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ABSTRACT Network embedding has been an effective tool to analyze heterogeneous networks (HNs) by
representing nodes in a low-dimensional space. Although many recent methods have been proposed for
representation learning of HNs, there is still much room for improvement. Random walks based methods are
currently popular methods to learn network embedding; however, they are random and limited by the length
of sampled walks, and have difficulty capturing network structural information. Some recent researches
proposed using meta paths to express the sample relationship in HNs. Another popular graph learning model,
the graph convolutional network (GCN) is known to be capable of better exploitation of network topology, but
the current design of GCN is intended for homogenous networks. This paper proposes a novel combination
of meta-graph and graph convolution, the meta-graph based graph convolutional networks (MGCN). To fully
capture the complex long semantic information, MGCN utilizes different meta-graphs in HNs. As different
meta-graphs express different semantic relationships, MGCN learns the weights of different meta-graphs
to make up for the loss of semantics when applying GCN. In addition, we improve the current convolution
design by adding node self-significance. To validate our model in learning feature representation, we present
comprehensive experiments on four real-world datasets and two representation tasks: classification and link
prediction. WMGCN’s representations can improve accuracy scores by up to around 10% in comparison to
other popular representation learning models. What’s more, WMGCN’feature learning outperforms other
popular baselines. The experimental results clearly show our model is superior over other state-of-the-art
representation learning algorithms.

INDEX TERMS Heterogeneous network, weighted meta-graph, graph convolutional network, representa-
tion learning.

I. INTRODUCTION
Networks are widely used for constructing and organizing
a variety of objects by concisely representing the relation-
ships in the interrelated world. For instance, social networks,
biological networks, transportation networks, and biblio-
graphic information networks are recently drawing increas-
ing attention. All of these networks could be categorized
as two groups - homogeneous networks and heterogeneous
networks by types of entities and links. As shown in Fig. 1,
a co-author homogeneous network contains only a single
type of entity: the authors. For another example, the bib-
liographic information network in Fig. 2 consists of many
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types of entities: universities (U), authors (A), papers (P) and
conferences (C); they form a heterogeneous network with
different relationships between different types of entities. The
main goal of this paper is to improve feature learning from
heterogenous networks, using combined techniques of meta-
graph and graph convolution, so that the learned features can
in turn improve tasks such as node classification and link
prediction.

[Heterogeneous Networks (HNs)] Current popular
researches on heterogeneous networks involve various data
mining tasks. These researches believe the heterogeneous
network is a more appropriate graph modeling paradigm
to express the gigantic complex relationships and multi-
typed entities in the real world. The researchers from both
academia and industry have applied HNs in a wide range of
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FIGURE 1. The illustration of a Heterogeneous Network. There are four
types nodes: authors, papers, university.

FIGURE 2. The illustration of a Heterogeneous Network. There are four
types of nodes: author, paper, university, and conference; also three types
of edges: working, publishing and writing.

data mining tasks, such as classification [1], [2], clustering
[3], ranking, recommendation [4], similarity search [5] and
prediction and so on.

[Meta-paths and Meta-graphs] One popular tool to
mine HNs is the meta-paths, which could better pre-
serve relationship information between different types
of entities in HNs in comparison to random walks
A meta-path is defined as a sequence of object types.
Consider Fig. 2, the meta-path ‘‘author-paper-author-paper-
author’’(abbreviated as ‘‘APAPA’’) conveys the information
that both authors coauthor the same paper, while the meta-
path ‘‘APCPA’’ indicates both papers are published in the
same conference. However, a meta-path itself has limited
semantics, since the length of meta-paths is no more than
four in most studies [5]. Another problem is that typical meta-
path generation can producemany short paths or even isolated
nodes which are hard for further process and learning [6].
For example, in Fig. 3, the relationship between a1 and a5 is

FIGURE 3. An Example of Heterogeneous Network. It is a simplified
version of Fig. 2.

FIGURE 4. An Example of meta-graph. It is the meta-graph of Fig. 3.
U:university; A:author; C:conference; P:paper.

missed when choosing meta-path ‘‘APAPA’’; similarly, after
selecting meta-path ‘‘APCPA’’, we are unable to capture the
relation between a2 and a6; also a single meta-path cannot
express relationships between distant objects. To compensate
such weakness of meta-path, the concept of meta-graph is
proposed by [7], combining many different meta-paths, and
the meta-graph is shown to have a clear advantage in tasks
like entity-resolution, ranking and clustering. An example of
the meta-graph is illustrated in Fig. 4.

