
dataset is available publicly along with documentation and
scripts to reproduce all results in this paper at
https://github.com/resource-disaggregation/snowset.

Our study has an important caveat. It focuses on a specific
system (Snowflake), a specific workload (SQL queries), and
a specific cloud infrastructure (S3). While our system is
large-scale, has thousands of customers executing millions of
queries, and runs on top of one of the most prominent infras-
tructures, it is nevertheless limited. We leave it to future work
an evaluation of whether our study and observations general-
ize to other systems, workloads and infrastructures. However,
we are hopeful that just like prior workload studies on network
traffic characteristics [9] and cloud workloads [28] (each of
which also focused on a specific system implementation run-
ning a specific workload on a specific infrastructure) fueled
and aided research in the past, our study and publicly released
data will be useful for the community.

2 Design Overview

We provide an overview of Snowflake design. Snowflake
treats persistent and intermediate data differently; we describe
these in §2.1, followed by a high-level overview of Snowflake
architecture (§2.2) and query execution process (§2.3).

2.1 Persistent and Intermediate data

Like most query execution engines and data warehousing
systems, Snowflake has three forms of application state:

o Persistent data is customer data stored as tables in the
database. Each table may be read by many queries, over
time or even concurrently. These tables are thus long-lived
and require strong durability and availability guarantees.

o [ntermediate data is generated by query operators (e.g.,
joins) and is usually consumed by nodes participating in
executing that query. Intermediate data is thus short-lived.
Moreover, to avoid nodes being blocked on intermediate
data access, low-latency high-throughput access to inter-
mediate data is preferred over strong durability guarantees.
Indeed, in case of failures happening during the (short)
lifetime of intermediate data, one can simply rerun the part
of the query that produced it.

e Metadata such as object catalogs, mapping from database
tables to corresponding files in persistent storage, statistics,
transaction logs, locks, etc.

This paper primarily focuses on persistent and intermediate
data, as the volume of metadata is typically relatively small
and does not introduce interesting systems challenges.

Snowflake Cloud Services

Runtime Runtime Runtime Run time Runtime
oS oS oS oS oS
b TTTT T TTTT T T Tt T T T 1
] Distributed Ephemeral Storage 1

1
L----- rc—— - — — bl i I T —— - — — b e i

Persistent Storage

Figure 1: Snowflake (Virtual) Warehouse Architecture (§2.2).
2.2 End-to-end System Architecture

Figure 1 shows the high-level architecture for Snowflake.
It has four main components — a centralized service for
orchestrating end-to-end query execution, a compute layer,
a distributed ephemeral storage system and a persistent data
store. We describe each of these below!.

Centralized Control via Cloud Services. All Snowflake cus-
tomers interact with and submit queries to a centralized layer
called Cloud Services (CS) [12]. This layer is responsible
for access control, query optimization and planning, schedul-
ing, transaction management, concurrency control, etc. CS is
designed and implemented as a multi-tenant and long-lived
service with sufficient replication for high availability and
scalability. Thus, failure of individual service nodes does not
cause loss of state or availability, though some of the queries
may fail and be re-executed transparently.

Elastic Compute via Virtual Warehouse abstraction. Cus-
tomers are given access to computational resources in
Snowflake through the abstraction of a Virtual Warehouse
(VW). Each VW is essentially a set of AWS EC2 instances
on top which customer queries execute in a distributed fash-
ion. Customers pay for compute-time based on the VW size.
Each VW can be elastically scaled on an on-demand basis
upon customer request. To support elasticity at fine-grained
timescales (e.g., tens of seconds), Snowflake maintains a pool
of pre-warmed EC2 instances; upon receiving a request, we
simply add/remove EC2 instances to/from that VW (in case
of addition, we are able to support most requests directly
from our pool of pre-warmed instances thus avoiding instance
startup time). Each VW may run multiple concurrent queries.
In fact, many of our customers run multiple VWs (e.g., one
for data ingestion, and one for executing OLAP queries).

Elastic Local Ephemeral Storage. Intermediate data has
different performance requirements compared to persistent
data (§2.1). Unfortunately, existing persistent data stores do
not meet these requirements (e.g., S3 does not provide the
desired low-latency and high-throughput properties needed

I'This paper describes design and implementation of Snowflake using
Amazon Web Services as an example infrastructure; however, Snowflake
runs on Microsoft Azure and Google Cloud Platform as well.

https://github.com/resource-disaggregation/snowset

Read-Only Write-Only Read-Write

101 206 160000

80000 |
60000 [

,_.
<
Query Count

Persistent Bytes Written + 1

1012 140000 |
P 10°
1010 ¢ 120000 |]
¢ 10* 100000 1

oLyl 107 40000 WMMNWM
102 : S 101 20000 :

0
10° 02/22

10°
10° 102 10* 105 108 10'° 10%? 104
Persistent Bytes Read + 1

02/24 02/26 02/28 03/02 03/04 03/06

Time

Figure 2: Persistent data read/write, and submission time characteristics of queries in our dataset. (left) Scatter plot with each point
representing a query based on the total number of persistent data bytes read and written by the query. The density of points is concentrated along
three regions: (1) read-only queries along x-axis; (2)write-only queries along y-axis; and, (3) read-write queries along the middle region. (right)
for each query class, the number of queries submitted at different times of day over the 14 day period, binned on an hourly basis. Read-only
queries have significantly higher variation in load compared to the other query classes, with spikes during daytime hours on weekdays.

for intermediate data to ensure minimal blocking of compute
nodes); hence, we built a distributed ephemeral storage system
custom-designed to meet the requirements of intermediate
data in our system. The system is co-located with compute
nodes in VWs, and is explicitly designed to automatically
scale as nodes are added or removed. We provide more de-
tails in §4 and §6, but note here that as nodes are added and
removed, our ephemeral storage system does not require data
repartitioning or reshuffling (thus alleviating one of the core
limitations of shared-nothing architectures). Each VW runs
its own independent distributed ephemeral storage system
which is used only by queries running on that particular VW.