[Weights of meta-graph] Different meta-paths attempt to
capture different semantics in HNs.When predicting the label
of author a2 in Fig. 3, a2 → p2 → a6 where two authors
co-author the same paper is intuitively more important than
a2→ u2→ a7 that two authors work in the same university.
Inspired by this, we introduce the weights for the meta-graph
in the learning process. Details are presented in Section III-B.

[Network embedding] One ultimate goal of this paper is
to learn better node features. Automatic graph representation
learning is a research area of long history and is essential

VOLUME 8, 2020 40745



J. Zhang et al.: WMGCN for Representation Learning in HNs

for handling large networks. Previously, matrix factoriza-
tion techniques like eigen-decomposition of Laplacian matrix
[8], and the graph factorization [9], have been well studied.
Recently, the applications of neural networks on graph learn-
ing are showing strong performance against classic meth-
ods [10]–[13]. In particular, this paper employs the graph
convolutional network [14]. GCN is an end-to-end semi-
supervised neural network model which integrates the links
among nodes and prior knowledge to compute its parameters.
GCN itself is intended for homogenous network due to its
design; therefore we feed GCN with embeddings learned by
our weighted meta-graph as prior knowledge. GCN is able
to make full use of graph structure information and better
characterize a node’s neighborhood. It defines a convolu-
tion operator and iteratively aggregates the embeddings of
neighbors for a node and then further uses its embedding
from the previous iteration to obtain the new embedding.
In addition, we modify the convolution operator to consider
what we named as node ‘‘self-significance’’ - how much a
node should consider its own feature when convolving with
its neighbors through the iterations. Performance improve-
ment is observed in our experiments because of consid-
ering this ‘‘self-significance’’. Based on our experiments,
when combined with the weighted meta-graph, the features
learned by our modified GCN are compentent in the tasks of
multi-label classification and link prediction, outperforming
state-of-the-arts models LINE, node2vec, metapath2vec and
HIN2Vec on four data sets DBLP, Aminer, Blogcatalog, and
IMDB. Details are presented in Section IV.
Our main contributions to the representation learning of

HNs are now summarized as follows:
• To take full advantage of the meta-paths and remedy the
gap of different objects, we propose the weighted meta-
graph to better capture graph relationship semantics.

• We propose a modified version of GCN to further
process the results from the meta-graph to learn HNs
embeddings. The weighted meta-graph makes up for
the lack of semantics in GCNs, while the GCN mixes
the network topological structure information with the
semantics.

• Extensive experiments are done to compare with a
variety of recent models on four real-world data sets,
with different train-test splits, to confirm the effec-
tiveness of our approach in classification and link
prediction.

We organize the rest of the paper as follows. We review
the related work in Section II, and introduce some definitions
and conceptions in Section III. Then we propose our model in
Section III and report our experimental results in Section IV.
Finally, we make conclusions and discuss future work in
Section V.

II. RELATED WORK
Previous works on network embedding and neural networks
inspire this research. The following briefly reviews the related
work.

A. NETWORK EMBEDDING
Network embedding assigns nodes in a network to
low-dimensional representations and effectively preserves
the network structure [15]. [16], [17] perform network
embedding by matrix factorization. A matrix factorization
algorithm represents the links between nodes using adjacency
matrix, then obtains the network embedding to factorize
adjacency matrix. Although matrix factorization algorithms
capture the global structure of the networks, the bottleneck is
the decline of performance in facing a large network with
millions of nodes. Recently, high-quality features learned
by new network embedding methods have been applied in
various machine learning algorithms, and have achieved
remarkable effects. Compared to the traditional methods,
these new network embedding methods avoid the problem
of high computational complexity of matrix factorization.
These representation learning or embedding models include
Deepwalk, Node2vec, subgraph2vec [10], [11], [18]. One
common technique of these methods firstly generate node
sequences by random walks, and then learn to embed using
Skip-Gram. However, these models are all for feature learn-
ing from homogeneous networks, and they are not applied in
HNs.

HIN2Vec [19] is designed to capture the different seman-
tics between nodes based on meta-paths in heterogeneous
information networks. Unfortunately, HIN2Vec does not take
into account different weights in meta-paths.

B. NEURAL MODEL ON NETWORKS
Recent graph neural models are showing strong performance
in their ability to extract node features and demonstrated
ground-breaking performance on many tasks [20]. Reference
[21] uses Graph Nueral network and metagraphs to solve the
semi-supervised learning in attributed heterogeneous infor-
mation networks. The definition of metagraphs in [21] is
different from us, and they don’t give the effect of differ-
ent metagraphs. Graph Convolutional Networks (GCNs) [14]
et al. utilize a first-order approximation of spectral convo-
lutions on the data of the graphs to represent the structure
and relationships between nodes. [22] utilizes GCN to embed
temporal heterogeneous graph to perform the community
detection task.

References [23]–[25] integrate meta paths and attention
mechanism to capture the semantic information in HNs.
Reference [26] separates the same type of nodes from Het-
erogeneous Information Networks (HINs), then aggregates
the heterogeneous neighbors. R-GCNs [27] and FastGCN
[28] are based on GCNs to more efficiently learn hidden
layer representations. Graph neural network is another model
family. For this paper, we focus on applying GCN to learn
from HNs.

III. THE PROPOSED APPROACHES
In this section, firstly, we give our main structure of our
model, then we review some basic concepts about HNs, and
meta-graph. At last, we introduce the background of the
GCNs.
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The main structure of our proposed model is as follows:
• Extracting the neighbors’ set of given meta graphs, and
construct different homogeneous networks according to
the types of objects

• According to the weights of different meta graphs to
aggregate the homogeneous networks

• Utilizing GCN with node self-significance to embed the
heterogeneous networks

A. PRELIMINARIES AND PROBLEM DEFINITION
Definition 1: Heterogeneous Information Network.

An heterogeneous network is a graph G = {V , E , T , R, φ,
ψ} with an object type mapping function φ: V → T and a
link type mapping function ψ : E → R, where each object
v ∈ V belongs to one particular object type φ(v) ∈A, and
each link e ∈E belongs to a particular relation ψ(e) ∈ R,
with |T | + |R| > 2. TG = (T ,R) is denoted as the network
schema.
Definition 2 ( [7] Meta-Graph): A meta-graph S = (N ,

A, nt , ns ) where N ⊆ V is a set of nodes and A ⊆ E is
a set of edges, is defined on a HN schema TG = (T ,R). S
is a directed acyclic graph ( DAG ), and nt , ns are the single
source and target node, respectively.

The meta-graphs of Fig.3 are shown in Fig.4. As in [29],
only the sub-graphs that have one source node and one target
node are meta-graphs. The matrix of meta-graph is the same
as definition of meta path.
Definition 3: Matrix of meta-graph. Given a meta-graph S
= (T1T2 . . . Tl), the matrixM of S is

M = MT1T2MT2T3 . . .MTl−1Tl (1)

whereMTiTj is the adjacency matrix between type Ti and Tj.
Taking S3 in Fig. 3 as an example of computing matrix

of meta-graph to better comprehension. Without any loss of
generalizations, meta-graph S3 can be written as {AP {A;C}
PA}. For meta-graph, computing matrix is as follows:

MS3 = MAP ⊗ {MPC ⊗MCP ⊗ {MPA ⊗MAP}} ⊗MPA (2)

where ⊗ represents Hadamard product (element-wise
product).
Definition 4: Representation Learning of HNs. The repre-

sentation learning of a graph G is a map ϕ : V → Rd which
projects every node v ∈ V to a low d-dimensional space Rd ,
where d � | V |.
In this work, we aim to get the utmost out of the complex

structure of HNs andmultiple semantic relationships between
nodes in HNs. In order to get better representation learning of
HNs, we face several challenges, as follows:
• Utilize meta-graphs to represent the different effect of
each meta path in HINs. The proposed model MGCN
is a better designed model to efficient and effective
representation the weight of different meta-graph.

• Absence of semantic of GCN in graph. Due to the lack of
semantic in original GCN, how to express the complex
semantic is critical in HNs.

• Regulation. In order to express the latent vector of each
node in HNs, reasonable and effective regularization is
required in the process of convolution.