Elastic Remote Persistent Storage. Snowflake stores all its
persistent data in a remote, disaggregated, persistent data store.
We store persistent data in S3 despite the relatively modest
latency and throughput performance because of S3’s elasticity,
high availability and durability properties. S3 supports storing
immutable files — files can only be overwritten in full and do
not even allow append operations. However, S3 supports read
requests for parts of a file. To store tables in S3, Snowflake
partitions them horizontally into large, immutable files that
are equivalent to blocks in traditional database systems [12].
Within each file, the values of each individual attribute or
column are grouped together and compressed, as in PAX [2].
Each file has a header that stores offset of each column within
the file, enabling us to use the partial read functionality of S3
to only read columns that are needed for query execution.
All VWs belonging to the same customer have access to
the same shared tables via remote persistent store, and hence
do not need to physically copy data from one VW to another.

2.3 End-to-end query execution

Query execution begins with customers submitting their query
text to CS for execution on a specific customer VW. At this
stage, CS performs query parsing, query planning and opti-
mization, producing a set of tasks that need to be executed. It

then schedules these tasks on compute nodes of the VW; each
task may perform read/write operations on both ephemeral
storage system and remote persistent data store. We describe
the scheduling and query execution mechanisms in Snowflake
in §5. CS continually tracks the progress of each query, col-
lects performance counters, and upon detecting a node failure,
reschedules the query on compute nodes within the VW. Once
the query is executed, the corresponding result is returned
back to the CS and eventually to the customer.

3 Dataset

Snowflake collects statistics at each layer of the system —
CS collects and stores information for each individual VW
(size over time, instance types, failure statistics, etc.), perfor-
mance counters for individual queries, time spent in different
phases of query execution, etc. Each node collects statistics
for ephemeral and persistent store accesses, resource (CPU,
memory and bandwidth) utilization characteristics, compres-
sion properties, etc. To aid future research and studies, we
are publicly releasing a dataset containing most of these
statistics for ~70 million queries over a period of 14 days,
aggregated per-query. The dataset is publicly available at
https://github.com/resource-disaggregation/snowset.
For privacy reasons, the dataset does not contain information
on query plans, table schemas and per-file access frequencies.
To ensure reproducibility, this paper uses only those statistics
that are contained in publicly released dataset.

Query Classification. We classify queries in the dataset
based on number of persistent data bytes read and written
(Figure 2 (left)). Figure 2 (right) shows number of queries
submitted at different times of day for each query class.

e Read-only queries: Queries along the x-axis are the ones
that do not write any persistent data; however, the amount
of data read by these queries can vary over nine orders of
magnitude. These queries contribute to ~28% of all cus-
tomer queries, and represent ad-hoc and interactive OLAP

https://github.com/resource-disaggregation/snowset

0
100 102 104 10° 108 1010 1012 1014

e
o ! -’ g 12
) % 10
T o8 e £
% ' _______1._,-"[5 1010
g 0.6 [revsusssunens “ / Eg 108
o / o
c 0.4 7 a%‘ 106
2 Read-Only — =
© i O TG
g 0.2 Write-Only = = 35

_Write ===+ o}

T IRead \{Vrlte | g 102

[}

i}

C

Intermediate Data Exchanged (Bytes)

10°
10° 102 10* 10° 10% 10%° 10'? 10%
Total CPU Time (Microseconds)

8 101A
10° =)
S 10% 106
5 ey
10 u% 1010 10°
104 ©7 100 10*
9
©
100 0% 0 10°
(O]
100 ® 104 102
e
10t E 102 10t
c
100 % 10° 100
= 10° 102 10* 10° 10% 10'° 10%2 10

Total Persistent Data Read (Bytes)

Figure 3: Intermediate data characteristics. (left) Intermediate data sizes vary over multiple orders of magnitude across queries; a non-trivial
fraction of queries in each query class exchange zero intermediate data, while some read-only and read-write queries exchange 10 — 100TB of
intermediate data. (center) Scatter plot with each point representing a query based on its total CPU time and amount of intermediate data
exchanged by the corresponding query; queries with the same total CPU time exchange vastly different amounts of intermediate data. (right)
Scatter plot with each point representing a query based on its total persistent data read and amount of intermediate data exchanged by the
corresponding query; queries that read the same amount of persistent data exchange vastly different amounts of intermediate data.

workloads [10] typical in data warehouses, where the result
is usually small in size and is directly returned to the client.
The right figure demonstrates an interesting trend for read-
only queries — the number of such queries submitted by
customers spike during daytime hours on weekdays.

o Write-only queries: Queries along the y-axis are the ones
that do not read any persistent data; however, the amount
of data written by these queries can vary over eight orders
of magnitude. These queries contribute to ~13% of all
customer queries, and essentially represent data ingestion
queries that bring data into the system. Unlike read-only
queries, we observe that the rate of submission for write-
only queries is fairly consistent across time.

e Read-Write (RW) queries: The region in the middle of
the plot contains ~59% of customer queries, and represents
queries that both read and write persistent data. Here we
see a wide spectrum of queries. Many queries have read-
write ratio close to 1, in terms of number of bytes, that
represent Extract Transform Load (ETL) pipelines [29, 31,
32] typical in data warehouses. For other queries, the read-
write ratio can vary over multiple orders of magnitude.

The above classification is based on number of persistent data
bytes read and written by the queries, a measure that is not an
artifact of Snowflake’s architecture; rather, it is a property of
the queries themselves. Indeed, even if these queries were to
run on, say, any other data analytics framework (e.g., Hadoop)
or even a single node database (e.g., MySQL), the persistent
read/write characteristics would remain the same. We do not
classify queries based on semantics as the focus of this paper
is on systems characteristics, and our dataset does not contain
detailed information about individual query plans. We will
use the above query classification throughout the paper.

4 Ephemeral Storage System

Snowflake uses a custom-designed distributed storage sys-
tem for management and exchange of intermediate data, due

to two limitations in existing persistent data stores [5, 8].
First, they fall short of providing the necessary latency and
throughput performance to avoid compute tasks being blocks
on intermediate data exchange. Second, they provide much
stronger availability and durability semantics than what is
needed for intermediate data. Our ephemeral storage system
allows us to overcome both these limitations. Tasks executing
query operations (e.g., joins) on a given compute node write
intermediate data locally; and, tasks consuming the interme-
diate data read it either locally or remotely over the network
(depending on the node where the task is scheduled, §5).