B. WEIGHTED META-GRAPH
As shown above, different meta-graphs have different
semantics; thus we believe the meta graph weight learning is
important for modeling HNs. Without loss of generality, let
θ be the weight of the meta-graph S. Since a meta-graph is
the similar structure with the meta path with a single source
and target node, we can define the relevance measure based
on meta-graph as the PathSim [5]:

R(ns, nt | S) =
2Nnsnt

Nns + Nnt
(3)

whereNnsnt denotes the number of S instance between ns and
nt , Nns and Nnt are the number of S between ns and ns, nt and
nt , respectively.

In order to learn the weight θs of each meta-graph s ∈ S ,
we optimize an objective function O by training data. The
principle of training process is maximizing the correlations
of objects that share the same labels and minimizing the
correlations of objects that are given different labels:

O(θ ) = max
θs

∑
xi,xj∈VT

(sign(xi, xj)
∑
s

θsRs(xi, xj))
2
−
λ

2
‖θ‖22

(4)

where ‖·‖ is the `2−norm and λ is a regularization parameter
which applies to balance the objective function. VT ⊂ V are
labelled nodes set. sign(xi, xj) is an indicator function: only xi
and xj have the same label, the value is 1; otherwise is 0.

Let the partial derivatives of O(θ ) be 0, then we solve the
optimization problem to get θs:

θs =
1
λ

∑
xi,xj∈VT

(Sign(xi, xj) · Rs(xi, xj)) (5)

C. GCN WITH NODE SELF-SIGNIFICANCE
Graph convolutional network (GCN) [14], [30] is a popular
model in graph learning algorithms that utilize the latest deep-
learning technologies. When we talk about convolutions in
deep learning, we often consider a 1D sequence, 2D images,
or occasionally 3D tensors. However, we could understand
all these as special cases of the graph learning problem for
regular graphs, where the graph is a line, a 2D grid or a 3D
cube lattice; a regular graph is a graph where each vertex
has the same number of neighbors. Therefore, the GCN is a
generalization of convolutional networks. Every GCN layer
is an activation function applied on a linear transformation
of the convoluted node features. Given a graph G = (V ,E),
where V = v1, . . ., vN are the nodes and E ⊆ V × V are the
edges, let A be the N × N graph adjacency matrix where the
ith row represents the weighted/unweighted adjacency of vi,
and let Ã = A+I be the adjacencymatrixwith ‘‘self-loop’’ for
convenience; also let D̃ be the degree matrix with self-loop,
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i.e. D̃ is a diagonal matrix where D̃(i, i) is the degree of vi
plus one. Now a usual normalization of Ã can be written as
D̃−

1
2 ÃD̃−

1
2 , where the weight of each edge in Ã is normalized

by the degrees or the two edge nodes. Let X be the node
feature matrix where each row is a feature vector, then one
graph convolution operator g for GCN can be defined as

g ? X := D̃−
1
2AD̃−

1
2X (6)

where ‘‘?’’ is conventionally used to denote a convolution
operator. Intuitively, it simply computes each node’s convo-
luted feature as the weighted average of neighbors’ features
and the node’s own feature according to the weights in the
adjacency matrix Ã. It is not hard to check that two composed
convolution operator g2 ? X := g ? (g ? X ) convolute the
features from the neighborhood’s neighborhood. Finally, let
H (i), i = 1, 2, . . . be the output of each layer and H (0)

= X ,
then one convolutional layer in [14] is defined as

H (i)
= activation(g ? H (i−1)W (i)) (7)

and one typical example of network structure is

Z = softmax(g ? relu(g ? XW (0))W (1)) (8)

where Z gives a probabilistic estimation of the node labels
and we can use negative log-likelihood as the loss function.
In [14], the convolution operator of Eq. 6 can be formally
derived by spectral graph convolutions and its first-order
Chebyshev polynomial approximation. An approximation of
a higher order gives different convolution operators, but this
is out of our scope due to space limitations.We now refine the
convolution operator in Eq. 6 by adding what we defined as
node significance. Technically, we observe the Ã = A + I
in Eq. 6 does not give any weight to the ‘‘self-loop’’ for
the convolution. Intuitively, each node in a network might
be more or less ‘‘self-significant’’, i.e. each node’s own fea-
tures play different levels of role in the convolution. The
straightforward way to implement this idea is by relaxing
the identity matrix I as a trainable diagonal matrix Ds,
i.e. redefine ‘‘Ã := A + Ds’’, where the subscript ‘‘s’’
stands for ‘‘self-significant’’. However, this brings computa-
tion inconvenience; the normalization cannot be precomputed
with the variable Ds in Ã. Therefore, we instead move Ã
outside of the convolution and redefine graph convolution
with node significance. In addition, we may allow the ith
layer (i = 0, 1, . . .) to have its own Ds(i); consequently,
the convolution operator is now different for each layer. As a
result, graph convolution with node significance is defined as
the following,