4.1 Storage Architecture, and Provisioning

We made two important design decisions in our ephemeral
storage system. First, rather than designing a pure in-memory
storage system, we decided to use both memory and local
SSDs — tasks write as much intermediate data as possible to
their local memory; when memory is full, intermediate data
is spilled to local SSDs. Our rationale is that while purely
in-memory systems can achieve superior performance when
entire data fits in memory, they are too restrictive to handle
the variety of our target workloads. Figure 3 (left) shows that
there are queries that exchange hundreds of gigabytes or even
terabytes of intermediate data; for such queries, it is hard to
fit all intermediate data in main memory.

The second design decision was to allow intermediate data
to spill into remote persistent data store in case the local
SSD capacity is exhausted. Spilling intermediate data to S3,
instead of other compute nodes, is preferable for a number of
reasons — it does not require keeping track of intermediate
data location, it alleviates the need for explicitly handling
out-of-memory or out-of-disk errors for large queries, and
overall, allows to keep our ephemeral storage system thin and
highly performant.

Future Directions. For performance-critical queries, we want
intermediate data to entirely fit in memory, or at least in SSDs,

Read-OnIy

10 rw ’

Write-Only

0.5

0.8
0.6
0.4
0.2

Fraction of Bytes

0.0
0.0 0.1 0.2

Fractlon of Queries

Read-Write

B Eph Read

I Remote Read
Eph Write

B Remote Write

0.7 0.8 0.9 1.0

Figure 4: Persistent data I/O traffic distribution between ephemeral storage system and remote persistent data store. Each verfical bar
corresponds to a query, the four colors correspond to read/write from ephemeral/remote systems, and the y-axis represents the fraction of total
persistent data that was served by the corresponding storage system. Queries are sorted, within each class, in decreasing order of number of

persistent data bytes read/written. Discussion in §4.2.

and not spill to S3. This requires accurate resource provi-
sioning. However, provisioning CPU, memory and storage
resources while achieving high utilization turns out to be chal-
lenging due to two reasons. The first reason is limited number
of available node instances (each providing a fixed amount of
CPU, memory and storage resources), and significantly more
diverse resource demands across queries. For instance, Fig-
ure 3 (center) shows that, across queries, the ratio of compute
requirements and intermediate data sizes can vary by as much
as six orders of magnitude. The available node instances sim-
ply do not provide enough options to accurately match node
hardware resources with such diverse query demands.

Second, even if we could match node hardware resources
with query demands, accurately provisioning memory and
storage resources requires a priori knowledge of intermediate
data size generated by the query. However, our experience
is that predicting the volume of intermediate data generated
by a query is hard, or even impossible, for most queries. As
shown in Figure 3, intermediate data sizes not only vary over
multiple orders of magnitude across queries, but also have
little or no correlation with amount of persistent data read or
the expected execution time of the query.

To resolve the first challenge, we could decouple compute
from ephemeral storage. This would allow us to match avail-
able node resources with query resource demands by inde-
pendently provisioning individual resources. However, the
challenge of unpredictable intermediate data sizes is harder
to resolve. For such queries, simultaneously achieving high
performance and high resource utilization would require both
decoupling of compute and ephemeral storage, as well as
efficient techniques for fine-grained elasticity of ephemeral
storage system. We discuss the latter in more detail in §6.

4.2 Persistent Data Caching

One of the key observations we made during early phases
of ephemeral storage system design is that intermediate data
is short-lived. Thus, while storing intermediate data requires
large memory and storage capacity at peak, the demand is

low on an average. This allows statistical multiplexing of our
ephemeral storage system capacity between intermediate data
and frequently accessed persistent data. This improves per-
formance since (1) queries in data warehouse systems exhibit
highly skewed access patterns over persistent data [10]; and
(2) ephemeral storage system performance is significantly
better than that of (existing) remote persistent data stores.
Snowflake enables statistical multiplexing of ephemeral
storage system capacity between intermediate data and persis-
tent data by “opportunistically” caching frequently accessed
persistent data files, where opportunistically refers to the
fact that intermediate data storage is always prioritized over
caching persistent data files. However, a persistent data file
cannot be cached on any node — Snowflake assigns input file
sets for the customer to nodes using consistent hashing over
persistent data file names. A file can only be cached at the
node to which it consistently hashes to; each node uses a sim-
ple LRU policy to decide caching and eviction of persistent
data files. Given the performance gap between our ephemeral
storage system and remote persistent data store, such oppor-
tunistic caching of persistent data files improves the execution
time for many queries in Snowflake. Furthermore, since stor-
age of intermediate data is always prioritized over caching of
persistent data files, such an opportunistic performance im-
provement in query execution time can be achieved without
impacting performance for intermediate data access.
Maintaining the right system semantics during opportunis-
tic caching of persistent data files requires a careful design.
First, to ensure data consistency, the “view” of persistent files
in ephemeral storage system must be consistent with those
in remote persistent data store. We achieve this by forcing
the ephemeral storage system to act as a write-through cache
for persistent data files. Second, consistent hashing of persis-
tent data files on nodes in a naive way requires reshuffling of
cached data when VWs are elastically scaled. We implement
a lazy consistent hashing optimization in our ephemeral stor-
age system that avoids such data reshuffling altogether; we
describe this when we discuss Snowflake elasticity in §6.

Fraction of queries ——

0.8 Fraction of bytes = =
c
92 06
-~ ’
@] P
© 04 L
= R B

0.2 [ozwe=mm Tl

0 0.2 0.4 0.6 0.8 1
Cache hit rate

1
Fraction of queries ——
0.8 Fraction of bytes - - 3
c I PR
2 0.6 e i
= P P
% 0.4 L,]
i ”///
0.2
0

0 0.2 0.4 0.6 0.8 1
Cache hit rate

Figure 5: Cache hit rate distribution of Read-only (left) and Read-Write queries (right). We plot the CDFs for both, the queries (indepen-
dent of their persistent data read sizes) and for bytes (queries weighed by the amount of persistent data read). For example, for Read-only
queries, 80% of the queries have hit rate greater than 75%, but these queries account for only a little more than 60% of the total number of

persistent bytes read by all Read-only queries.