g(i)s = D̃−
1
2 ÃD̃−

1
2D(i)

s (9)

H (i)
= activation(g(i)s ? H

(i−1)W (i)) (10)

For computation convenience, we allow Ds to contain
negative numbers; roughly only one in twenty nodes would
have negative learned significance. We note that a nega-
tive significance has the same meaning as the positive one,
e.g. node significance of −3 and 3 both mean a node has

FIGURE 5. Histograms of learned node self-importance from 2-layer
convolutions on the DBLP author-author network for node label
prediction. (a), (b) are for all nodes, (c) is for the top 500 authors of
smallest author IDs in the DBLP dataset, and (d) is for the last
500 authors of largest author IDs in the DBLP dataset. In DBLP, an author
of smaller ID tends to have more co-authorship with other authors.

relatively higher influence on the convolution, while node
significance of −0.1 and 0.1 both mean the node has little
influence. To better show the above-defined node signifi-
cance is making sense, we plot histograms for the trained
node significance from a 2-layer convolutional network on
the DBLP Author-Author network for node label prediction.
The histograms for all nodes are shown in (a), (b). We can
see 1) the majority of nodes have zero importance, i.e. their
labels can be predicted by just looking at their neighbor-
hoods, but these also exist many nodes with self-significance
higher than 1; 2) the second layer has more nodes with near-
zero significance; this makes sense because the algorithm
looks into a larger local community, and thus reduces more
nodes’ role in the convolution. We also plot the histogram
for the first and last 500 nodes. In the DBLP dataset, authors
are ordered by their IDs, and the top authors tend to have
more links in the author-author network (i.e. they tend to be
influential researchers). We can immediately see top authors
tend to have higher self-significance, while the prediction
for the last 500 authors is heavily dependent on the neigh-
borhood. We later show in the experiment that adding node
self-significance can increase performance by 0.2% to 2%,
especially when hide more labels.

At last, we apply the following modified 2-layer GCN for
our experiments, similar to Eq.8 but now with the modified
convolution operators in Eq.9, where X are features learned
from metagraphs, and g(0) ? XW (0) are treated as the learned
embeddings.

Z = softmax(g(1) ? relu(g(0) ? XW (0))W (1)) (11)

IV. EXPERIMENT
In this section, we evaluateWMGCNwith real-world datasets
to verify its effectiveness for representation learning in HNs;
the results show our approach outperforms the state-of-the-art
methods for classification and link prediction.
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TABLE 1. Description of datasets.

A. EXPERIMENT SETUP
1) DATASETS
The benchmark datasets used in our experiment include:
scientific publication datasets ( DBLP and Aminder ), social
network datasets ( Blogcatalog and Yelp) and a movie
network ( IMDB ). Basic statistics of these datasets are
summarized in Table 1.
DBLP [31] is a bibliographic network in computer

science. DBLP contains 28702 authors(A), 20 confer-
ences(C), 13214 terms(T). We employ meta-graph sets
{A{C,T }A}, {AT {A;C}TA} based on the links between
nodes.

Blogcatalog is a social network where the relationship
is provided by the blogger authors. All bloggers (U) and
their groups (G) are nodes, and the edges are friendships
(U-U) and users’ groups (U-G). In our experiment, we use
the meta-graph {UGU}.

Aminder [32] consists of 9,323,739 authors, 3,194,405
papers and 3,883 venues (held until 2016). It is computer sci-
ence citation network. It contains papers (P), authors (A) and
conferences (C) as nodes and the relationships: writing (A-P),
publish (P-C) are used as edges. We employ the meta-graph
{APA}, {AT {A;C}TA}, extracting from Aminer.
IMDB is a movie network among actors(A), directors(D)

and movies(M). According to the movies’ genre, we divide
the movies into actions, comedy and drama. There are
two types of edges (A-M,M-D) in the IMDB dataset.
Here, we employ the meta-graph sets {M{A,D}M},
{MA{D;M}AM} to perform our experiments.

2) BASELINES
We compare with recent representation/embedding learning
methods for both homogeneous networks and heterogeneous
networks to verify the effectiveness of WMGCN.

LINE [12] has two variants: LINE-1st and LINE-2nd.
These models sample the edges with the probabilities propor-
tional to their weights, and represents the nodes with vectors
in a low-dimension space.

Node2vec [11] is a generalization of deepwalk by introduc-
ing two control parameters to tune the balance between two
extreme sampling strategies: Breadth-first Sampling (BFS)
and Depth-first Sampling (DFS). The sampled random walks
are learned by skip-gram.

metapath2vec [13] samples neighborhood sets with meta-
paths, and then leverages the negative sampling technique
to learn the node features. We use the best performance of
the meta paths APTPA and APCPA in DBLP and AMiner
respectively, which has the highest weights.

HIN2Vec [19] learns embeddings for HNs. HIN2Vec
applies random walks and negative sampling to prepare

TABLE 2. Weights of meta-graph in Aminder1.

TABLE 3. Accuracy results for Aminer1. Comparing the weights of
meta-graphs in Aminer1.

training data, then applies the logistic binary classifier to
predict the relationship between nodes. As HIN2Vec learns
representation of meta paths, we can use HIN2Vec to analyze
the meta-graph which contains multiple meta-paths.

B. WEIGHT LEARNING FOR META-GRAPH
We first complete a simple experiment to test the necessity
of weighted meta-graph in the classification task. Indeed,
a higher weight should be assigned to a more effective
meta-graph in HNs.

In the experiment, we randomly choose 1500 authors,
500 papers and 10 conferences from the Aminer dataset to
calculate the weights for each meta-graph. We denote the
sampled dataset as ‘‘Aminer1’’. {APA, AP {A; C} PA} are
used to construct the meta-graph in our experiment. We learn
weights from the labeled data and distribute weights to meta-
graph on the basis of the classification performance by the
optimization described in Section III-B. In Table 3, we can
see that the meta-graph {AP {A; C} PA} has the highest
classification accuracy. WMGCN learns the subtle change
and sets up the highest weight for meta-graph {AP {A; C}
PA} in Table 2; WMGCN also assigns the smallest weight to
meta-graph {APA} due to the lowest accuracy with {APA}.

From above results, we can see the effectiveness of the
learnedmeta-graphweights. Again, themeta-graph has richer
semantics, and the semantics of meta-graph are indirectly
mapped to learn the weights of meta-graphs. Therefore, our
approach learns the weights of meta-graphs that should play
a more significant role in classification. The learned weights
are highly consistent with intuition, and the meta-graphs
combined through weights in turn improve the prediction
accuracy.

C. MULTI-LABEL CLASSIFICATION OF NODES
Node classification in the graph setting arises in many real
world-networks, such as identifying people of the same
‘‘interest’’ in a social network. Being able to label a particular
entity in a graph based on its nearby graph structure and
predicting relationships between entities play an important
role in graph analytics [33].

To verify our proposed model WMGCN for graph
representation learning, we perform experiments on vari-
ous datasets to compare with other recent models. Similar
experiment setup and datasets can be found in [10]. In all
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TABLE 4. Multi-label classification in DBLP. The highest performance are in bold.

TABLE 5. Multi-label classification in Blogcatalog. The highest performance are in bold.

comparisons, we vary the train-test split and randomly sample
the training data to evaluate howwell the embeddings learned
by our proposed WMGCN. We repeat each confirmation
results ten times, and report the average performance in terms
of accuracy and Macro-F1. We choose the same parameters
for random-walk based methods 1) all random walks have
length 80; 2) the skip-gram context window size is 10, and
negative sample size is 5. For all models, the embedding
dimension is 128. WMGCN-1st uses the original design of
2-layer GCN by equation 8, and WMGCN-2nd applies the
modified GCNwith node self-significance as by equation 11.