Persistent data being opportunistically cached in the
ephemeral storage system means that some subset of per-
sistent data access requests could be served by the ephemeral
storage system (depending on whether or not there is a cache
hit). Figure 4 shows the persistent data I/O traffic distribution,
in terms of fraction of bytes, between the ephemeral storage
system and remote persistent data store. The write-through
nature of our ephemeral storage system results in amount of
data written to ephemeral storage being roughly of the same
magnitude as the amount of data written to remote persistent
data store (they are not always equal because of prioritizing
storage of intermediate data over caching of persistent data).

Even though our ephemeral storage capacity is significantly
lower than that of a customer’s persistent data (around 0.1%
on an average), skewed file access distributions and temporal
file access patterns common in data warehouses [7] enable
reasonably high cache hit rates (avg. hit rate is close to 80%
for read-only queries and around 60% for read-write queries).
Figure 5 shows the hit rate distributions across queries. The
median hit rates are even higher.

Future Directions. Figure 4 and Figure 5 suggest that more
work is needed on caching. In addition to locality of reference
in access patterns, cache hit rate also depends on effective
cache size available to the query relative to the amount of
persistent data accessed by the query. The effective cache size,
in turn, depends on both the VW size and the volume of in-
termediate data generated by concurrently executing queries.
Our preliminary analysis has not led to any conclusive obser-
vations on the impact of the above two factors on the observed
cache hit rates, and a more fine-grained analysis is needed to
understand factors that impact cache hit rates.

We highlight two additional technical problems. First, since
end-to-end query performance depends on both, cache hit rate
for persistent data files and I/O throughput for intermediate
data, it is important to optimize how the ephemeral storage
system splits capacity between the two. Although we currently
use the simple policy of always prioritizing intermediate data,
it may not be the optimal policy with respect to end-to-end
performance objectives (e.g., average query completion time

across all queries from the same customer). For example, it
may be better to prioritize caching a persistent data file that
is going to be accessed by many queries over intermediate
data that is accessed by only one. It would be interesting
to explore extensions to known caching mechanisms that
optimize for end-to-end query performance objectives [7] to
take intermediate data into account.

Second, existing caching mechanisms were designed for
two-tier storage systems (memory as the main tier and
HDD/SSD as the second tier). In Snowflake, we already
have three tiers of hierarchy with compute-local memory,
ephemeral storage system and remote persistent data store;
as emerging non-volatile memory devices are deployed in
the cloud and as recent designs on remote ephemeral storage
systems mature [22], the storage hierarchy in the cloud will
get increasingly deeper. Snowflake uses traditional two-tier
mechanisms — each node implements a local LRU policy
for evictions from local memory to local SSD, and an inde-
pendent LRU policy for evictions from local SSD to remote
persistent data store. However, to efficiently exploit the deep-
ening storage hierarchy, we need new caching mechanisms
that can efficiently coordinate caching across multiple tiers.

We believe many of the above technical challenges are not
specific to Snowflake, and would apply more broadly to any
distributed application built on top of disaggregated storage.

5 Query (Task) Scheduling

We now describe the query execution process in Snowflake.
Customers submit their queries to the Cloud Services (CS)
for execution on a specific VW. CS performs query parsing,
query planning and optimization, and creates a set of tasks to
be scheduled on compute nodes of the VW.

Locality-aware task scheduling. To fully exploit the
ephemeral storage system, Snowflake colocates each task with
persistent data files that it operates on using a locality-aware
scheduling mechanism (recall, these files may be cached in
ephemeral storage system). Specifically, recall that Snowflake
assigns persistent data files to compute nodes using consistent

Persistent Data Read @ Persistent Data Write @

Persistent Data Read + Write @

Intermediate Data @ Nodes Used @

Bytes

06

N
>
Nodes Used

n
N

0 0.5 10 0 0.5
Fraction of Queries

(a) Read-only

1.0 0 0.5

1.0 0
Fraction of Queries

(b) Write-only

0.5 1.0 0 0.5 1.0 0 0.5

Fraction of Queries
(c) Read-Write

1.0

Figure 6: Persistent data read / write and intermediate data exchange characteristics of queries sorted by the number of nodes used.
Each plot uses the same axis for bytes (left axis) and nodes used (right axis). Persistent Read and write bytes vary by three orders of magnitude

across each node count.

hashing over table file names. Thus, for a fixed VW size, each
persistent data file is cached on a specific node. Snowflake
schedules the task that operates on a persistent data file to the
node on which its file consistently hashes to.

As a result of this scheduling scheme, query parallelism is
tightly coupled with consistent hashing of files on nodes — a
query is scheduled for cache locality and may be distributed
across all the nodes in the VW. For instance, consider a cus-
tomer that has 1million files worth of persistent data, and is
running a VW with 10 nodes. Consider two queries, where
the first query operates on 100 files, and the second query
operates on 100,000 files; then, with high likelihood, both
queries will run on all the 10 nodes because of files being
consistently hashed on to all the 10 nodes.

Figure 6 illustrates this— the number of persistent bytes
read and written vary over orders of magnitude, almost inde-
pendent of the number of nodes in the VW. As expected, the
intermediate data exchanged over the network increases with
the number of nodes used.

Work stealing. It is known that consistent hashing can lead
to imbalanced partitions [19]. In order to avoid overloading
of nodes and improve load balance, Snowflake uses work
stealing, a simple optimization that allows a node to steal a
task from another node if the expected completion time of
the task (sum of execution time and waiting time) is lower at
the new node. When such work stealing occurs, the persistent
data files needed to execute the task are read from remote
persistent data store rather than the node at which the task
was originally scheduled on. This avoids increasing load on
an already overloaded node where the task was originally
scheduled (note that work stealing happens only when a node
is overloaded).

Future Directions. Schedulers can place tasks onto nodes
using two extreme options: one is to colocate tasks with their
cached persistent data, as in our current implementation. As
discussed in the example above, this may end up scheduling
all queries on all nodes in the VW; while such a scheduling

policy minimizes network traffic for reading persistent data,
it may lead to increased network traffic for intermediate data
exchange. The other extreme is to place all tasks on a single
node. This would obviate the need of network transfers for
intermediate data exchange but would increase network traffic
for persistent data reads. Neither of these extremes may be the
right choice for all queries. It would be interesting to codesign
query schedulers that would pick just the right set of nodes
to obtain a sweet spot between the two extremes, and then
schedule individual tasks onto these nodes.

6 Resource Elasticity

In this section, we discuss how BlowFish design achieves
one of its core goals: resource elasticity, that is, scaling of
compute and storage resources on an on-demand basis.
Disaggregating compute from persistent storage enables
Snowflake to independently scale compute and persistent stor-
age resources. Storage elasticity is offloaded to persistent data
stores [5]; compute elasticity, on the other hand, is achieved
using a pre-warmed pool of nodes that can be added/removed
to/from customer VWs on an on-demand basis. By keeping
a pre-warmed pool of nodes, Snowflake is able to provide
compute elasticity at the granularity of tens of seconds.

6.1 Lazy Consistent Hashing

One of the challenges that Snowflake had to resolve in order to
achieve elasticity efficiently is related to data management in
ephemeral storage system. Recall that our ephemeral storage
system opportunistically caches persistent data files; each
file can be cached only on the node to which it consistently
hashes to within the VW. The problem is similar to shared-
nothing architectures: any fixed partitioning mechanism (in
our case, consistent hashing) requires large amounts of data to
be reshuffled upon scaling of nodes; moreover, since the very
same set of nodes are also responsible for query processing,
the system observes a significant performance impact during
the scaling process.

I Ts

T yi3 T3 Ty Ts Ts

—_
Elastic scaling

Figure 7: Snowflake uses lazy consistent hashing to avoid data
reshuffling during elastic scaling of VWs. (Top) VW in steady
state with all task inputs cached. (Bottom) VW immediately after
adding one node. See discussion in §6.1.

Snowflake resolves this challenge using a lazy consistent
hashing mechanism, that completely avoids any reshuffling
of data upon elastic scaling of nodes by exploiting the fact
that a copy of cached data is stored at remote persistent data
store. Specifically, Snowflake relies on the caching mecha-
nism to eventually “converge” to the right state. For instance,
consider the example in Figure 7 that shows a VW with 6
tasks Ty, T», ..., Te, with task T; operating on a single file F;.
Suppose at time 7, we have 5 nodes in the VW and that node
N; stores files F; and Fg, and nodes N, — Nj5 store file Fp —Fs,
respectively. Suppose at time ¢ > g, a node Ng is added to the
warehouse. Then, rather than immediately reshuffling the files
(which would result in Fg being moved from node N; to Ng),
Snowflake will wait until task Ty is executed again. When the
next time T¢ is scheduled (e.g., due to work stealing or the
same query being executed again), Snowflake will schedule
it on Ng since consistent hashing will now place file Fg on
that node. At this time, file Fg will be read by Ng from remote
persistent store and cached locally. File Fg on node N; will
no longer be accessed and will eventually be evicted from the
cache. Such lazy caching allows Snowflake to achieve locality
without reshuffling data and without interfering with ongoing
queries on nodes already in the VW.

6.2 Elasticity Characteristics

Our customer warehouses exhibit several interesting elasticity
characteristics. Figure 8 shows that many of our customers
already exploit our support for elasticity (for ~20% of the
VW). For such cases where customers do request VW resizing,
the number of nodes in their VW can change by as much
as two orders of magnitude during the lifetime of the VW!
Figure 9 (top) shows two cases where customers leverage
elasticity rather aggressively (even at hourly granularity).

Fraction of VWs
o
o
L

10° 10’ 10
Maximum VW Resize

Figure 8: VW elasticity usage. 82% of all VW never exploit elastic-

ity; however, some of the customers elastically scale their VW size

by as much as two orders of magnitude!

Future Directions. Figure 8 also shows that our customers do
not exploit our support for elasticity for more than 80% of the
VW. Even for customers that do request VW resizing, there
are opportunities for further optimizations — Figure 9 shows
that query inter-arrival times in these VW are much finer-
grained than the granularity of VW scaling requested by our
customers. We believe the main reason for these characteris-
tics is that customers lack the visibility (and the right demand
estimation) into the system to accurately request scaling their
VW to meet the demand. VW1 in Figure 9, for instance, is one
of the heavily utilized VW from a large customer; the char-
acteristics for this VW demonstrate how elastic scaling can
mismatch the demand (approximated by query inter-arrival
time). Since the time the dataset in the paper was recorded, a
lot of work has been done to improve support for auto-scaling
VW at the granularity of inter-query arrival times. However,
much more work needs to be done.

First, we would like to achieve elasticity at intra-query
granularity. Specifically, resource consumption can vary sig-
nificantly even within the lifetime of individual queries. This
is particularly prevalent in long running queries with many
internal stages. Hence, in addition to auto-scaling VW at the
granularity of query inter-arrivals, we would ideally like to
support some level of task-level elasticity even during the
execution of a query.

Second, we would like to explore serverless-like platforms.
Serverless infrastructures such as AWS Lambda, Azure Func-
tions and Google Cloud Functions which provide auto-scaling,
high elasticity and fine-grained billing, are seeing increasing
adoption across many application types. However, the key
barrier for Snowflake to transition to existing serverless infras-
tructures is their lack of support for isolation, both in terms of
security and performance [34]. Snowflake serves several cus-
tomers who store and query sensitive and confidential data,
and thus require strong isolation guarantees. One possibil-
ity for Snowflake is to build its own custom serverless-like
compute platform. We believe this is an intriguing direction
to explore, but will require resolving several challenges in
efficient remote ephemeral storage access (§4.1), and in multi-
tenant resource sharing (which we will discuss in §7).