1) DBLP
For this dataset, we follow [10] and vary the training data
from 1% to 9% to predict the authors’ label. Our weighted
meta-graphs learn author features from the heterogeneous
relationship among authors, terms and conference, and then
GCN predicts author labels based on co-authorship, The
results are presented in Table 4. LINE-1st, LINE-2nd and
node2vec directly run on the co-author network; as algo-
rithms don’t intend for heterogenous networks, their accuracy
and Macro-F1 are all no higher than 70%. The accuracy of
Metapath2vec can achieve 87%, as it makes use of its sampled
meta paths that embed information of different types of rela-
tionships. By Table 4, WMGCN-1st outperforms the base-
lines by 10%, and WMGCN-2nd gains up to 1% additional
accuracy. Despite of very limited number of labeled nodes
for training, our WMGCN models stably achieve stronger
performance,

2) BLOGCATALOG
We vary the training set ratio from 90% to 10% for this
dataset. By Table 5, this is a dataset where LINE and

node2vec poorly perform, nearly 30% ∼ 40% less predic-
tion accuracy than models particularly designed for HNs.
The performance of WMGCN models still stably exceed
the metapth2vec model by 1% to 2%, and WMGCN-2nd
is the best in all cases, and the gap is more noticeable
when the training set is small.

3) AMINER
Aminer is a relatively larger heterogeneous network and it
is closer to the real-world situation with a large number of
edges of different relation types. This is the largest data set we
experiment for this paper. We also vary the Aminer training
set ratio from 90% to 10%. Table 6 presents the results,
which are consistent with the previous two experiments. Even
when only 10% of the labeled data is used for training,
WMGCN-1st can achieve as high as 92% in accuracy,
20%, 10% more than node2vec and LINE respectively.
WMGCN-2nd still performs better than WMGCN-1st, espe-
cially when the training set is small, consistent with DBLP
and Blogcatalog. We suspect it is because the meta-graph
already encodes rich information in the features, and when
fewer labeled nodes are given, the prediction starts to rely
more on the node’s own features rather than the neighbors’
features.

4) IMDB
IMDB is a movie network. In this experiment, we also
vary the training ratio from 90% to 10%. Table 7 lists
the results. The performances of all models improve when
given a larger training ratio. Especially, when the ratio of
the labels is 10%, WMGCN-1st improves by 14% against
metapath2vec which is the best baselines in our experiment.
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TABLE 6. Multi-label classification in Aminer. The highest performance are in bold.

TABLE 7. Multi-label classification in IMDB. The highest performance are in bold.

FIGURE 6. Impact of parameters on WMGCN.

Besides, Macro-F1 score of WMGCN-1st is up to 26%
than metapath2vec only with 1% training data. However,
WMGCN-2nd improves 1% than WMGCN-1st on aver-
age, which demonstrates the effectiveness of the node self-
significance. In other training ratios, WMGCN-1st performs
better than other baselines from 8% to 20% in the accuracy,
and Macro-F1. In summary, when only few labels are given,
our proposed model WMGCN can also have a strong per-
formance in social networks, citation networks and movie
networks. Not only because WMGCN can extract compli-
cate relationships and weight the meta-graph, but also the
improved deep convolutional model can better capture the
deep feature.

D. PARAMETER SENSITIVITY
Finally, we evaluate the impact of parameters in the following
categories on classification tasks. In addition, similar impact
of parameters can be observed in other tasks.

1) EMBEDDING DIMENSIONALITY
Fig. 6(a) examines the performance of WMGCN via chang-
ing the number of dimensions d in the different reality HNs.

FIGURE 7. Effect of Accuracy and Dimension on Blogcatalog.

All datasets are not sensitive to the embedding dimensional-
ity. What is more, the optimal results can be achieved when
d is 256 and 512 in IMDB and Blogcatalog, respectively.
We also compare the effects of varying the epoch and the

embedding dimensionality at the same time. Fig. 7 shows
that the performance of different various sizes stay stable
no matter how changes the epoch. The experimental results
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FIGURE 8. Visualization of DBLP Coauthor Network. Color indicates the category of author.

show that WMGCN can not only perform better than various
models but also be stable facing varieties of parameters.