N
>

—— Query Inter-arrival
4 —— Warehouse Size

i — [N I

N
»

TN

Warehouse Size
N
9

N
°

i
o
)

Inter-arrival time
-
o
>

10! T T T T T 1
2-22 2-23 2-24 2-25 2-26 2-27 2-28
Event time

N
w

— Query Inter-arrival
~~|-|— Warehouse Size

| IlllllILILm[lILI””{[lJ |

102 4

N
o

Warehouse Size
N
%

N
=3

-
o
w

Inter-arrival time

10! T T i
2-22 2-23 2-24 2-25
Event time

Figure 9: Comparison of VW resizing (elastic scaling) and query inter-arrival times, binned per minute, for two heavily utilized VW1
(left) and VW2 (right). Customers request VW resizing at much coarser grained timescales than query inter-arrival times for both VW. Note
the difference in x-axis: 7 days and 4 days for VW1 and VW2, respectively.

7 Multi-tenancy

Snowflake currently supports multi-tenancy through the VW
abstraction. Each VW operates on an isolated set of nodes,
with its own ephemeral storage system. This allows Snowflake
to provide performance isolation to its customers. In this
section, we present a few system-wide characteristics for our
VWs and use these to motivate an alternate sharing based
architecture for Snowflake.

The VW architecture in Snowflake leads to the traditional
performance isolation versus utilization tradeoff. Figure 10
(top four) show that our VWs achieve fairly good, but not
ideal, average CPU utilization; however, other resources are
usually underutilized on an average. Figure 11 provides some
reasons for the low average resource utilization in Figure 10
(top four): the figure shows the variability of resource usage
across VW; specifically, we observe that for up to 30% of
VW, standard deviation of CPU usage over time is as large as
the mean itself. This results in underutilization as customers
tend to provision VWs to meet peak demand. In terms of
peak utilization, several of our VWs experience periods of
heavy utilization, but such high-utilization periods are not
necessarily synchronized across VWs. An example of this is
shown in Figure 10 (bottom two), where we see that over
a period of two hours, there are several points when one
VW’s utilization is high while the other VW’s utilization
is simultaneously low.

While we were aware of this performance isolation ver-
sus utilization tradeoff when we designed Snowflake, recent
trends are pushing us to revisit this design choice. Specifically,
maintaining a pool of pre-warmed instances was cost-efficient
when infrastructure providers used to charge at an hourly gran-
ularity; however, recent move to per-second pricing [6] by
all major cloud infrastructure providers has raised interest-
ing challenges. From our (provider’s) perspective, we would
like to exploit this finer-grained pricing model to cut down
operational costs. However doing so is not straightforward, as
this trend has also led to an increase in customer-demand for

finer-grained pricing. As a result, maintaining a pre-warmed
pool of nodes for elasticity is no longer cost-effective: pre-
viously in the hourly billing model, as long as at least one
customer VW used a particular node during a one hour du-
ration, we could charge that customer for the entire duration.
However, with per-second billing, we cannot charge unused
cycles on pre-warmed nodes to any particular customer. This
cost-inefficiency makes a strong case for moving to a sharing
based model, where compute and ephemeral storage resources
are shared across customers: in such a model we can pro-
vide elasticity by statistically multiplexing customer demands
across a shared set of resources, avoiding the need to maintain
a large pool of pre-warmed nodes. In the next subsection, we
highlight several technical challenges that need to be resolved
to realize such a shared architecture.

7.1 Resource Sharing

The variability in resource usage over time across VW, as
shown in Figure 11, indicates that several of our customer
workloads are bursty in nature. Hence, moving to a shared ar-
chitecture would enable Snowflake to achieve better resource
utilization via fine-grained statistical multiplexing. Snowflake
today exposes VW sizes to customers in abstract “T-shirt”
sizes (small, large, XL etc.), each representing different re-
source capacities. Customers are not aware of how these VWs
are implemented (no. of nodes used, instance types, etc.). Ide-
ally we would like to maintain the same abstract VW interface
to customers and change the underlying implementation to
use shared resources instead of isolated nodes.

The challenge, however, is to achieve isolation properties
close to our current architecture. The key metric of interest
from customers’ point of view is query performance, that is,
end-to-end query completion times. While a purely shared
architecture is likely to provide good average-case perfor-
mance, maintaining good performance at tail is challenging.
The two key resources that need to be isolated in VWs are
compute and ephemeral storage. There has been a lot of work
[18, 35, 36] on compute isolation in the data center context,

CPU Utilization

02/23 02/25 02/27 03/01 03/03 03/05 03/07
Time

c
S
g
=
x
o
x
5
2
2 ‘ ‘ ‘ ‘ : ‘
z 02/23 02/25 02/27 03/01 03/03 03/05 03/07
Time
VW1 —— VW2

1.0
508
§ o6 i
= |\ ﬁ Al 1 il luud]f
) | 1
:o.m‘mhw Jﬂ ‘ %L IJH‘ P
& 02

! l

0'00:00 00:15 00:30 0045 01:00 01:15 01:30 0145 02:00
Time

Memory Utilization

02/23 02/25 02/27 03/01 03/03 03/05 03/07
Time

Network RX Utilization

02/23 02/25 02/27 03/01 03/03 03/05 03/07
Time

VW1 —— VW2

o) ...J JMFW) mJ U

OOOO 0015 0030 00:45 01:00 01:15 01:30 01:45 02:00
Time

Memory Utilization

Figure 10: System-wide CPU, Memory, and Network TX/RX utilization over time, averaged across all VWs. (top four). Average CPU,
Memory, Network TX and Network RX utilizations are roughly 51%, 19%, 11%, 32%, respectively, indicating that there is significant room
for improvement. (bottom two) zoomed-in CPU and Memory utilization for two highly active VW over a 2 hour duration. At several points,
we see that one of the warehouses experiences high utilization while the other sees low utilization.

that Snowflake could leverage. Moreover, the centralized task
scheduler and uniform execution runtime in Snowflake make
the problem easier than that of isolating compute in general
purpose clusters. Here, we instead focus on the problem of
isolating memory and storage, which has only recently started
to receive attention in the research community [25].

The goal here is to design a shared ephemeral storage sys-
tem (using both memory and SSDs) that supports fine-grained
elasticity without sacrificing isolation properties across ten-
ants. With respect to sharing and isolation of ephemeral stor-
age, we outline two key challenges. First, since our ephemeral
storage system multiplexes both cached persistent data and in-
termediate data, both of these entities need to be jointly shared
while ensuring cross-tenant isolation. While Snowflake could
leverage techniques from existing literature [11, 26] for shar-
ing cache, we need a mechanism that is additionally aware of
the co-existence of intermediate data. Unfortunately, predict-
ing the effective lifetime of cache entries is difficult. Evicting
idle cache entries from tenants and providing them to other
tenants while ensuring hard isolation is not possible, as we
cannot predict when a tenant will next access the cache entry.
Some past works [11, 33] have used techniques like idle-
memory taxation to deal with this issue. We believe there is
more work to be done, both in defining more reasonable iso-
lation guarantees and designing lifetime-aware cache sharing
mechanisms that can provide such guarantees.

The second challenge is that of achieving elasticity without
cross-tenant interference: scaling up the shared ephemeral
storage system capacity in order to meet the demands of a par-
ticular customer should not impact other tenants sharing the
system. For example, if we were to naively use Snowflake’s
current ephemeral storage system, isolation properties will
be trivially violated. Since all cache entries in Snowflake
are consistently hashed onto the same global address space,
scaling up the ephemeral storage system capacity would end
up triggering the lazy consistent hashing mechanism for all
tenants. This may result in multiple tenants seeing increased
cache misses, resulting in degraded performance. Resolving
this challenge would require the ephemeral storage system to
provide private address spaces to each individual tenant, and
upon scaling of resources, to reorganize data only for those
tenants that have been allocated additional resources.

Memory Disaggregation. Average memory utilization in
our VWs is low (Figure 10); this is particularly concern-
ing since DRAM is expensive. Although sharing resource
sharing would improve CPU and memory utilization, it is
unlikely to lead to optimal utilization across both dimensions.
Further, variability characteristics of CPU and memory are
significantly different (Figure 11), indicating the need for in-
dependent scaling of these resources. Memory disaggregation
[1, 14, 15] provides a fundamental solution to this problem.
However, as discussed in §4.2, accurately provisioning re-

6 CV of Memory usage
. CV of CPU usage
55 5
Qo
s,
85
5%
>
58
To
88 @
= c
eS|
oL
0
0 0.2 0.4 0.6 0.8 1

Fraction of warehouses
(warehouses sorted by CV of CPU usage)

Figure 11: Coefficient of Variation (CV) of CPU and memory us-
age over time, across customer VWs. We see significant variability
with respect to both resources.

sources is hard; since over-provisioning memory is expensive,
we need efficient mechanisms to share disaggregated memory
across multiple tenants while providing isolation guarantees.

8 Related Work

In this section we discuss related work and other systems
similar to Snowflake. Our previous work [12] discusses SQL-
related aspects of Snowflake and presents related literature
on those aspects. This paper focuses on the disaggregation,
ephemeral storage, caching, task scheduling, elasticity and
multi-tenancy aspects of Snowflake; in the related work dis-
cussion below, we primarily focus on these aspects.

SQL-as-a-Service systems. There are several other systems
that offer SQL functionality as a service in the cloud. These in-
clude Amazon Redshift [16], Aurora [4], Athena [3], Google
BigQuery [30] and Microsoft Azure Synapse Analytics [24].
While there are papers that describe the design and opera-
tional experience of some of these systems, we are not aware
of any prior work that undertakes a data-driven analysis of
workload and system characteristics similar to ours.

Redshift [16] stores primary replicas of persistent data
within compute VM clusters (S3 is only used for backup);
thus, it may not be able to achieve the benefits that Snowflake
achieves by decoupling compute from persistent storage.
Aurora [4] and BigQuery [30] (based on the architecture
of Dremel [23]) decouple compute and persistent storage
similar to Snowflake. Aurora, however, relies on a custom-
designed persistent storage service that is capable of offload-
ing database log processing, instead of a traditional blob store.
We are not aware of any published work that describes how
BigQuery handles elasticity and multi-tenancy.

Decoupling compute and ephemeral storage systems. Pre-
vious work [20] makes the case for flash storage disaggrega-
tion by studying a key-value store workload from Facebook.
Our observations corroborate this argument and further extend

it in the context of data warehousing workloads. Pocket [22]
and Locus [27] are ephemeral storage systems designed for
serverless analytics applications. If we were to disaggregate
compute and ephemeral storage in Snowflake, such systems
would be good candidates. However, these systems do not
provide fine-grained resource elasticity during the lifetime
of a query. Thus, they either have to assume a priori knowl-
edge of intermediate data sizes (for provisioning resources at
the time of submitting queries), or suffer from performance
degradation if such knowledge is not available in advance.
As discussed in §4.1, predicting intermediate data sizes is
extremely hard. It would be nice to extend these systems
to provide fine-grained elasticity and cross-query isolation.
Technologies for high performance access to remote flash stor-
age [13, 17, 21] would also be integral to efficiently realize
decoupling of compute and ephemeral storage system.

Multi-tenant resource sharing. ESX server [33] pioneered
techniques for multi-tenant memory sharing in the virtual ma-
chine context, including ballooning and idle-memory taxation.
Memshare [1] considers multi-tenant sharing of cache capac-
ity in DRAM caches in the single machine context, sharing
un-reserved capacity among applications in a way that maxi-
mizes hit rate. FairRide [26] similarly considers multi-tenant
cache sharing in the distributed setting while taking into ac-
count sharing of data between tenants. Mechanisms for shar-
ing and isolation of cache resources similar to the ones used
in these works would be important in enabling Snowflake to
adopt a resource shared architecture. As discussed previously,
it would be interesting to extend these mechanisms to make
them aware of the different characteristics and requirements
of intermediate and persistent data.