2) LEARNING RATE
Furthermore, we demonstrate the effects of learning rate
in various HNs. The experimental results can be shown
in Fig. 6(b). In the beginning, the effects of the WMGCN
vary significantly as increasing the learning rate θ . When
θ > 0.001, the effect is stable.

3) EFFECT OF EPOCH
We increase the number of epoch over 100, 200, 500, 1000,
2000, 2500 on datasets: DBLP, Blogcatalog, IMDB. From
Fig. 6(c), the accuracy of Blogcatalog dataset changes better
until up to the number of 1000. The best results can be
achieved at the number of 1000 epoch.

To sum up, as the number increases, the results change
better. However, after epoch number is up to some thresh-
old, the performance is worse because of the overfitting.
Furthermore, the performance ofWMGCN is stable when the
number of epoch is changing.

E. VISUALIZATION OF DBLP COAUTHOR NETWORK
EMBEDDING
Embedding visualization like t-SNE is a useful tool to demo
embedding quality. Due to space limitations, we only visual-
ize the DBLP co-author network embeddings. For this exper-
iment, as shown in Table 4, the performance improvement by
our WMGCN is outstanding, and we expect the visualization
of the embeddings learned by WMGCN are distinct from
others as well. The results for the case of 9% training ratio
is shown in Fig. 8. For LINE and node2vec, a large number
of embeddings from different classes are pretty mixed. For
metapath2vec, the embeddings are clearly more distinguish-
able, and such improvement is facilitated by better use of
network semantics. Finally, the embeddings learned by our
proposed WMGCN are well separated by class, except for
only a few mixes in the middle and several exceptions lying
on the periphery of each class. The visualization results well
support our superior performance in Table 4.

TABLE 8. Area Under Curve (AUC) scores for link prediction. Comparison
with popular embedding models using binary operators: Average,
Hadamard, Weighted-L1, and Weighted-L2 to merge node embeddings as
the edge embedding.

F. LINK PREDICTION
Link prediction is another important task for graph learning.
As the term suggests, it predicts if there is an edge between a
pair of nodes, given information (like features) of both nodes.
Link prediction is applicable to a wide variety of applica-
tion areas, such as building recommendation systems [34],
co-authorship prediction [35], and protein-protein interaction
(PPI) prediction [36].

To further evaluate the quality of learned node embed-
dings by our proposed model WMGCN, we experiment the
feature-based link prediction on three datasets DBLP, IMDB
and Blogcatalog. Let u and v represent the node feature
vectors for two nodes a, b then the embedding for a node
pair (a, b) can be calculated in several ways according to
[11], as shown below. Then a logistic regression model is
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applied on the edge embeddings to predict the existence of
edge between a, b
• The average of two features: u+v

2
• The Hadamard product (element-wise product) of two
node features: u ∗ v

• The Weighted-L1: |u− v|
• Weighted-L2: |u− v|2

The Area Under Curve(AUC) scores for link prediction
are summarized in Table 8. From the results, we can see
that WMGCN-1st outperforms most of the baselines scores.
When we add node self-significance, WMGCN-2nd slightly
gains some additional scores. For DBLP dataset, WMGCN
models outperform the best baseline by around 10% for
Weight-L1. For the other two datasets, the performance of
WMGCN models increase about 4%. The results of link pre-
diction again confirms the high-quality embeddings learned
by our proposed WMGCN.

V. CONCLUSION
In this paper, we proposed a novel framework WMGCN
for the representation learning of heterogeneous networks.
Previous models do not consider the different levels of effects
in the meta-graph. To compensate, we make use of the
labeled data to quantify the weights of each meta-graph that
express the significance each meta-graph should play in a
graph learning task. After that, we combine the meta-graph
with a graph convolutions, where meta-graph makes up the
GCN’s inability to capture graph semantics in a heteroge-
neous network, and GCN in turn help mix and propagate met-
graph features among close nodes by convolution operations.
In addition, we propose to consider node significance for the
graph convolution operator and show such modification can
further improve performance.

Experiments on various real-world datasets illustrate
the effectiveness of our proposed representation learning
approach for the tasks of classification and link prediction.
As future work, we could experiment the learned embed-
ding on other tasks like network alignment. In this work,
the complex semantics of HNs are mostly captured by the
meta-graphs. Considering the outstanding performance of
convolutional networks, we would like to consider more
improvement of graph convolutions to learning from HNs.
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