9 Conclusion

We have presented operational experience running Snowflake,
a data warehousing system with state-of-the-art SQL support.
The key design and implementation aspects that we have cov-
ered in the paper relate to how Snowflake achieves compute
and storage elasticity, as well as high-performance in a multi-
tenancy setting. As Snowflake has grown to serve thousands
of customers executing millions of queries on petabytes of
data every day, we consider ourselves at least partially success-
ful. However, using data collected from various components
of our system during execution of ~70 million queries over
a 14 day period, our study highlights some of the shortcom-
ings of our current design and implementation and highlights
new research challenges that may be of interest to the broader
systems and networking communities.

Acknowledgments

We would like to thank our shepherd, Asaf Cidon, and the
anonymous NSDI reviewers for their insightful feedback. This
work was supported in part by NSF 1704742 and a Google
Faculty Research Award.

References

[1] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, P. Subrahmanyam, L. Suresh, K. Tati,
R. Venkatasubramanian, and M. Wei. Remote mem-
ory in the age of fast networks. In SOCC, 2017.

[2] A. Ailamaki, D.J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB,
2001.

[3] Amazon. Amazon Athena. "https://aws.amazon.com/
athena/".

[4] Amazon. Amazon Aurora Serverless. "https://aws.

amazon.com/rds/aurora/serverless/".

[5] Amazon. Amazon simple storage service (S3). "http:
//aws.amazon.com/s3/".

[6] Amazon. Per-second billing for EC2 instances.
"https://aws.amazon.com/blogs/aws/new-per-second-
billing-for-ec2-instances-and-ebs-volumes/".

[7] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and 1. Sto-
ica. Pacman: Coordinated memory caching for parallel
jobs. In NSDI, 2012.

[8] M. Azure. Azure blob storage.
microsoft.com/en-us/services/storage/blobs/".

[9] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. In IMC, 2010.

[10] S. Chaudhuri and U. Dayal. An overview of data ware-
housing and olap technology. SIGMOD, 1997.

[11] A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman.
Memshare: a dynamic multi-tenant key-value cache. In
ATC, 2017.

[12] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov,
A. Avanes, J. Bock, J. Claybaugh, D. Engovatov,
M. Hentschel, J. Huang, et al. The snowflake elastic
data warehouse. In SIGMOD, 2016.

[13] N. Express. Nvme over fabrics
overview. "https://nvmexpress.org/wp-
content/uploads/NVMe_Over_Fabrics.pdf".

[14] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker. Network
requirements for resource disaggregation. In OSDI,
2016.

[15] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with infiniswap. In
NSDI, 2017.

"https://azure.

[16] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak,
S. Stefani, and V. Srinivasan. Amazon redshift and the
case for simpler data warehouses. In SIGMOD, 2015.

[17] J. Hwang, Q. Cai, R. Agarwal, and A. Tang. 110: A
remote storage i/o stack for high-performance network
and storage hardware. In NSDI, 2020.

[18] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Sya-
mala, V. Narasayya, H. Herodotou, P. Tomita, A. Chen,
J. Zhang, et al. Perfiso: Performance isolation for com-
mercial latency-sensitive services. In ATC, 2018.

[19] D. Karger and M. Ruhl. New algorithms for load bal-
ancing in peer-to-peer systems. 2003.

[20] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and
S. Kumar. Flash storage disaggregation. In EuroSys,
2016.

[21] A.Klimovic, H. Litz, and C. Kozyrakis. ReFlex: Remote
flash ~ local flash. In ASPLOS, 2017.

[22] A.Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle,
and C. Kozyrakis. Pocket: Elastic ephemeral storage for
serverless analytics. In OSDI, 2018.

[23] S.Melnik, A. Gubareyv, J. J. Long, G. Romer, S. Shivaku-
mar, M. Tolton, and T. Vassilakis. Dremel: interactive
analysis of web-scale datasets. VLDB, 2010.

[24] Microsoft.
/ / azure .
synapse-analytics/".

Azure synapse analytics. "https :
microsoft . com / en-us / services /

[25] M. Nanavati, J. Wires, and A. Warfield. Decibel: Isola-
tion and sharing in disaggregated rack-scale storage. In
NSDI, 2017.

[26] Q. Pu and H. Li. Fairride: Near-optimal, fair cache
sharing. In NSDI, 2016.

[27] Q. Pu, S. Venkataraman, and I. Stoica. Shuffling, fast
and slow: scalable analytics on serverless infrastructure.
In NSDI, 2019.

[28] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch. Heterogeneity and dynamicity of clouds
at scale: Google trace analysis. In SoCC, 2012.

[29] R. J. Santos and J. Bernardino. Real-time data ware-
house loading methodology. In IDEAS, 2009.

[30] K. Sato. An inside look at google bigquery. "https:
//cloud . google.com/files/BigQueryTechnicalWP .
pdf".

[31] A. Simitsis, P. Vassiliadis, and T. Sellis. Optimizing etl
processes in data warehouses. In ICDE, 2005.

https://aws.amazon.com/athena/
https://aws.amazon.com/athena/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/synapse-analytics/
https://azure.microsoft.com/en-us/services/synapse-analytics/
https://azure.microsoft.com/en-us/services/synapse-analytics/
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://cloud.google.com/files/BigQueryTechnicalWP.pdf

[32] P. Vassiliadis. A survey of extract—transform—load tech- [35] X. Yang, S. M. Blackburn, and K. S. McKinley.

nology. I/JDWM, 2009. Elfen scheduling: Fine-grain principled borrowing from
) latency-critical workloads using simultaneous multi-
[33] C. A. Waldspurger. Memory resource management in threading. In ATC, 2016.

vmware esx server. ACM SIGOPS Operating Systems
Review, 2002.

[34] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. [36] X.Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,

Peeking behind the curtains of serverless platforms. In and J. Wilkes. Cpi2: Cpu performance isolation for
ATC, 2018. shared compute clusters. In EuroSys, 2013.

	Introduction
	Design Overview
	Persistent and Intermediate data
	End-to-end System Architecture
	End-to-end query execution

	Dataset
	Ephemeral Storage System
	Storage Architecture, and Provisioning
	Persistent Data Caching

	Query (Task) Scheduling
	Resource Elasticity
	Lazy Consistent Hashing
	Elasticity Characteristics

	Multi-tenancy
	Resource Sharing

	Related Work
	Conclusion

